1
|
Franck N, Stopper P, Ude L, Urteaga R, Kler PA, Huhn C. Paper-based isotachophoretic preconcentration technique for low-cost determination of glyphosate. Anal Bioanal Chem 2024; 416:6745-6757. [PMID: 39352471 PMCID: PMC11579070 DOI: 10.1007/s00216-024-05544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 11/21/2024]
Abstract
Electrophoretic microfluidic paper-based analytical devices (e-µPADs) are promising for low-cost and portable technologies, but quantitative detection remains challenging. In this study, we develop a paper-based isotachophoretic preconcentration and separation method for the herbicide glyphosate as a model analyte. The device, consisting of two electrode chambers filled with leading and terminating electrolytes and a nitrocellulose strip as the separation carrier, was illuminated by a flat light source and operated with a voltage supply of 400 V. Detection was accomplished using a simple camera. Colorimetric detection was optimized through competitive complexation between glyphosate, copper ions, and pyrocatechol violet as a dye. The buffer system was optimized using simulations, (i) ensuring the pH was optimal for the demetallation of the blue pyrocatechol violet-copper complex [PV] to the yellow free dye and (ii) ensuring the electrophoretic migration of glyphosate into the slower [PV] for the colorimetric reaction. A new data evaluation method is presented, analyzing the RGB channel intensities. The linear range was between 0.8 and 25 µM, with a LOD of approximately 0.8 µM. The ITP separation preconcentrated glyphosate by a factor of 820 in numerical simulations. The method may be applied to control glyphosate formulations, especially in developing countries where herbicide sales and applications are poorly regulated.
Collapse
Affiliation(s)
- Nicolás Franck
- Centro de Investigación en Métodos Computacionales, UNL-CONICET, Predio CCT CONICET RN 168, S3000GLN, Santa Fe, Argentina
- Instituto de Física del Litoral, UNL-CONICET, Güemes 3450, S3000GLN, Santa Fe, Argentina
| | - Pascal Stopper
- Chemistry Department, Eberhard Karls Universität, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Lukas Ude
- Chemistry Department, Eberhard Karls Universität, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Raul Urteaga
- Instituto de Física del Litoral, UNL-CONICET, Güemes 3450, S3000GLN, Santa Fe, Argentina
| | - Pablo A Kler
- Centro de Investigación en Métodos Computacionales, UNL-CONICET, Predio CCT CONICET RN 168, S3000GLN, Santa Fe, Argentina.
- Departamento de Ingeniería en Sistemas de Información, FRSF-UTN, Lavaise 610, S3000GLN, Santa Fe, Argentina.
| | - Carolin Huhn
- Chemistry Department, Eberhard Karls Universität, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
2
|
Abeywardena SBY, Yue Z, Wallace GG, Innis PC. Electrofluidic control for textile-based cell culture: Identification of appropriate conditions required to integrate cell culture with electrofluidics. Electrophoresis 2024; 45:1182-1197. [PMID: 38837242 DOI: 10.1002/elps.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Electric field-driven microfluidics, known as electrofluidics, is a novel attractive analytical tool when it is integrated with low-cost textile substrate. Textile-based electrofluidics, primarily explored on yarn substrates, is in its early stages, with few studies on 3D structures. Further, textile structures have rarely been used in cellular analysis as a low-cost alternative. Herein, we investigated novel 3D textile structures and develop optimal electrophoretic designs and conditions that are favourable for direct 3D cell culture integration, developing an integrated cell culture textile-based electrofluidic platform that was optimised to balance electrokinetic performance and cell viability requirements. Significantly, there were contrasting electrolyte compositional conditions that were required to satisfy cell viability and electrophoretic mobility requiring the development of and electrolyte that satisfied the minimum requirements of both these components within the one platform. Human dermal fibroblast cell cultures were successfully integrated with gelatine methacryloyl (GelMA) hydrogel-coated electrofluidic platform and studied under different electric fields using 5 mM TRIS/HEPES/300 mM glucose. Higher analyte mobility was observed on 2.5% GelMA-coated textile which also facilitated excellent cell attachment, viability and proliferation. Cell viability also increased by decreasing the magnitude and time duration of applied electric field with good cell viability at field of up to 20 V cm-1.
Collapse
Affiliation(s)
- Sujani B Y Abeywardena
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, North Wollongong, New South Wales, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, North Wollongong, New South Wales, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, North Wollongong, New South Wales, Australia
| | - Peter C Innis
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, North Wollongong, New South Wales, Australia
| |
Collapse
|
3
|
Cottet J, Oshodi JO, Yebouet J, Leang A, Furst AL, Buie CR. Zeta potential characterization using commercial microfluidic chips. LAB ON A CHIP 2024; 24:234-243. [PMID: 38050677 DOI: 10.1039/d3lc00825h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Surface charge is a critical feature of microbes that affects their interactions with other cells and their environment. Because bacterial surface charge is difficult to measure directly, it is typically indirectly inferred through zeta potential measurements. Existing tools to perform such characterization are either costly and ill-suited for non-spherical samples or rely on microfluidic techniques requiring expensive fabrication equipment or specialized facilities. Here, we report the application of commercially available PMMA microfluidic chips and open-source data analysis workflows for facile electrokinetic characterization of particles and cells after prior zeta potential measurement with a Zetasizer for calibration. Our workflows eliminate the need for microchannel fabrication, increase measurement reproducibility, and make zeta potential measurements more accessible. This novel methodology was tested with functionalized 1 μm and 2 μm polystyrene beads as well as Escherichia coli MG1655 strain. Measured zeta potentials for these samples were in agreement with literature values obtained by conventional measurement methods. Taken together, our data demonstrate the power of this workflow to broadly enable critical measurements of particle and bacterial zeta potential for numerous applications.
Collapse
Affiliation(s)
- Jonathan Cottet
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Josephine O Oshodi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jesse Yebouet
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Andrea Leang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Choi MH, Hong L, Chamorro LP, Edwards B, Timperman AT. Measuring the electrophoretic mobility and size of single particles using microfluidic transverse AC electrophoresis (TrACE). LAB ON A CHIP 2023; 24:20-33. [PMID: 37937351 DOI: 10.1039/d3lc00413a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The ability to measure the charge and size of single particles is essential to understanding particle adhesion and interaction with their environment. Characterizing the physical properties of biological particles, like cells, can be a powerful tool in studying the association between the changes in physical properties and disease development. Currently, measuring charge via the electrophoretic mobility (μep) of individual particles remains challenging, and there is only one prior report of simultaneously measuring μep and size. We introduce microfluidic transverse AC electrophoresis (TrACE), a novel technique that combines particle tracking velocimetry (PTV) and AC electrophoresis. In TrACE, electric waves with 0.75 to 1.5 V amplitude are applied transversely to the bulk flow and cause the particles to oscillate. PTV records the particles' oscillating trajectories as pressure drives bulk flow through the microchannel. A simple quasi-equilibrium model agrees well with experimental measurements of frequency, amplitude, and phase, indicating that particle motion is largely described by DC electrophoresis. The measured μep of polystyrene particles (0.53, 0.84, 1, and 2 μm diameter) are consistent with ELS measurements, and precision is enhanced by averaging ∼100 measurements per particle. Particle size is simultaneously measured from Brownian motion quantified from the trajectory for particles <2 μm or image analysis for particles ≥2 μm. Lastly, the ability to analyze intact mammalian cells is demonstrated with B cells. TrACE systems are expected to be highly suitable as fieldable tools to measure the μep and size of a broad range of individual particles.
Collapse
Affiliation(s)
- M Hannah Choi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Liu Hong
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leonardo P Chamorro
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Boyd Edwards
- Department of Physics, Utah State University, Logan, UT 84322, USA
| | - Aaron T Timperman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Danchana K, Yamashita N, Umeda MI, Kaneta T. Separation and fractionation of glutamic acid and histidine via origami isoelectric focusing. J Chromatogr A 2023; 1706:464247. [PMID: 37531850 DOI: 10.1016/j.chroma.2023.464247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
We demonstrated the fractionation of two amino acids, glutamic acid and histidine, separated via isoelectric focusing (IEF) on filter paper folded and stacked in an origami fashion. Channels for electrophoresis were fabricated as circular zones acquired via wax printing onto the filter paper. An ampholyte solution with amphiphilic samples was deposited on all the circle zones, which was followed by folding to form the electrophoresis channels. IEF was achieved by applying an electrical potential between the anodic and cathodic chambers filled with phosphoric acid and sodium hydroxide solutions, respectively. A pH gradient was formed using either a wide-range ampholyte with a pH of 3 to 10 or a narrow-range version with a pH of 5 to 8, which was confirmed by adding pH indicators to each layer. The origami IEF was used to separate the amino acids, glutamic acid and histidine, by mixing with the ampholytes, which were deposited on the layers. The components in each layer were extracted with water and measured by high-performance liquid chromatography using pre-column derivatization with dansyl chloride. The results indicated that the focus for glutamic acid and that for histidine were at different layers, according to their isoelectric points. The origami isoelectric focusing achieved the fractionation of amino acids in less than 3 min using voltage as low as 30 V.
Collapse
Affiliation(s)
- Kaewta Danchana
- Department of Chemistry, Okayama University, Okayama 700-8530, Japan.
| | - Nayu Yamashita
- Department of Chemistry, Okayama University, Okayama 700-8530, Japan
| | - Mika I Umeda
- Department of Chemistry, Okayama University, Okayama 700-8530, Japan; Department of Materials Science, Yonago National College of Technology, Japan
| | - Takashi Kaneta
- Department of Chemistry, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
6
|
Jia Z, Choi J, Lee S, Soper SA, Park S. Modifying surface charge density of thermoplastic nanofluidic biosensors by multivalent cations within the slip plane of the electric double layer. Colloids Surf A Physicochem Eng Asp 2022; 648:129147. [PMID: 36685784 PMCID: PMC9853209 DOI: 10.1016/j.colsurfa.2022.129147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thermoplastic nanofluidic devices are promising platforms for sensing single biomolecules due to their mass fabrication capability. When the molecules are driven electrokinetically through nanofluidic networks, surface charges play a significant role in the molecular capture and transportation, especially when the thickness of the electrical double layer is close to the dimensions of the nanostructures in the device. Here, we used multivalent cations to alter the surface charge density of thermoplastic nanofluidic devices. The surface charge alteration was done by filling the device with a multivalent ionic solution, followed by withdrawal of the solution and replacing it with KCl for conductance measurement. A systematic study was performed using ionic solutions containing Mg2+ and Al3+ for nanochannels made of three polymers: poly(ethylene glycol) diacrylate (PEGDA), poly(methyl methacrylate) (PMMA) and cyclic olefin copolymer (COC). Overall, multivalent cations within the slip plane decreased the effective surface charge density of the device surface and the reduction rate increased with the cation valency, cation concentration and the surface charge density of thermoplastic substrates. We demonstrated that a 10-nm diameter in-plane nanopore formed in COC allowed translocation of λ-DNA molecules after Al3+ modification, which is attributed to the deceased viscous drag force in the nanopore by the decreased surface charge density. This work provides a general method to manipulate surface charge density of nanofluidic devices for biomolecule resistive pulse sensing. Additionally, the experimental results support ion-ion correlations as the origin of charge inversion over specific chemical adsorption.
Collapse
Affiliation(s)
- Zheng Jia
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA,Center for Bio-Modular Multiscale Systems for Precision Medicine (CBM2), USA
| | - Junseo Choi
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA,Center for Bio-Modular Multiscale Systems for Precision Medicine (CBM2), USA
| | - Sunggun Lee
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA,Center for Bio-Modular Multiscale Systems for Precision Medicine (CBM2), USA
| | - Steven A. Soper
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA,Department of Kansas Biology and KUCC, University of Kansas Medical Center, Kansas City, KS 66160, USA,Center for Bio-Modular Multiscale Systems for Precision Medicine (CBM2), USA
| | - Sunggook Park
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA,Center for Bio-Modular Multiscale Systems for Precision Medicine (CBM2), USA,Correspondence to: Louisiana State University, Baton Rouge, LA 70803, USA. (S. Park)
| |
Collapse
|
7
|
Abstract
Isotachophoresis (ITP) is a versatile electrophoretic technique that can be used for sample preconcentration, separation, purification, and mixing, and to control and accelerate chemical reactions. Although the basic technique is nearly a century old and widely used, there is a persistent need for an easily approachable, succinct, and rigorous review of ITP theory and analysis. This is important because the interest and adoption of the technique has grown over the last two decades, especially with its implementation in microfluidics and integration with on-chip chemical and biochemical assays. We here provide a review of ITP theory starting from physicochemical first-principles, including conservation of species, conservation of current, approximation of charge neutrality, pH equilibrium of weak electrolytes, and so-called regulating functions that govern transport dynamics, with a strong emphasis on steady and unsteady transport. We combine these generally applicable (to all types of ITP) theoretical discussions with applications of ITP in the field of microfluidic systems, particularly on-chip biochemical analyses. Our discussion includes principles that govern the ITP focusing of weak and strong electrolytes; ITP dynamics in peak and plateau modes; a review of simulation tools, experimental tools, and detection methods; applications of ITP for on-chip separations and trace analyte manipulation; and design considerations and challenges for microfluidic ITP systems. We conclude with remarks on possible future research directions. The intent of this review is to help make ITP analysis and design principles more accessible to the scientific and engineering communities and to provide a rigorous basis for the increased adoption of ITP in microfluidics.
Collapse
Affiliation(s)
- Ashwin Ramachandran
- Department
of Aeronautics and Astronautics, Stanford
University, Stanford, California 94305, United States
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
KITAGAWA F, HAYASHI A, NUKATSUKA I. LVSEP Analysis of Phosphopeptides in Dynamically PVP-Coated Capillaries and Microchannels. CHROMATOGRAPHY 2022. [DOI: 10.15583/jpchrom.2021.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Fumihiko KITAGAWA
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University
| | - Ayaka HAYASHI
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University
| | - Isoshi NUKATSUKA
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University
| |
Collapse
|
9
|
Shebindu A, Somaweera H, Estlack Z, Kim J, Kim J. A fully integrated isotachophoresis with a programmable microfluidic platform. Talanta 2021; 225:122039. [PMID: 33592763 DOI: 10.1016/j.talanta.2020.122039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Conventional isotachophoresis (ITP) can be used for pre-concentration of a single analyte, but preconcentration of multiple analytes is time consuming due to handling and washing steps required for the extensive buffer optimization procedure. In this work, we present a programmable microfluidic platform (PMP) to demonstrate fully automated optimization of ITP of multiple analytes. By interfacing a PMP with ITP, buffer selection and repetitive ITP procedures were automated. Using lifting-gate microvalve technology, a PMP consisting of a two-dimensional microvalve array was designed and fabricated for seamless integration with an ITP chip. The microvalve array was used for basic liquid manipulation such as metering, mixing, selecting, delivering, and washing procedures to prime and run ITP. Initially, the performances of the PMP and ITP channel were validated individually by estimating volume per pumping cycle and preconcentrating Alexa Fluor 594 with appropriate trailing (TE) and leading (LE) buffers, respectively. After confirming basic functions, autonomous ITP was demonstrated using multiple analytes (Pacific blue, Alexa Fluor 594, and Alexa Fluor 488). The optimal buffer combination was was determined by performing multiple ITP runs with three different TEs (borate, HEPES, and phosphate buffers) and three different concentrations of Tris-HCl for the LE. We found that 40 mM borate and 100 mM Tris-HCl successfully preconcentrated all analytes during a single ITP run. The integrated PMP-ITP system can simplify overall buffer selection and validation procedures for various biological and chemical target samples. Furthermore, by incorporating analytical tools that interconnect with the PMP, it can provide high sample concentrations to aid in downstream analysis.
Collapse
Affiliation(s)
- Adam Shebindu
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Himali Somaweera
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Zachary Estlack
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Jungkyu Kim
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA; Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
10
|
Ohshiro T, Komoto Y, Taniguchi M. Single-Molecule Counting of Nucleotide by Electrophoresis with Nanochannel-Integrated Nano-Gap Devices. MICROMACHINES 2020; 11:mi11110982. [PMID: 33142705 PMCID: PMC7693128 DOI: 10.3390/mi11110982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
We utilized electrophoresis to control the fluidity of sample biomolecules in sample aqueous solutions inside the nanochannel for single-molecule detection by using a nanochannel-integrated nanogap electrode, which is composed of a nano-gap sensing electrode, nanochannel, and tapered focusing channel. In order to suppress electro-osmotic flow and thermal convection inside this nanochannel, we optimized the reduction ratios of the tapered focusing channel, and the ratio of inlet 10 μm to outlet 0.5 μm was found to be high performance of electrophoresis with lower concentration of 0.05 × TBE (Tris/Borate/EDTA) buffer containing a surfactant of 0.1 w/v% polyvinylpyrrolidone (PVP). Under the optimized conditions, single-molecule electrical measurement of deoxyguanosine monophosphate (dGMP) was performed and it was found that the throughput was significantly improved by nearly an order of magnitude compared to that without electrophoresis. In addition, it was also found that the long-duration signals that could interfere with discrimination were significantly reduced. This is because the strong electrophoresis flow inside the nanochannels prevents the molecules’ adsorption near the electrodes. This single-molecule electrical measurement with nanochannel-integrated nano-gap electrodes by electrophoresis significantly improved the throughput of signal detection and identification accuracy.
Collapse
|
11
|
Chami B, Milon N, Fuentes Rojas JL, Charlot S, Marrot JC, Bancaud A. Single-step electrohydrodynamic separation of 1-150 kbp in less than 5 min using homogeneous glass/adhesive/glass microchips. Talanta 2020; 217:121013. [PMID: 32498826 DOI: 10.1016/j.talanta.2020.121013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 11/18/2022]
Abstract
Electrohydrodynamic migration, which is based on hydrodynamic actuation with an opposing electrophoretic force, enables the separation of DNA molecules of 3-100 kbp in glass capillary within 1 h. Here, we wish to enhance these performances using microchip technologies. This study starts with the fabrication of microchips with uniform surfaces, as motivated by our observation that band splitting occurs in microchannels made out of heterogeneous materials such as glass and silicon. The resulting glass-adhesive-glass microchips feature the highest reported bonding strength of 11 MPa for such materials (115 kgf/cm2), a high lateral resolution of critical dimension 5 μm, and minimal auto-fluorescence. These devices enable us to report the separation of 13 DNA bands in the size range of 1-150 kbp in one experiment of 5 min, i.e. 13 times faster than with capillary. In turn, we observe that bands split during electrohydrodynamic migration in heterogeneous glass-silicon but not in homogeneous glass-adhesive-glass microchips. We suggest that this effect arises from differential Electro-Osmotic Flow (EOF) in between the upper and lower walls of heterogeneous channels, and provide evidence that this phenomenon of differential EOF causes band broadening in electrophoresis during microchip electrophoresis. We finally prove that our electrohydrodynamic separation compares very favorably to microchip technologies in terms of resolution length and features the broadest analytical range reported so far.
Collapse
Affiliation(s)
- Bayan Chami
- CNRS, LAAS, 7 Avenue Du Colonel Roche, F-31400, Toulouse, France
| | - Nicolas Milon
- CNRS, LAAS, 7 Avenue Du Colonel Roche, F-31400, Toulouse, France; Adelis Technologies, 478 Rue de La Découverte, 31670, Labège, France
| | | | - Samuel Charlot
- CNRS, LAAS, 7 Avenue Du Colonel Roche, F-31400, Toulouse, France
| | | | - Aurélien Bancaud
- CNRS, LAAS, 7 Avenue Du Colonel Roche, F-31400, Toulouse, France.
| |
Collapse
|
12
|
Lackey H, Bottenus D, Liezers M, Shen S, Branch S, Katalenich J, Lines A. A versatile and low-cost chip-to-world interface: Enabling ICP-MS characterization of isotachophoretically separated lanthanides on a microfluidic device. Anal Chim Acta 2020; 1137:11-18. [PMID: 33153594 DOI: 10.1016/j.aca.2020.08.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022]
Abstract
Microfluidics offer novel and state-of-the-art pathways to process materials. Microfluidic systems drastically reduce timeframes and costs associated with traditional lab-scale efforts in the area of analytical sample preparations. The challenge arises in effectively connecting microfluidics to off-chip analysis tools to accurately characterize samples after treatment on-chip. Fabrication of a chip-to-world connection includes one end of a fused silica capillary interfaced to the outlet of a microfluidic device (MFD). The other end of the capillary is connected to a commercially available CEI-100 interface that passes samples into an inductively coupled plasma mass spectrometer (ICP-MS). This coupling creates an inexpensive and simple chip-to-world connection that enables on-chip and off-chip methods of analyzing the separation of rare earth elements. Specifically, this is demonstrated by utilizing isotachophoresis (ITP) on a microfluidic chip to separate up to 14 lanthanides from a homogenous sample into elementally pure bands. The separated analyte zones are successfully transferred across a 7 nL void volume at the microchip-capillary junction, such that separation resolution is maintained and even increased through the interface and into the ICP-MS, where the elemental composition of the sample is analyzed. Lanthanide samples of varying composition are detected using ICP-MS, demonstrating this versatile and cost-effective approach, which maintains the separation quality achieved on the MFD. This simple connection enables fast, low-cost sample preparation immediately prior to injection into an ICP-MS or other analytical instrument.
Collapse
Affiliation(s)
- Hope Lackey
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Danny Bottenus
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA.
| | - Martin Liezers
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Steve Shen
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Shirmir Branch
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Jeff Katalenich
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Amanda Lines
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA.
| |
Collapse
|
13
|
Teillet J, Martinez Q, Tijunelyte I, Chami B, Bancaud A. Characterization and minimization of band broadening in DNA electrohydrodynamic migration for enhanced size separation. SOFT MATTER 2020; 16:5640-5649. [PMID: 32510064 DOI: 10.1039/d0sm00475h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The combination of hydrodynamic actuation with an opposing electrophoretic force in viscoelastic liquids enables the separation, concentration, and purification of DNA. Obtaining good analytical performances despite the use of hydrodynamic flow fields, which dramatically enhance band broadening due to Taylor dispersion, constitutes a paradox that remains to be clarified. Here, we study the mechanism of band broadening in electrohydrodynamic migration with an automated microfluidic platform that allows us to track the migration of a 600 bp band in the pressure-electric field parameter space. We demonstrate that diffusion in the electrohydrodynamic regime is controlled predominantly by the electric field and marginally by the hydrodynamic flow velocity. We explain this response with an analytical model of diffusion based on Taylor dispersion arguments. Furthermore, we demonstrate that the electric field can be modulated over time to monitor and minimize the breadth of a DNA band, and suggest guidelines to enhance the resolution of DNA separation experiments. Altogether, our report is a leap towards to the development of high-performance analytical technologies based on electrohydrodynamic actuation.
Collapse
Affiliation(s)
- Jeffrey Teillet
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400, Toulouse, France.
| | - Quentin Martinez
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400, Toulouse, France.
| | - Inga Tijunelyte
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400, Toulouse, France.
| | - Bayan Chami
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400, Toulouse, France.
| | - Aurélien Bancaud
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400, Toulouse, France.
| |
Collapse
|
14
|
Khnouf R, Han CM, Munro SA. Isolation of enriched small RNA from cell-lysate using on-chip isotachophoresis. Electrophoresis 2019; 40:3140-3147. [PMID: 31675123 DOI: 10.1002/elps.201900215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 11/08/2022]
Abstract
In spite of the growing interest in the roles and applications of small RNAs (sRNAs), sRNA isolation methods are inconsistent, tedious, and dependent on the starting number of cells. In this work, we employ ITP to isolate sRNAs from the cell-lysate of K562 (chronic myelogenous leukemia) cells in a polydimethylsiloxane (PDMS) mesofluidic device. Our method specifically purifies sRNA of <60 nucleotides from lysate of a wide range of cell number spanning from 100 to 1 000 000 cells. We measured the amount of sRNA using the Agilent Bioanalyzer and further verified the extraction efficiency by reverse transcription quantitative PCR. Our method was shown to be more efficient in sRNA extraction than commercial sRNA isolation kits, especially when using smaller numbers of starting cells. Our assay presents a simple and rapid sRNA extraction method with 20 min assay time and no intermediate transfer steps.
Collapse
Affiliation(s)
- Ruba Khnouf
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States.,Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Crystal M Han
- Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Stanford, CA, United States.,Department of Mechanical Engineering, San Jose State University, San Jose, CA, United States
| | - Sarah A Munro
- Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Stanford, CA, United States.,Minnesota Supercomputing Institute, University of Minnesota, MN, United States
| |
Collapse
|
15
|
Bottenus D, Branch S, Lackey H, Ivory C, Katalenich J, Clark S, Lines A. Design and optimization of a fused-silica microfluidic device for separation of trivalent lanthanides by isotachophoresis. Electrophoresis 2019; 40:2531-2540. [PMID: 31206758 DOI: 10.1002/elps.201900027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 11/07/2022]
Abstract
Elemental analysis of rare earth elements is essential in a variety of fields including environmental monitoring and nuclear safeguards; however, current techniques are often labor intensive, time consuming, and/or costly to perform. The difficulty arises in preparing samples, which requires separating the chemically and physically similar lanthanides. However, by transitioning these separations to the microscale, the speed, cost, and simplicity of sample preparation can be drastically improved. Here, all fourteen non-radioactive lanthanides (lanthanum through lutetium minus promethium) are separated by ITP for the first time in a serpentine fused-silica microchannel (70 µm wide × 70 µm tall × 33 cm long) in <10 min at voltages ≤8 kV with limits of detection on the order of picomoles. This time includes the 2 min electrokinetic injection time at 2 kV to load sample into the microchannel. The final leading electrolyte consisted of 10 mM ammonium acetate, 7 mM α-hydroxyisobutyric acid, 1% polyvinylpyrrolidone, and the final terminating electrolyte consisted of 10 mM acetic acid, 7 mM α-hydroxyisobutyric acid, and 1% polyvinylpyrrolidone. Electrophoretic electrodes are embedded in the microchip reservoirs so that voltages can be quickly applied and switched during operation. The limits of detection are quantified using a commercial capacitively coupled contactless conductivity detector (C4 D) to calculate ITP zone lengths in combination with ITP theory. Optimization of experimental procedures and reproducibility based on statistical analysis of subsequent experimental results are addressed. Percent error values in band length and conductivity are ≤8.1 and 0.37%, respectively.
Collapse
Affiliation(s)
- Danny Bottenus
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Shirmir Branch
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Hope Lackey
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Cornelius Ivory
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Jeff Katalenich
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sue Clark
- Pacific Northwest National Laboratory, Richland, Washington, USA.,Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Amanda Lines
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
16
|
Chami B, Socol M, Manghi M, Bancaud A. Modeling of DNA transport in viscoelastic electro-hydrodynamic flows for enhanced size separation. SOFT MATTER 2018; 14:5069-5079. [PMID: 29873390 DOI: 10.1039/c8sm00611c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
DNA separation and analysis have advanced over recent years, benefiting from microfluidic systems that reduce sample volumes and analysis costs, essential for sequencing and disease identification in body fluids. We recently developed the μLAS technology that enables the separation, concentration, and analysis of nucleic acids with high sensitivity. The technology combines a hydrodynamic flow actuation and an opposite electrophoretic force in viscoelastic polymer solutions. Combining hydrodynamics first principles and statistical mechanics, we provide, in this paper, a quantitative model of DNA transport capable of predicting device performance with the exclusive use of one adjustable parameter associated with the amplitude of transverse viscoelastic forces. The model proves to be in remarkable agreement with DNA separation experiments, and allows us to define optimal conditions that result in a maximal resolution length of 7 bp. We finally discuss the usefulness of our model for separation technologies involving viscoelastic liquids.
Collapse
Affiliation(s)
- B Chami
- LAAS-CNRS, 7 avenue du colonel Roche, BP 54200, 31031 Toulouse Cedex, France.
| | | | | | | |
Collapse
|
17
|
Enantioselective determination of aspartate and glutamate in biological samples by ultrasonic-assisted derivatization coupled with capillary electrophoresis and linked to Alzheimer’s disease progression. J Chromatogr A 2018; 1550:68-74. [DOI: 10.1016/j.chroma.2018.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
18
|
Ma B, Song YZ, Niu JC, Wu ZY. Highly efficient sample stacking by enhanced field amplification on a simple paper device. LAB ON A CHIP 2016; 16:3460-3465. [PMID: 27528399 DOI: 10.1039/c6lc00633g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a novel electrokinetic stacking (ES) method based on field amplification on a simple paper device for sample preconcentration. With voltage application, charged probe ions in a solution of lower conductivity stack and form a narrow band at the boundary between the sample and the background electrolyte of higher conductivity. The stacking band appears quickly and stabilizes in a few minutes. With this ES method, three orders of magnitude signal improvement was successfully achieved for both a fluorescein probe and a double-stranded DNA within 300 s. This enhanced stacking efficiency is attributed to a focusing effect due to the balance between electromigration and counter electroosmotic flow. We also applied this ES method to other low-cost fiber substrates such as cloth and thread. Such a simple and highly efficient ES method will find wide applications in the development of sensitive paper-based analytical devices (PADs), especially for low-cost point-of-care testing (POCT).
Collapse
Affiliation(s)
- Biao Ma
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang 110819, PR China.
| | | | | | | |
Collapse
|
19
|
Koczka PI, Bodor R, Masár M, Gáspár A. Application of isotachophoresis in commercial capillary electrophoresis instrument using C4D and UV detection. Electrophoresis 2016; 37:2384-92. [DOI: 10.1002/elps.201600194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/18/2016] [Accepted: 06/07/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Péter I. Koczka
- Department of Inorganic and Analytical Chemistry; University of Debrecen; Debrecen Hungary
| | - Róbert Bodor
- Department of Analytical Chemistry, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava Slovakia
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava Slovakia
| | - Attila Gáspár
- Department of Inorganic and Analytical Chemistry; University of Debrecen; Debrecen Hungary
| |
Collapse
|
20
|
Saucedo-Espinosa MA, Lapizco-Encinas BH. Refinement of current monitoring methodology for electroosmotic flow assessment under low ionic strength conditions. BIOMICROFLUIDICS 2016; 10:033104. [PMID: 27375813 PMCID: PMC4902815 DOI: 10.1063/1.4953183] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/22/2016] [Indexed: 05/12/2023]
Abstract
Current monitoring is a well-established technique for the characterization of electroosmotic (EO) flow in microfluidic devices. This method relies on monitoring the time response of the electric current when a test buffer solution is displaced by an auxiliary solution using EO flow. In this scheme, each solution has a different ionic concentration (and electric conductivity). The difference in the ionic concentration of the two solutions defines the dynamic time response of the electric current and, hence, the current signal to be measured: larger concentration differences result in larger measurable signals. A small concentration difference is needed, however, to avoid dispersion at the interface between the two solutions, which can result in undesired pressure-driven flow that conflicts with the EO flow. Additional challenges arise as the conductivity of the test solution decreases, leading to a reduced electric current signal that may be masked by noise during the measuring process, making for a difficult estimation of an accurate EO mobility. This contribution presents a new scheme for current monitoring that employs multiple channels arranged in parallel, producing an increase in the signal-to-noise ratio of the electric current to be measured and increasing the estimation accuracy. The use of this parallel approach is particularly useful in the estimation of the EO mobility in systems where low conductivity mediums are required, such as insulator based dielectrophoresis devices.
Collapse
Affiliation(s)
- Mario A Saucedo-Espinosa
- Microscale Bioseparations Laboratory, Rochester Institute of Technology , Rochester, New York 14623, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory, Rochester Institute of Technology , Rochester, New York 14623, USA
| |
Collapse
|
21
|
Greene GW, Duffy E, Shallan A, Wuethrich A, Paull B. Electrokinetic Properties of Lubricin Antiadhesive Coatings in Microfluidic Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1899-1908. [PMID: 26814794 DOI: 10.1021/acs.langmuir.5b03535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lubricin is a glycoprotein found in articular joints which has long been recognized as being an important biological boundary lubricant molecule and, more recently, an impressive antiadhesive that readily self-assembles into a well ordered, polymer brush layer on virtually any substrate. The lubricin molecule possesses an overabundance of anionic charge, a property that is atypical among antiadhesive molecules, that enables its use as a coating for applications involving electrokinetic processes such as electrophoresis and electroosmosis. Coating the surfaces of silica and polymeric microfluidic devices with self-assembled lubricin coatings affords a unique combination of excellent fouling resistance and high charge density that enables notoriously "sticky" biomolecules such as proteins to be used and controlled electrokinetically in the device without complications arising from nonspecific adsorption. Using capillary electrophoresis, we characterized the stability, uniformity, and electrokinetic properties of lubricin coatings applied to silica and PTFE capillaries over a range of run buffer pHs and when exposed to concentrated solutions of protein. In addition, we demonstrate the effectiveness of lubricin as a coating to minimize nonspecific protein adsorption in an electrokinetically controlled polydimethylsiloxane/silica microfluidic device.
Collapse
Affiliation(s)
- George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University , Geelong, VIC Australia
| | - Emer Duffy
- Australian Centre for Research on Separation Science, and ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania , Hobart, Australia
| | - Aliaa Shallan
- Australian Centre for Research on Separation Science, and ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania , Hobart, Australia
| | - Alain Wuethrich
- Australian Centre for Research on Separation Science, and ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania , Hobart, Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science, and ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania , Hobart, Australia
| |
Collapse
|
22
|
Polowczyk I, Koźlecki T, Bastrzyk A. Adsorption of Silver Nanoparticles on Glass Beads Surface. ADSORPT SCI TECHNOL 2015. [DOI: 10.1260/0263-6174.33.6-8.731] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Izabela Polowczyk
- Faculty of Chemistry, Devision of Chemical Engineering, Wroclaw University of Technology, Norwida 4/6, 50-373, Poland
| | - Tomasz Koźlecki
- Faculty of Chemistry, Devision of Chemical Engineering, Wroclaw University of Technology, Norwida 4/6, 50-373, Poland
| | - Anna Bastrzyk
- Faculty of Chemistry, Devision of Chemical Engineering, Wroclaw University of Technology, Norwida 4/6, 50-373, Poland
| |
Collapse
|
23
|
Wang Y, Zhu G, Li X, Hao Z. Simultaneous determination of galanthamine and lycorine inLycoris radiataby a capillary electrophoresis with an electrochemiluminescence method. J Sep Sci 2014; 37:3007-12. [DOI: 10.1002/jssc.201400639] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Yanchao Wang
- College of Life Science; Northeast Agricultural University; Harbin China
| | - Guimei Zhu
- College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Xia Li
- College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Zaibin Hao
- College of Life Science; Northeast Agricultural University; Harbin China
- College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| |
Collapse
|
24
|
Wu L, Levy S. Fluctuations of DNA mobility in nanofluidic entropic traps. BIOMICROFLUIDICS 2014; 8:044103. [PMID: 25379088 PMCID: PMC4189160 DOI: 10.1063/1.4887395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/25/2014] [Indexed: 06/04/2023]
Abstract
We studied the mobility of DNA molecules driven by an electric field through a nanofluidic device containing a periodic array of deep and shallow regions termed entropic traps. The mobility of a group of DNA molecules was measured by fluorescent video microscopy. Since the depth of a shallow region is smaller than the DNA equilibrium size, DNA molecules are trapped for a characteristic time and must compress themselves to traverse the boundary between deep and shallow regions. Consistent with previous experimental results, we observed a nonlinear relationship between the mobility and electric field strength, and that longer DNA molecules have larger mobility. In repeated measurements under seemingly identical conditions, we measured fluctuations in the mobility significantly larger than expected from statistical variation. The variation was more pronounced for lower electric field strengths where the trapping time is considerable relative to the drift time. To determine the origin of these fluctuations, we investigated the dependence of the mobility on several variables: DNA concentration, ionic strength of the solvent, fluorescent dye staining ratio, electroosmotic flow, and electric field strength. The mobility fluctuations were moderately enhanced in conditions of reduced ionic strength and electroosmotic flow.
Collapse
Affiliation(s)
- Lingling Wu
- Department of Materials Science and Engineering, Binghamton University , Binghamton, New York 13902, USA
| | | |
Collapse
|
25
|
Khnouf R, Goet G, Baier T, Hardt S. Increasing the sensitivity of microfluidics based immunoassays using isotachophoresis. Analyst 2014; 139:4564-71. [DOI: 10.1039/c4an00545g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Jacroux T, Bottenus D, Rieck B, Ivory CF, Dong WJ. Cationic isotachophoresis separation of the biomarker cardiac troponin I from a high-abundance contaminant, serum albumin. Electrophoresis 2014; 35:2029-38. [PMID: 24723384 DOI: 10.1002/elps.201400009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/27/2014] [Accepted: 03/16/2014] [Indexed: 11/11/2022]
Abstract
Cationic ITP was used to separate and concentrate fluorescently tagged cardiac troponin I (cTnI) from two proteins with similar isoelectric properties in a PMMA straight-channel microfluidic chip. In an initial set of experiments, cTnI was effectively separated from R-Phycoerythrin using cationic ITP in a pH 8 buffer system. Then, a second set of experiments was conducted in which cTnI was separated from a serum contaminant, albumin. Each experiment took ∼10 min or less at low electric field strengths (34 V/cm) and demonstrated that cationic ITP could be used as an on-chip removal technique to isolate cTnI from albumin. In addition to the experimental work, a 1D numerical simulation of our cationic ITP experiments has been included to qualitatively validate experimental observations.
Collapse
Affiliation(s)
- Thomas Jacroux
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | | | | | | | | |
Collapse
|
27
|
Goet G, Baier T, Hardt S, Sen AK. Isotachophoresis with emulsions. BIOMICROFLUIDICS 2013; 7:44103. [PMID: 24404037 PMCID: PMC3732298 DOI: 10.1063/1.4816347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/09/2013] [Indexed: 05/16/2023]
Abstract
An experimental study on isotachophoresis (ITP) in which an emulsion is used as leading electrolyte (LE) is reported. The study aims at giving an overview about the transport and flow phenomena occurring in that context. Generally, it is observed that the oil droplets initially dispersed in the LE are collected at the ITP transition zone and advected along with it. The detailed behavior at the transition zone depends on whether or not surfactants (polyvinylpyrrolidon, PVP) are added to the electrolytes. In a system without surfactants, coalescence is observed between the droplets collected at the ITP transition zone. After having achieved a certain size, the droplets merge with the channel walls, leaving an oil film behind. In systems with PVP, coalescence is largely suppressed and no merging of droplets with the channel walls is observed. Instead, at the ITP transition zone, a droplet agglomerate of increasing size is formed. In the initial stages of the ITP experiments, two counter rotating vortices are formed inside the terminating electrolyte. The vortex formation is qualitatively explained based on a hydrodynamic instability triggered by fluctuations of the number density of oil droplets.
Collapse
Affiliation(s)
- G Goet
- Institute for Nano- and Microfluidics, Center of Smart Interfaces, TU Darmstadt, 64287 Darmstadt, Germany
| | - T Baier
- Institute for Nano- and Microfluidics, Center of Smart Interfaces, TU Darmstadt, 64287 Darmstadt, Germany
| | - S Hardt
- Institute for Nano- and Microfluidics, Center of Smart Interfaces, TU Darmstadt, 64287 Darmstadt, Germany
| | - A K Sen
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
28
|
Berli CLA. The apparent hydrodynamic slip of polymer solutions and its implications in electrokinetics. Electrophoresis 2013; 34:622-30. [DOI: 10.1002/elps.201200476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 11/06/2022]
|
29
|
Menard LD, Ramsey JM. Electrokinetically-driven transport of DNA through focused ion beam milled nanofluidic channels. Anal Chem 2012; 85:1146-53. [PMID: 23234458 DOI: 10.1021/ac303074f] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The electrophoretically driven transport of double-stranded λ-phage DNA through focused ion beam (FIB) milled nanochannels is described. Nanochannels were fabricated having critical dimensions (width and depth) corresponding to 0.5×, 1×, and 2× the DNA persistence length, or 25 nm, 50 nm, and 100 nm, respectively. The threshold field strength required to drive transport, the threading mobility, and the transport mobility were measured as a function of nanochannel size. As the nanochannel dimensions decreased, the entropic barrier to translocation increased and transport became more constrained. Equilibrium models of confinement provide a framework in which to understand the observed trends, although the dynamic nature of the experiments resulted in significant deviations from theory. It was also demonstrated that the use of dynamic wall coatings for the purpose of electroosmotic flow suppression can have a significant impact on transport dynamics that may obfuscate entropic contributions. The nonintermittent DNA transport through the FIB milled nanochannels demonstrates that they are well suited for use in nanofluidic devices. We expect that an understanding of the dynamic transport properties reported here will facilitate the incorporation of FIB-milled nanochannels in devices for single molecule and ensemble analyses.
Collapse
Affiliation(s)
- Laurent D Menard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
30
|
Milanova D, Chambers RD, Bahga SS, Santiago JG. Effect of PVP on the electroosmotic mobility of wet-etched glass microchannels. Electrophoresis 2012; 33:3259-62. [DOI: 10.1002/elps.201200336] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 11/09/2022]
|
31
|
Bercovici M, Han CM, Liao JC, Santiago JG. Rapid hybridization of nucleic acids using isotachophoresis. Proc Natl Acad Sci U S A 2012; 109:11127-32. [PMID: 22733732 PMCID: PMC3396536 DOI: 10.1073/pnas.1205004109] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We use isotachophoresis (ITP) to control and increase the rate of nucleic acid hybridization reactions in free solution. We present a new physical model, validation experiments, and demonstrations of this assay. We studied the coupled physicochemical processes of preconcentration, mixing, and chemical reaction kinetics under ITP. Our experimentally validated model enables a closed form solution for ITP-aided reaction kinetics, and reveals a new characteristic time scale which correctly predicts order 10,000-fold speed-up of chemical reaction rate for order 100 pM reactants, and greater enhancement at lower concentrations. At 500 pM concentration, we measured a reaction time which is 14,000-fold lower than that predicted for standard second-order hybridization. The model and method are generally applicable to acceleration of reactions involving nucleic acids, and may be applicable to a wide range of reactions involving ionic reactants.
Collapse
Affiliation(s)
- Moran Bercovici
- Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305; and
- Department of Urology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305
| | - Crystal M. Han
- Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305; and
| | - Joseph C. Liao
- Department of Urology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305
| | - Juan G. Santiago
- Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305; and
| |
Collapse
|
32
|
Shkolnikov V, Bahga SS, Santiago JG. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation. Phys Chem Chem Phys 2012; 14:11534-45. [DOI: 10.1039/c2cp42121f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Noor MO, Krull UJ. Microfluidics for the deposition of density gradients of immobilized oligonucleotide probes; developing surfaces that offer spatial control of the stringency of DNA hybridization. Anal Chim Acta 2011; 708:1-10. [DOI: 10.1016/j.aca.2011.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 01/06/2023]
|
34
|
Bottenus D, Hossan MR, Ouyang Y, Dong WJ, Dutta P, Ivory CF. Preconcentration and detection of the phosphorylated forms of cardiac troponin I in a cascade microchip by cationic isotachophoresis. LAB ON A CHIP 2011; 11:3793-801. [PMID: 21935555 PMCID: PMC3233477 DOI: 10.1039/c1lc20469f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper describes the detection of a cardiac biomarker, cardiac troponin I (cTnI), spiked into depleted human serum using cationic isotachophoresis (ITP) in a 3.9 cm long poly(methyl methacrylate) (PMMA) microfluidic channel. The microfluidic chip incorporates a 100× cross-sectional area reduction, including a 10× depth reduction and a 10× width reduction, to increase sensitivity during ITP. The cross-sectional area reductions in combination with ITP allowed visualization of lower concentrations of fluorescently labeled cTnI. ITP was performed in both "peak mode" and "plateau mode" and the final concentrations obtained were linear with initial cTnI concentration. We were able to detect and quantify cTnI at initial concentrations as low as 46 ng mL(-1) in the presence of human serum proteins and obtain cTnI concentrations factors as high as ~ 9000. In addition, preliminary ITP experiments including both labeled cTnI and labeled protein kinase A (PKA) phosphorylated cTnI were performed to visualize ITP migration of different phosphorylated forms of cTnI. The different phosphorylated states of cTnI formed distinct ITP zones between the leading and terminating electrolytes. To our knowledge, this is the first attempt at using ITP in a cascade microchip to quantify cTnI in human serum and detect different phosphorylated forms.
Collapse
Affiliation(s)
- Danny Bottenus
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, U.S.A
| | - Mohammad Robiul Hossan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, U.S.A
| | - Yexin Ouyang
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, U.S.A
| | - Wen-Ji Dong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, U.S.A
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, U.S.A
| | - Cornelius F. Ivory
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, U.S.A
| |
Collapse
|
35
|
Goet G, Baier T, Hardt S. Transport and separation of micron sized particles at isotachophoretic transition zones. BIOMICROFLUIDICS 2011; 5:14109. [PMID: 21503160 PMCID: PMC3078152 DOI: 10.1063/1.3555194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 12/23/2010] [Indexed: 05/13/2023]
Abstract
Conventionally, isotachophoresis (ITP) is used for separation of ionic samples according to their electrophoretic mobilities. We demonstrate that the scope of ITP applications may be extended toward particle concentration and separation. Owing to the distributions of electrolyte concentration and electric field inside a transition zone between two electrolytes, a number of different forces act on a small particle. As far as possible, we provide estimates for the order of magnitude of these forces and analyze their scaling with the particle size and the electric-field strength. Furthermore, we experimentally demonstrate that polymer beads of 5 μm diameter dispersed in a high mobility "leading" electrolyte are picked up and carried along by an ITP transition zone which is formed with a low mobility "trailing" electrolyte. By studying the particle positions and trajectories, we show that impurities in the electrolytes play a significant role in the experiments. Additionally, it is experimentally shown that different types of beads can be separated at an ITP transition zone. In particular, beads of 1 μm diameter are not carried along with the transition zone, in contrast to the 5 μm beads. The presented technique thus adds to the portfolio of electrokinetic transport, concentration, and separation methods in microfluidics.
Collapse
Affiliation(s)
- Gabriele Goet
- Center of Smart Interfaces, Technische Universität Darmstadt, 67287 Darmstadt, Germany
| | | | | |
Collapse
|
36
|
Bottenus D, Jubery TZ, Ouyang Y, Dong WJ, Dutta P, Ivory CF. 10,000-fold concentration increase of the biomarker cardiac troponin I in a reducing union microfluidic chip using cationic isotachophoresis. LAB ON A CHIP 2011; 11:890-8. [PMID: 21416810 PMCID: PMC3289062 DOI: 10.1039/c0lc00490a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This paper describes the preconcentration of the biomarker cardiac troponin I (cTnI) and a fluorescent protein (R-phycoerythrin) using cationic isotachophoresis (ITP) in a 3.9 cm long poly(methyl methacrylate) (PMMA) microfluidic chip. The microfluidic chip includes a channel with a 5× reduction in depth and a 10× reduction in width. Thus, the overall cross-sectional area decreases by 50× from inlet (anode) to outlet (cathode). The concentration is inversely proportional to the cross-sectional area so that as proteins migrate through the reductions, the concentrations increase proportionally. In addition, the proteins gain additional concentration by ITP. We observe that by performing ITP in a cross-sectional area reducing microfluidic chip we can attain concentration factors greater than 10,000. The starting concentration of cTnI was 2.3 μg mL⁻¹ and the final concentration after ITP concentration in the microfluidic chip was 25.52 ± 1.25 mg mL⁻¹. To the author's knowledge this is the first attempt at concentrating the cardiac biomarker cTnI by ITP. This experimental approach could be coupled to an immunoassay based technique and has the potential to lower limits of detection, increase sensitivity, and quantify different isolated cTnI phosphorylation states.
Collapse
Affiliation(s)
- Danny Bottenus
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, USA; Fax: +1 (509) 335-4806
| | - Talukder Zaki Jubery
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, USA; Fax: +1 (509) 335-4806
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99163, USA
| | - Yexin Ouyang
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, USA; Fax: +1 (509) 335-4806
| | - Wen-Ji Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, USA; Fax: +1 (509) 335-4806
| | - Prashanta Dutta
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, USA; Fax: +1 (509) 335-4806
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99163, USA
| | - Cornelius F. Ivory
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA, 99164-2710, USA; Fax: +1 (509) 335-4806
| |
Collapse
|
37
|
Bottenus D, Jubery TZ, Dutta P, Ivory CF. 10,000-fold concentration increase in proteins in a cascade microchip using anionic ITP by a 3-D numerical simulation with experimental results. Electrophoresis 2011; 32:550-62. [PMID: 21308695 PMCID: PMC3229181 DOI: 10.1002/elps.201000510] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/02/2010] [Accepted: 12/05/2010] [Indexed: 11/07/2022]
Abstract
This paper describes both the experimental application and 3-D numerical simulation of isotachophoresis (ITP) in a 3.2 cm long "cascade" poly(methyl methacrylate) (PMMA) microfluidic chip. The microchip includes 10 × reductions in both the width and depth of the microchannel, which decreases the overall cross-sectional area by a factor of 100 between the inlet (cathode) and outlet (anode). A 3-D numerical simulation of ITP is outlined and is a first example of an ITP simulation in three dimensions. The 3-D numerical simulation uses COMSOL Multiphysics v4.0a to concentrate two generic proteins and monitor protein migration through the microchannel. In performing an ITP simulation on this microchip platform, we observe an increase in concentration by over a factor of more than 10,000 due to the combination of ITP stacking and the reduction in cross-sectional area. Two fluorescent proteins, green fluorescent protein and R-phycoerythrin, were used to experimentally visualize ITP through the fabricated microfluidic chip. The initial concentration of each protein in the sample was 1.995 μg/mL and, after preconcentration by ITP, the final concentrations of the two fluorescent proteins were 32.57 ± 3.63 and 22.81 ± 4.61 mg/mL, respectively. Thus, experimentally the two fluorescent proteins were concentrated by over a factor of 10,000 and show good qualitative agreement with our simulation results.
Collapse
Affiliation(s)
- Danny Bottenus
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | | | | | | |
Collapse
|
38
|
Chen L, Algar WR, Tavares AJ, Krull UJ. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal Bioanal Chem 2010; 399:133-41. [PMID: 20978748 DOI: 10.1007/s00216-010-4309-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
The optical properties and surface area of quantum dots (QDs) have made them an attractive platform for the development of nucleic acid biosensors based on fluorescence resonance energy transfer (FRET). Solid-phase assays based on FRET using mixtures of immobilized QD-oligonucleotide conjugates (QD biosensors) have been developed. The typical challenges associated with solid-phase detection strategies include non-specific adsorption, slow kinetics of hybridization, and sample manipulation. The new work herein has considered the immobilization of QD biosensors onto the surfaces of microfluidic channels in order to address these challenges. Microfluidic flow can be used to dynamically control stringency by adjustment of the potential in an electrokinetic-based microfluidics environment. The shearing force, Joule heating, and the competition between electroosmotic and electrophoretic mobilities allow the optimization of hybridization conditions, convective delivery of target to the channel surface to speed hybridization, amelioration of adsorption, and regeneration of the sensing surface. Microfluidic flow can also be used to deliver (for immobilization) and remove QD biosensors. QDs that were conjugated with two different oligonucleotide sequences were used to demonstrate feasibility. One oligonucleotide sequence on the QD was available as a linker for immobilization via hybridization with complementary oligonucleotides located on a glass surface within a microfluidic channel. A second oligonucleotide sequence on the QD served as a probe to transduce hybridization with target nucleic acid in a sample solution. A Cy3 label on the target was excited by FRET using green-emitting CdSe/ZnS QD donors and provided an analytical signal to explore this detection strategy. The immobilized QDs could be removed under denaturing conditions by disrupting the duplex that was used as the surface linker and thus allowed a new layer of QD biosensors to be re-coated within the channel for re-use of the microfluidic chip.
Collapse
Affiliation(s)
- Lu Chen
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
| | | | | | | |
Collapse
|
39
|
Salmanowicz BP. Identification and characterization of high-molecular-weight secalins from triticale seeds by capillary zone electrophoresis. Electrophoresis 2010; 31:2226-35. [DOI: 10.1002/elps.200900691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Salmanowicz BP. CE determination of secaloindoline allelic forms in hexaploid triticale (x Triticosecale Wittmack). J Sep Sci 2010; 33:643-50. [PMID: 20063356 DOI: 10.1002/jssc.200900601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Differences in kernel texture are mainly caused by specific secaloindoline (SIN) proteins occurring in friabilin fraction of hexaploid triticale (x Triticosecale Wittmack) grain. SINs were isolated using Triton X-114 partitioning from either kernels/flour or starch of five triticale cultivars with wide range of different hardness. Crude SIN fraction was obtained by size-exclusion HPLC. SINs were separated on an uncoated fused-silica capillary using the iminodiacetic (IDA) buffer in conjunction with lower-concentrated poly(ethylene oxide) and ACN. A low-concentrate mixture of hydrophilic polymers, PVP and hydroxypropylmethylcellulose in IDA buffer was employed for dynamic coating of capillary inner wall. In total, on the basis of CZE profiles, two SIN-a proteins and two SIN-b proteins were identified. Allelic forms SIN-a1 and SIN-b1 have both two soft and one medium hard genotypes, however other allelic forms, designed as SIN-a2 and SIN-b2, were identified in hard and other medium hard cultivars. The CZE profiles showed that the ratio of the peak areas of SIN-b proteins isolated from triticale starch can be preliminarily used to distinguish cultivars with soft and hard grain.
Collapse
|
41
|
Goet G, Baier T, Hardt S. Micro contactor based on isotachophoretic sample transport. LAB ON A CHIP 2009; 9:3586-3593. [PMID: 20024040 DOI: 10.1039/b914466h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It is demonstrated how isotachophoresis (ITP) in a microfluidic device may be utilized to bring two small sample volumes into contact in a well-controlled manner. The ITP contactor serves a similar purpose as micromixers that are designed to mix two species rapidly in a microfluidic channel. In contrast to many micromixers, the ITP contactor does not require complex channel architectures and allows a sample processing in the spirit of "digital microfluidics", i.e. the samples always remain in a compact volume. It is shown that the ITP zone transport through microchannels proceeds in a reproducible and predictable manner, and that the sample trajectories follow simple relationships obtained from Ohm's law. Firstly, the micro contactor can be used to synchronize two ITP zones having reached a channel at different points in time. Secondly, fulfilling its actual purpose it is capable of bringing two samples in molecular contact via an interpenetration of ITP zones. It is demonstrated that the contacting time is proportional to the ITP zone extension. This opens up the possibility of using that type of device as a special type of micromixer with "mixing times" significantly below one second and an option to regulate the duration of contact through specific parameters such as the sample volume. Finally, it is shown how the micro contactor can be utilized to conduct a hybridization reaction between two ITP zones containing complementary DNA strands.
Collapse
Affiliation(s)
- Gabriele Goet
- Abteilung Fluidik und Simulation, Institut für Mikrotechnik Mainz, Mainz, Germany
| | | | | |
Collapse
|
42
|
Capillary Gel Electrophoretic Analysis of Cattle Breeds Based on Difference of DNA Mobility of Microsatellite Markers. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.11.2655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Wang AJ, Witos J, D'Ulivo L, Vainikka K, Riekkola ML. Noncovalent poly(1-vinylpyrrolidone)-based copolymer coating for the separation of basic proteins and lipoproteins by CE. Electrophoresis 2009; 30:3939-46. [DOI: 10.1002/elps.200900395] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Lalwani S, Chouai A, Perez LM, Santiago V, Shaunak S, Simanek EE. Mimicking PAMAM Dendrimers with Ampholytic, Hybrid Triazine Dendrimers: A Comparison of Dispersity and Stability. Macromolecules 2009; 42:6723-3732. [PMID: 20711424 PMCID: PMC2920617 DOI: 10.1021/ma9011818] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two strategies are applied to mimic the ampholytic nature of the surfaces of half-generation PAMAM dendrimers and yet retain the very narrow dispersity inherent of triazine dendrimers. Both strategies start with a monodisperse, single-chemical entity, generation two triazine dendrimer presenting twelve surface amines that is available at the kilogram scale. The first method relies on reaction with methyl bromoacetate. Complete conversion of the surface primary amines to tertiary amines occurs to provide 24 surface esters. Extended reaction times lead to quarternization of the amines while other unidentified species are also present. The resulting polyester can be quantitatively hydrolyzed using 4M aqueous HCl to yield a dendrimer with 12 tertiary amines and 24 carboxylic acids about a hydrophobic triazine core. The second method utilizes Michael additions of methyl acrylate to yield 24 surface esters. This reaction proceeds more rapidly and more cleanly than the former strategy. Hydrolysis of this material proceeds quantitatively using 4M aqueous HCl to yield desired dendrimer. In both cases, MALDI-TOF mass spectrometry provides compelling evidence of reaction progress. Electrophoretic analysis confirms the ampholytic nature of these materials with the former targets having a pI value in the 1.8 < pI < 3.4 range, and the latter having a pI value in the 4.7 < pI < 5.9. These ranges bookend the pH range within which PAMAM dendrimers become zwitterionic, 3.4 < pI < 4.7. The strategy of using monodisperse amine-terminated dendrimer constructs as core offers significant advantage over PAMAM homopolymers including dispersity, ease of characterization and batch-to-batch reproducibility. These triazine dendrimers could ultimately be adopted into materials with applications wherein the demands of purity have hitherto remained unsatisfied.
Collapse
Affiliation(s)
| | - Abdellatif Chouai
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA, and Faculty of Medicine, Imperial College London, Hammersmith Hospital, Ducane Road, London, W12 ONN, UK
| | - Lisa M. Perez
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA, and Faculty of Medicine, Imperial College London, Hammersmith Hospital, Ducane Road, London, W12 ONN, UK
| | - Vanessa Santiago
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA, and Faculty of Medicine, Imperial College London, Hammersmith Hospital, Ducane Road, London, W12 ONN, UK
| | | | | |
Collapse
|
45
|
Bernal J, Sánchez-Hernández L, Elvira C, Velasco D, Ibáñez E, Cifuentes A. Poly(N,N-dimethylacrylamide-co-4-(ethyl)-morpholine methacrylamide) copolymer as coating for CE. J Sep Sci 2009; 32:605-12. [PMID: 19160371 DOI: 10.1002/jssc.200800575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this work, a new physically adsorbed coating for CE is presented. This coating is based on a poly(N,N-dimethylacrylamide-co-4-(ethyl)-morpholine methacrylamide) (DMA/MAEM) copolymer synthesized in our laboratory. It is demonstrated that the direction and magnitude of the EOF in CE can be modulated by varying the composition of the DMA/MAEM copolymer and the type and pH of the BGE. Moreover, the DMA/MAEM coating provides %RSD(n) = 5 values for migration times lower than 0.9% for the same capillary and day, whereas the %RSD(n) = 25 obtained for the interday assay was lower than 2.9%. The stability of the coating procedure is also tested between capillaries obtaining %RSD(n) = 15 values lower than 2.9%, demonstrating that this physically adsorbed copolymer gives rise to a stable and reproducible coating in CE. Finally, the usefulness of this new cationic copolymer as CE coating is demonstrated through different applications. Namely, it is demonstrated that the CE separation of basic proteins, nucleotides and organic acids is achieved in a fast and easy way by using the DMA/MAEM coated capillary. The use of fused bare silica capillaries did not allow the separation of these compounds under the same analytical conditions. These results demonstrate that this type of coating in CE provides the option of using BGEs that are useless when utilized together with bare silica capillaries making wider the application and possibilities of this analytical technique.
Collapse
Affiliation(s)
- José Bernal
- Institute of Industrial Fermentations (CSIC), Juan de la Cierva 3, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Salmanowicz BP, Nowak J. Diversity of monomeric prolamins in triticale cultivars determined by capillary zone electrophoresis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:2119-2125. [PMID: 19228059 DOI: 10.1021/jf803326z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Capillary zone electrophoretic (CZE) analysis of monomeric prolamins (wheat gliadins and rye secalins) covered 28 hexaploid triticale ( Triticosecale x Wittm.) cultivars. The ethanol-soluble proteins were separated on an uncoated fused-silica capillary using the isoelectric 60 mM iminodiacetic (IDA) buffer in conjunction with 20% (v/v) acetonitrile and 0.075% (w/v) polyvinylpyrrolidone (PVP). For each separation, dynamic coating of the capillary wall with a buffer containing 0.1 M IDA and 0.05% (w/v) hydroxypropylmethylcellulose (HPMC) was performed. Separations of prolamins provided very good resolution and high reproducibility (<0.8% RSD). Prolamin profiles of all analyzed cultivars showed both qualitative and quantitative differences, including number of peaks, presence or absence of peaks, and area of peaks. The number of prolamin peaks detected in particular triticale cultivars varied from 22 to 28; in total, 56 components were distinguished. The CZE electropherograms of prolamins showed five main groups of protein peaks, in order of mobility alpha-prolamins, beta-prolamins, gamma-prolamins, omega1-prolamins, and omega2-prolamins, with migration times of 6.8-7.7, 7.8-10.4, 10.5-12.2, 12.3-17.4, and 17.5-25.6 min, respectively. Triticale seeds in comparison with wheat contained fewer alpha-prolamins and higher quantity of omega-prolamins. Hierarchical clustering of the investigated cultivars was based on Bhattacharyya distances calculated from the CZE data. The cultivars grouped in four main clusters. The obtained CZE results were compared with A-PAGE data.
Collapse
|
47
|
Evenhuis CJ, Haddad PR. Joule heating effects and the experimental determination of temperature during CE. Electrophoresis 2009; 30:897-909. [DOI: 10.1002/elps.200800643] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Rapid Distinction of Hanwoo and Imported beef by Single Strand Conformation Polymorphism-Capillary Electrophoresis. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2008. [DOI: 10.5012/jkcs.2008.52.6.630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Nichols ER, Craig DB. Measurement of the differences in electrophoretic mobilities of individual molecules ofE. coliβ-galactosidase provides insight into structural differences which underlie enzyme microheterogeneity. Electrophoresis 2008; 29:4257-69. [DOI: 10.1002/elps.200800060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Salmanowicz BP. Detection of high molecular weight glutenin subunits in triticale (x Triticosecale Wittm.) Cultivars by capillary zone electrophoresis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:9355-9361. [PMID: 18808142 DOI: 10.1021/jf8016546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An improved method for separating and characterizing high molecular weight glutenin subunits (HMW-GS) in hexaploid triticale by capillary zone electrophoresis (CZE) was developed. A low-concentrate mixture of hydrophilic polymers, poly(vinylpyrrolidone) (PVP) and hydroxypropylmethylcellulose (HPMC), in an isoelectric buffer was employed for dynamic coating of the capillary inner wall. In separation buffer PVP with lower concentrated poly(ethylene oxide) (PEO) was replaced. The CZE electropherograms of HMW-GS showed two group peaks in accordance with x- and y-type subunits with migration times of 6.8-7.8 and 8.4-11.5 min, respectively. In total, 14 HMW subunits (2 subunits encoded by Glu-A1 locus and 12 by Glu-B1) were identified. The CZE analyses revealed that each of the subunits Bx7 and By8 determined by SDS-PAGE makes up three subunits (Bx6.8, Bx7, and Bx7* and By8, By8*, and new By8**, respectively), with different migration times. It was also shown that the subunits By18 and By20 in triticale determined by SDS-PAGE have different migration times in comparison with the same subunits in bread wheat. For these new HMW-GS, the following names were assigned: By18* instead of By18 and By20* instead of By20. The presented CZE method is an efficient alternative to the SDS-PAGE procedure for early selection of useful triticale genotypes with good breadmaking quality.
Collapse
Affiliation(s)
- Bolesław P Salmanowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Street 34, PL 60-479 Poznań, Poland
| |
Collapse
|