1
|
Alaraby M, Abass D, Velázquez A, Hernández A, Marcos R. New insights into the reproductive hazards posed by polystyrene nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138210. [PMID: 40215930 DOI: 10.1016/j.jhazmat.2025.138210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/12/2024] [Accepted: 04/06/2025] [Indexed: 05/15/2025]
Abstract
Reproductive toxicity from micro/nanoplastics (MNPLs) is an emerging concern requiring further investigation to close existing knowledge gaps. This study explores the reproductive toxicity of polystyrene nanoplastics (PSNPLs) using Drosophila as an in vivo model. Males and females were exposed to PSNPLs (100 and 500 µg/mL) for one/two weeks. Confocal and transmission electron microscopy revealed widespread distribution of PSNPLs across various tissues, including ovaries, testes, and gametes (ova and sperm). Structural damage, such as hole formation in the seminiferous tubules and ovarian atrophy, was observed following exposure. The physical presence of PSNPLs in reproductive organs disrupted reproductive outcomes, particularly in matings between exposed males and females. Key impairments included reduced fecundity, lower fertility, and a skewed sex ratio, especially after one week of exposure, with minimal effects after two weeks. Significant disruptions in the expression of reproductive and developmental genes were observed in both sexes, with males exhibiting greater sensitivity to PSNPLs, regardless of exposure concentration or duration. These findings provide critical insights into the reproductive toxicity of PSNPLs, underscoring both physical disruptions in reproductive tissues and molecular alterations. This highlights the potential for MNPLs to cause hidden reproductive damage and emphasizes the sex-dependent nature of these toxic effects.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Zoology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Doaa Abass
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Zoology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
2
|
Rocabert A, Martín-Pérez J, Pareras L, Egea R, Alaraby M, Cabrera-Gumbau JM, Sarmiento I, Martínez-Urtaza J, Rubio L, Barguilla I, Marcos R, García-Rodríguez A, Hernández A. Nanoplastic exposure affects the intestinal microbiota of adult Drosophila flies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179545. [PMID: 40311335 DOI: 10.1016/j.scitotenv.2025.179545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/27/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Micro- and nanoplastics (MNPLs) are emerging environmental pollutants that have garnered significant attention over the past few decades due to their detrimental effects on human health through various exposure pathways. This study investigates the impact of MNPLs on gut microbiota, utilizing Drosophila melanogaster as a model organism. Drosophila was selected for its microbiota's similarities to humans and its established role as an accessible and well-characterized model system. To analyze microbiota, full-length 16S rRNA gene sequencing was performed using the Nanopore sequencing platform, enabling comprehensive profiling of the microbial populations present in the samples. As models of MNPLs, two commercial polystyrene nanoplastics (PS-NPLs, 61.20 and 415.22 nm) and one lab-made polylactic acid nanoplastic (PLA-NPLs, 463.90 nm) were selected. As a positive control, zinc oxide nanoparticles (ZnO-NPs) were used. The observed findings revealed that exposure to MNPLs induced notable alterations in gut microbiota, including a reduction in bacterial abundance and shifts in species composition. These results suggest that MNPLs exposure can lead to microbial dysbiosis and potential gut health disruptions through its interaction, either with the gut epithelial barrier or directly with the resident microorganisms.
Collapse
Affiliation(s)
- Arnau Rocabert
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Joan Martín-Pérez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laia Pareras
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Raquel Egea
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mohamed Alaraby
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jordi Manuel Cabrera-Gumbau
- Group of Genomics, Bioinformatics & Evolutionary Biology, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Iris Sarmiento
- Group of Genomics, Bioinformatics & Evolutionary Biology, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jaime Martínez-Urtaza
- Group of Genomics, Bioinformatics & Evolutionary Biology, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laura Rubio
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Irene Barguilla
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba García-Rodríguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
3
|
Zhang X, Zhang Z, Zhou Q, Zhang G, Luo J, Yun Y. Nanoplastic exposure weakens immunocompetence in the burrowing tarantula (Chilobrachys guangxiensis) following pathogen-associated molecular pattern challenges. ENVIRONMENTAL RESEARCH 2025; 274:121332. [PMID: 40058554 DOI: 10.1016/j.envres.2025.121332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Nanoplastics (NPs) have emerged as critical environmental contaminants, with growing concerns regarding their potential harm to organisms. Despite this, knowledge remains limited on whether NP exposure diminishes the capacity of organisms to respond to additional environmental stressors. In this study, we evaluated immune function in a burrowing tarantula, Chilobrachys guangxiensis, following NP exposure and subsequent challenges with lipopolysaccharide (LPS) and β-1,3-glucan. The total hemocyte count (THC) and hemolymph encapsulation rate were assessed to determine immune disruption. In addition, transcriptomic analyses were conducted to elucidate the mechanisms involved after both primary and secondary exposures. Results indicated that prolonged NP exposure did not cause significant changes in immunocompetence in C. guangxiensis. However, upon secondary exposure to LPS or β-1,3-glucan, individuals pre-exposed to NPs displayed significant changes in THC and impaired encapsulation capacity. Gene expression profiling based on quantitative real-time PCR revealed that LPS and β-1,3-glucan elicited varying immune responses and distinct gene expression profiles in NP-exposed C. guangxiensis. These findings suggest that NP exposure weakens immunocompetence in C. guangxiensis. This study provides comprehensive insights into the immune responses triggered by different pathogen-associated molecular patterns in NP-exposed C. guangxiensis, offering a novel perspective on the complex immunotoxicological effects of NP pollution.
Collapse
Affiliation(s)
- Xiaopan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zengtao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Qi Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
4
|
Thakur R, Joshi V, Sahoo GC, Jindal N, Tiwari RR, Rana S. Review of mechanisms and impacts of nanoplastic toxicity in aquatic organisms and potential impacts on human health. Toxicol Rep 2025; 14:102013. [PMID: 40230517 PMCID: PMC11995781 DOI: 10.1016/j.toxrep.2025.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
The harmful environmental impact of plastic waste has justifiably received substantial attention from the scientific community. In contrast, the toxicological effects of nanoplastics (NP) on aquatic organisms, as well as the potential implications for human health, remain largely unexplored and poorly understood. Despite the growing awareness of plastic pollution, the risks associated with the ubiquitous presence of nanoplastics in our food and beverages are not yet fully recognized. NPs, which are smaller than 1 µm, along with a mixture of MPs and plastic fragments, can find their way into water bodies through various sources and may easily be taken up by aquatic organisms. This paper summarizes the existing literature on NPs bioavailability, their accumulation patterns within the tissues of fish, shellfish, and zooplankton, as well as the influence of biological and environmental factors on NPs absorption from water and diet. Study indicated that the NPs pose significant risks to both aquatic ecosystems and human health due to their ability to bioaccumulate in marine organisms and biomagnify through the food web. It highlighted that various aquatic species can ingest NPs, leading to their distribution across different tissues, which may result in toxic effects such as oxidative stress, DNA damage, and inflammation, as well as impacts on growth and reproduction. The identified critical gaps in current research, particularly regarding the long-term effects of low-dose NP exposure and the need for standardized testing methodologies to ensure comparability across studies. Furthermore, the necessity for further research to understand the pathways through which humans may be exposed to NPs, their toxicokinetics, and the potential implications for chronic health issues. Therefore, more studies are required which employ rigorous and uniform methodologies to fully address NPs as an emerging threat within aquatic ecosystems and food chains; accurately assess related risks with human health together with cumulative toxicity perhaps when combined with other pollutants.
Collapse
Affiliation(s)
- Rahul Thakur
- Department of Biostatistics and Bioinformatics, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Vibhor Joshi
- Department of Environmental Biotechnology, Genetics and Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Ganesh Chandra Sahoo
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Neetesh Jindal
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Rajnarayan R. Tiwari
- Department of Environmental Health and Epidemiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Sindhuprava Rana
- Department of Biostatistics and Bioinformatics, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
5
|
Zhu P, Zhang Y, Deng M, Zhang Y, Luo J, Han R, Xu L. Microplastics and Nanoplastics Alter the Physicochemical Properties of Willow Trees and Lead to Mortality in Leaf Beetle Larvae. PLANT, CELL & ENVIRONMENT 2025; 48:2895-2909. [PMID: 39635818 DOI: 10.1111/pce.15317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Polystyrene micro- and nanoplastics (MNPs) are increasingly found in terrestrial environments, posing risks across the food web. However, the potential impacts of MNPs transfer on plant-insect interactions remains largely unknown. In this study, consumption of willow plants (Salix maizhokunggarensis) exposed to 10.0 mg/L MNPs for 21 days inhibited survival and reduced body weight in Plagiodera versicolora larvae unlike those exposed to lower concentrations or shorter durations (0.1, 1.0 and 10.0 mg/L MNPs for 7 or 14 days). MNPs exposure increased lignin content and leaf thickness in willows, leading to decreased leaf consumption and increased mouthpart wear in P. versicolora larvae. Transcriptome and gut microbiota analyses revealed significant downregulation of genes related to digestion, intestinal homoeostasis, immunity, and growth/development along with profound alterations in gut microbiota composition. Notably, the abundance of the pathogenic bacterium Pseudomonas increased significantly. The gut barrier was disrupted, allowing gut bacteria to translocate into the haemolymph, accelerating larval mortality. Overall, MNPs altered plant physiology, making willow plants unsuitable for herbivore consumption and indirectly influenced herbivore survival by modulating gut bacteria. These findings offer novel insights into the cascading ecological effects and risks of MNPs, highlighting potential impacts on plant-herbivore interactions, biodiversity, and ecosystem health in terrestrial ecosystems.
Collapse
Affiliation(s)
- Peipei Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yanping Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Mengqi Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Runhua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
6
|
Acharya B, Behera A, Moharana S, Prajapati BG, Behera S. Nanoparticle-Mediated Embryotoxicity: Mechanisms of Chemical Toxicity and Implications for Biological Development. Chem Res Toxicol 2025; 38:521-541. [PMID: 40105412 DOI: 10.1021/acs.chemrestox.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nanoparticles, defined by their nanoscale dimensions and unique physicochemical properties, are widely utilized in healthcare, electronics, environmental sciences, and consumer products. However, increasing evidence of their potential embryotoxic effects during pregnancy underscores the need for a molecular-level understanding of their interactions during embryonic development. Nanoparticles such as titanium dioxide, silver, cerium oxide, copper oxide, and quantum dots can cross the placental barrier and interfere with crucial developmental processes. At the molecular level, they disrupt signaling pathways like Wnt and Hedgehog, induce oxidative stress and inflammation, and cause genotoxic effects, all critical during sensitive phases, such as organogenesis. Furthermore, these nanoparticles interact directly with cellular components, including DNA, proteins, and lipids, impairing cellular function and viability. Innovative strategies to mitigate nanoparticle toxicity, such as surface modifications and incorporation of biocompatible coatings, are discussed as potential solutions to reduce adverse molecular interactions. Various laboratory animal models used to investigate nanoparticle-induced embryotoxicity are evaluated for their efficacy and limitations, providing insights into their applicability for understanding these effects. This Account examines the molecular mechanisms by which nanoparticles compromise embryonic development and emphasizes the importance of designing safer nanoparticles to minimize maternal-fetal exposure risks, particularly in biomedical applications.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha 761211, India
| | - Amulyaratna Behera
- School of Pharmacy, DRIEMS University, Tangi, Cuttack, Odisha 754022, India
| | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha 761211, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon, Pathom 73000, Thailand
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401 India
| | | |
Collapse
|
7
|
Huang Z, Wang F, Zheng J, Sun Z, Liu X, Ma S, Chen K, Ju X, Wang Q. Effects of polyamide microplastics with different particle sizes on the development of silkworm Bombyx mori (Lepidoptera: Bombycidae) and its progeny: A study based on the age-stage, two-sex life table. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025:1-11. [PMID: 40151153 DOI: 10.1017/s0007485325000203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Influenced by human activities, microplastics (MPs) are widely distributed in terrestrial ecosystems. However, their ecotoxicity remains unclear. Therefore, we assessed the ecotoxicity of polyamide microplastics (PA-MPs) by investigating their toxic effects on the model insect, the silkworms Bombyx mori (Lepidoptera: Bombycidae). In this study, fifth-instar silkworm larvae were fed mulberry leaves treated with PA-MPs for 120 hours, but no changes in mortality rates were observed. However, the body weight, pupal weight, cocoon weight, egg laying amount, and cocoon shell weight in F0 generation silkworms were significantly reduced. This indicates that PA-MPs have sublethal effects on silkworms. To further investigate the effects of PA-MPs on the offspring of silkworms, we applied the age-stage, two-sex life table analysis. We found that in the PA-MPs treatment group, the duration of the larval and pupal stages of F1 generation silkworms was significantly prolonged, while the lifespan of the adults and total longevity were shortened. Meanwhile, the life history parameters (sxj, exj, lx, fxj, lxmx, and vxj values) and population parameters (R0, λ, r, and T) of F1 generation silkworms in the PA-MPs treatment group were also lower than control. This indicates that PA-MPs have transgenerational effects, affecting the growth, development, and reproduction of F1 generation silkworms. Our research findings demonstrate the sublethal and transgenerational effects of PA-MPs on silkworms, providing evidence for their ecotoxicity.
Collapse
Affiliation(s)
- Zengqing Huang
- School of Life Sciences, Jiangsu University, Zhenjiang, JS, PR China
| | - FeiFei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, JS, PR China
| | - Jiacheng Zheng
- School of Life Sciences, Jiangsu University, Zhenjiang, JS, PR China
| | - Zhonghe Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, JS, PR China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, JS, PR China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, Zhenjiang, JS, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, JS, PR China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, JS, PR China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, JS, PR China
| |
Collapse
|
8
|
Wei LF, Liu XY, Feng HS, Zhang JT, Liu XP. Impact of Polystyrene Micro- and Nanoplastics on the Biological Traits of the Japanese Carpenter Ant, Camponotus japonicus Mayr (Hymenoptera: Formicidae). INSECTS 2025; 16:292. [PMID: 40266802 PMCID: PMC11943275 DOI: 10.3390/insects16030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/25/2025]
Abstract
Insects, being among the most diverse and abundant organisms in terrestrial ecosystems, are inevitably exposed to ubiquitous micro- and nanoplastic contaminants. Although studies on the impact of these contaminants on terrestrial insects are gradually emerging, they remain limited in scope. In this study, we investigated the biological traits (including foraging behavior, food assumption, digging ability, body weight and survival) of the Japanese carpenter ant, Camponotus japonicus, in response to exposure to polystyrene micro- and nanoplastic (PS-M/NP) solutions containing three particle sizes (0.05, 1 and 50 μm) and four concentrations (0.1, 1, 10 and 50 mg/mL). The results showed that worker ants exhibited significant foraging preference and food consumption for non-contaminated solutions in multiple-choice experiments, indicating that worker ants C. japonicus can differentiate and avoid feeding on PS-M/NP-contaminated solutions. Meanwhile, PS-M/NPs significantly reduced the foraging ability of worker ants in multiple-choice and no-choice experiments, with the smallest particle size (0.05 μm) and highest concentration (50 mg/mL) of PS-M/NPs resulting in the longest pre-foraging period, the lowest percentage of licking and the amount of food consumption. In addition, the weight of sand removed by worker ants, the body weight and survival of worker ants showed a dramatic decline with a decrease in particle size, increase in concentration and prolonged in exposure time of PS-M/NP-contaminated solutions. The results of this study confirm that PS-M/NPs have an adverse effect on these worker ants in a particle size, concentration and exposure time-dependent manner, with small particle size, high concentration and longer exposure time being the key factors in decreasing the foraging behavior and biological traits of this insect.
Collapse
Affiliation(s)
| | | | | | | | - Xing-Ping Liu
- Provincial Key Laboratory of Conservation Biology, School of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (L.-F.W.); (X.-Y.L.); (H.-S.F.); (J.-T.Z.)
| |
Collapse
|
9
|
Sankar S, Chandrasekaran N, Meivelu Moovendhan, Parvathi VD. Zebrafish and Drosophila as Model Systems for Studying the Impact of Microplastics and Nanoplastics ‐ A Systematic Review. ENVIRONMENTAL QUALITY MANAGEMENT 2025; 34. [DOI: 10.1002/tqem.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACTMicroplastics and nanoplastics (MNPs) are byproducts of plastics created to benefit humanity, but improper disposal and inadequate recycling have turned them into a global menace that we can no longer conceal. As they interact with all living organisms, including humans, their mechanism of interaction and their perilous impact must be meticulously investigated. To uncover the secrets of MNPs, there must be model systems that exist to interlink the two major scenarios: they must represent the environmental impact and be relevant to humans. Therefore, zebrafish and Drosophila are perfect to describe these two cases, as they are well studied and relatable to humans. In this review, 39% zebrafish studies reported higher mortality and hatching rates at greater MNP concentrations, severe oxidative stress as seen by raised malondialdehyde (MDA) levels, and reduced superoxide dismutase (SOD) activity. About 50% of studies showed severe neurotoxic behavior with drop of locomotor activity, suggesting neurotoxicity. MNPs have a significant impact on fertility rate of Drosophila. More than half of the studies revealed genotoxicity in Drosophila as observed by wing spot assays and modified genomic expressions associated with stress and detoxification processes. These findings emphasize the potential of MNPs to bioaccumulate, impair physiological systems, and cause oxidative and neurobehavioral damage. This study underscores the importance for thorough risk evaluations of MNPs and their environmental and health consequences.
Collapse
Affiliation(s)
- Sudharsan Sankar
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology Sri Ramachandra Institute of Higher Education and Research Chennai Tamil Nadu India
| | | | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospital Saveetha Institute of Medical and Technical Sciences (SIMATS) Chennai Tamil Nadu India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology Sri Ramachandra Institute of Higher Education and Research Chennai Tamil Nadu India
| |
Collapse
|
10
|
Alaraby M, Abass D, Gutiérrez J, Velázquez A, Hernández A, Marcos R. Reproductive Toxicity of Nanomaterials Using Silver Nanoparticles and Drosophila as Models. Molecules 2024; 29:5802. [PMID: 39683959 DOI: 10.3390/molecules29235802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Reproductive toxicity is of special concern among the harmful effects induced by environmental pollutants; consequently, further studies on such a topic are required. To avoid the use of mammalians, lower eukaryotes like Drosophila are viable alternatives. This study addresses the gap in understanding the link between reproductive adverse outcomes and the presence of pollutants in reproductive organs by using Drosophila. Silver nanoparticles (AgNPs) were selected for their ease of internalization, detection, and widespread environmental presence. Both male and female flies were exposed to AgNPs (28 ± 4 nm, 100 and 400 µg/mL) for one week. Internalization and bioaccumulation of AgNPs in organs were assessed using transmission electron microscopy, confocal microscopy, and inductively coupled plasma mass spectrometry. Substantial accumulation of AgNPs in the gastrointestinal tract, Malpighian tubules, hemolymph, reproductive organs (ovaries and testes), and gametes were observed. The highest AgNP content was observed in testes. Exposure to AgNPs reduced ovary size and fecundity, though fertility and gender ratios of the offspring were unaffected. Significant deregulation of reproductive-related genes was observed, particularly in males. These findings underscore the utility of Drosophila as a model for evaluating reproductive hazards posed by AgNP exposure. The ease of AgNP internalization in Drosophila reproductive targets could be extrapolated to mammalians, raising concerns about the potential impacts of nanoparticle exposure on reproduction toxicity in humans.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Zoology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Doaa Abass
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Zoology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Javier Gutiérrez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
11
|
Nan N, Liu Y, Yan Z, Zhang Y, Li S, Zhang J, Qin G, Sang N. Ozone induced multigenerational glucose and lipid metabolism disorders in Drosophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175477. [PMID: 39151609 DOI: 10.1016/j.scitotenv.2024.175477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Ozone (O3), a persistent pollutant, poses a significant health threat. However, research on its multigenerational toxicity remains limited. Leveraging the Drosophila model with its short lifespan and advanced genetic tools, we explored the effects of O3 exposure across three generations of fruit flies. The findings revealed that O3 disrupted motility, body weight, stress resistance, and oxidative stress in three generations of flies, with varying effects observed among them. Transcriptome analysis highlighted the disruption of glucose metabolism-related pathways, encompassing gluconeogenesis/glycolysis, galactose metabolism, and carbon metabolism. Hub genes were identified, and RT-qPCR results indicated that O3 decreased their transcription levels. Comparative analysis of their human orthologs was conducted using Comparative Toxicogenomics Database (CTD) and DisGeNET databases. These genes are linked to various metabolic diseases, including diabetes, hypoglycemia, and obesity. The trehalose content was reduced in F0 generation flies but increased in F1-F2 generations after O3 exposure. While the trehalase and glucose levels were decreased across F0-F2 generations. TAG synthesis-related genes were significantly upregulated in F0 generation flies but downregulated in F1-F2 generations. The expression patterns of lipolysis-related genes varied among the three generations of flies. Food intake was increased in F0 generation flies but decreased in F1-F2 generations. Moreover, TAG content was significantly elevated in F0 generation flies by O3 exposure, while it was reduced in F2 generation flies. These differential effects of O3 across three generations of flies suggest a metabolic reprogramming aimed at mitigating the damage caused by O3 to flies. The study affirms the viability of employing the Drosophila model to investigate the mechanisms underlying O3-induced glucose and lipid metabolism disorders while emphasizing the importance of studying the long-term health effects of O3 exposure. Moreover, this research highlights the Drosophila model as a viable tool for investigating the multigenerational effects of pollutants, particularly atmospheric pollutants.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Yuntong Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Shiya Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Jianqin Zhang
- School of Life Science, Shanxi University, Shanxi 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| |
Collapse
|
12
|
Balali H, Morabbi A, Karimian M. Concerning influences of micro/nano plastics on female reproductive health: focusing on cellular and molecular pathways from animal models to human studies. Reprod Biol Endocrinol 2024; 22:141. [PMID: 39529078 PMCID: PMC11552210 DOI: 10.1186/s12958-024-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The female reproductive system can face serious disorders and show reproductive abnormalities under the influence of environmental pollutants. Microplastics (MPs) and nanoplastics (NPs) as emerging pollutants, by affecting different components of this system, may make female fertility a serious challenge. Animal studies have demonstrated that exposure to these substances weakens the function of ovaries and causes a decrease in ovarian reserve capacity. Also, continuous exposure to micro/nano plastics (MNPs) leads to increased levels of reactive oxygen species, induction of oxidative stress, inflammatory responses, apoptosis of granulosa cells, and reduction of the number of ovarian follicles. Furthermore, by interfering with the hypothalamic-pituitary-ovarian axis, these particles disturb the normal levels of ovarian androgens and endocrine balance and delay the growth of gonads. Exposure to MNPs can accelerate carcinogenesis in the female reproductive system in humans and animal models. Animal studies have determined that these particles can accumulate in the placenta, causing metabolic changes, disrupting the development of the fetus, and endangering the health of future generations. In humans, the presence of micro/nanoplastics in placenta tissue, infant feces, and breast milk has been reported. These particles can directly affect the health of the mother and fetus, increasing the risk of premature birth and other pregnancy complications. This review aims to outline the hazardous effects of micro/nano plastics on female reproductive health and fetal growth and discuss the results of animal experiments and human research focusing on cellular and molecular pathways.
Collapse
Affiliation(s)
- Hasti Balali
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
13
|
Zhang Z, Meng J, Tian J, Li N, Chen Z, Yun X, Song D, Li F, Duan S, Zhang L. Reproductive and developmental implications of micro- and nanoplastic internalization: Recent advances and perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117245. [PMID: 39461235 DOI: 10.1016/j.ecoenv.2024.117245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
A growing body of evidence exhibits the ubiquitous presence and accumulation of micro- and nanoplastics (MNPs) in the air, drinking water, food, and even inside the body, which has raised concerns about their potential impact on reproductive and developmental health. To comprehensively examine the current state of knowledge regarding MNPs-induced reproductive and developmental toxicity, we conducted this systematic review by focusing on the prevalence of MNPs determined in reproductive tissues and their influences on parental reproduction and offspring development. Our findings demonstrate the detection of MNPs in various human reproductive tissues, including semen, placenta, and ovarian follicular fluid, as well as in reproductive tissues of diverse animal species. We show a potential relationship between MNP exposure and increased prevalence of infertility and adverse pregnancy outcomes based on the fact that MNPs exert detrimental effects on reproductive parameters, including sperm quality, ovarian function, and steroidogenesis. In male reproductive systems, MNPs disrupt testicular tissue structure, impair reproductive endocrinology, and reduce sperm quality. In females, MNPs affect ovarian tissue structure and function, interfere with hormone secretion, and impact the endometrium and embryo implantation. Additionally, MNPs cause developmental toxicity in animal models, affecting embryonic development and offspring health, and produce transgenerational effects. Notably, in-depth literature study suggests a crucial role for oxidative stress, inflammation, and epigenetic modification in MNPs-induced toxicity. In conclusion, we integrated systematic knowledge on MNPs-induced reproductive and developmental toxicity, and the systematic finding underscores future study to fully elucidate the risks posed by MNPs to reproductive and developmental health and to inform policy decisions and public health interventions aimed at mitigating their harmful effects.
Collapse
Affiliation(s)
- Zitong Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jiahua Meng
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Ning Li
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Zhen Chen
- School of Public Health, Shandong Second Medical University, Weifang 261053, China
| | - Xiang Yun
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Fei Li
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Shuyin Duan
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China.
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China.
| |
Collapse
|
14
|
Lian H, Zhu L, Li M, Feng S, Gao F, Zhang X, Zhang F, Xi Y, Xiang X. Emerging threat of marine microplastics: Cigarette butt contamination on Yellow Sea beaches and the potential toxicity risks to rotifer growth and reproduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135534. [PMID: 39151359 DOI: 10.1016/j.jhazmat.2024.135534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Cigarette butts have become one of the most common and persistent forms of debris in marine coastal areas, where they pose significant toxicity risks. This study investigated cigarette butt pollution along beaches of the Yellow Sea and used laboratory experiments to assess the toxicity of their leachate and fibers on the euryhaline rotifer Brachionus plicatilis. A pollution index confirmed pollution by this debris across all eight beaches surveyed, where the density of cigarette butts averaged 0.23 butts/m2. In controlled laboratory experiments, both the fibers and leachates from cigarette butts exhibited negative impacts on the development, reproduction, and population growth of rotifers. Unique abnormalities observed under different exposure treatments indicated toxicity specific to certain chemicals and particles. Continuous exposure to cigarette butts initially reduced rotifer fecundity, but this effect diminished over successive generations. However, the exposure induced transgenerational reproductive toxicity in the rotifers. Adaptive responses in rotifers after repeated exposure led to relative reduction in reproductive inhibition in the F3 and F4 generations. Furthermore, rotifers were capable of ingesting and accumulating cigarette butts, and maternal transfer emerged as an alternative pathway for uptake of this material in the offspring. These results increase our understanding of the ecological risks posed by cigarette butts in aquatic environments.
Collapse
Affiliation(s)
- Hairong Lian
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Lingyun Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Meng Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Sen Feng
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Fan Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Xin Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Fan Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu 241000, Anhui, China
| | - Xianling Xiang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu 241000, Anhui, China.
| |
Collapse
|
15
|
Wāng Y, Jiang Y. Drosophila melanogaster as a tractable eco-environmental model to unravel the toxicity of micro- and nanoplastics. ENVIRONMENT INTERNATIONAL 2024; 192:109012. [PMID: 39332284 DOI: 10.1016/j.envint.2024.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024]
Abstract
Micro- and nanoplastics have emerged as pervasive environmental pollutants with potential ecotoxicological impacts on various organisms, including the model organismDrosophila melanogaster. Here we comprehensively synthesize current research on the adverse effects of micro- and nanoplastics onDrosophila, highlighting key findings and identifying gaps in the literature. Micro- and nanoplastics can lead to physical damage, oxidative stress, inflammation, genotoxicity, epigenetic changes, apoptosis, and necrosis inDrosophila. Exposure to plastic debris affects nutrient absorption, energy metabolism, and reproductive health, often in a sex-specific manner. For instance, male flies are generally more susceptible to the toxic effects of polystyrene microplastics than female flies, showing greater mortality and metabolic disruptions. Furthermore, the combined exposure of plastics with heavy metals can exacerbate toxic effects, leading to enhanced oxidative stress, genotoxicity, and gut damage. While antagonistic effects have been identified particularly with silver compounds, where polystyrene microplastics reduce the bioavailability and toxicity of silver. The adverse effects of plastic particles onDrosophiladepend on size, with smaller particles penetrating deeper into tissues and eliciting stronger toxic responses. The chemical composition of the plastics and the presence of additives also play crucial roles in determining toxicity levels. Chronic exposure to low levels can be as harmful as acute high-dose exposure, highlighting the need for comprehensive, long-term studies to fully understand the ecological and biological impacts of plastic pollution.
Collapse
Affiliation(s)
- Yán Wāng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Yang Jiang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
16
|
Richard CMC, Dejoie E, Wiegand C, Gouesbet G, Colinet H, Balzani P, Siaussat D, Renault D. Plastic pollution in terrestrial ecosystems: Current knowledge on impacts of micro and nano fragments on invertebrates. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135299. [PMID: 39067293 DOI: 10.1016/j.jhazmat.2024.135299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
The increasing accumulation of small plastic particles, in particular microplastics (>1 µm to 5 mm) and nanoplastics (< 1 µm), in the environment is a hot topic in our rapidly changing world. Recently, studies were initiated to better understand the behavior of micro- and nanoplastics (MNP) within complex matrices like soil, as well as their characterization, incorporation and potential toxicity to terrestrial biota. However, there remains significant knowledge gaps in our understanding of the wide-extent impacts of MNP on terrestrial invertebrates. We first summarized facts on global plastic pollution and the generation of MNP. Then, we focused on compiling the existing literature examining the consequences of MNP exposure in terrestrial invertebrates. The diversity of investigated biological endpoints (from molecular to individual levels) were compiled to get a better comprehension of the effects of MNP according to different factors such as the shape, the polymer type, the organism, the concentration and the exposure duration. The sublethal effects of MNP are acknowledged in the literature, yet no general conclusion was drawn as their impacts are highly dependent on their characteristic and experimental design. Finally, the synthesis highlighted some research gaps and remediation strategies, as well as a protocol to standardize ecotoxicological studies.
Collapse
Affiliation(s)
- Chloé M C Richard
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Elsa Dejoie
- Groupe de Recherche en Écologie de la MRC Abitibi, Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Amos, Québec J9T 2L8, Canada
| | - Claudia Wiegand
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Gwenola Gouesbet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France.
| |
Collapse
|
17
|
Aloisi M, Grifoni D, Zarivi O, Colafarina S, Morciano P, Poma AMG. Plastic Fly: What Drosophila melanogaster Can Tell Us about the Biological Effects and the Carcinogenic Potential of Nanopolystyrene. Int J Mol Sci 2024; 25:7965. [PMID: 39063206 PMCID: PMC11277132 DOI: 10.3390/ijms25147965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.
Collapse
Affiliation(s)
- Massimo Aloisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Patrizia Morciano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
- INFN Laboratori Nazionali del Gran Sasso, Assergi, 67100 L’Aquila, Italy
| | - Anna Maria Giuseppina Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| |
Collapse
|
18
|
Chen X, Tu Q, Zhao W, Lin X, Chen Z, Li B, Zhang Y. 5-Hydroxymethylfurfural mediated developmental toxicity in Drosophila melanogaster. Food Chem Toxicol 2024; 189:114738. [PMID: 38754806 DOI: 10.1016/j.fct.2024.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
5-hydroxymethylfurfural is a common byproduct in food. However, its effect on growth and development remains incompletely understood. This study investigated the developmental toxicity of 5-HMF to Drosophila larvae. The growth and development of Drosophila melanogaster fed with 5-50 mM 5-HMF was monitored, and its possible mechanism was explored. It was found that 5-HMF prolonged the developmental cycle of Drosophila melanogaster (25 mM and 50 mM). After 5-HMF intake, the level of reactive oxygen species in the third instar larvae increased by 1.23-1.40 fold, which increased the level of malondialdehyde and caused changes in antioxidant enzymes. Moreover, the nuclear factor erythroid-2 related factor 2 antioxidant signaling pathway and the expression of heat shock protein genes were affected. At the same time, 5-HMF disrupted the glucose and lipid metabolism in the third instar larvae, influencing the expression level of key genes in the insulin signal pathway. Furthermore, 5-HMF led to intestinal oxidative stress, and up-regulated the expression of the pro-apoptotic gene, consequently impacting intestinal health. In short, 5-HMF causes oxidative stress, disturbs glucose and lipid metabolism and induces intestinal damage, damaging related signaling pathways, and ultimately affecting the development of Drosophila melanogaster.
Collapse
Affiliation(s)
- Xunlin Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qinghui Tu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzheng Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaorong Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhongzheng Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Renault D, Wiegand C, Balzani P, Richard CMC, Haubrock PJ, Colinet H, Davranche M, Pierson-Wickmann AC, Derocles SAP. The Plasticene era: Current uncertainties in estimates of the hazards posed by tiny plastic particles on soils and terrestrial invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172252. [PMID: 38599414 DOI: 10.1016/j.scitotenv.2024.172252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Plastics are ubiquitous in our daily life. Large quantities of plastics leak in the environment where they weather and fragment into micro- and nanoparticles. This potentially releases additives, but rarely leads to a complete mineralization, thus constitutes an environmental hazard. Plastic pollution in agricultural soils currently represents a major challenge: quantitative data of nanoplastics in soils as well as their effects on biodiversity and ecosystem functions need more attention. Plastic accumulation interferes with soil functions, including water dynamics, aeration, microbial activities, and nutrient cycling processes, thus impairing agricultural crop yield. Plastic debris directly affects living organisms but also acts as contaminant vectors in the soils, increasing the effects and the threats on biodiversity. Finally, the effects of plastics on terrestrial invertebrates, representing major taxa in abundance and diversity in the soil compartment, need urgently more investigation from the infra-individual to the ecosystem scales.
Collapse
Affiliation(s)
- David Renault
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France.
| | - Claudia Wiegand
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| | - Paride Balzani
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Chloé M C Richard
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| | - Phillip J Haubrock
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571 Gelnhausen, Germany; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| | - Hervé Colinet
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| | - Mélanie Davranche
- UMR CNRS 6118 GEOSCIENCES Rennes, Université Rennes, Avenue Général Leclerc, 35042 Rennes cedex, France
| | | | - Stéphane A P Derocles
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| |
Collapse
|
20
|
Fontes BLM, de Souza E Souza LC, da Silva de Oliveira APS, da Fonseca RN, Neto MPC, Pinheiro CR. The possible impacts of nano and microplastics on human health: lessons from experimental models across multiple organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024:1-35. [PMID: 38517360 DOI: 10.1080/10937404.2024.2330962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.
Collapse
Affiliation(s)
- Bernardo Lannes Monteiro Fontes
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorena Cristina de Souza E Souza
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Santos da Silva de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marinaldo Pacifico Cavalcanti Neto
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Rodrigues Pinheiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Kim MS, Lee YH, Lee Y, Jeong H, Wang M, Wang DZ, Lee JS. Multigenerational effects of elevated temperature on host-microbiota interactions in the marine water flea Diaphanosoma celebensis exposed to micro- and nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132877. [PMID: 38016313 DOI: 10.1016/j.jhazmat.2023.132877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
Rising ocean temperatures are driving unprecedented changes in global marine ecosystems. Meanwhile, there is growing concern about microplastic and nanoplastic (MNP) contamination, which can endanger marine organisms. Increasing ocean warming (OW) and plastic pollution inevitably cause marine organisms to interact with MNPs, but relevant studies remain sparse. Here, we investigated the interplay between ocean warming and MNP in the marine water flea Diaphanosoma celebensis. We found that combined exposure to MNPs and OW induced reproductive failure in the F2 generation. In particular, the combined effects of OW and MNPs on the F2 generation were associated with key genes related to reproduction and stress response. Moreover, populations of predatory bacteria were significantly larger under OW and MNP conditions during F2 generations, suggesting a potential link between altered microbiota and host fitness. These results were supported by a host transcriptome and microbiota interaction analysis. This research sheds light on the complex interplay between environmental stressors, their multigenerational effects on marine organisms, and the function of the microbiome.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
22
|
Liang J, Ji F, Wang H, Zhu T, Rubinstein J, Worthington R, Abdullah ALB, Tay YJ, Zhu C, George A, Li Y, Han M. Unraveling the threat: Microplastics and nano-plastics' impact on reproductive viability across ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169525. [PMID: 38141979 DOI: 10.1016/j.scitotenv.2023.169525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Plastic pollution pervades both marine and terrestrial ecosystems, fragmenting over time into microplastics (MPs) and nano-plastics (NPs). These particles infiltrate organisms via ingestion, inhalation, and dermal absorption, predominantly through the trophic interactions. This review elucidated the impacts of MPs/NPs on the reproductive viability of various species. MPs/NPs lead to reduced reproduction rates, abnormal larval development and increased mortality in aquatic invertebrates. Microplastics cause hormone secretion disorders and gonadal tissue damage in fish. In addition, the fertilization rate of eggs is reduced, and the larval deformity rate and mortality rate are increased. Male mammals exposed to MPs/NPs exhibit testicular anomalies, compromised sperm health, endocrine disturbances, oxidative stress, inflammation, and granulocyte apoptosis. In female mammals, including humans, exposure culminates in ovarian and uterine deformities, endocrine imbalances, oxidative stress, inflammation, granulosa cell apoptosis, and tissue fibrogenesis. Rodent offspring exposed to MPs experience increased mortality rates, while survivors display metabolic perturbations, reproductive anomalies, and weakened immunity. These challenges are intrinsically linked to the transgenerational conveyance of MPs. The ubiquity of MPs/NPs threatens biodiversity and, crucially, jeopardizes human reproductive health. The current findings underscore the exigency for comprehensive research and proactive interventions to ameliorate the implications of these pollutants.
Collapse
Affiliation(s)
- Ji Liang
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Feng Ji
- Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Hong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tian Zhu
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - James Rubinstein
- College of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Richard Worthington
- School of Humanities and Sciences, Stanford university, Stanford, CA 94305, USA
| | | | - Yi Juin Tay
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Chenxin Zhu
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia.
| | - Andrew George
- Department of Biology, University of Oxford, 11a Mansfield Road, OX12JD, UK
| | - Yiming Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Mingming Han
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
23
|
Hong Y, Wu S, Wei G. Adverse effects of microplastics and nanoplastics on the reproductive system: A comprehensive review of fertility and potential harmful interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166258. [PMID: 37579804 DOI: 10.1016/j.scitotenv.2023.166258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
In recent years, microplastics (MPs) and nanoplastics (NPs) have caused ubiquitous environmental pollution and raised widespread concern about their potential toxicity to human health, especially in the reproductive system. Moreover, infertility affects >15 % of couples worldwide, and the birth rate is decreasing. Environmental factors are some of the most important causes of infertility. However, little is known about the effects of MPs and NPs on the testes and ovaries. These particles can enter the body primarily via ingestion, inhalation, and skin contact, target the reproductive system in a size-dependent manner and disturb germ cell and other somatic cell development. Our study systematically reviewed the adverse effects of plastic particles on reproductive function and offers valuable insights into the different stages of germ cells and the potential mechanisms. Moreover, the synergistic reproductive toxicity of these particles and carried contaminants was summarized. Given the limited research scale, a shift toward innovative technologies and the adoption of multiple omics are recommended for advancing related studies. Further study is needed to explore the reproductive toxicity of MPs and NPs based on their size, polymer type, shape, and carried toxins, establish effective protective measures, and develop precision medicine for targeted reproductive damage.
Collapse
Affiliation(s)
- Yifan Hong
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Shengde Wu
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| |
Collapse
|
24
|
Flasz B, Ajay AK, Tarnawska M, Babczyńska A, Majchrzycki Ł, Kędziorski A, Napora-Rutkowski Ł, Świerczek E, Augustyniak M. Multigenerational Effects of Graphene Oxide Nanoparticles on Acheta domesticus DNA Stability. Int J Mol Sci 2023; 24:12826. [PMID: 37629006 PMCID: PMC10454164 DOI: 10.3390/ijms241612826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The use of nanoparticles like graphene oxide (GO) in nanocomposite industries is growing very fast. There is a strong concern that GO can enter the environment and become nanopollutatnt. Environmental pollutants' exposure usually relates to low concentrations but may last for a long time and impact following generations. Attention should be paid to the effects of nanoparticles, especially on the DNA stability passed on to the offspring. We investigated the multigenerational effects on two strains (wild and long-lived) of house cricket intoxicated with low GO concentrations over five generations, followed by one recovery generation. Our investigation focused on oxidative stress parameters, specifically AP sites (apurinic/apyrimidinic sites) and 8-OHdG (8-hydroxy-2'-deoxyguanosine), and examined the global DNA methylation pattern. Five intoxicated generations were able to overcome the oxidative stress, showing that relatively low doses of GO have a moderate effect on the house cricket (8-OHdG and AP sites). The last recovery generation that experienced a transition from contaminated to uncontaminated food presented greater DNA damage. The pattern of DNA methylation was comparable in every generation, suggesting that other epigenetic mechanisms might be involved.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Amrendra K. Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Łukasz Majchrzycki
- Center for Advanced Technology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Chybie, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| |
Collapse
|
25
|
Yang S, Li M, Kong RYC, Li L, Li R, Chen J, Lai KP. Reproductive toxicity of micro- and nanoplastics. ENVIRONMENT INTERNATIONAL 2023; 177:108002. [PMID: 37276763 DOI: 10.1016/j.envint.2023.108002] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Large-scale plastic pollution occurs in terrestrial and marine environments and degrades into microparticles (MP) and nanoparticles (NP) of plastic. Micro/nanoplastics (MP/NPs) are found throughout the environment and different kinds of marine organisms and can enter the human body through inhalation or ingestion, particularly through the food chain. MPs/NPs can enter different organisms, and affect different body systems, including the reproductive, digestive, and nervous systems via the induction of different stresses such as oxidative stress and endoplasmic reticulum stress. This paper summarizes the effects of MPs/NPs of different sizes on the reproduction of different organisms including terrestrial and marine invertebrates and vertebrates, the amplification of toxic effects between them through the food chain, the serious threat to biodiversity, and, more importantly, the imminent challenge to human reproductive health. There is a need to strengthen international communication and cooperation on the remediation of plastic pollution and the protection of biodiversity to build a sustainable association between humans and other organisms.
Collapse
Affiliation(s)
- Shaolong Yang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China
| | - Mengzhen Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China.
| | - Jian Chen
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China.
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|