1
|
Nurxat N, Wang Q, Zhao N, Guo Y, Zhang X, Wang Y, Jian Y, Wang H, Yang S, Li M, Liu Q. Endogenous nitric oxide promotes Staphylococcus aureus virulence by activating autophagy. mBio 2025; 16:e0400624. [PMID: 39998210 PMCID: PMC11980563 DOI: 10.1128/mbio.04006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Endogenous nitric oxide (NO) is a small molecule that has been demonstrated to affect the physiology and survival of bacteria. The role of endogenous NO for Staphylococcus aureus survival inside host cells remains unclear. Here, we show that the production of endogenous NO by bacterial nitrate reductase (NR) is affected by molybdopterin biosynthesis protein A (MoeA), which is essential for molybdenum cofactor synthesis in S. aureus. During the infection, the production of endogenous NO promotes S. aureus survival inside macrophages by initiating cellular autophagy. Mechanistically, bacterial endogenous NO can modify the host regulatory protein thioredoxin vis S-nitrosylation, subsequently triggering the phosphorylation of the JNK-Bcl-2 pathway and promoting the initiation of autophagy through the release of Beclin1. Moreover, we confirmed the critical role of MoeA in bacterial survival in vivo by using bloodstream infection, pneumonia, and skin abscess model on both wild-type and autophagy-deficient mice. Interestingly, we observed the significantly increased production of NO and activation of cellular autophagy of sequence type (ST)5 compared with ST239, suggesting that the initiation of autophagy is involved in the clone shift of S. aureus. Our data offered new insights on the role of bacterial endogenous NO in regulating the host signal pathway during infection inside host cells.IMPORTANCEUnderstanding the mechanism underlying Staphylococcus aureus pathogenesis is essential for developing innovative strategies for the prevention and treatment of infection. In this study, we underscore the critical role of molybdopterin biosynthesis protein A and nitric oxide (NO) in inducing autophagy during S. aureus survival within macrophage and in vivo infection. We demonstrate that host regulatory protein can be modified by bacterial metabolites, which may influence cellular processes. Furthermore, our findings indicated that increased endogenous NO production may contribute to the stable prevalence of S. aureus ST5 in the healthcare-associated environment. These findings highlight the significance of bacterial metabolism in modulating the host immune system, thereby facilitating S. aureus survival and persistence.
Collapse
Affiliation(s)
- Nadira Nurxat
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qichen Wang
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Zhao
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Guo
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xilong Zhang
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Wang
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Jian
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Shanghai Jiao Tong University, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Wu S, Bu X, Chen D, Wu X, Wu H, Caiyin Q, Qiao J. Molecules-mediated bidirectional interactions between microbes and human cells. NPJ Biofilms Microbiomes 2025; 11:38. [PMID: 40038292 PMCID: PMC11880406 DOI: 10.1038/s41522-025-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Complex molecules-mediated interactions, which are based on the bidirectional information exchange between microbes and human cells, enable the defense against diseases and health maintenance. Recently, diverse single-direction interactions based on active metabolites, immunity factors, and quorum sensing signals have largely been summarized separately. In this review, according to a simplified timeline, we proposed the framework of Molecules-mediated Bidirectional Interactions (MBI) between microbe and humans to decipher and understand their intricate interactions systematically. About the microbe-derived interactions, we summarized various molecules, such as short-chain fatty acids, bile acids, tryptophan catabolites, and quorum sensing molecules, and their corresponding human receptors. Concerning the human-derived interactions, we reviewed the effect of human molecules, including hormones, cytokines, and other circulatory metabolites on microbial characteristics and phenotypes. Finally, we discussed the challenges and trends for developing and deciphering molecule-mediated bidirectional interactions and their potential applications in the guard of human health.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueying Bu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueyan Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Xu C, Zhang J, Zhang J, Li D, Yan X, Gu Y, Zhong M, Gao H, Zhao Q, Qu X, Huang P, Zhang J. Near Infrared-Triggered Nitric Oxide-Release Nanovesicles with Mild-Photothermal Antibacterial and Immunomodulation for Healing MRSA-Infected Diabetic Wounds. Adv Healthc Mater 2024; 13:e2402297. [PMID: 39175376 DOI: 10.1002/adhm.202402297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Bacterial infection-induced excessive inflammation is a major obstacle in diabetic wound healing. Nitric oxide (NO) exhibits significant antibacterial activity but is extremely deficient in diabetes. Hence, a near-infrared (NIR)-triggered NO release system is constructed through codelivery of polyarginine (PArg) and gold nanorods (Au) in an NIR-activatable methylene blue (MB) polypeptide-assembled nanovesicle (Au/PEL-PBA-MB/PArg). Upon NIR irradiation, the quenched MB in the nanovesicles is photoactivated to generate more reactive oxygen species (ROS) to oxidize PArg and release NO in an on-demand controlled manner. With the specific bacterial capture of phenylboronic acid (PBA), NO elevated membrane permeability and boosted bacterial vulnerability in the photothermal therapy (PTT) of the Au nanorods, which is displayed by superior mild PTT antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) at temperatures < 49.7 °C in vitro. Moreover, in vivo, the antibacterial nanovesicles greatly suppressed the burst of MRSA-induced excessive inflammation, NO relayed immunomodulated macrophage polarization from M1 to M2, and the excessive inflammatory phase is successfully transferred to the repair phase. In cooperation with angiogenesis by NO, tissue regeneration is accelerated in MRSA-infected diabetic wounds. Therefore, nanoplatform has considerable potential for accelerating the healing of infected diabetic wounds.
Collapse
Affiliation(s)
- Chang Xu
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jiqing Zhang
- Department of Medical Ultrasound, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000, China
| | - Junxian Zhang
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Danting Li
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaozhe Yan
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yuxuan Gu
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Meihui Zhong
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Hui Gao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Qiang Zhao
- Key Laboratory of bioactive materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
4
|
Gulati M, Thomas JM, Ennis CL, Hernday AD, Rawat M, Nobile CJ. The bacillithiol pathway is required for biofilm formation in Staphylococcus aureus. Microb Pathog 2024; 191:106657. [PMID: 38649100 DOI: 10.1016/j.micpath.2024.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Staphylococcus aureus is a major human pathogen that can cause infections that range from superficial skin and mucosal infections to life threatening disseminated infections. S. aureus can attach to medical devices and host tissues and form biofilms that allow the bacteria to evade the host immune system and provide protection from antimicrobial agents. To counter host-generated oxidative and nitrosative stress mechanisms that are part of the normal host responses to invading pathogens, S. aureus utilizes low molecular weight (LMW) thiols, such as bacillithiol (BSH). Additionally, S. aureus synthesizes its own nitric oxide (NO), which combined with its downstream metabolites may also protect the bacteria against specific host responses. We have previously shown that LMW thiols are required for biofilm formation in Mycobacterium smegmatis and Pseudomonas aeruginosa. Here, we show that the S. aureus bshC mutant strain, which is defective in the last step of the BSH pathway and lacks BSH, is impaired in biofilm formation. We also identify a possible S-nitrosobacillithiol reductase (BSNOR), similar in sequence to an S-nitrosomycothiol reductase found in M. smegmatis and show that the putative S. aureus bsnoR mutant strain has reduced levels of BSH and decreased biofilm formation. Our studies also show that NO plays an important role in biofilm formation and that acidified sodium nitrite severely reduces biofilm thickness. These studies provide insight into the roles of oxidative and nitrosative stress mechanisms on biofilm formation and indicate that BSH and NO are key players in normal biofilm formation in S. aureus.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| | - Jason M Thomas
- Department of Biology, California State University-Fresno, Fresno, CA, USA
| | - Craig L Ennis
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Aaron D Hernday
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Mamta Rawat
- Department of Biology, California State University-Fresno, Fresno, CA, USA.
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA.
| |
Collapse
|
5
|
Li Y, Pan K, Gao Y, Li J, Zang Y, Li X. Deconvoluting nitric oxide-protein interactions with spatially resolved multiplex imaging. Chem Sci 2024; 15:6562-6571. [PMID: 38699271 PMCID: PMC11062118 DOI: 10.1039/d4sc00767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Simultaneous imaging of nitric oxide (NO) and its proximal proteins should facilitate the deconvolution of NO-protein interactions. While immunostaining is a primary assay to localize proteins in non-genetically manipulated samples, NO imaging probes with immunostaining-compatible signals remain unexplored. Herein, probe NOP-1 was developed with an NO-triggered proximal protein labeling capacity and fluorogenic signals. The trick is to fuse the native chemical ligation of acyl benzotriazole with the protein-conjugation-induced fluorogenic response of Si-rhodamine fluorophore. NOP-1 predominantly existed in the non-fluorescent spirocyclic form. Yet, its acyl o-phenylenediamine moiety was readily activated by NO into acyl benzotriazole to conjugate proximal proteins, providing a fluorogenic response and translating the transient cellular NO signal into a permanent stain compatible with immunostaining. NOP-1 was utilized to investigate NO signaling in hypoglycemia-induced neurological injury, providing direct evidence of NO-induced apoptosis during hypoglycemia. Mechanistically, multiplex imaging revealed the overlap of cellular NOP-1 fluorescence with immunofluorescence for α-tubulin and NO2-Tyr. Importantly, α-tubulin was resolved from NOP-1 labeled proteins. These results suggest that NO played a role in hypoglycemia-induced apoptosis, at least in part, through nitrating α-tubulin. This study fills a crucial gap in current imaging probes, providing a valuable tool for unraveling the complexities of NO signaling in biological processes.
Collapse
Affiliation(s)
- Yi Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Street Hangzhou 310058 China
| | - Kaijun Pan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
| | - Yanan Gao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
| | - Jia Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medical, Chinese Academy of Sciences Shanghai 201203 China
| | - Yi Zang
- Lingang Laboratory Shanghai 201203 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medical, Chinese Academy of Sciences Shanghai 201203 China
| | - Xin Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Street Hangzhou 310058 China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University Jiashan 314100 China
| |
Collapse
|
6
|
Baker CL, Seo KS, Park N, Rutter JK, Thornton JA, Pruett SB, Park JY. L-arginine supplementation abrogates hypoxia-induced virulence of Staphylococcus aureus in a murine diabetic pressure wound model. mSphere 2024; 9:e0077423. [PMID: 38426801 PMCID: PMC10964415 DOI: 10.1128/msphere.00774-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are the most common complications of diabetes resulting from hyperglycemia leading to ischemic hypoxic tissue and nerve damage. Staphylococcus aureus is the most frequently isolated bacteria from DFUs and causes severe necrotic infections leading to amputations with a poor 5-year survival rate. However, very little is known about the mechanisms by which S. aureus dominantly colonizes and causes severe disease in DFUs. Herein, we utilized a pressure wound model in diabetic TALLYHO/JngJ mice to reproduce ischemic hypoxic tissue damage seen in DFUs and demonstrated that anaerobic fermentative growth of S. aureus significantly increased the virulence and the severity of disease by activating two-component regulatory systems leading to expression of virulence factors. Our in vitro studies showed that supplementation of nitrate as a terminal electron acceptor promotes anaerobic respiration and suppresses the expression of S. aureus virulence factors through inactivation of two-component regulatory systems, suggesting potential therapeutic benefits by promoting anaerobic nitrate respiration. Our in vivo studies revealed that dietary supplementation of L-arginine (L-Arg) significantly attenuated the severity of disease caused by S. aureus in the pressure wound model by providing nitrate. Collectively, these findings highlight the importance of anaerobic fermentative growth in S. aureus pathogenesis and the potential of dietary L-Arg supplementation as a therapeutic to prevent severe S. aureus infection in DFUs.IMPORTANCES. aureus is the most common cause of infection in DFUs, often resulting in lower-extremity amputation with a distressingly poor 5-year survival rate. Treatment for S. aureus infections has largely remained unchanged for decades and involves tissue debridement with antibiotic therapy. With high levels of conservative treatment failure, recurrence of ulcers, and antibiotic resistance, a new approach is necessary to prevent lower-extremity amputations. Nutritional aspects of DFU treatment have largely been overlooked as there has been contradictory clinical trial evidence, but very few in vitro and in vivo modelings of nutritional treatment studies have been performed. Here we demonstrate that dietary supplementation of L-Arg in a diabetic mouse model significantly reduced duration and severity of disease caused by S. aureus. These findings suggest that L-Arg supplementation could be useful as a potential preventive measure against severe S. aureus infections in DFUs.
Collapse
Affiliation(s)
- Carol L. Baker
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Keun Seok Seo
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Nogi Park
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jaime K. Rutter
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Justin A. Thornton
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Stephen B. Pruett
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Joo Youn Park
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
7
|
Marinas IC, Ignat L, Maurușa IE, Gaboreanu MD, Adina C, Popa M, Chifiriuc MC, Angheloiu M, Georgescu M, Iacobescu A, Pircalabioru GG, Stan M, Pinteala M. Insights into the physico-chemical and biological characterization of sodium lignosulfonate - silver nanosystems designed for wound management. Heliyon 2024; 10:e26047. [PMID: 38384565 PMCID: PMC10878957 DOI: 10.1016/j.heliyon.2024.e26047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Chronic wounds represent one of the complications that might occur from the disruption of wound healing process. Recently, there has been a rise in interest in employing nanotechnology to develop novel strategies for accelerating wound healing. The aim of the present study was to use a green synthesis method to obtain AgNPs/NaLS systems useful for wounds management and perform an in-depth investigation of their behavior during and post-synthesis as well as of their biological properties. The colloids obtained from silver nanoparticles (AgNPs) and commercial sodium lignosulfonate (NaLS) in a single-pot aqueous procedure have been fully characterized by UV-Vis, FT-IR, DLS, TEM, XRD, and XPS to evaluate the synthesis efficiency and to provide new insights in the process of AgNPs formation and NaLS behavior in aqueous solutions. The effects of various concentrations of NaLS (0-16 mg/mL) and AgNO3 (0-20 mM) and of two different temperatures on AgNPs formation have been analyzed. Although the room temperature is feasible for AgNPs synthesis, the short mixing at 70 °C significantly increases the speed of nanoparticle formation and storage stability. In all experimental conditions AgNPs of 20-40 nm in size have been obtained. The antimicrobial activity assessed quantitatively on clinical and reference bacterial strains, both in suspension and biofilm growth state, revealed a broad antimicrobial spectrum, the most intensive inhibitory effect being noticed against Pseudomonas aeruginosa and Escherichia coli strains. The AgNP/NaLS enhanced the NO extracellular release, potentially contributing to the microbicidal and anti-adherence activity by protein oxidation. Both AgNP/NaLS and NaLS were non-hemolytic (hemolytic index<5%, 2.26 ± 0.13% hemolysis) and biocompatible (102.17 ± 3.43 % HaCaT cells viability). The presence of AgNPs increased the antioxidative activity and induced a significant cytotoxicity on non-melanoma skin cancer cells (62.86 ± 8.27% Cal-27 cells viability). Taken together, all these features suggest the multivalent potential of these colloids for the development of novel strategies for wound management, acting by preventing infection-associated complications and supporting the tissue regeneration.
Collapse
Affiliation(s)
- Ioana C. Marinas
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Research and Development Department of SC Sanimed International Impex SRL, 6 Bucharest -Giurgiu Street, 087040, Giurgiu, Romania
| | - Leonard Ignat
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Ignat E. Maurușa
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Madalina D. Gaboreanu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
| | - Coroabă Adina
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Marcela Popa
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
| | - Mariana C. Chifiriuc
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
- Romanian Academy of Scientists, 54 Spl. Independentei St., District 5, 50085, Bucharest, Romania
- The Romanian Academy, 25, Calea Victoriei, Sector 1, District 1, 010071, Bucharest, Romania
| | - Marian Angheloiu
- Research and Development Department of SC Sanimed International Impex SRL, 6 Bucharest -Giurgiu Street, 087040, Giurgiu, Romania
| | - Mihaela Georgescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
| | - Alexandra Iacobescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
| | - Miruna Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| |
Collapse
|
8
|
John MS, Chinnappan M, Artami M, Bhattacharya M, Keogh RA, Kavanaugh J, Sharma T, Horswill AR, Harris-Tryon TA. Androgens at the skin surface regulate S. aureus pathogenesis through the activation of agr quorum sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579753. [PMID: 38370751 PMCID: PMC10871326 DOI: 10.1101/2024.02.10.579753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Staphylococcus aureus, the most frequent cause of skin infections, is more common in men than women and selectively colonizes the skin during inflammation. Yet, the specific cues that drive infection in these settings remain unclear. Here we show that the host androgens testosterone and dihydrotestosterone promote S. aureus pathogenesis and skin infection. Without the secretion of these hormones, skin infection in vivo is limited. Testosterone activates S. aureus virulence in a concentration dependent manner through stimulation of the agr quorum sensing system, with the capacity to circumvent other inhibitory signals in the environment. Taken together, our work defines a previously uncharacterized inter-kingdom signal between the skin and the opportunistic pathogen S. aureus and identifies the mechanism of sex-dependent differences in S. aureus skin infection. One-Sentence Summary Testosterone promotes S. aureus pathogenesis through activation of the agr quorum sensing system.
Collapse
|
9
|
Luo Z, Shi T, Ruan Z, Ding C, Huang R, Wang W, Guo Z, Zhan Z, Zhang Y, Chen Y. Quorum Sensing Interference Assisted Therapy-Based Magnetic Hyperthermia Amplifier for Synergistic Biofilm Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304836. [PMID: 37752756 DOI: 10.1002/smll.202304836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Indexed: 09/28/2023]
Abstract
Biofilms offer bacteria a physical and metabolic barrier, enhancing their tolerance to external stress. Consequently, these biofilms limit the effectiveness of conventional antimicrobial treatment. Recently, quorum sensing (QS) has been linked to biofilm's stress response to thermal, oxidative, and osmotic stress. Herein, a multiple synergistic therapeutic strategy that couples quorum sensing interference assisted therapy (QSIAT)-mediated enhanced thermal therapy with bacteria-triggered immunomodulation in a single nanoplatform, is presented. First, as magnetic hyperthermia amplifier, hyaluronic acid-coated ferrite (HA@MnFe2 O4 ) attenuates the stress response of biofilm by down-regulating QS-related genes, including agrA, agrC, and hld. Next, the sensitized bacteria are eliminated with magnetic heat. QS interference and heat also destruct the biofilm, and provide channels for further penetration of nanoparticles. Moreover, triggered by bacterial hyaluronidase, the wrapped hyaluronic acid (HA) decomposes into disaccharides at the site of infection and exerts healing effect. Thus, by reversing the bacterial tissue invasion mechanism for antimicrobial purpose, tissue regeneration following pathogen invasion and thermal therapy is successfully attained. RNA-sequencing demonstrates the QS-mediated stress response impairment. In vitro and in vivo experiments reveal the excellent antibiofilm and anti-inflammatory effects of HA@MnFe2 O4 . Overall, QSIAT provides a universal enhancement strategy for amplifying the bactericidal effects of conventional therapy via stress response interference.
Collapse
Affiliation(s)
- Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zesong Ruan
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Ding
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Rentai Huang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Wenbo Wang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhao Guo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zeming Zhan
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yunlong Zhang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yunfeng Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
10
|
Ding C, Xiao T, Deng Y, Yang H, Xu B, Li J, Lv Z. The Teleost CXCL13-CXCR5 Axis Induces Inflammatory Cytokine Expression through the Akt-NF-κB, p38-AP-1, and p38-NF-κB Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:317-334. [PMID: 38054894 DOI: 10.4049/jimmunol.2300237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
The ancestors of chemokines originate in the most primitive of vertebrates, which has recently attracted great interest in the immune functions and the underlying mechanisms of fish chemokines. In the current study, we identified an evolutionarily conserved chemokine, CiCXCL13, from a teleost fish, grass carp. CiCXCL13 was characterized by a typical SCY (small cytokine CXC) domain and four cysteine residues (C34, C36, C61, C77), with the first two cysteines separated by a random amino acid residue, although it shared 24.2-54.8% identity with the counterparts from other vertebrates. CiCXCL13 was an inducible chemokine, whose expression was significantly upregulated in the immune tissues of grass carps after grass carp reovirus infection. CiCXCL13 could bind to the membrane of grass carp head kidney leukocytes and promote cell migration, NO release, and the expression of >15 inflammatory cytokines, including IL-1β, TNF-α, IL-10 and TGF-β1, thus regulating the inflammatory response. Mechanistically, CiCXCL13 interacted with its evolutionarily conserved receptor CiCXCR5 and activated the Akt-NF-κB and p38-AP-1 pathways, as well as a previously unrevealed p38-NF-κB pathway, to efficiently induce inflammatory cytokine expression, which was distinct from that reported in mammals. Zebrafish CXCL13 induced inflammatory cytokine expression through Akt, p38, NF-κB, and AP-1 as CiCXCL13. Meanwhile, the CiCXCL13-CiCXCR5 axis-mediated inflammatory activity was negatively shaped by grass carp atypical chemokine receptor 2 (CiACKR2). The present study is, to our knowledge, the first to comprehensively define the immune function of CXCL13 in inflammatory regulation and the underlying mechanism in teleosts, and it provides a valuable perspective on the evolution and biology of fish chemokines.
Collapse
Affiliation(s)
- Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Yadong Deng
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Hong Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Baohong Xu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Junhua Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Jiang M, Chen X, Li H, Peng X, Peng B. Exogenous L-Alanine promotes phagocytosis of multidrug-resistant bacterial pathogens. EMBO Rep 2023; 24:e49561. [PMID: 37943703 PMCID: PMC10702822 DOI: 10.15252/embr.201949561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Multidrug-resistant bacteria present a major threat to public health that urgently requires new drugs or treatment approaches. Here, we conduct integrated proteomic and metabolomics analyses to screen for molecular candidates improving survival of mice infected with Vibrio parahaemolyticus, which indicate that L-Alanine metabolism and phagocytosis are strongly correlated with mouse survival. We also assess the role of L-Alanine in improving mouse survival by in vivo bacterial challenge experiments using various bacteria species, including V. parahaemolyticus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Functional studies demonstrate that exogenous L-Alanine promotes phagocytosis of these multidrug-resistant pathogen species. We reveal that the underlying mechanism involves two events boosted by L-Alanine: TLR4 expression and L-Alanine-enhanced TLR4 signaling via increased biosynthesis and secretion of fatty acids, including palmitate. Palmitate enhances binding of lipopolysaccharide to TLR4, thereby promoting TLR4 dimer formation and endocytosis for subsequent activation of the PI3K/Akt and NF-κB pathways and bacteria phagocytosis. Our data suggest that modulation of the metabolic environment is a plausible approach for combating multidrug-resistant bacteria infection.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Biology and Biotechnology and Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Institute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xin‐Hai Chen
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
| | - Hui Li
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Biology and Biotechnology and Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xuan‐Xian Peng
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Biology and Biotechnology and Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Bo Peng
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Biology and Biotechnology and Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
12
|
Brandwein JN, Sculthorpe TS, Ridder MJ, Bose JL, Rice KC. Factors impacting the regulation of nos gene expression in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0168823. [PMID: 37747881 PMCID: PMC10580903 DOI: 10.1128/spectrum.01688-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/29/2023] [Indexed: 09/27/2023] Open
Abstract
Staphylococcus aureus nitric oxide synthase (saNOS) contributes to oxidative stress resistance, antibiotic tolerance, virulence, and modulation of aerobic and nitrate-based cellular respiration. Despite its involvement in these essential processes, the genetic regulation of nos expression has not been well characterized. 5' rapid amplification of cDNA ends on nos RNA isolated from S. aureus UAMS-1 (USA200 strain) and AH1263 (USA300 strain) revealed that the nos transcriptional start site mapped to an adenine nucleotide in the predicted Shine-Dalgarno site located 11 bp upstream of the nos ATG start codon, suggesting that the nos transcript may have a leaderless organization or may be subject to processing. The SrrAB two-component system (TCS) was previously identified as a positive regulator of nos RNA levels, and experiments using a β-galactosidase reporter plasmid confirmed that SrrAB is a positive regulator of nos promoter activity. In addition, the quorum-sensing system Agr was identified as a negative regulator of low-oxygen nos expression in UAMS-1, with activity epistatic to SrrAB. Involvement of Agr was strain dependent, as nos expression remained unchanged in an AH1263 agr mutant, which has higher Agr activity compared to UAMS-1. Furthermore, nos promoter activity and RNA levels were significantly stronger in AH1263 relative to UAMS-1 during late-exponential low-oxygen growth, when nos expression is maximal. Global regulators Rex and MgrA were also implicated as negative regulators of low-oxygen nos promoter activity in UAMS-1. Collectively, these results provide new insight into factors that control nos expression.IMPORTANCEBacterial nitric oxide synthase (bNOS) has recently emerged in several species as a key player in resistance to stresses commonly encountered during infection. Although Staphylococcus aureus (sa)NOS has been suggested to be a promising drug target in S. aureus, an obstacle to this in practice is the existence of mammalian NOS, whose oxygenase domain is like bacterial NOS. Increased understanding of the nos regulatory network in S. aureus could allow targeting of saNOS through its regulators, bypassing the issue of also inhibiting mammalian NOS. Furthermore, the observed strain-dependent differences in S. aureus nos regulation presented in this study reinforce the importance of studying bacterial NOS regulation and function at both the strain and species levels.
Collapse
Affiliation(s)
- Jessica N. Brandwein
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tiffany S. Sculthorpe
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Miranda J. Ridder
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey L. Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kelly C. Rice
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Yu Z, Zhang W, Yang H, Chou SH, Galperin MY, He J. Gas and light: triggers of c-di-GMP-mediated regulation. FEMS Microbiol Rev 2023; 47:fuad034. [PMID: 37339911 PMCID: PMC10505747 DOI: 10.1093/femsre/fuad034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023] Open
Abstract
The widespread bacterial second messenger c-di-GMP is responsible for regulating many important physiological functions such as biofilm formation, motility, cell differentiation, and virulence. The synthesis and degradation of c-di-GMP in bacterial cells depend, respectively, on diguanylate cyclases and c-di-GMP-specific phosphodiesterases. Since c-di-GMP metabolic enzymes (CMEs) are often fused to sensory domains, their activities are likely controlled by environmental signals, thereby altering cellular c-di-GMP levels and regulating bacterial adaptive behaviors. Previous studies on c-di-GMP-mediated regulation mainly focused on downstream signaling pathways, including the identification of CMEs, cellular c-di-GMP receptors, and c-di-GMP-regulated processes. The mechanisms of CME regulation by upstream signaling modules received less attention, resulting in a limited understanding of the c-di-GMP regulatory networks. We review here the diversity of sensory domains related to bacterial CME regulation. We specifically discuss those domains that are capable of sensing gaseous or light signals and the mechanisms they use for regulating cellular c-di-GMP levels. It is hoped that this review would help refine the complete c-di-GMP regulatory networks and improve our understanding of bacterial behaviors in changing environments. In practical terms, this may eventually provide a way to control c-di-GMP-mediated bacterial biofilm formation and pathogenesis in general.
Collapse
Affiliation(s)
- Zhaoqing Yu
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, Jiangsu 210014, PR China
| | - Wei Zhang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - He Yang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Jin He
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| |
Collapse
|
14
|
Shu X, Shi Y, Huang Y, Yu D, Sun B. Transcription tuned by S-nitrosylation underlies a mechanism for Staphylococcus aureus to circumvent vancomycin killing. Nat Commun 2023; 14:2318. [PMID: 37085493 PMCID: PMC10120478 DOI: 10.1038/s41467-023-37949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Treatment of Staphylococcus aureus infections is a constant challenge due to emerging resistance to vancomycin, a last-resort drug. S-nitrosylation, the covalent attachment of a nitric oxide (NO) group to a cysteine thiol, mediates redox-based signaling for eukaryotic cellular functions. However, its role in bacteria is largely unknown. Here, proteomic analysis revealed that S-nitrosylation is a prominent growth feature of vancomycin-intermediate S. aureus. Deletion of NO synthase (NOS) or removal of S-nitrosylation from the redox-sensitive regulator MgrA or WalR resulted in thinner cell walls and increased vancomycin susceptibility, which was due to attenuated promoter binding and released repression of genes involved in cell wall metabolism. These genes failed to respond to H2O2-induced oxidation, suggesting distinct transcriptional responses to alternative modifications of the cysteine residue. Furthermore, treatment with a NOS inhibitor significantly decreased vancomycin resistance in S. aureus. This study reveals that transcriptional regulation via S-nitrosylation underlies a mechanism for NO-mediated bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Xueqin Shu
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingying Shi
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Huang
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Dan Yu
- Laboratory of Dermatology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China.
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China.
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
- CAS Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China.
| |
Collapse
|
15
|
Dps-dependent in vivo mutation enhances long-term host adaptation in Vibrio cholerae. PLoS Pathog 2023; 19:e1011250. [PMID: 36928244 PMCID: PMC10104298 DOI: 10.1371/journal.ppat.1011250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/14/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
As one of the most successful pathogenic organisms, Vibrio cholerae (V. cholerae) has evolved sophisticated regulatory mechanisms to overcome host stress. During long-term colonization by V. cholerae in adult mice, many spontaneous nonmotile mutants (approximately 10% at the fifth day post-infection) were identified. These mutations occurred primarily in conserved regions of the flagellar regulator genes flrA, flrC, and rpoN, as shown by Sanger and next-generation sequencing, and significantly increased fitness during colonization in adult mice. Intriguingly, instead of key genes in DNA repair systems (mutS, nfo, xthA, uvrA) or ROS and RNS scavenging systems (katG, prxA, hmpA), which are generally thought to be associated with bacterial mutagenesis, we found that deletion of the cyclin gene dps significantly increased the mutation rate (up to 53% at the fifth day post-infection) in V. cholerae. We further determined that the dpsD65A and dpsF46E point mutants showed a similar mutagenesis profile as the Δdps mutant during long-term colonization in mice, which strongly indicated that the antioxidative function of Dps directly contributes to the development of V. cholerae nonmotile mutants. Methionine metabolism pathway may be one of the mechanism for ΔflrA, ΔflrC and ΔrpoN mutant increased colonization in adult mice. Our results revealed a new phenotype in which V. cholerae fitness increases in the host gut via spontaneous production nonmotile mutants regulated by cyclin Dps, which may represent a novel adaptation strategy for directed evolution of pathogens in the host.
Collapse
|
16
|
Zhang Y, Ma N, Tan P, Ma X. Quorum sensing mediates gut bacterial communication and host-microbiota interaction. Crit Rev Food Sci Nutr 2022; 64:3751-3763. [PMID: 36239296 DOI: 10.1080/10408398.2022.2134981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gut bacteria employ quorum sensing (QS) to coordinate their activities and communicate with one another, this process relies on the production, detection, and response to autoinducers, which are extracellular signaling molecules. In addition to synchronizing behavioral activities within the species, QS plays a crucial role in the gut host-microbiota interaction. In this review, an overview of classical QS systems is presented as well as the interspecies communication mediated by QS, and recent advances in the host-microbiota interaction mediated by QS. A greater knowledge of the communication network of gut microbiota is not only an opportunity and a challenge for developing nutritional and therapeutic strategies against bacterial illnesses, but also a means for improving gut health.
Collapse
Affiliation(s)
- Yucheng Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
18
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
19
|
Rocha RF, Martins PGA, D'Muniz Pereira H, Brandão-Neto J, Thiemann OH, Terenzi H, Menegatti ACO. Crystal structure of the Cys-NO modified YopH tyrosine phosphatase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140754. [PMID: 34995802 DOI: 10.1016/j.bbapap.2022.140754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are key virulence factors in pathogenic bacteria, consequently, they have become important targets for new approaches against these pathogens, especially in the fight against antibiotic resistance. Among these targets of interest YopH (Yersinia outer protein H) from virulent species of Yersinia is an example. PTPs can be reversibly inhibited by nitric oxide (NO) since the oxidative modification of cysteine residues may influence the protein structure and catalytic activity. We therefore investigated the effects of NO on the structure and enzymatic activity of Yersinia enterocolitica YopH in vitro. Through phosphatase activity assays, we observe that in the presence of NO YopH activity was inhibited by 50%, and that this oxidative modification is partially reversible in the presence of DTT. Furthermore, YopH S-nitrosylation was clearly confirmed by a biotin switch assay, high resolution mass spectrometry (MS) and X-ray crystallography approaches. The crystal structure confirmed the S-nitrosylation of the catalytic cysteine residue, Cys403, while the MS data provide evidence that Cys221 and Cys234 might also be modified by NO. Interestingly, circular dichroism spectroscopy shows that the S-nitrosylation affects secondary structure of wild type YopH, though to a lesser extent on the catalytic cysteine to serine YopH mutant. The data obtained demonstrate that S-nitrosylation inhibits the catalytic activity of YopH, with effects beyond the catalytic cysteine. These findings are helpful for designing effective YopH inhibitors and potential therapeutic strategies to fight this pathogen or others that use similar mechanisms to interfere in the signal transduction pathways of their hosts.
Collapse
Affiliation(s)
- Ruth F Rocha
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Priscila G A Martins
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | | | - José Brandão-Neto
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX110DE, United Kingdom
| | - Otavio Henrique Thiemann
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil; Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Hernán Terenzi
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil.
| | - Angela C O Menegatti
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil.
| |
Collapse
|
20
|
Cattò C, Villa F, Cappitelli F. Understanding the Role of the Antioxidant Drug Erdosteine and Its Active Metabolite on Staphylococcus aureus Methicillin Resistant Biofilm Formation. Antioxidants (Basel) 2021; 10:antiox10121922. [PMID: 34943025 PMCID: PMC8698571 DOI: 10.3390/antiox10121922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023] Open
Abstract
Increasing numbers of researches have suggested that some drugs with reactive oxygen species (ROS)-mediated mechanisms of action modulate biofilm formation of some pathogenic strains. However, the full contribution of ROS to biofilm development is still an open question. In this paper, the correlations between the antioxidant drug Erdosteine (Er) and its active Metabolite I (Met I), ROS and biofilm development of two strains of methicillin resistant Staphylococcus aureus are presented. Experiments revealed that Er and Met I at 2 and 5 mg/L increased up to three orders of magnitude the number of biofilm-dwelling cells, while the content of ROS within the biofilms was reduced above the 87%, with a major effect of Met I in comparison to Er. Comparative proteomics showed that, 5 mg/L Met I modified the expression of 30% and 65% of total proteins in the two strains respectively. Some proteins involved in cell replication were upregulated, and a nitric oxide-based mechanism is assumed to modulate the biofilm development by changing quorum sensitive pathways. Additionally, several proteins involved in virulence were downregulated in the presence of Met I, suggesting that treated cells, despite being greater in number, might have lost part of their virulence.
Collapse
|
21
|
Bogut A, Magryś A. The road to success of coagulase-negative staphylococci: clinical significance of small colony variants and their pathogenic role in persistent infections. Eur J Clin Microbiol Infect Dis 2021; 40:2249-2270. [PMID: 34296355 PMCID: PMC8520507 DOI: 10.1007/s10096-021-04315-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/09/2021] [Indexed: 01/14/2023]
Abstract
Bacterial small colony variants represent an important aspect of bacterial variability. They are naturally occurring microbial subpopulations with distinctive phenotypic and pathogenic traits, reported for many clinically important bacteria. In clinical terms, SCVs tend to be associated with persistence in host cells and tissues and are less susceptible to antibiotics than their wild-type (WT) counterparts. The increased tendency of SCVs to reside intracellularly where they are protected against the host immune responses and antimicrobial drugs is one of the crucial aspects linking SCVs to recurrent or chronic infections, which are difficult to treat. An important aspect of the SCV ability to persist in the host is the quiescent metabolic state, reduced immune response and expression a changed pattern of virulence factors, including a reduced expression of exotoxins and an increased expression of adhesins facilitating host cell uptake. The purpose of this review is to describe in greater detail the currently available data regarding CoNS SCV and, in particular, their clinical significance and possible mechanisms by which SCVs contribute to the pathogenesis of the chronic infections. It should be emphasized that in spite of an increasing clinical significance of this group of staphylococci, the number of studies unraveling the mechanisms of CoNS SCVs formation and their impact on the course of the infectious process is still scarce, lagging behind the studies on S. aureus SCVs.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland
| | - Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland.
| |
Collapse
|
22
|
A new, reliable, and high-throughput strategy to screen bacteria for antagonistic activity against Staphylococcus aureus. BMC Microbiol 2021; 21:189. [PMID: 34167492 PMCID: PMC8228506 DOI: 10.1186/s12866-021-02265-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 01/20/2023] Open
Abstract
Background Antibiotic-resistant Staphylococcus aureus clones have emerged globally over the last few decades. Probiotics have been actively studied as an alternative to antibiotics to prevent and treat S. aureus infections, but identifying new probiotic bacteria, that have antagonistic activity against S. aureus, is difficult since traditional screening strategies are time-consuming and expensive. Here, we describe a new plasmid-based method which uses highly stable plasmids to screen bacteria with antagonistic activity against S. aureus. Results We have created two recombinant plasmids (pQS1 and pQS3) which carry either gfpbk or mCherry under the control of a S. aureus quorum-sensing (QS) promoter (agrP3). Using this recombinant plasmid pair, we tested 81 bacteria isolated from Holstein dairy milk to identify bacteria that had growth-inhibiting activity against S. aureus and suggest potential explanations for the growth inhibition. The stability test illustrated that pQS1 and pQS3 remained highly stable for at least 24 h in batch culture conditions without selection pressure from antibiotics. This allowed co-culturing of S. aureus with other bacteria. Using the newly developed pQS plasmids, we found commensal bacteria, isolated from raw bovine milk, which had growth-inhibiting activity (n = 13) and quorum-quenching (QQ) activity (n = 13) towards both S. aureus Sa25 (CC97) and Sa27 (CC151). The pQS-based method is efficient and effective for simultaneously screening growth-inhibiting and QQ bacteria against S. aureus on agar media. Conclusions It was shown that growth-inhibiting and QQ activity toward pQS plasmid transformants of S. aureus can be simultaneously monitored by observing the zone of growth inhibition and reporter protein inhibition on agar plates. Newly identified antagonistic bacteria and their functional biomolecules are promising candidates for future development of probiotic drugs and prophylactics/therapeutics for bacterial infections including S. aureus. Furthermore, this new approach can be a useful method to find bacteria that can be used to prevent and treat S. aureus infections in both humans and animals. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02265-4.
Collapse
|
23
|
Baković J, Yu BYK, Silva D, Baczynska M, Peak-Chew SY, Switzer A, Burchell L, Wigneshweraraj S, Vandanashree M, Gopal B, Filonenko V, Skehel M, Gout I. Redox Regulation of the Quorum-sensing Transcription Factor AgrA by Coenzyme A. Antioxidants (Basel) 2021; 10:antiox10060841. [PMID: 34070323 PMCID: PMC8228455 DOI: 10.3390/antiox10060841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an aggressive opportunistic pathogen of prominent virulence and antibiotic resistance. These characteristics are due in part to the accessory gene regulator (agr) quorum-sensing system, which allows for the rapid adaptation of S. aureus to environmental changes and thus promotes virulence and the development of pathogenesis. AgrA is the agr system response regulator that binds to the P2 and P3 promoters and upregulates agr expression. In this study, we reveal that S. aureus AgrA is modified by covalent binding of CoA (CoAlation) in response to oxidative or metabolic stress. The sites of CoAlation were mapped by liquid chromatography tandem mass spectrometry (LC-MS/MS) and revealed that oxidation-sensing Cys199 is modified by CoA. Surface plasmon resonance (SPR) analysis showed an inhibitory effect of CoAlation on the DNA-binding activity, as CoAlated AgrA had significantly lower affinity towards the P2 and P3 promoters than non-CoAlated AgrA. Overall, this study provides novel insights into the mode of transcriptional regulation in S. aureus and further elucidates the link between the quorum-sensing and oxidation-sensing roles of the agr system.
Collapse
Affiliation(s)
- Jovana Baković
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
| | - Daniel Silva
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK; (S.Y.P.-C.); (M.S.)
| | - Amy Switzer
- Section of Microbiology, Faculty of Medicine and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; (A.S.); (L.B.); (S.W.)
| | - Lynn Burchell
- Section of Microbiology, Faculty of Medicine and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; (A.S.); (L.B.); (S.W.)
| | - Sivaramesh Wigneshweraraj
- Section of Microbiology, Faculty of Medicine and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; (A.S.); (L.B.); (S.W.)
| | | | - Balasubramanian Gopal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (M.V.); (B.G.)
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, 143 Kyiv, Ukraine;
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK; (S.Y.P.-C.); (M.S.)
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, 143 Kyiv, Ukraine;
- Correspondence: ; Tel.: +0044-2076794482; Fax: +0044-2076797193
| |
Collapse
|
24
|
Jian Y, Liu Z, Wang H, Chen Y, Yin Y, Zhao Y, Ma Z. Interplay of two transcription factors for recruitment of the chromatin remodeling complex modulates fungal nitrosative stress response. Nat Commun 2021; 12:2576. [PMID: 33958593 PMCID: PMC8102577 DOI: 10.1038/s41467-021-22831-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/25/2021] [Indexed: 02/03/2023] Open
Abstract
Nitric oxide (NO) is a diffusible signaling molecule that modulates animal and plant immune responses. In addition, reactive nitrogen species derived from NO can display antimicrobial activities by reacting with microbial cellular components, leading to nitrosative stress (NS) in pathogens. Here, we identify FgAreB as a regulator of the NS response in Fusarium graminearum, a fungal pathogen of cereal crops. FgAreB serves as a pioneer transcription factor for recruitment of the chromatin-remodeling complex SWI/SNF at the promoters of genes involved in the NS response, thus promoting their transcription. FgAreB plays important roles in fungal infection and growth. Furthermore, we show that a transcription repressor (FgIxr1) competes with the SWI/SNF complex for FgAreB binding, and negatively regulates the NS response. NS, in turn, promotes the degradation of FgIxr1, thus enhancing the recruitment of the SWI/SNF complex by FgAreB.
Collapse
Affiliation(s)
- Yunqing Jian
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Zunyong Liu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China.
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
25
|
Liu D, Wang Y, Wang X, Ou D, Ling N, Zhang J, Wu Q, Ye Y. Role of the multiple efflux pump protein TolC on growth, morphology, and biofilm formation under nitric oxide stress in Cronobacter malonaticus. JDS COMMUNICATIONS 2021; 2:98-103. [PMID: 36339506 PMCID: PMC9623651 DOI: 10.3168/jdsc.2020-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/19/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) is a biological signal molecule that can control and prevent the growth of most pathogens. Cronobacter species are a group of gram-negative foodborne pathogens that cause severe diseases, including neonatal meningitis, septicemia, and necrotizing enterocolitis, especially among newborns and infants consuming contaminated powdered infant formula. Cronobacter species might be tolerant to NO, resulting in severe infections. However, the specific mechanism of tolerance to NO in Cronobacter species is unclear. Here, we explore the effects of a key component, the protein TolC, of a multiple efflux pump on the growth, morphological changes, and biofilm formation of Cronobacter malonaticus under NO stress. We found that deletion of tolC resulted in a decreased growth rate under 100 mM sodium nitroprusside (NO donor) and led to more disruptive morphological injury to the bacterial cells. Furthermore, C. malonaticus lacking the TolC protein (ΔtolC mutant) showed weaker biofilm formation than the wild-type strain under normal or NO stress conditions. We have proved that TolC plays an important role in cell growth and biofilm formation of C. malonaticus. Therefore, our results may provide valuable theoretical basis for formulating clinical guidelines for treatment of disease caused by C. malonaticus and ensuring food safety.
Collapse
Affiliation(s)
- Dengyu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yaping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dexin Ou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
26
|
Hu Q, Shi J, Zhang J, Wang Y, Guo Y, Zhang Z. Progress and Prospects of Regulatory Functions Mediated by Nitric Oxide on Immunity and Immunotherapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qian Hu
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Jingyu Shi
- Liyuan Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Jiao Zhang
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yi Wang
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yuanyuan Guo
- Liyuan Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Zhiping Zhang
- Tongji School of Pharmacy, National Engineering Research Centre for Nanomedicine, Hubei Engineering Research Centre for Novel Drug Delivery System Huazhong University of Science and Technology Wuhan Hubei 430030 China
| |
Collapse
|
27
|
Boopathi S, Liu D, Jia AQ. Molecular trafficking between bacteria determines the shape of gut microbial community. Gut Microbes 2021; 13:1959841. [PMID: 34455923 PMCID: PMC8432619 DOI: 10.1080/19490976.2021.1959841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/04/2023] Open
Abstract
Complex inter-bacterial interactions largely influence the structure and function of the gut microbial community. Though several host-associated phenomena have often been shown to be involved in the stability, structure, and function of the gut microbial community, the implication of contact-dependent and contact-independent inter-bacterial interactions has been overlooked. Such interactions are tightly governed at multiple layers through several extracellular organelles, including contact-dependent inhibition (CDI), nanotubes, type VI secretion system (T6SS), and membrane vesicles (MVs). Recent advancements in molecular techniques have revealed that such extracellular organelles function beyond exhibiting competitive behavior and are also involved in manifesting cooperative behaviors. Cooperation between bacteria occurs through the sharing of several beneficial molecules including nucleic acids, proteins, metabolites, and nutrients among the members of the community, while competition occurs by means of multiple toxins. Intrinsic coordination between contact-dependent and contact-independent mechanisms collectively provides a fitness advantage and increased colonization resistance to the gut microbiota, where molecular trafficking plays a key role. This review is intended to provide a comprehensive view of the salient features of the different bacterial interactions and to highlight how microbiota deploy multifaceted organelles, for exerting both cooperative and competitive behaviors. We discuss the current knowledge of bacterial molecular trafficking and its impact on shaping the gut microbial community.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Danrui Liu
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ai-Qun Jia
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
28
|
S-nitrosylation-mediated activation of a histidine kinase represses the type 3 secretion system and promotes virulence of an enteric pathogen. Nat Commun 2020; 11:5777. [PMID: 33188170 PMCID: PMC7666205 DOI: 10.1038/s41467-020-19506-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne diarrheal diseases. Experimental overproduction of a type 3 secretion system (T3SS1) in this pathogen leads to decreased intestinal colonization, which suggests that T3SS1 repression is required for maximal virulence. However, the mechanisms by which T3SS1 is repressed in vivo are unclear. Here, we show that host-derived nitrite modifies the activity of a bacterial histidine kinase and mediates T3SS1 repression. More specifically, nitrite activates histidine kinase sensor VbrK through S-nitrosylation on cysteine 86, which results in downregulation of the entire T3SS1 operon through repression of its positive regulator exsC. Replacement of cysteine 86 with a serine (VbrK C86S mutant) leads to increased expression of inflammatory cytokines in infected Caco-2 cells. In an infant rabbit model of infection, the VbrK C86S mutant induces a stronger inflammatory response at the early stage of infection, and displays reduced intestinal colonization and virulence at the later stage of infection, in comparison with the parent strain. Our results indicate that the pathogen V. parahaemolyticus perceives nitrite as a host-derived signal and responds by downregulating a proinflammatory factor (T3SS1), thus enhancing intestinal colonization and virulence. Vibrio parahaemolyticus causes seafood-borne diarrheal diseases. Here, the authors show that the pathogen uses a histidine kinase to sense host-derived nitrite and downregulate a proinflammatory type 3 secretion system, thus enhancing intestinal colonization and virulence.
Collapse
|
29
|
Yousuf S, Karlinsey JE, Neville SL, McDevitt CA, Libby SJ, Fang FC, Frawley ER. Manganese import protects Salmonella enterica serovar Typhimurium against nitrosative stress. Metallomics 2020; 12:1791-1801. [PMID: 33078811 DOI: 10.1039/d0mt00178c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nitric oxide (NO˙) is a radical molecule produced by mammalian phagocytic cells as part of the innate immune response to bacterial pathogens. It exerts its antimicrobial activity in part by impairing the function of metalloproteins, particularly those containing iron and zinc cofactors. The pathogenic Gram-negative bacterium Salmonella enterica serovar typhimurium undergoes dynamic changes in its cellular content of the four most common metal cofactors following exposure to NO˙ stress. Zinc, iron and magnesium all decrease in response to NO˙ while cellular manganese increases significantly. Manganese acquisition is driven primarily by increased expression of the mntH and sitABCD transporters following derepression of MntR and Fur. ZupT also contributes to manganese acquisition in response to nitrosative stress. S. Typhimurium mutants lacking manganese importers are more sensitive to NO˙, indicating that manganese is important for resistance to nitrosative stress.
Collapse
Affiliation(s)
- Shehla Yousuf
- Rhodes College Biology Department, 2000 North Parkway, Memphis, TN 38112, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Ellermann M, Sperandio V. Bacterial signaling as an antimicrobial target. Curr Opin Microbiol 2020; 57:78-86. [PMID: 32916624 DOI: 10.1016/j.mib.2020.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Antibiotics profoundly reduced worldwide mortality. However, the emergence of resistance to the growth inhibiting effects of these drugs occurred. New approaches to treat infectious disease that reduce the likelihood for resistance are needed. In bacterial pathogens, complex signaling networks regulate virulence. Anti-virulence therapies aim to disrupt these networks to attenuate virulence without affecting growth. Quorum-sensing, a cell-to-cell communication system, represents an attractive anti-virulence target because it often activates virulence. The challenge is to identify druggable targets that inhibit virulence, while also minimizing the likelihood of mutations promoting resistance. Moreover, given the ubiquity of quorum-sensing systems in commensals, any potential effects of anti-virulence therapies on microbiome function should also be considered. Here we highlight the efficacy and drawbacks of anti-virulence approaches.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Pang R, Zhou H, Huang Y, Su Y, Chen X. Inhibition of Host Arginase Activity Against Staphylococcal Bloodstream Infection by Different Metabolites. Front Immunol 2020; 11:1639. [PMID: 32849560 PMCID: PMC7399636 DOI: 10.3389/fimmu.2020.01639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is a notorious bacterial pathogen that often causes soft tissue and bloodstream infections and invariably garners resistance mechanisms against new antibiotics. Modulation of the host immune response by metabolites is a powerful tool against bacterial infections, but has not yet been used against S. aureus infections. In this study, we identified four metabolite biomarkers: L-proline, L-isoleucine, L-leucine, and L-valine (PILV), through a metabolomics study using animal models of S. aureus bloodstream infection. The exogenous administration of each metabolite or of PILV showed anti-infective effects, and a higher protection was achieved with PILV in comparison to individual metabolites. During the staphylococcal infection, the expression of most host arginase and nitric oxide synthase (NOS) isozymes was simultaneously induced in mouse liver, kidney, and blood samples. However, the induction of arginase isozymes was dramatically stronger than that of NOS isozymes. This elevated arginase activity was inhibited by the metabolite biomarkers thus killing S. aureus, and PILV exhibited the strongest inhibition of arginase activity and bacterial inhibition. The suppression of arginase activity also contributed to the metabolite-mediated phagocytic killing of S. aureus in mouse and human blood. Our findings demonstrate the metabolite-mediated arginase inhibition as a therapeutic intervention for S. aureus infection.
Collapse
Affiliation(s)
- Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yifeng Huang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yubin Su
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xinhai Chen
- Shenzhen International Institute for Biomedical Research, Shenzhen, China.,Department of Microbiology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
32
|
Galkina SI, Fedorova NV, Golenkina EA, Stadnichuk VI, Sud’ina GF. Cytonemes Versus Neutrophil Extracellular Traps in the Fight of Neutrophils with Microbes. Int J Mol Sci 2020; 21:ijms21020586. [PMID: 31963289 PMCID: PMC7014225 DOI: 10.3390/ijms21020586] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Neutrophils can phagocytose microorganisms and destroy them intracellularly using special bactericides located in intracellular granules. Recent evidence suggests that neutrophils can catch and kill pathogens extracellularly using the same bactericidal agents. For this, live neutrophils create a cytoneme network, and dead neutrophils provide chromatin and proteins to form neutrophil extracellular traps (NETs). Cytonemes are filamentous tubulovesicular secretory protrusions of living neutrophils with intact nuclei. Granular bactericides are localized in membrane vesicles and tubules of which cytonemes are composed. NETs are strands of decondensed DNA associated with histones released by died neutrophils. In NETs, bactericidal neutrophilic agents are adsorbed onto DNA strands and are not covered with a membrane. Cytonemes and NETs occupy different places in protecting the body against infections. Cytonemes can develop within a few minutes at the site of infection through the action of nitric oxide or actin-depolymerizing alkaloids of invading microbes. The formation of NET in vitro occurs due to chromatin decondensation resulting from prolonged activation of neutrophils with PMA (phorbol 12-myristate 13-acetate) or other stimuli, or in vivo due to citrullination of histones with peptidylarginine deiminase 4. In addition to antibacterial activity, cytonemes are involved in cell adhesion and communications. NETs play a role in autoimmunity and thrombosis.
Collapse
Affiliation(s)
- Svetlana I. Galkina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
- Correspondence: (S.I.G.); (G.F.S.); Tel.: +7-495-939-5408 (S.I.G.)
| | - Natalia V. Fedorova
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
| | - Ekaterina A. Golenkina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
| | | | - Galina F. Sud’ina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
- Correspondence: (S.I.G.); (G.F.S.); Tel.: +7-495-939-5408 (S.I.G.)
| |
Collapse
|
33
|
Hu H, Tian M, Li P, Guan X, Lian Z, Yin Y, Shi W, Ding C, Yu S. Brucella Infection Regulates Thioredoxin-Interacting Protein Expression to Facilitate Intracellular Survival by Reducing the Production of Nitric Oxide and Reactive Oxygen Species. THE JOURNAL OF IMMUNOLOGY 2019; 204:632-643. [PMID: 31852753 DOI: 10.4049/jimmunol.1801550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 11/16/2019] [Indexed: 12/30/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) is a multifunctional protein that functions in tumor suppression, oxidative stress, and inflammatory responses. However, how TXNIP functions during microbial infections is rarely reported. In this study, we demonstrate that Brucella infection decreased TXNIP expression to promote its intracellular growth in macrophages by decreasing the production of NO and reactive oxygen species (ROS). Following Brucella abortus infection, TXNIP knockout RAW264.7 cells produced significantly lower levels of NO and ROS, compared with wild-type RAW264.7 cells. Inducible NO synthase (iNOS) inhibitor treatment reduced NO levels, which resulted in a dose-dependent restoration of TXNIP expression, demonstrating that the expression of TXNIP is regulated by NO. In addition, the expression of iNOS and the production of NO were dependent on the type IV secretion system of Brucella Moreover, Brucella infection reduced TXNIP expression in bone marrow-derived macrophages and mouse lung and spleen. Knocked down of the TXNIP expression in bone marrow-derived macrophages increased intracellular survival of Brucella These findings revealed the following: 1) TXNIP is a novel molecule to promote Brucella intracellular survival by reducing the production of NO and ROS; 2) a negative feedback-regulation system of NO confers protection against iNOS-mediated antibacterial effects. The elucidation of this mechanism may reveal a novel host surveillance pathway for bacterial intracellular survival.
Collapse
Affiliation(s)
- Hai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Peng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Xiang Guan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Zhengmin Lian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Yi Yin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Wentao Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| |
Collapse
|
34
|
Porcine Alveolar Macrophages' Nitric Oxide Synthase-Mediated Generation of Nitric Oxide Exerts Important Defensive Effects against Glaesserella parasuis Infection. Pathogens 2019; 8:pathogens8040234. [PMID: 31766159 PMCID: PMC6963498 DOI: 10.3390/pathogens8040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022] Open
Abstract
Glaesserella parasuis is a habitual bacterium of pigs' upper respiratory tracts. Its infection initiates with the invasion and colonization of the lower respiratory tracts of pigs, and develops as the bacteria survive host pulmonary defenses and clearance by alveolar macrophages. Alveolar macrophage-derived nitric oxide (NO) is recognized as an important mediator that exerts antimicrobial activity as well as immunomodulatory effects. In this study, we investigated the effects and the signaling pathway of NO generation in porcine alveolar macrophages 3D4/21 during G. parasuis infection. We demonstrated a time and dose-dependent generation of NO in 3D4/21 cells by G. parasuis, and showed that NO production required bacterial viability and nitric oxide synthase 2 upregulation, which was largely contributed by G. parasuis-induced nuclear factor-κB signaling's activation. Moreover, the porcine alveolar macrophage-derived NO exhibited prominent bacteriostatic effects against G. parasuis and positive host immunomodulation effects by inducing the production of cytokines and chemokines during infection. G. parasuis in turn, selectively upregulated several nitrate reductase genes to better survive this NO stress, revealing a battle of wits during the bacteria-host interactions. To our knowledge, this is the first direct demonstration of NO production and its anti-infection effects in alveolar macrophages with G. parasuis infection.
Collapse
|
35
|
Rastelli M, Cani PD, Knauf C. The Gut Microbiome Influences Host Endocrine Functions. Endocr Rev 2019; 40:1271-1284. [PMID: 31081896 DOI: 10.1210/er.2018-00280] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
The gut microbiome is considered an organ contributing to the regulation of host metabolism. Since the relationship between the gut microbiome and specific diseases was elucidated, numerous studies have deciphered molecular mechanisms explaining how gut bacteria interact with host cells and eventually shape metabolism. Both metagenomic and metabolomic analyses have contributed to the discovery of bacterial-derived metabolites acting on host cells. In this review, we examine the molecular mechanisms by which bacterial metabolites act as paracrine or endocrine factors, thereby regulating host metabolism. We highlight the impact of specific short-chain fatty acids on the secretion of gut peptides (i.e., glucagon-like peptide-1, peptide YY) and other metabolites produced from different amino acids and regulating inflammation, glucose metabolism, or energy homeostasis. We also discuss the role of gut microbes on the regulation of bioactive lipids that belong to the endocannabinoid system and specific neurotransmitters (e.g., γ-aminobutyric acid, serotonin, nitric oxide). Finally, we review the role of specific bacterial components (i.e., ClpB, Amuc_1100) also acting as endocrine factors and eventually controlling host metabolism. In conclusion, this review summarizes the recent state of the art, aiming at providing evidence that the gut microbiome influences host endocrine functions via several bacteria-derived metabolites.
Collapse
Affiliation(s)
- Marialetizia Rastelli
- Université Catholique de Louvain, UCLouvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Brussels, Belgium.,NeuroMicrobiota, European Associated Laboratory (INSERM/UCLouvain), Brussels, Belgium
| | - Patrice D Cani
- Université Catholique de Louvain, UCLouvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Brussels, Belgium.,NeuroMicrobiota, European Associated Laboratory (INSERM/UCLouvain), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory (INSERM/UCLouvain), Brussels, Belgium.,Institut de Recherche en Santé Digestive et Nutrition (IRSD), Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier (UPS), Toulouse Cedex 3, France
| |
Collapse
|
36
|
Heckler I, Boon EM. Insights Into Nitric Oxide Modulated Quorum Sensing Pathways. Front Microbiol 2019; 10:2174. [PMID: 31608029 PMCID: PMC6769237 DOI: 10.3389/fmicb.2019.02174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022] Open
Abstract
The emerging threat of drug resistant bacteria has prompted the investigation into bacterial signaling pathways responsible for pathogenesis. One such mechanism by which bacteria regulate their physiology during infection of a host is through a process known as quorum sensing (QS). Bacteria use QS to regulate community-wide gene expression in response to changes in population density. In order to sense these changes in population density, bacteria produce, secrete and detect small molecules called autoinducers. The most common signals detected by Gram-negative and Gram-positive bacteria are acylated homoserine lactones and autoinducing peptides (AIPs), respectively. However, increasing evidence has supported a role for the small molecule nitric oxide (NO) in influencing QS-mediated group behaviors like bioluminescence, biofilm production, and virulence. In this review, we discuss three bacteria that have an established role for NO in influencing bacterial physiology through QS circuits. In two Vibrio species, NO has been shown to affect QS pathways upon coordination of hemoprotein sensors. Further, NO has been demonstrated to serve a protective role against staphylococcal pneumonia through S-nitrosylation of a QS regulator of virulence.
Collapse
|
37
|
George SE, Hrubesch J, Breuing I, Vetter N, Korn N, Hennemann K, Bleul L, Willmann M, Ebner P, Götz F, Wolz C. Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population. Proc Natl Acad Sci U S A 2019; 116:19145-19154. [PMID: 31488708 PMCID: PMC6754547 DOI: 10.1073/pnas.1902752116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Quorum sensing (QS) is the central mechanism by which social interactions within the bacterial community control bacterial behavior. QS-negative cells benefit by exploiting public goods produced by the QS-proficient population. Mechanisms to keep the balance between producers and nonproducers within the population are expected but have not been elucidated for peptide-based QS systems in gram-positive pathogens. The Agr system of Staphylococcus aureus comprises the secretion and sensing of an autoinducing peptide to activate its own expression via the response regulator AgrA as well as the expression of a regulatory RNAIII and psmα/psmß coding for phenol-soluble modulins (PSMs). Agr mutants can be monitored on blood agar due to their nonhemolytic phenotype. In vitro evolution and competition experiments show that they readily accumulate in a process that is accelerated by ciprofloxacin, while the wild type (WT) is retained in the population at low numbers. However, agr mutants possess a fitness advantage only under aerobic conditions. Under hypoxia, Agr activity is increased but without the expected fitness cost. The Agr-imposed oxygen-dependent fitness cost is not due to a metabolic burden but due to the reactive oxygen species (ROS)-inducing capacity of the PSMs and RNAIII-regulated factors. Thus, selection of mutants is dictated by the QS system itself. Under aerobic conditions, emergence of agr-negative mutants may provide the population with a fitness advantage while hypoxia favors QS maintenance and even affords increased toxin production. The oxygen-driven tuning of the Agr system might be of importance to provide the pathogen with capabilities crucial for disease progression.
Collapse
Affiliation(s)
- Shilpa Elizabeth George
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Jennifer Hrubesch
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Inga Breuing
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Naisa Vetter
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Natalya Korn
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Katja Hennemann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Matthias Willmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Patrick Ebner
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
38
|
Hwang S, Jo M, Hong JE, Park CO, Lee CG, Yun M, Rhee KJ. Zerumbone Suppresses Enterotoxigenic Bacteroides fragilis Infection-Induced Colonic Inflammation through Inhibition of NF-κΒ. Int J Mol Sci 2019; 20:ijms20184560. [PMID: 31540059 PMCID: PMC6770904 DOI: 10.3390/ijms20184560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) is human intestinal commensal bacterium and a potent initiator of colitis through secretion of the metalloprotease Bacteroides fragilis toxin (BFT). BFT induces cleavage of E-cadherin in colon cells, which subsequently leads to NF-κB activation. Zerumbone is a key component of the Zingiber zerumbet (L.) Smith plant and can exhibit anti-bacterial and anti-inflammatory effects. However, whether zerumbone has anti-inflammatory effects in ETBF-induced colitis remains unknown. The aim of this study was to determine the anti-inflammatory effect of orally administered zerumbone in a murine model of ETBF infection. Wild-type C57BL/6 mice were infected with ETBF and orally administered zerumbone (30 or 60 mg/kg) once a day for 7 days. Treatment of ETBF-infected mice with zerumbone prevented weight loss and splenomegaly and reduced colonic inflammation with decreased macrophage infiltration. Zerumbone treatment significantly decreased expression of IL-17A, TNF-α, KC, and inducible nitric oxide synthase (iNOS) in colonic tissues of ETBF-infected mice. In addition, serum levels of KC and nitrite was also diminished. Zerumbone-treated ETBF-infected mice also showed decreased NF-κB signaling in the colon. HT29/C1 colonic epithelial cells treated with zerumbone suppressed BFT-induced NF-κB signaling and IL-8 secretion. However, BFT-mediated E-cadherin cleavage was unaffected. Furthermore, zerumbone did not affect ETBF colonization in mice. In conclusion, zerumbone decreased ETBF-induced colitis through inhibition of NF-κB signaling.
Collapse
Affiliation(s)
- Soonjae Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do 26493, Korea.
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do 26426, Korea.
| | - Minjeong Jo
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do 26493, Korea.
| | - Ju Eun Hong
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do 26493, Korea.
| | - Chan Oh Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do 26493, Korea.
| | - Chang Gun Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do 26493, Korea.
| | - Miyong Yun
- Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul 05006, Korea.
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do 26493, Korea.
| |
Collapse
|
39
|
Reactive nitrogen species in host-bacterial interactions. Curr Opin Immunol 2019; 60:96-102. [PMID: 31200187 DOI: 10.1016/j.coi.2019.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/29/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Reactive nitrogen species play diverse and essential roles in host-pathogen interactions. Here, we review selected recent discoveries regarding nitric oxide (NO) in host defense and the pathogenesis of infection, mechanisms of bacterial NO resistance, production of NO by human macrophages, NO-based antimicrobial therapeutics and NO interactions with the gut microbiota.
Collapse
|
40
|
Martínez-Colón GJ, Warheit-Niemi H, Gurczynski SJ, Taylor QM, Wilke CA, Podsiad AB, Crespo J, Bhan U, Moore BB. Influenza-induced immune suppression to methicillin-resistant Staphylococcus aureus is mediated by TLR9. PLoS Pathog 2019; 15:e1007560. [PMID: 30682165 PMCID: PMC6364947 DOI: 10.1371/journal.ppat.1007560] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/06/2019] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
Bacterial lung infections, particularly with methicillin-resistant Staphylococcus aureus (MRSA), increase mortality following influenza infection, but the mechanisms remain unclear. Here we show that expression of TLR9, a microbial DNA sensor, is increased in murine lung macrophages, dendritic cells, CD8+ T cells and epithelial cells post-influenza infection. TLR9-/- mice did not show differences in handling influenza nor MRSA infection alone. However, TLR9-/- mice have improved survival and bacterial clearance in the lung post-influenza and MRSA dual infection, with no difference in viral load during dual infection. We demonstrate that TLR9 is upregulated on macrophages even when they are not themselves infected, suggesting that TLR9 upregulation is related to soluble mediators. We rule out a role for elevations in interferon-γ (IFNγ) in mediating the beneficial MRSA clearance in TLR9-/- mice. While macrophages from WT and TLR9-/- mice show similar phagocytosis and bacterial killing to MRSA alone, following influenza infection, there is a marked upregulation of scavenger receptor A and MRSA phagocytosis as well as inducible nitric oxide synthase (Inos) and improved bacterial killing that is specific to TLR9-deficient cells. Bone marrow transplant chimera experiments and in vitro experiments using TLR9 antagonists suggest TLR9 expression on non-hematopoietic cells, rather than the macrophages themselves, is important for regulating myeloid cell function. Interestingly, improved bacterial clearance post-dual infection was restricted to MRSA, as there was no difference in the clearance of Streptococcus pneumoniae. Taken together these data show a surprising inhibitory role for TLR9 signaling in mediating clearance of MRSA that manifests following influenza infection. Influenza-associated secondary bacterial infections, particularly with methicillin-resistant Staphylococcus aureus (MRSA), are a major cause of morbidity and mortality, and better therapeutic strategies are needed. Stimulation of TLR2 has shown promise for improving health in influenza-bacteria dual-infected animals. However, nothing is known about the role of other TLRs, including TLR9, in influenza-bacteria dual infection pathology. This is the first study of TLR9 regulation of influenza-bacterial superinfection and it highlights an unexpected pathologic role for TLR9 in regulating clearance of MRSA post-H1N1. It also highlights the important observation that TLR9 signaling has very different outcomes in the setting of influenza infection than in naïve mice and shows important distinctions in the mechanisms for susceptibility to MRSA vs. S. pneumoniae post-influenza. Our results also suggest that TLR9 expression on non-hematopoietic cells regulates macrophage function in vivo.
Collapse
Affiliation(s)
| | - Helen Warheit-Niemi
- Microbiology and Immunology Graduate Program, University of Michigan, Ann Arbor, MI United States of America
| | - Stephen J. Gurczynski
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Quincy M. Taylor
- Literature, Sciences and the Arts, Microbiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Carol A. Wilke
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Amy B. Podsiad
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Joel Crespo
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - Urvashi Bhan
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Bethany B. Moore
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
41
|
Moldovan A, Fraunholz MJ. In or out: Phagosomal escape of Staphylococcus aureus. Cell Microbiol 2019; 21:e12997. [PMID: 30576050 DOI: 10.1111/cmi.12997] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
Abstract
Staphylococcus aureus is internalised by host cells in vivo, and recent research results suggest that the bacteria use this intracellularity to persist in the host and form a reservoir for recurrent infections. However, in different cells types, the pathogen resorts to alternative strategies to survive phagocytosis and the antimicrobial mechanisms of host cells. In non-professional phagocytes, S. aureus either escapes the endosome followed by cytoplasmic replication or replicates within autophagosomes. Professional phagocytes possess a limited capacity to kill S. aureus and hence the bacteria, well equipped with immune evasive mechanisms, replicate within the cells, eventually lyse out of the cells and thus persist in a continuous cycle of phagocytosis, host cell death, and bacterial release.
Collapse
Affiliation(s)
- Adriana Moldovan
- Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
42
|
Grabarczyk DB, Ash PA, Myers WK, Dodd EL, Vincent KA. Dioxygen controls the nitrosylation reactions of a protein-bound [4Fe4S] cluster. Dalton Trans 2019; 48:13960-13970. [DOI: 10.1039/c9dt00924h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron–sulfur clusters are exceptionally tuneable protein cofactors, and as one of their many roles they are involved in biological responses to nitrosative stress.
Collapse
Affiliation(s)
- Daniel B. Grabarczyk
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Philip A. Ash
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - William K. Myers
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Erin L. Dodd
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Kylie A. Vincent
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| |
Collapse
|
43
|
Abstract
Nitric oxide (NO·) produced by mammalian cells exerts antimicrobial actions that result primarily from the modification of protein thiols (S-nitrosylation) and metal centers. A comprehensive approach was used to identify novel targets of NO· in Salmonella enterica serovar Typhimurium (S. Typhimurium). Newly identified targets include zinc metalloproteins required for DNA replication and repair (DnaG, PriA, and TopA), protein synthesis (AlaS and RpmE), and various metabolic activities (ClpX, GloB, MetE, PepA, and QueC). The cytotoxic actions of free zinc are mitigated by the ZntA and ZitB zinc efflux transporters, which are required for S. Typhimurium resistance to zinc overload and nitrosative stress in vitro Zinc efflux also ameliorates NO·-dependent zinc mobilization following internalization by activated macrophages and is required for virulence in NO·-producing mice, demonstrating that host-derived NO· causes zinc stress in intracellular bacteria.IMPORTANCE Nitric oxide (NO·) is produced by macrophages in response to inflammatory stimuli and restricts the growth of intracellular bacteria. Mechanisms of NO·-dependent antimicrobial actions are incompletely understood. Here, we show that zinc metalloproteins are important targets of NO· in Salmonella, including the DNA replication proteins DnaG and PriA, which were hypothesized to be NO· targets in earlier studies. Like iron, zinc is a cofactor for several essential proteins but is toxic at elevated concentrations. This study demonstrates that NO· mobilizes free zinc in Salmonella and that specific efflux transporters ameliorate the cytotoxic effects of free zinc during infection.
Collapse
|
44
|
Abstract
Our understanding of the host mechanisms that protect against Staphylococcus aureus infection is incomplete. In this issue of Cell Host & Microbe, Urbano et al. (2018) report that nitric oxide (NO) targets the Agr quorum-sensing system to moderate S. aureus virulence.
Collapse
Affiliation(s)
- Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA.
| |
Collapse
|