1
|
Horita H, Okano H, Kikkawa Y, Haketa Y, Maeda H. Anion-Responsive π-Conjugated Macrocycles That Form Ordered Structures. Chem Asian J 2025; 20:e202401461. [PMID: 39777999 DOI: 10.1002/asia.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
In this study, anion-responsive π-conjugated macrocycles were synthesized to demonstrate anion-binding and ion-pairing properties along with the ordered structures. Ion-pairing charge-by-charge assembly of a [1+2]-type complex of a macrocycle as a pseudo π-electronic anion and a countercation was revealed by single-crystal X-ray analysis. Further, two-dimensional (2D) arrays of the macrocycles bearing alkoxy chains, exhibiting anion-driven disordered structures, were constructed on a highly oriented pyrolytic graphite (HOPG) substrate as observed by scanning tunneling microscopy (STM).
Collapse
Affiliation(s)
- Hiroki Horita
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Hiroki Okano
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
2
|
Sarma M, Dutta J, Sarma M. Deciphering the Underlying Mechanism of Anion Binding by Asymmetrical Squaramide-Based Dipeptides. J Phys Chem B 2025. [PMID: 40244004 DOI: 10.1021/acs.jpcb.5c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Anions are involved in many important processes, which has led to growing interest in designing new molecules to bind them effectively. Squaramides have gained considerable attention as effective anion receptors due to their dual hydrogen bond donor capability. Combining squaramide with biomolecules is a promising approach for designing and developing biomimetic receptors for anions with enhanced H-bonding abilities, particularly due to their functional versatility. The present study explores the mechanism of interaction of H2PO4- and HSO4- anions with three asymmetrical squaramide-based dipeptide receptors, emphasizing the role of noncovalent interactions. The conformational states of the receptors and the amino acids of the dipeptide with varying side chain lengths are the two major factors that influence these interactions. The conformational analysis of the receptors and their anion complexes performed using conformer-rotamer ensemble sampling tool (CREST) and molecular dynamics (MD) simulations, shows that the anti/anti conformations are the most abundant. Following the MD simulations, density functional theory (DFT) was used to perform electronic structure calculations on the 1:1 receptor-anion complexes. Our findings indicate that the N-H···O and O-H···O═C interactions primarily drive the formation of the receptor-anion complexes. Energy decomposition analysis based on absolutely localized molecular orbitals (ALMO-EDA) highlighted the role of the electrostatic energy (ΔEelst) in stabilizing the receptor-anion complexes. Further confirmation of the intermolecular N-H···O and O-H···O═C interactions in the complexes was attained through several analytic tools. This outcome lays a foundation for designing and developing more efficient and selective dipeptide-based anion receptors.
Collapse
Affiliation(s)
- Monalisha Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Juhi Dutta
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| |
Collapse
|
3
|
Zhao J, Zhang Y, Wang Z, Yang D. Incorporation of Cages into Gels: Access to a New Class of Soft Materials with Well-Defined Functionality. Chemistry 2025; 31:e202404363. [PMID: 39876063 DOI: 10.1002/chem.202404363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
The combination of supramolecular self-assemblies and polymer science has resulted in the development of soft materials with diverse properties and applications. In particular, the coordination cages of predefined shape, size, and internal cavity can be utilized intelligently as promising building units for designing responsive and smart soft materials with dual porosity, contributing to the introduction of versatile host-guest chemistry into gels. In this review, we present the recent advancements in gels incorporating coordination cages into their networks, ranging from synthesis strategies to state-of-art applications. In particular, the host-guest chemistry endows the hybrid gel materials with possibilities for guest-specific responsive systems.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yijie Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Zhe Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Dong Yang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
4
|
Mao X, Zhang R, Sun Y, Wang X, Li Q, Zuilhof H, Wang L, Shi Q. A 2,6-diamidopyridine-based macrocyclic aromatic amide receptor with cascade ion pair recognition. RSC Adv 2025; 15:5850-5855. [PMID: 39980999 PMCID: PMC11841669 DOI: 10.1039/d5ra00434a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
Ion-pair receptors constitute an important class of synthetic receptors within the realm of host-guest and supramolecular chemistry. Their unique ability to simultaneously recognize and accommodate both cations and anions has rendered them invaluable across various applications. In this study, we have synthesized a cascade macrocyclic ion-pair receptor, composed of three 2,6-amidopyridine building blocks bridged by aromatic spacers. Notably, the diamide binding sites of this receptor exhibit a high degree of selectivity for fluoride ions. Furthermore, despite lacking any dedicated cation-binding sites within its macrocyclic structure, this receptor is capable of selectively binding tetraethylammonium cations through a series of cascade electrostatic interactions facilitated by the bound flouride ions.
Collapse
Affiliation(s)
- Xinguo Mao
- Key Laboratory of Light Conversion Materials and Technology, Shandong Provincial Key Laboratory of High Strength Light Weight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Rui Zhang
- Key Laboratory of Light Conversion Materials and Technology, Shandong Provincial Key Laboratory of High Strength Light Weight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Yulong Sun
- Shigatse Science and Technology Bureau Shigatse Tibet 857000 China
| | - Xuping Wang
- Key Laboratory of Light Conversion Materials and Technology, Shandong Provincial Key Laboratory of High Strength Light Weight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Qinggang Li
- Key Laboratory of Light Conversion Materials and Technology, Shandong Provincial Key Laboratory of High Strength Light Weight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University Stippeneng 4, 6708 WE Wageningen The Netherlands
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Qiang Shi
- Key Laboratory of Light Conversion Materials and Technology, Shandong Provincial Key Laboratory of High Strength Light Weight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| |
Collapse
|
5
|
Pegu OA, Moral R, Das G. Anion Coordination Chemistry: An Expedition Towards Designing of Functional Materials. Chem Asian J 2025; 20:e202401236. [PMID: 39555649 DOI: 10.1002/asia.202401236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/19/2024]
Abstract
This review highlights important research on anion coordination chemistry for materials applications over the last decade. This field has numerous applications in various areas, such as the environment, industry, and medicine. Despite its enormous potential, real-world applicability is still pending. However, there has been a new trajectory in the field recently, with rapid advancement in designing sophisticated molecular systems for various materials applications. To keep track of this dynamic advancement, we have discussed some outstanding research work with enormous potential for materials applications soon.
Collapse
Affiliation(s)
- Oiyao Appun Pegu
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Rubi Moral
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
6
|
Choi SH, Lee JS, Lee S, Jeong HS, Choi SJ. Dual-Hydrogen Bond Donor-Functionalized Carbon Nanotube Fibers: Enhancing Anion-Sensing Performance Through Functionalization Approaches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405070. [PMID: 39388442 DOI: 10.1002/smll.202405070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/25/2024] [Indexed: 10/12/2024]
Abstract
In this study, chemiresistive anion sensors are developed using carbon nanotube fibers (CNTFs) functionalized with squaramide-based dual-hydrogen bond donors (SQ1 and SQ2) and systematically compared the sensing properties attained by two different functionalization methods. Model structures of the selectors are synthesized based on a squaramide motif incorporating an electron-withdrawing group. Anion-binding studies of SQ1 and SQ2 are conducted using UV-vis titrations to elucidate the anion-binding properties of the selectors. These studies revealed that the chemical interaction with acetate (AcO-) induced the deprotonation of both SQ1 and SQ2. Selectors are functionalized onto the CNTFs using either covalent or non-covalent functionalization. For covalent functionalization, SQ1 is chemically formed on the surface of the CNTFs, whereas SQ2 is non-covalently functionalized to the surface of the CNTFs assisted by poly(4-vinylpyridine). The results showed that non-covalently functionalized CNTFs exhibited a 3.6-fold higher sensor response toward 33.33 mm AcO- than covalently functionalized CNTFs. The selector library is expanded using diverse selectors, such as TU- and CA-based selectors, which are non-covalently functionalized on CNTFs and presented selective AcO--sensing properties. To demonstrate on-site and real-time anion detection, anion sensors are integrated into a sensor module that transferred the sensor resistance to a smartphone via wireless communication.
Collapse
Affiliation(s)
- Seung-Ho Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Joon-Seok Lee
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sungju Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Hyeon Su Jeong
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Jeonrabuk-do, Wanju-gun, 55324, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
7
|
Usenik A, Modrušan M, Leko K, Borovec J, Marinac S, Hok L, Cindro N, Vianello R, Horvat G, Požar J, Hrenar T, Tomišić V. A Combined Thermodynamic and Computational Study of Alkaline Earth Metal Cations Complexation by a Fluorescent Calix[4]arene Receptor. Int J Mol Sci 2025; 26:1264. [PMID: 39941032 PMCID: PMC11818811 DOI: 10.3390/ijms26031264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Complexation of alkaline earth metal cations with fluorescent tertiary-amide lower-rim calix[4]arene derivative bearing two phenanthridine moieties was studied experimentally (UV spectrophotometry, fluorimetry, isothermal microcalorimetry, NMR spectroscopy) and computationally (classical molecular dynamics and DFT calculations) at 25 °C. The complexation reactions were studied in acetonitrile, methanol, and ethanol, whereby the solvent effect on cation-binding processes was particularly addressed. The complex stability constants and standard reaction thermodynamic quantities (Gibbs energies, enthalpies, and entropies) were determined. The receptor exhibited particularly high affinity towards alkaline earth metal cations in acetonitrile, with peak affinity for Ca2+. The stability of all complexes was significantly lower in ethanol and methanol, where the most stable complex was formed with Sr2+. The decrease in cation-binding abilities was a consequence of the differences in solvation of the reactants and products of the complexation reactions (involving inclusion of the solvent molecule in the calixarene cone), cation charge density, as well as the cation-ligand binding site compatibility. The reactions were enthalpically controlled in acetonitrile, whereas in methanol and ethanol, the binding processes were endothermic and thus entropy driven. The results of 1H NMR measurements, MD simulations, and DFT calculations provided an insight into the structure of the complexes and the corresponding adducts with solvent molecules, as well as the structural aspects behind the differences in complexation thermodynamics. Due to the significant increase in its fluorescence upon cation binding, the studied calixarene derivative was proven to be a promising luminescent sensor for alkaline earth metal cations.
Collapse
Affiliation(s)
- Andrea Usenik
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia (M.M.); (N.C.); (G.H.)
| | - Matija Modrušan
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia (M.M.); (N.C.); (G.H.)
| | - Katarina Leko
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia (M.M.); (N.C.); (G.H.)
| | - Jakov Borovec
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia (M.M.); (N.C.); (G.H.)
| | - Sven Marinac
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia (M.M.); (N.C.); (G.H.)
| | - Lucija Hok
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (L.H.); (R.V.)
| | - Nikola Cindro
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia (M.M.); (N.C.); (G.H.)
| | - Robert Vianello
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (L.H.); (R.V.)
| | - Gordan Horvat
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia (M.M.); (N.C.); (G.H.)
| | - Josip Požar
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia (M.M.); (N.C.); (G.H.)
| | - Tomica Hrenar
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia (M.M.); (N.C.); (G.H.)
| | - Vladislav Tomišić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia (M.M.); (N.C.); (G.H.)
| |
Collapse
|
8
|
Rando C, Grewal S, Sokolov J, Kulhánek P, Šindelář V. Reversing selectivity of bambusuril macrocycles toward inorganic anions by installing spacious substituents on their portals. Chem Sci 2025; 16:1288-1292. [PMID: 39677942 PMCID: PMC11639902 DOI: 10.1039/d4sc07150f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Two chiral bambusurils, which are diastereomers to each other, show remarkable differences in their binding affinity and selectivity toward inorganic anions as determined by isothermal titration calorimetry. These differences are explained by quantum-chemical calculations.
Collapse
Affiliation(s)
- Carola Rando
- Department of Chemistry, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Surbhi Grewal
- Department of Chemistry, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Jan Sokolov
- Department of Chemistry, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Petr Kulhánek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Vladimír Šindelář
- Department of Chemistry, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
| |
Collapse
|
9
|
Chen J, Fasihianifard P, Lian R, Gibson-Elias LJ, Moreno JL, Chang CEA, Zhong W, Hooley RJ. Supramolecular Host:Guest Arrays Site-Selectively Recognize Peptide Phosphorylation and Kinase Activity. J Am Chem Soc 2025; 147:841-850. [PMID: 39680592 DOI: 10.1021/jacs.4c13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A synergistic combination of cationic styrylpyridinium dyes and water-soluble deep cavitand hosts can recognize phosphorylated peptides with both site- and state-selectivity. Two mechanisms of interaction are dominant: either the cationic dye interacts with Trp residues in the peptide or the host:dye pair forms a heteroternary complex with the peptide, driven by both strong dye-peptide and cavitand-peptide binding (Kd values up to 4 μM). The presence of multiple recognition mechanisms results in varying fluorescence responses dependent on the phosphorylation state and position, eliminating the need for covalent modification of the peptide target. Differential sensing aided by machine learning algorithms permits full discrimination between differently positioned serine phosphorylations with a minimal 3-component array. The array is fully functional in the presence of protein kinase A (PKA) and its required cofactors and capable of site-selective monitoring of serine phosphorylation at the privileged PKA motif, in the presence of serine residues that do not undergo reaction, illustrating the potential of the system in kinase-based drug screening.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Parisa Fasihianifard
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Ria Lian
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Lucas J Gibson-Elias
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Jose L Moreno
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Key Laboratory of Precision and Intelligent Chemistry; Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Richard J Hooley
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| |
Collapse
|
10
|
Ren X, Flint AJ, Austin D, Davis AP. Polyanionic Receptors for Carboxylates in Water. Angew Chem Int Ed Engl 2025; 64:e202413505. [PMID: 39163169 DOI: 10.1002/anie.202413505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Receptors for carboxylate anions have many possible biomedical applications, including mimicry of the vancomycin group of antibiotics. However, binding carboxylates in water, the biological solvent, is highly challenging due to the hydrophilicity of these polar anions. Here we report, for the first time, the recognition of simple carboxylates such as acetate and formate in water by synthetic receptors with charge-neutral binding sites. The receptors are solubilised by polyanionic side-chains which, remarkably, do not preclude anion binding. The tricyclic structures feature two identical binding sites linked by polyaromatic bridges, capable of folding into closed, twisted conformations. This folding is hypothesised to preorganise the structures for anion recognition, mimicking the process which generates many protein binding sites. The architecture is suitable for elaboration into enclosed structures with potential for selective recognition of biologically relevant carboxylates.
Collapse
Affiliation(s)
- Xudong Ren
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Alister J Flint
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Daniel Austin
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
11
|
Nakamura T, Takayanagi H, Nakahata M, Okubayashi T, Baba H, Ishii Y, Watanabe G, Tanabe D, Nabeshima T. Amide cyclodextrin that recognises monophosphate anions in harmony with water molecules. Chem Sci 2024; 16:171-181. [PMID: 39583557 PMCID: PMC11583042 DOI: 10.1039/d4sc04529g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Anion recognition in water by synthetic host molecules is a popular and challenging topic. It has been considered difficult because the water molecules compete for the recognition units. In this study, we have successfully created a novel macrocycle that achieves precise recognition through multipoint hydrogen bonding in harmony with water molecules. Specifically, an N-methylpyridinium amide β-cyclodextrin (β-CD) derivative 1(OTf)7 was synthesized, whose amide groups are directly attached to each pyranose ring. The pyridinium amide CD encapsulated a monophosphate anion in water, but it did not show interactions with sulfonates or carboxylates, thus a remarkable selectivity was demonstrated. Two monophosphates with different substituents, phenyl phosphate (PhOPO3 2-) and adamantyl phosphate (AdOPO3 2-), exhibited interesting contrasting pictures in the inclusion process, which were revealed by a combination of NOESY experiments, ITC measurements, and MD simulations. PhOPO3 2- was positioned slightly "upper" (closer to the pyridinium amide side) in 17+ with the oxygen atom of the phosphate ester R-O-P involved in the hydrogen bonds with the amide N-H, and configurational entropy plays a key role in the inclusion. Meanwhile, AdOPO3 2- was positioned "lower" (closer to the methoxy rim of CD) with the terminal -PO3 2- forming hydrogen bonds with the amides, and the hydrophobic effect is a major contributing driving force of the inclusion. The molecular design presented herein to achieve the precise recognition in water and clarification of the detailed mechanisms including the hydration phenomenon greatly contribute to the development of functional molecules that work in aqueous environments.
Collapse
Affiliation(s)
- Takashi Nakamura
- Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Hayato Takayanagi
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Masaki Nakahata
- Graduate School of Science, Osaka University 1-1 Machikaneyama-cho Toyonaka Osaka 560-0043 Japan
| | - Takumi Okubayashi
- School of Science and Engineering, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Hitomi Baba
- School of Science, Kitasato University 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Yoshiki Ishii
- School of Frontier Engineering, Kitasato University 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Go Watanabe
- School of Science, Kitasato University 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
- School of Frontier Engineering, Kitasato University 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
- Kanagawa Institute of Industrial Science and Technology 705-1 Shimoimaizumi Ebina Kanagawa 243-0435 Japan
| | - Daisuke Tanabe
- School of Science and Engineering, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Tatsuya Nabeshima
- Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| |
Collapse
|
12
|
Giri M, Guchhait T. A Synopsis on CO 2 Capture by Synthetic Hydrogen Bonding Receptors. Chempluschem 2024; 89:e202400405. [PMID: 39104329 DOI: 10.1002/cplu.202400405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024]
Abstract
Carbon dioxide (CO2) is one of the most abundant greenhouse gases in Earth's atmosphere and responsible for global warming. Therefore, aerial CO2 capture and sequestration has become a major task for human community. Though several adsorbents for CO2 including activated carbon, zeolites, metal-organic frameworks (MOFs), and other surface-modified porous materials are well developed, the supramolecular approaches using synthetic hydrogen-bonding receptors are less explored. This review article highlights the synthetic development of various artificial receptors and their properties toward fixation of aerial CO2 as carbonate (CO3 2-), bicarbonate (HCO3 -), or carbamate (-NHCOO-/>NCOO-) ions, induced by excess fluoride (F-) or hydroxide (OH-) ions as their tetrabutylammonium salts. The utilization of encapsulated carbonate/bicarbonate/carbamate complexes in anion exchange metathesis for separation of oxyanions from aqueous solutions are also discussed. In addition, the release of CO2 and regeneration of receptor molecules are described in a number of occasions. Most importantly, the formation of anion complexes as crystalline materials in solid-state is described in terms of supramolecular chemistry and correlated with their solution-state properties. Finally, the types of receptors containing various functional groups are scrutinized in CO2 uptake, storage, and release processes and hints of endeavours for future research are delineated.
Collapse
Affiliation(s)
- Monalisa Giri
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha, 752054, India
| | - Tapas Guchhait
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha, 752054, India
| |
Collapse
|
13
|
Cvetnić M, Cindro N, Bregović N, Tomišić V. Thermodynamics of Anion Binding by (Thio)ureido-calix[4]arene Derivatives in Acetonitrile. ACS PHYSICAL CHEMISTRY AU 2024; 4:773-786. [PMID: 39634652 PMCID: PMC11613299 DOI: 10.1021/acsphyschemau.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 12/07/2024]
Abstract
In this work, we developed (thio)ureido-calix[4]arene derivatives and thoroughly explored their anion-binding properties in acetonitrile. A series of anions, including important inorganic ones (Cl-, HSO4 -, H2PO4 -, and HP2O7 3-) and several ever-present carboxylates (acetate, benzoate, and fumarate), were studied. All systems were investigated by several methods (NMR, ITC, and UV) used in a synergistic fashion, providing their comprehensive thermodynamic description. Acidities of the receptors were determined prior to the anion-binding studies and considered in the data-handling procedures. Complexes of various stoichiometries were detected and the driving force for their formation elucidated. The correlation of the anion structural features and H-bond acceptor properties with the stoichiometries and complexation thermodynamics parameters was rationalized. Generally, stability of the complexes followed the trend defined by the basicity of anions. Thiourea and urea analogues exhibited similar affinities for anion binding except for the H2PO4 - and HP2O7 3-, which interacted with the thiourea analogue more strongly. The hosts endowed with 4 (thio)urea groups formed species containing two receptor molecules bridged by a fumarate or hydrogen pyrophosphate anion. Thermodynamic information provided in this work is applicable in further design of supramolecular systems, whereas the presented approach to data handling will aid researchers when dealing with multiple coexisting equilibria.
Collapse
Affiliation(s)
- Marija Cvetnić
- Department of Chemistry, Faculty of
Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Nikola Cindro
- Department of Chemistry, Faculty of
Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Nikola Bregović
- Department of Chemistry, Faculty of
Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Vladislav Tomišić
- Department of Chemistry, Faculty of
Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Quiñone D, Romano GM, Faccio R, Savastano M, Bianchi A, Bencini A, Brovetto M, Torres J, Veiga N. Novel Discrete and Imprinted Fluoride-Selective Sensors: Bridging the Gap from DMSO to Aqueous Samples. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402696. [PMID: 39152533 DOI: 10.1002/smll.202402696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Fluoride in drinking water has beneficial or harmful health effects depending on its concentration. This highlights the need for new low-cost and portable sensors capable of in situ monitoring of F- ions. Unfortunately, achieving high levels of water compatibility and fluoride specificity remains a challenge. Here, four new urea-based discrete sensors are prepared and characterized. The sensors containing anthracenyl- (5) and 9H-fluorenyl- (7) signaling units exhibit intense luminescent emissions in dimethyl sulfoxide, the former being particularly sensitive and selective to fluoride. In water, 5 displays a superior sensitivity (871 M-1) and a detection limit (8 µm) below international guidelines, albeit with cross-sensitivity to H2PO4‾. To enhance the performance, 5 and 7 are embedded into a fluoride-imprinted polymeric matrix to give solid-state sensors (5P and 7P, respectively). 5P shows good sensitivity (360 M-1) and specificity in water. Besides, it has a low detection limit (35 µm) and a response linear range (118-6300 µm) encompassing the limit established by the Environmental Protection Agency (211 µm). Furthermore, 5P also displays good reusability and adequate recovery values in real-sample testing (102 ± 2%), constituting the first example of a low-cost anion-imprinted polymeric probe tailored for the selective sensing of fluoride in aqueous samples.
Collapse
Affiliation(s)
- Delfina Quiñone
- Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República (UdelaR), Av. Gral. Flores 2124, Montevideo, 11800, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, 11800, Uruguay
| | - Giammarco M Romano
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Ricardo Faccio
- Área Física, DETEMA, Facultad de Química, Universidad de la República (UdelaR), Av. Gral. Flores 2124, Montevideo, 11800, Uruguay
| | - Matteo Savastano
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele Roma, via di Val Cannuta 247, Rome, 00166, Italy
| | - Antonio Bianchi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Andrea Bencini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Margarita Brovetto
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Av. Gral. Flores 2124, Montevideo, 11800, Uruguay
| | - Julia Torres
- Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República (UdelaR), Av. Gral. Flores 2124, Montevideo, 11800, Uruguay
| | - Nicolás Veiga
- Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República (UdelaR), Av. Gral. Flores 2124, Montevideo, 11800, Uruguay
| |
Collapse
|
15
|
Pyle H, Judd M, Barancewicz A, Mayer AJ, Cox N, Kondrat SA, Butler SJ. Elucidating Polyphosphate Anion Binding to Lanthanide Complexes Using EXAFS and Pulsed EPR Spectroscopy. Inorg Chem 2024; 63:20726-20736. [PMID: 39412769 PMCID: PMC11523222 DOI: 10.1021/acs.inorgchem.4c03399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Reversible anion binding to lanthanide complexes in aqueous solution has emerged as an effective method for anion sensing. Through careful design of the organic ligand, luminescent lanthanide complexes capable of binding biologically relevant anions in a bidentate or monodentate manner can be realized. While single-crystal X-ray diffraction analyses and NMR spectroscopy have revealed the structural geometry of several host-guest complexes, the challenge remains in designing preorganized lanthanide receptors with enhanced anion selectivity for broader applications in diagnostics and bioimaging. To address this challenge, innovative and complementary methods to investigate host-anion binding geometry are becoming increasingly important. Herein, we demonstrate the combined use of Eu L3-edge extended X-ray absorption fine structure (EXAFS) and electron paramagnetic resonance (EPR) spectroscopy to elucidate the binding of nucleoside phosphates (ATP, ADP, and AMP) to a cationic lanthanide complex. We establish that ATP unequivocally binds the lanthanide center in a bidentate manner in water, while ADP adopts both bidentate and monodentate modes, and AMP binds in a monodentate manner. This interdisciplinary approach provides deeper insight into lanthanide host-guest chemistry in solution, laying the groundwork for designing emissive probes that undergo specific anion-induced structural changes and elicit desired optical responses upon binding.
Collapse
Affiliation(s)
- Hannah
K. Pyle
- Department
of Chemistry, Loughborough University Epinal
Way, Loughborough LE11 3TU, United Kingdom
| | - Martyna Judd
- Research
School of Chemistry The Australian National
University Canberra, ACT 2605, Australia
| | - Anthony Barancewicz
- Research
School of Chemistry The Australian National
University Canberra, ACT 2605, Australia
| | - Alexander J. Mayer
- Department
of Chemistry, Loughborough University Epinal
Way, Loughborough LE11 3TU, United Kingdom
| | - Nicholas Cox
- Research
School of Chemistry The Australian National
University Canberra, ACT 2605, Australia
| | - Simon A. Kondrat
- Department
of Chemistry, Loughborough University Epinal
Way, Loughborough LE11 3TU, United Kingdom
| | - Stephen J. Butler
- Department
of Chemistry, Loughborough University Epinal
Way, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
16
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
17
|
Sun Y, Gawlitza K, Valderrey V, Bhattacharya B, Rurack K. Ratiometric Molecularly Imprinted Particle Probes for Reliable Fluorescence Signaling of Carboxylate-Containing Molecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49944-49956. [PMID: 39231266 PMCID: PMC11420868 DOI: 10.1021/acsami.4c09990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In addition to sensitivity, selectivity, and portability, chemical sensing systems must generate reliable signals and offer modular configurability to address various small molecule targets, particularly in environmental applications. We present a versatile, modular strategy utilizing ratiometric molecularly imprinted particle probes based on BODIPY indicators and dyes for recognition and internal referencing. Our approach employs polystyrene core particles doped with a red fluorescent BODIPY as an internal standard, providing built-in reference for environmental influences. A molecularly imprinted polymer (MIP) recognition shell, incorporating a green-fluorescent BODIPY indicator monomer with a thiourea binding site for carboxylate-containing analytes, is grafted from the core particles in the presence of the analyte as the template. The dual-fluorescent MIP probe detects fexofenadine as the model analyte with a change in green emission signal referenced against a stable red signal, achieving a detection limit of 0.13 μM and a broad dynamic range from 0.16 μM to 1.2 mM, with good discrimination against other antibiotics in acetonitrile. By selecting a versatile dye scaffold and recognition element, this approach can be extended to other carboxylate-containing analytes and/or wavelength combinations, potentially serving as a robust multiplexing platform.
Collapse
Affiliation(s)
- Yijuan Sun
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Kornelia Gawlitza
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Virginia Valderrey
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Biswajit Bhattacharya
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Knut Rurack
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| |
Collapse
|
18
|
Howells CL, Stocker AJ, Lea JN, Halcovitch NR, Patel H, Fletcher NC. Transition Metal Complexes with Appended Benzimidazole Groups for Sensing Dihydrogenphosphate. Chemistry 2024; 30:e202401385. [PMID: 38967595 DOI: 10.1002/chem.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Four new complexes [Ru(bpy)2(bbib)](PF6)2, [Ru(phen)2(bbib)](PF6)2, [Re(CO)3(bbib)(py)](PF6) and [Ir(ppy)2(bbib)](PF6) [where bbib=4,4'-bis(benzimidazol-2-yl)-2,2'-bipyridine] have been prepared and their photophysical properties determined. Their behaviour has been studied with a variety of anions in acetonitrile, DMSO and 10 % aquated DMSO. Acetate and dihydrogenphosphate demonstrate a redshift in the bbib ligand associated absorptions suggesting that the ligand is strongly interacting with these anions. The 3MLCT emissive state is sensitive to the introduction of small quantities of anion (sub-stoichiometric quantities) and significant quenching is typically observed with acetate, although this is less pronounced in the presence of water. The emissive behaviour with dihydrogenphosphate is variable, showing systematic changes as anion concentration increases with several distinct interactions evident. 1H- and 31P-NMR titrations in a 10 % D2O-DMSO-D6 mixture suggest that with dihydrogenphosphate, the imidazole group is able to act as both a proton acceptor and donor. It appears that all four complexes can form a {[complex]2-H2PO4} "dimer", a one-to-one species (which the X-ray crystallography study suggests is dimeric in the solid-state), and a complex with a combined bis(dihydrogenphosphate) complex anion. The speciation relies on complex equilibria dependent on several factors including the complex charge, the hydrophobicity of the associated ligands, and the solvent.
Collapse
Affiliation(s)
- Chloe L Howells
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Andrew J Stocker
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Joshua N Lea
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Nathan R Halcovitch
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Humaira Patel
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Nicholas C Fletcher
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| |
Collapse
|
19
|
Singh A, Torres-Huerta A, Meyer F, Valkenier H. Anion transporters based on halogen, chalcogen, and pnictogen bonds: towards biological applications. Chem Sci 2024:d4sc04644g. [PMID: 39268212 PMCID: PMC11385378 DOI: 10.1039/d4sc04644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Motivated by their potential biological applications, anion receptors are increasingly explored as transmembrane transporters for anions. The vast majority of the reported anion transporters rely on hydrogen bonding to interact with the anions. However, in recent decades, halogen, chalcogen, and pnictogen bonding, collectively referred to as sigma-hole interactions, have received increasing attention. Most research efforts on these interactions have focused on crystal engineering, anion sensing, and organocatalysis. In recent years, however, these sigma-hole interactions have also been explored more widely in synthetic anion transporters. This perspective shows why synthetic transporters are promising candidates for biological applications. We provide a comprehensive review of the compounds used to transport anions across membranes, with a particular focus on how the binding atoms and molecular design affect the anion transport activity and selectivity. Few cell studies have been reported for these transporters based on sigma-hole interactions and we highlight the critical need for further biological studies on the toxicity, stability, and deliverability of these compounds to explore their full potential in biological applications, such as the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Anurag Singh
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| | - Aaron Torres-Huerta
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| | - Franck Meyer
- Université libre de Bruxelles (ULB), Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy Boulevard du Triomphe 1050 Brussels Belgium
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| |
Collapse
|
20
|
Cheng J, Yang L, Wang R, Wisner JA, Ding Z, Wang HB. Intensified electrochemiluminescence and photoluminescence via supramolecular anion recognition interactions. Chem Sci 2024; 15:12291-12300. [PMID: 39118623 PMCID: PMC11304522 DOI: 10.1039/d4sc03338h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Herein, intensified electrochemiluminescence (ECL) and photoluminescence (PL) via supramolecular anion recognition interactions are demonstrated. A bisindolylpyrrole derivative with a structure containing two indole groups and 2-hexyl-pyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione, BIPPD, was designed and synthesized de novo to induce the enhanced ECL and PL emission based on hydrogen bonding interactions with the dihydrogen phosphate anion. Remarkably, the ECL quantum efficiency and PL quantum yield were discovered to increase up to 5.5-fold and 1.5-fold, respectively, via this anion coordination. Dopant PF6 - was found not to form hydrogen bonds, while HSO4 - doping does slightly with the receptor molecule. There was no enhancement in either ECL or PL in both scenarios, revealing great recognition selectivity of the synthesized BIPPD. Mechanistic studies via 1H NMR, ECL, and PL spectra illustrated that the ECL processes varied in the presence and absence of H2PO4 - doping, thus leading to the understanding of enhanced efficiency. The bisindolylpyrrole derivative will find applications in supramolecular and analytical chemistry via controlled hydrogen bonding interactions.
Collapse
Affiliation(s)
- Jun Cheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University Wuhan Hubei 430056 China
- XJTLU Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University 111 Ren'an Road Suzhou Jiangsu 215123 China
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Liuqing Yang
- Department of Chemistry and Centre for Advanced Materials and Biomaterials, The University of Western Ontario 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Ruiyao Wang
- XJTLU Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University 111 Ren'an Road Suzhou Jiangsu 215123 China
| | - James A Wisner
- Department of Chemistry and Centre for Advanced Materials and Biomaterials, The University of Western Ontario 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Zhifeng Ding
- Department of Chemistry and Centre for Advanced Materials and Biomaterials, The University of Western Ontario 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Hong-Bo Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University Wuhan Hubei 430056 China
| |
Collapse
|
21
|
Shao B, Fu H, Aprahamian I. A molecular anion pump. Science 2024; 385:544-549. [PMID: 39088617 DOI: 10.1126/science.adp3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 08/03/2024]
Abstract
Pumping ions against a concentration gradient through protein-based transporters is a cornerstone of numerous biological processes. Mimicking this function by using artificial receptors remains a daunting challenge, mainly because of the difficulties in balancing between the requirement for high binding affinities and precise and on-demand ion capture and release properties. We report a trimeric hydrazone photoswitch-based receptor that converts light energy into work by actively transporting chloride anion against a gradient through a dichloromethane liquid membrane, functioning as a molecular pump. The system manifests ease of synthesis, bistability, excellent photoswitching properties, and superb ON-OFF binding properties (difference of up to six orders of magnitude).
Collapse
Affiliation(s)
- Baihao Shao
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Heyifei Fu
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
22
|
Bagha H, Hein R, Lim JYC, Myers WK, Sambrook MR, Beer PD. Phosphate selective binding and sensing by halogen bonding tripodal copper(II) metallo-receptors in aqueous media. Dalton Trans 2024; 53:12338-12348. [PMID: 38985452 DOI: 10.1039/d4dt01585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Combining the potency of non-covalent halogen bonding (XB) with metal ion coordination, the synthesis and characterisation of a series of hydrophilic XB tripodal Cu(II) metallo-receptors, strategically designed for tetrahedral anion guest binding and sensing in aqueous media is described. The reported metallo-hosts contain a tripodal C3-symmetric tris-iodotriazole XB donor anion recognition motif terminally functionalised with tri(ethylene glycol) and permethylated β-cyclodextrin functionalities to impart aqueous solubility. Optical UV-vis anion binding studies in combination with unprecedented quantitative EPR anion titration investigations reveal the XB Cu(II) metallo-receptors exhibit strong and selective phosphate recognition over a range of other monocharged anionic species in competitive aqueous solution containing 40% water, notably outperforming a hydrogen bonding (HB) Cu(II) metallo-receptor counterpart. Electrochemical studies demonstrate further the capability of the metallo-receptors to sense anions via significant cathodic perturbations of the respective Cu(II)/Cu(I) redox couple.
Collapse
Affiliation(s)
- Hena Bagha
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Robert Hein
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jason Y C Lim
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - William K Myers
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | | | - Paul D Beer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
23
|
Imperato M, Nicolini A, Ribas-Ariño J, Antkowiak M, Roubeau O, Cornia A, Novikov V, Barrios LA, Aromí G. Guest selectivity of [Ni 2] supramolecular helicates. Dalton Trans 2024; 53:12301-12306. [PMID: 38984518 DOI: 10.1039/d4dt01611d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Two new paramagnetic supramolecular helicates with the formula (X@[Ni2L3])3+ (X = Cl, or Br; L = a bis-pyrazolylpyridine ligand) have been prepared and are described. Helicates of this metal are very rare with virtually no prior examples of them acting as hosts of anionic species. The persistence of the new assemblies in solution has been demonstrated unambiguously by mass spectrometry and paramagnetic 1H NMR. This has allowed us to establish the preference of the coordination [Ni2] host for Cl- over Br-, in agreement with DFT calculations. These results show the promise of the use of metallohelicates as suitable systems for the selective encapsulation of specific anions in solution.
Collapse
Affiliation(s)
- Manuel Imperato
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 213/A, 41125 Modena, Italy
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Alessio Nicolini
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Jordi Ribas-Ariño
- Departament de Química Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Michał Antkowiak
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain
| | - Andrea Cornia
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Valentin Novikov
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Leoní A Barrios
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| |
Collapse
|
24
|
Zhu J, Tuo DH, Wang XD, Ao YF, Wang QQ, Wang DX. Anion-Carbonyl Interactions. Org Lett 2024; 26:5984-5988. [PMID: 38975861 DOI: 10.1021/acs.orglett.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Presented herein is the exploration of a novel non-covalent anion-carbonyl (X-···C═O) interaction using aromatic imides as receptors and halides as lone pair donors. Combined theoretical calculations and experimental methods including 13C NMR, IR, and crystallographic analyses were performed to provide the physical origin and experimental evidence of anion-carbonyl interactions. The EDA analysis (energy decomposition analysis) based on DFT calculation indicates that electrostatic terms are the dominant contributions for the binding energy while electron delocalization also significantly contributes alongside the electrostatic attraction. Orbital interaction (n → π*) involving the delocalization of halide lone pairs on the carbonyl antibonding orbitals was visualized with NBO (Natural Bond Orbital) analysis. 13C NMR and IR spectra demonstrated upfield chemical shifts and red-shift frequency of hosts upon the addition of halides, reflecting the effect of orbital overlap between the halide lone pairs and π* of carbonyl (n → π* contribution). The anion-carbonyl interactions were directly revealed by X-ray structural analysis of anion and benzene triimide complexes.
Collapse
Affiliation(s)
- Jun Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - De-Hui Tuo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Kong Y, Zhang R, Li B, Zhao W, Wang J, Sun XW, Lv H, Liu R, Tang J, Wu B. Applying a Tripodal Hexaurea Receptor for Binding to an Antitumor Drug, Combretastatin-A4 Phosphate. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2570. [PMID: 38893834 PMCID: PMC11173554 DOI: 10.3390/ma17112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Phosphates play a crucial role in drug design, but their negative charge and high polarity make the transmembrane transport of phosphate species challenging. This leads to poor bioavailability of phosphate drugs. Combretastatin-A4 phosphate (CA4P) is such an anticancer monoester phosphate compound, but its absorption and clinical applicability are greatly limited. Therefore, developing carrier systems to effectively deliver phosphate drugs like CA4P is essential. Anion receptors have been found to facilitate the transmembrane transport of anions through hydrogen bonding. In this study, we developed a tripodal hexaurea anion receptor (L1) capable of binding anionic CA4P through hydrogen bonding, with a binding constant larger than 104 M-1 in a DMSO/water mixed solvent. L1 demonstrated superior binding ability compared to other common anions, and exhibited negligible cell cytotoxicity, making it a promising candidate for future use as a carrier for drug delivery.
Collapse
Affiliation(s)
- Yu Kong
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Rong Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Boyang Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China;
| | - Wei Zhao
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Ji Wang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Xiao-Wen Sun
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Huihui Lv
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Rui Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Juan Tang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Biao Wu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| |
Collapse
|
26
|
Jordan J, Gibb CL, Tran T, Yao W, Rose A, Mague JT, Easson MW, Gibb BC. Anion Binding to Ammonium and Guanidinium Hosts: Implications for the Reverse Hofmeister Effects Induced by Lysine and Arginine Residues. J Org Chem 2024; 89:6877-6891. [PMID: 38662908 PMCID: PMC11110012 DOI: 10.1021/acs.joc.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Anions have a profound effect on the properties of soluble proteins. Such Hofmeister effects have implications in biologics stability, protein aggregation, amyloidogenesis, and crystallization. However, the interplay between the important noncovalent interactions (NCIs) responsible for Hofmeister effects is poorly understood. To contribute to improving this state of affairs, we report on the NCIs between anions and ammonium and guanidinium hosts 1 and 2, and the consequences of these. Specifically, we investigate the properties of cavitands designed to mimic two prime residues for anion-protein NCIs─lysines and arginines─and the solubility consequences of complex formation. Thus, we report NMR and ITC affinity studies, X-ray analysis, MD simulations, and anion-induced critical precipitation concentrations. Our findings emphasize the multitude of NCIs that guanidiniums can form and how this repertoire qualitatively surpasses that of ammoniums. Additionally, our studies demonstrate the ease by which anions can dispense with a fraction of their hydration-shell waters, rearrange those that remain, and form direct NCIs with the hosts. This raises many questions concerning how solvent shell plasticity varies as a function of anion, how the energetics of this impact the different NCIs between anions and ammoniums/guanidiniums, and how this affects the aggregation of solutes at high anion concentrations.
Collapse
Affiliation(s)
- Jacobs
H. Jordan
- The
Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Allen Toussaint Blvd., New Orleans, Louisiana 70124, United States
| | - Corinne L.D. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Thien Tran
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Wei Yao
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Austin Rose
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Joel T. Mague
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Michael W. Easson
- The
Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Allen Toussaint Blvd., New Orleans, Louisiana 70124, United States
| | - Bruce C. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
27
|
Halgreen L, Torres-Huerta A, Norvaisa K, De Leener G, Tumanov N, Wouters J, Bartik K, Valkenier H. A Semiflexible Tetrahydrazone Macrocycle for Binding of Pyrophosphate and Smaller Anions. J Org Chem 2024; 89:6853-6864. [PMID: 38661472 DOI: 10.1021/acs.joc.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Macrocyclization has proven to be a useful design strategy in the development of efficient anion receptors. In addition to the ring size, the overall preorganization due to structural rigidity is key. To explore this in the context of developing an efficient pyrophosphate receptor, three macrocycles featuring a 26-membered interior ring size and similar H-bonding motifs have been synthesized, and their anion binding ability has been investigated. Computational studies and nuclear magnetic resonance (NMR) data showed different degrees of preorganization as a result of differences in flexibility. The interaction of the three macrocycles with chloride, dihydrogen phosphate, and dihydrogen pyrophosphate was investigated in solution by NMR and ultraviolet-visible spectroscopy and in the solid state by X-ray crystallography. The tetrahydrazone-based macrocycle featuring intermediate flexibility exhibited the best affinity for all three anions investigated. Our results suggest that in addition to the proper preorganization of binding groups in a macrocycle a certain degree of flexibility is also required for an optimal affinity with the target guest.
Collapse
Affiliation(s)
- Lau Halgreen
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Aaron Torres-Huerta
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Karolis Norvaisa
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Gaël De Leener
- Centre d'Instrumentation en REsonance Magnétique (CIREM), Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP 160/08, B-1050 Brussels, Belgium
| | - Nikolay Tumanov
- Namur Institute of Structured Matter and Namur Research Institute for Life Sciences, Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Johan Wouters
- Namur Institute of Structured Matter and Namur Research Institute for Life Sciences, Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Kristin Bartik
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
28
|
Fargher HA, Delmau LH, Bryantsev VS, Haley MM, Johnson DW, Moyer BA. Disrupting the Hofmeister bias in salt liquid-liquid extraction with an arylethynyl bisurea anion receptor. Chem Sci 2024; 15:5311-5318. [PMID: 38577371 PMCID: PMC10988605 DOI: 10.1039/d3sc05922g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Host-mediated liquid-liquid extraction is a convenient method for the separation of inorganic salts. However, selective extraction of an anion, regardless of its hydrophilicity or lipophilicity as qualitatively described by its place in the Hofmeister series, remains challenging. Herein we report the complete disruption of the Hofmeister-based ordering of anions in host-mediated extraction by a rigidified tweezer-type receptor possessing remarkably strong anion-binding affinity under the conditions examined. Experiments introduce a convenient new method for determination of anion binding using phosphorus inductively coupled plasma mass spectrometry (ICP-MS) to measure extraction of tetra-n-butylphosphonium (TBP+) salts from water into nitrobenzene, specifically examining the disrupting effect of the added arylethynyl bisurea anion receptor. In the absence of the receptor, the salt partitioning follows the expected Hofmeister-type ordering favoring the larger, less hydrated anions; the analysis yields the value -24 kJ mol-1 for the standard Gibbs energy of partitioning of TBP+ cation from water into nitrobenzene at 25 °C. Selectivity is markedly changed by the addition of receptor to the nitrobenzene and is concentration dependent, giving rise to three selectivity regimes. We then used SXLSQI liquid-liquid equilibrium analysis software developed at Oak Ridge National Laboratory to fit host-mediated extraction equilibria for TBP+ salts of Cl-, Br-, I-, and NO3- to the distribution data. While the reverse-Hofmeister 1 : 1 binding of the anions by the receptor effectively cancels the Hofmeister selectivity of the TBPX partitioning into nitrobenzene, formation of unexpected 2 : 1 receptor : anion complexes favoring Cl- and Br- dominates the selectivity at elevated receptor concentrations, producing the unusual order Br- > Cl- > NO3- > I- in anion distribution wherein a middle member of the series is selected and the most lipophilic anion is disfavored. Density functional theory calculations confirmed the likelihood of forming 2 : 1 complexes, where Cl- and Br- are encapsulated by two receptors adopting energetically competitive single or double helix structures. The calculations explain the rare non-Hofmeister preference for Br-. This example shows that anion receptors can be used to control the selectivity and efficiency of salt extraction regardless of the position of the anion in the Hofmeister series.
Collapse
Affiliation(s)
- Hazel A Fargher
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon Eugene OR 97403-1253 USA
| | - Lætitia H Delmau
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory Oak Ridge TN 37831-6384 USA
| | | | - Michael M Haley
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon Eugene OR 97403-1253 USA
| | - Darren W Johnson
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon Eugene OR 97403-1253 USA
| | - Bruce A Moyer
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831-6119 USA
| |
Collapse
|
29
|
Patrick SC, Beer PD, Davis JJ. Solvent effects in anion recognition. Nat Rev Chem 2024; 8:256-276. [PMID: 38448686 DOI: 10.1038/s41570-024-00584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Anion recognition is pertinent to a range of environmental, medicinal and industrial applications. Recent progress in the field has relied on advances in synthetic host design to afford a broad range of potent recognition motifs and novel supramolecular structures capable of effective binding both in solution and at derived molecular films. However, performance in aqueous media remains a critical challenge. Understanding the effects of bulk and local solvent on anion recognition by host scaffolds is imperative if effective and selective detection in real-world media is to be viable. This Review seeks to provide a framework within which these effects can be considered both experimentally and theoretically. We highlight proposed models for solvation effects on anion binding and discuss approaches to retain strong anion binding in highly competitive (polar) solvents. The synthetic design principles for exploiting the aforementioned solvent effects are explored.
Collapse
Affiliation(s)
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
30
|
Jurek P, Szymański MP, Szumna A. Remote control of anion binding by CH-based receptors. Chem Commun (Camb) 2024; 60:3417-3420. [PMID: 38441137 DOI: 10.1039/d3cc06038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We show that the substitution of tetra(benzimidazole)resorcin[4]arenes with electron withdrawing groups on the upper rim enhances anion binding at the opposite edge by more than three orders of magnitude. Moreover, selective anion binding at either the OH/NH or CH binding sites is demonstrated.
Collapse
Affiliation(s)
- Paulina Jurek
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Marek P Szymański
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Agnieszka Szumna
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
31
|
Wang XJ, Ding YH, Tian X. Achieving Accuracy and Economy for Calculating Vertical Detachment Energies of Molecular Anions: A Model Chemistry Composite Methods. Chemphyschem 2024; 25:e202300642. [PMID: 38165629 DOI: 10.1002/cphc.202300642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/04/2024]
Abstract
The vertical detachment energy (VDE) is a vital factor for predicting the stability of anions that have important applications in the atom, molecule and cluster science. Due to the synthetic or characterization difficulty of anions, accurate and efficient predictions of VDE independent of laboratory data have always been an appealing task to remedy the experimental deficiencies. Unfortunately, the generally adopted CCSD(T) and electron propagator theory (EPT) methods have respectively been proven to be reliable but very cost-expensive, and cost-effective but sometimes problematic when Koopman's theorem is invalid. Here, we for the first time introduced and benchmarked a series of model chemistry composite methods (e. g., CBS-QB3, G4 and W1BD) on calculating VDE for 57 molecular anions. Notably, CBS-QB3 exceeds the accuracy of CCSD(T) while approaching the economy of EPT. Therefore, we highly recommend the composite method CBS-QB3 to compute VDEs for molecular anions in the attractive "killing two birds with one stone" manner.
Collapse
Affiliation(s)
- Xiao-Juan Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Yi-Hong Ding
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Xiao Tian
- School of Mathematics and Science, Hebei GEO University, Shijiazhuang, 050031, P. R. China
| |
Collapse
|
32
|
Haridas SV, von Delius M. Synthesis and supramolecular properties of all- cis-2,4,6-trifluorocyclohexane-1,3,5-triol. Chem Commun (Camb) 2024; 60:606-609. [PMID: 38099916 PMCID: PMC10783651 DOI: 10.1039/d3cc05510h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
We report the synthesis of all-cis fluorinated cyclohexanes bearing three hydroxy, ether or ester functionalities in the non-fluorinated positions. These tripodal molecules have a high dipole moment of up to 6.3 debye and were successfully used to bind anions and form gels.
Collapse
Affiliation(s)
- Shyamkumar V Haridas
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany.
| |
Collapse
|
33
|
Bagha H, Hein R, Lim JYC, Durr CB, Sambrook MR, Beer PD. Halogen Bonding Tripodal Metallo-Receptors for Phosphate Recognition and Sensing in Aqueous-Containing Organic Media. Chemistry 2024; 30:e202302775. [PMID: 37792284 DOI: 10.1002/chem.202302775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
The anion recognition and electrochemical anion-sensing properties of halogen-bonding (XB) tripodal zinc(II) receptors strategically designed and constructed for tetrahedral anion guest binding are described. The XB tris(iodotriazole)-containing hosts exhibit high affinities and selectivities for inorganic phosphate over other more basic, mono-charged oxoanions such as acetate and the halides in a competitive CD3 CN/D2 O (9 : 1 v/v) aqueous solvent mixture. 1 H NMR anion binding and electrochemical voltammetric anion sensing studies with redox-active ferrocene functionalised metallo-tripodal receptor analogues, reveal each of the XB tripods as superior anion complexants when compared to their tris(prototriazole)-containing, hydrogen bonding (HB) counterparts, not only exemplifying the halogen bond as a strong alternative interaction to the traditional hydrogen bond for molecular recognition but also providing rare evidence of the ability of XB receptors to preferentially bind the "harder" phosphate oxoanion over the "softer" and less hydrated halides in aqueous containing media.
Collapse
Affiliation(s)
- Hena Bagha
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Robert Hein
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Jason Y C Lim
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher B Durr
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | | - Paul D Beer
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
34
|
Du T, Shen B, Dai J, Zhang M, Chen X, Yu P, Liu Y. Controlled and Regioselective Ring-Opening Polymerization for Poly(disulfide)s by Anion-Binding Catalysis. J Am Chem Soc 2023; 145:27788-27799. [PMID: 37987648 DOI: 10.1021/jacs.3c10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Poly(disulfide)s are an emerging class of sulfur-containing polymers with applications in medicine, energy, and functional materials. However, the constituent dynamic covalent S-S bond is highly reactive in the presence of the sulfide (RS-) anion, imposing a persistent challenge to control the polymerization. Here, we report an anion-binding approach to arrest the high reactivity of the RS- chain end to control the synthesis of linear poly(disulfide)s, realizing a rapid, living ring-opening polymerization of 1,2-dithiolanes with narrow dispersity and high regioselectivity (Mw/Mn ∼ 1.1, Ps ∼ 0.85). Mechanistic studies support the formation of a thiourea-base-sulfide ternary complex as the catalytically active species during the chain propagation. Theoretical analyses reveal a synergistic catalytic model where the catalyst preorganizes the protonated base and anionic chain end to establish spatial confinement over the bound monomer, effecting the observed regioselectivity. The catalytic system is amenable to monomers with various functional groups, and semicrystalline polymers are also obtained from lipoic acid derivatives by enhancing the regioselectivity.
Collapse
Affiliation(s)
- Tianyi Du
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Boming Shen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jieyu Dai
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Miaomiao Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xingjian Chen
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Salvadori K, Onali A, Mathez G, Eigner V, Dendisová M, Matějka P, Mullerová M, Brancale A, Cuřínová P. An Insight into Anion Extraction by Amphiphiles: Hydrophobic Microenvironments as a Requirement for the Extractant Selectivity. ACS OMEGA 2023; 8:44221-44228. [PMID: 38027376 PMCID: PMC10666219 DOI: 10.1021/acsomega.3c06767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Coupling of electron-deficient urea units with aliphatic chains gives rise to amphiphilic compounds that bind to phosphate and benzoate anions in the hydrogen bonding competitive solvent (DMSO) with KAss = 6 580 M-1 and KAss = 4 100 M-1, respectively. The anchoring of these receptor moieties to the dendritic support does not result in a loss of anion binding and enables new applications. Due to the formation of a microenvironment in the dendrimer, the high selectivity of the prepared compound toward benzoate is maintained even in the presence of aqueous media during extraction experiments. In the presence of binding sites at 5 mM concentration, the amount of benzoate corresponding to the full binding site occupancy is transferred into the chloroform phase from its 10 mM aqueous solution. A thorough investigation of the extraction behavior of the dendrimer reported here, supported by a series of molecular dynamics simulations, provides new insight into the fundamental principles of extraction of inorganic anions by amphiphiles.
Collapse
Affiliation(s)
- Karolína Salvadori
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
- Department
of Bioorganic Chemistry and Biomaterials, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, Prague 6 16502, Czech Republic
| | - Alessia Onali
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Gregory Mathez
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Václav Eigner
- Department
of Solid-State Chemistry, University of
Chemistry and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Marcela Dendisová
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Pavel Matějka
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Monika Mullerová
- Department
of Bioorganic Chemistry and Biomaterials, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, Prague 6 16502, Czech Republic
| | - Andrea Brancale
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Petra Cuřínová
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| |
Collapse
|
36
|
Li J, Yuan L, Yang Q, Zhang N, Sun T, Bao X. A Carbazole-1,8-Disulfonamide-Derived Cryptand Receptor for Anion Recognition. J Org Chem 2023; 88:14753-14759. [PMID: 37822159 DOI: 10.1021/acs.joc.3c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A novel cryptand-like anion receptor 1 was synthesized in reasonable yield by a one-step condensation reaction. The UV-vis spectroscopic titrations indicated that cryptand 1 bound AcO- in preference to other monovalent anions (including its competing F- and H2PO4-) in CH3CN, generating a 1:1 binding complex with Ka = 51,000 M-1. Moreover, the crystal structures revealed that the acetate ion was encapsulated inside the cryptand's cavity in a 1:1 manner, through multiple N-H···O hydrogen bonds (although having two different crystal forms).
Collapse
Affiliation(s)
- Junhong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Lisha Yuan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Qinrong Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Ningjin Zhang
- Instrumental Analysis Center, Shanghai Jiaotong University, Shanghai 200240, China
| | - Tao Sun
- College of Chemistry and Chemical Engineering, Guizhou Key Laboratory of High Performance Computational Chemistry, Guizhou University, Guiyang 550025, China
| | - Xiaoping Bao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
37
|
Samanta J, Tang M, Zhang M, Hughes RP, Staples RJ, Ke C. Tripodal Organic Cages with Unconventional CH···O Interactions for Perchlorate Remediation in Water. J Am Chem Soc 2023; 145:21723-21728. [PMID: 37769032 DOI: 10.1021/jacs.3c06379] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Perchlorate anions used in industry are harmful pollutants in groundwater. Therefore, selectively binding perchlorate provides solutions for environmental remediation. Here, we synthesized a series of tripodal organic cages with highly preorganized Csp3-H bonds that exhibit selectively binding to perchlorate in organic solvents and water. These cages demonstrated binding affinities to perchlorate of 105-106 M-1 at room temperature, along with high selectivity over competing anions, such as iodide and nitrate. Through single crystal structure analysis and density functional theory calculations, we identified unconventional Csp3-H···O interactions as the primary driving force for perchlorate binding. Additionally, we successfully incorporated this cage into a 3D-printable polymer network, showcasing its efficacy in removing perchlorate from water.
Collapse
Affiliation(s)
- Jayanta Samanta
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Miao Tang
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Mingshi Zhang
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Russell P Hughes
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Chenfeng Ke
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| |
Collapse
|
38
|
Weiße A, Seichter W, Mazik M. Supramolecular Motifs in the Crystal Structures of Triethylbenzene Derivatives Bearing Pyridinium Subunits in Combination with Pyrimidinyl or Pyridinyl Groups. Molecules 2023; 28:6485. [PMID: 37764259 PMCID: PMC10535844 DOI: 10.3390/molecules28186485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
A series of mono- and dicationic 1,3,5-trisubstituted 2,4,6-triethylbenzenes containing pyridinium groups in combination with aminopyrimidine-/aminopyridine-based recognition units were synthesized and crystallographically studied. The combination of neutral and ionic building blocks represents a promising strategy for the development of effective and selective artificial receptors for anionic substrates. In the crystalline state, the investigated compounds show a tendency to bind the counterion PF6- in the cavity formed by the three functionalized side-arms. The intermolecular interactions with the PF6- ion comprise N-H∙∙∙F and C-H∙∙∙F bonds. Detailed analysis of various supramolecular motifs, including interactions with solvent molecules, provides deeper insights into the processes of molecular recognition. The information obtained is useful in the development of new receptor molecules for anions and in the selection of the most appropriate counterion.
Collapse
Affiliation(s)
| | | | - Monika Mazik
- Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09596 Freiberg, Germany; (A.W.); (W.S.)
| |
Collapse
|
39
|
Abstract
Large water-soluble anions with chaotropic character display surprisingly strong supramolecular interactions in water, for example, with macrocyclic receptors, polymers, biomembranes, and other hydrophobic cavities and interfaces. The high affinity is traced back to a hitherto underestimated driving force, the chaotropic effect, which is orthogonal to the common hydrophobic effect. This review focuses on the binding of large anions with water-soluble macrocyclic hosts, including cyclodextrins, cucurbiturils, bambusurils, biotinurils, and other organic receptors. The high affinity of large anions to molecular receptors has been implemented in several lines of new applications, which are highlighted herein.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan.
| | - Werner M Nau
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
40
|
Pamuła M, Bulatov E, Martínez-Crespo L, Kiesilä A, Naulapää J, Kalenius E, Helttunen K. Anion binding and transport with meso-alkyl substituted two-armed calix[4]pyrroles bearing urea and hydroxyl groups. Org Biomol Chem 2023; 21:6595-6603. [PMID: 37530577 DOI: 10.1039/d3ob00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Calix[4]pyrroles bearing hydroxyl (1) or urea (3) groups attached to the meso-positions with propyl linkers were synthesized as cis- and trans-isomers. The anion binding properties of cis-1 and cis-3 were screened with ion-mobility mass spectrometry, where cis-1 formed complexes with Cl-, Br- and H2PO4-, whereas cis-3 formed complexes with most of the investigated anions, including Cl-, Br-, I-, NO3-, ClO4-, OTf-, SCN- and PF6-. The structures of the chloride complexes were further elucidated with density functional theory calculations and a crystal structure obtained for cis-1. In solution, chloride and dihydrogenphosphate anion binding with cis-1 and cis-3 were compared using 1H NMR titrations. To assess the suitability of two-armed calix[4]pyrroles as anion transporters, chloride transport studies of cis-1, cis-3 and trans-3 were performed using large unilamellar vesicles. The results revealed that cis-3 had the highest activity among the investigated calix[4]pyrroles, which was related to the improved affinity and isolation of chloride inside the binding cavity of cis-3 in comparison to cis-1. The results indicate that appending calix[4]pyrroles with two hydrogen bonding arms is a feasible strategy to obtain anion transporters and receptors with high anion affinity.
Collapse
Affiliation(s)
- Małgorzata Pamuła
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Evgeny Bulatov
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Luis Martínez-Crespo
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Anniina Kiesilä
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Julia Naulapää
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Elina Kalenius
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Kaisa Helttunen
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| |
Collapse
|
41
|
Vogel J, Chen Y, Fadler RE, Flood AH, von Delius M. Steric Control over the Threading of Pyrophosphonates with One or Two Cyanostar Macrocycles during Pseudorotaxane Formation. Chemistry 2023; 29:e202300899. [PMID: 37156722 PMCID: PMC10655069 DOI: 10.1002/chem.202300899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
The supramolecular recognition of anions is increasingly harnessed to achieve the self-assembly of supramolecular architectures, ranging from cages and polymers to (pseudo)rotaxanes. The cyanostar (CS) macrocycle has previously been shown to form 2 : 1 complexes with organophosphate anions that can be turned into [3]rotaxanes by stoppering. Here we achieved steric control over the assembly of pseudorotaxanes comprising the cyanostar macrocycle and a thread that is based, for the first time, on organo-pyrophosphonates. Subtle differences in steric bulk on the threads allowed formation of either [3]pseudorotaxanes or [2]pseudorotaxanes. We demonstrate that the threading kinetics are governed by the steric demand of the organo-pyrophosphonates and in one case, slows down to the timescale of minutes. Calculations show that the dianions are sterically offset inside the macrocycles. Our findings broaden the scope of cyanostar-anion assemblies and may have relevance for the design of molecular machines whose directionality is a result of relatively slow slipping.
Collapse
Affiliation(s)
- Julian Vogel
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yusheng Chen
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Rachel E Fadler
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
42
|
Ong WSY, Ji K, Pathiranage V, Maydew C, Baek K, Villones RLE, Meloni G, Walker AR, Dodani SC. Rational Design of the β-Bulge Gate in a Green Fluorescent Protein Accelerates the Kinetics of Sulfate Sensing. Angew Chem Int Ed Engl 2023; 62:e202302304. [PMID: 37059690 PMCID: PMC10330437 DOI: 10.1002/anie.202302304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Detection of anions in complex aqueous media is a fundamental challenge with practical utility that can be addressed by supramolecular chemistry. Biomolecular hosts such as proteins can be used and adapted as an alternative to synthetic hosts. Here, we report how the mutagenesis of the β-bulge residues (D137 and W138) in mNeonGreen, a bright, monomeric fluorescent protein, unlocks and tunes the anion preference at physiological pH for sulfate, resulting in the turn-off sensor SulfOFF-1. This unprecedented sensing arises from an enhancement in the kinetics of binding, largely driven by position 138. In line with these data, molecular dynamics (MD) simulations capture how the coordinated entry and gating of sulfate into the β-barrel is eliminated upon mutagenesis to facilitate binding and fluorescence quenching.
Collapse
Affiliation(s)
- Whitney S. Y. Ong
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Ke Ji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Vishaka Pathiranage
- Department of Chemistry, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA
| | - Caden Maydew
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Kiheon Baek
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Rhiza Lyne E. Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Alice R. Walker
- Department of Chemistry, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA
| | - Sheel C. Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| |
Collapse
|
43
|
Mimuro T, Yoshida A, Kamo K, Hirasawa M, Kondo SI. Highly soluble bisurea derivatives for anion recognition. Org Biomol Chem 2023. [PMID: 37314147 DOI: 10.1039/d3ob00802a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Highly soluble bisurea derivatives having 1,2-phenoxyethane (receptors 2) and 1,2-ethoxyethane (3) moieties as spacer groups were designed and prepared based on previously reported receptors with the 2,2'-binaphthyl group as a spacer (1). The receptors can be prepared in fewer steps from commercially available starting materials. The solubilities and anion recognition abilities were evaluated by UV-vis and NMR spectral methods. Receptors 2 and 3 bearing a flexible linker showed good solubilities in common organic solvents such as CHCl3, MeCN, 2-butanone, toluene, and THF. Although the anion recognition abilities of receptors 2 and 3 were lower than those of receptors 1, the greatly improved solubilities of receptors 2 and 3 allow the association of anions under more concentrated conditions for the solubilisation of salts such as lithium chloride in organic solvents.
Collapse
Affiliation(s)
- Tsubasa Mimuro
- Department of Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan.
| | - Akihiro Yoshida
- Institute for Advanced Integrated Technology, Resonac Co., 48 Wadai, Tsukuba, Ibaraki, 300-4247, Japan
| | - Kazuyuki Kamo
- Institute for Advanced Integrated Technology, Resonac Co., 48 Wadai, Tsukuba, Ibaraki, 300-4247, Japan
| | - Manabu Hirasawa
- Institute for Advanced Integrated Technology, Resonac Co., 48 Wadai, Tsukuba, Ibaraki, 300-4247, Japan
| | - Shin-Ichi Kondo
- Department of Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan.
| |
Collapse
|
44
|
Biswas R, Samanta K, Ghorai S, Maji S, Natarajan R. Conformationally Flexible Cleft Receptor for Chloride Anion Transport. ACS OMEGA 2023; 8:19625-19631. [PMID: 37305253 PMCID: PMC10249377 DOI: 10.1021/acsomega.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
The design and synthesis of a cleft-shaped bis-diarylurea receptor for chloride anion transport is reported in this work. The receptor is based on the foldameric nature of N,N'-diphenylurea upon its dimethylation. The bis-diarylurea receptor exhibits a strong and selective affinity for chloride over bromide and iodide anions. A nanomolar quantity of the receptor efficiently transports the chloride across a lipid bilayer membrane as a 1:1 complex (EC50 = 5.23 nm). The work demonstrates the utility of the N,N'-dimethyl-N,N'-diphenylurea scaffold in anion recognition and transport.
Collapse
Affiliation(s)
- Raju Biswas
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Krishanu Samanta
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandipan Ghorai
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Maji
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramalingam Natarajan
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
45
|
Ghanbari B, Asadi Mofarrah L, Clegg JK. Selective Supramolecular Recognition of Nitroaromatics by a Fluorescent Metal-Organic Cage Based on a Pyridine-Decorated Dibenzodiaza-Crown Macrocyclic Co(II) Complex. Inorg Chem 2023; 62:7434-7445. [PMID: 37134276 DOI: 10.1021/acs.inorgchem.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two isomorphous fluorescent (FL) lantern-shaped metal-organic cages 1 and 2 were prepared by coordination-directed self-assembly of Co(II) centers with a new aza-crown macrocyclic ligand bearing pyridine pendant arms (Lpy). The cage structures were determined using single-crystal X-ray diffraction analysis, thermogravimetric, elemental microanalysis, FT-IR spectroscopy, and powder X-ray diffraction. The crystal structures of 1 and 2 show that anions (Cl- in 1 and Br- in 2) are encapsulated within the cage cavity. 1 and 2 bear two coordinated water molecules that are directed inside the cages, surrounded by the eight pyridine rings at the "bottom" and the "roof" of the cage. These hydrogen bond donors, π systems, and the cationic nature of the cages enable 1 and 2 to encapsulate the anions. FL experiments revealed that 1 could detect nitroaromatic compounds by exhibiting selective and sensitive fluorescence quenching toward p-nitroaniline (PNA), recommending a limit of detection of 4.24 ppm. Moreover, the addition of 50 μL of PNA and o-nitrophenol to the ethanolic suspension of 1 led to a significant large FL red shift, namely, 87 and 24 nm, respectively, which were significantly higher than the corresponding values observed in the presence of other nitroaromatic compounds. The titration of the ethanolic suspension of 1, with various concentrations of PNA (>12 μM) demonstrated a concentration-dependent emission red shift. Hence, the efficient FL quenching of 1 was capable of distinguishing the dinitrobenzene isomers. Meanwhile, the observed red shift (10 nm) and quenching of this emission band under the influence of a trace amount of o- and p-nitrophenol isomers also showed that 1 could discriminate between o- and p-nitrophenol. Replacement of the chlorido with a bromido ligand in 1 generated cage 2 which was a more electron-donating cage than 1. The FL experiments showed that 2 was partially more sensitive and less selective toward NACs than 1.
Collapse
Affiliation(s)
- Bahram Ghanbari
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Leila Asadi Mofarrah
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
46
|
Bąk KM, Patrick SC, Li X, Beer PD, Davis JJ. Engineered Binding Microenvironments in Halogen Bonding Polymers for Enhanced Anion Sensing. Angew Chem Int Ed Engl 2023; 62:e202300867. [PMID: 36749115 PMCID: PMC10946961 DOI: 10.1002/anie.202300867] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
Mimicking Nature's polymeric protein architectures by designing hosts with binding cavities screened from bulk solvent is a promising approach to achieving anion recognition in competitive media. Accomplishing this, however, can be synthetically demanding. Herein we present a synthetically tractable approach, by directly incorporating potent supramolecular anion-receptive motifs into a polymeric scaffold, tuneable through a judicious selection of the co-monomer. A comprehensive analysis of anion recognition and sensing is demonstrated with redox-active, halogen bonding polymeric hosts. Notably, the polymeric hosts consistently outperform their monomeric analogues, with especially large halide binding enhancements of ca. 50-fold observed in aqueous-organic solvent mixtures. These binding enhancements are rationalised by the generation and presentation of low dielectric constant binding microenvironments from which there is appreciable solvent exclusion.
Collapse
Affiliation(s)
- Krzysztof M. Bąk
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Sophie C. Patrick
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Xiaoxiong Li
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Paul D. Beer
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Jason J. Davis
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| |
Collapse
|
47
|
Li J, Wang C, Mo Y. Selectivity Rule of Cryptands for Anions: Molecular Rigidity and Bonding Site. Chemistry 2023; 29:e202203558. [PMID: 36538660 DOI: 10.1002/chem.202203558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Cryptands utilize inside CH or NH groups as hydrogen bond (H-bond) donors to capture anions such as halides. In this work, the nature and selectivity of confined hydrogen bonds inside cryptands were computationally analyzed with the energy decomposition scheme based on the block-localized wavefunction method (BLW-ED), aiming at an elucidation of governing factors in the binding between cryptands and anions. It was revealed that the intrinsic strengths of inward hydrogen bonds are dominated by the electrostatic attraction, while the anion preferences (selectivity) of inner CH and NH hydrogen bonds are governed by the Pauli exchange repulsion and electrostatic interaction, respectively. Typical conformers of cages are classified into two groups, including the C3(h) -symmetrical conformers, in which all halide anions are located near the centroids of cages, and the "semi-open" conformers, which exhibit shifted bonding sites for different halide anions. Accordingly, the difference in governing factors of selectivity is attributed to either the rigidity of cages or the binding site of anions for these two groups. In details, the C3 conformers of NH cryptands can be enlarged more remarkably than the C3(h) -symmetrical conformers of CH cryptands as the size of anion (ionic radius) increases, resulting in the relaxation of the Pauli repulsion and a dramatic reduction in electrostatic attraction, which eventually rules the selectivity of NH cryptands for halide anions. By contrary, the CH cryptands are more rigid and cannot effectively reduce the Pauli repulsion, which subsequently governs the anion preference. Unlike C3 conformers whose rigidity determines the selectivity, semi-open conformers exhibit different binding sites for different anions. From F- to I- , the bonding site shifts toward the outside end of the pocket inside the semi-open NH cryptand, leading to the significant reduction of the electrostatic interaction that dominates the anion preference. Differently, binding sites are much less affected by the size of anion inside the semi-open CH cryptand, in which the Pauli exchange repulsion remains the key factor for the selectivity of inner hydrogen bonds.
Collapse
Affiliation(s)
- Jiayao Li
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| |
Collapse
|
48
|
Fluoride-Ion-Mediated 1H/2D Exchange in Anion Receptors: A 19F NMR Probe. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
49
|
Sudan S, Chen DW, Berton C, Fadaei-Tirani F, Severin K. Synthetic Receptors with Micromolar Affinity for Chloride in Water. Angew Chem Int Ed Engl 2023; 62:e202218072. [PMID: 36628647 DOI: 10.1002/anie.202218072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
A water-soluble coordination cage was obtained by reaction of Pd(NO3 )2 with a 1,3-di(pyridin-3-yl)benzene ligand featuring a short PEG chain. The cavity of the metal-organic cage contains one nitrate anion, which is readily replaced by chloride. The apparent association constant for chloride binding in buffered aqueous solution is Ka =1.8(±0.1)×105 M-1 . This value is significantly higher than what has been reported for other macrocyclic chloride receptors. The heavier halides Br- and I- compete with binding or self-assembly, but the receptor displays very good selectivity over common anions such as phosphate, acetate, carbonate, and sulfate. A further increase of the chloride binding affinity by a factor of 3 was achieved using a fluorinated dipyridyl ligand.
Collapse
Affiliation(s)
- Sylvain Sudan
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Damien W Chen
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Cesare Berton
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
50
|
Alexander C, Thom JA, Kenwright AM, Christensen KE, Sørensen TJ, Faulkner S. Chelating chloride using binuclear lanthanide complexes in water. Chem Sci 2023; 14:1194-1204. [PMID: 36756316 PMCID: PMC9891377 DOI: 10.1039/d2sc05417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/27/2022] [Indexed: 12/28/2022] Open
Abstract
Halide recognition by supramolecular receptors and coordination complexes in water is a long-standing challenge. In this work, we report chloride binding in water and in competing media by pre-organised binuclear kinetically inert lanthanide complexes, bridged by flexible -(CH2)2- and -(CH2)3- spacers, forming [Ln2(DO3A)2C-2] and [Ln2(DO3A)2C-3], respectively. These hydrophilic, neutral lanthanide coordination complexes are shown to bind chloride with apparent association constants of up to 105 M-1 in water and in buffered systems. Hydroxide bridging was observed in these complexes at basic pH, which was proven to be overcome by chloride. Thus, these lanthanide complexes show promise towards chloride recognition in biology and beyond. The results described here have clearly identified a new area of anion coordination chemistry that is ripe for detailed exploration.
Collapse
Affiliation(s)
- Carlson Alexander
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - James A Thom
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Alan M Kenwright
- Department of Chemistry, University of Durham South Road Durham DH1 3LE UK
| | - Kirsten E Christensen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Thomas Just Sørensen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Nano-Science Centre and Department of Chemistry, University of Copenhagen 2100 København Ø Denmark
| | - Stephen Faulkner
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|