1
|
Mi Y, Dong H, Wang X, Liu S, Jiang M, Liang Q, Chen J. Identification of Different Steaming Degrees of Panax quinquefolius L. Based on GC-IMS Combined With Machine Learning. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9991. [PMID: 39834138 DOI: 10.1002/rcm.9991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/14/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
RATIONALE Panax quinquefolius L. (PQ), a commonly used traditional Chinese medicine and a food, is usually processed into various products, including white PQ, red PQ (two- or three-time steamed PQ), and black PQ (nine-time steamed PQ). Previous studies demonstrated that volatile components (VOCs) were the important active substances of PQ, which had antibacterial, antiviral, and anti-leukemia activities. However, most research had focused on ginsenosides, and few studies on the volatile components (VOCs) of PQ. METHODS This study used gas chromatography-ion mobility spectrometry to analyze the variation of VOCs in PQ during steaming process. Further, machine learning algorithms were used to quickly identify the steaming degrees of PQ samples. RESULTS A total of 58 VOCs were identified, and 20 featured components with significant changes in the content were screened, including 2-methylundecanal, n-propanol, and n-octanol. Based on these 20 featured components, six machine learning algorithms were used to predict PQ samples with different steaming degrees. Among them, naive Bayes (NB) and linear discriminant analysis (LDA) exhibited good predictive performance, demonstrating significant potential application. This study provided a reference for understanding the variation of VOCs in PQ during steaming and offered a simple, rapid, and low-cost method for distinguishing the steaming degrees of PQ samples.
Collapse
Affiliation(s)
- Yuzhang Mi
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongjing Dong
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiao Wang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shuang Liu
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Min Jiang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qi Liang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jian Chen
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Zhou R, Wang Y, Zhen L, Shen B, Long H, Huang L. Cultivar Differentiation and Origin Tracing of Panax quinquefolius Using Machine Learning Model-DrivenComparative Metabolomics. Foods 2025; 14:1340. [PMID: 40282742 PMCID: PMC12027468 DOI: 10.3390/foods14081340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/27/2024] [Accepted: 03/13/2025] [Indexed: 04/29/2025] Open
Abstract
American ginseng (Panax quinquefolius L.) is a rare and valuable plant utilized for medicinal and culinary purposes, with its geographic origin and cultivation significantly affecting its quality and efficacy. However, the metabolic differences between cultivated and wild American ginseng are not well understood. An accurate and reliable method for tracing the origin and evaluating the quality of American ginseng is therefore urgently required. This study introduces a UHPLC-Q/TOF-MS-based comparative metabolomics and machine learning strategy for the rapid identification of wild and cultivated American ginseng. Both principal component analysis and hierarchical cluster analysis revealed distinct metabolic phenotypes between wild and cultivated American ginseng. Furthermore, the integration of univariate and multivariate statistical analyses identified eight differential metabolites in the ESI+ mode and three in the ESI- mode, including seven ginsenosides. A potential ginsenosides marker panel was used to construct five machine learning models to assist in diagnosing the metabolic phenotypes of American ginseng. The Random Forest model, based on the eight differential metabolites in the ESI+ mode, achieved a 100% classification rate in both test and validation sets for distinguishing between wild and cultivated American ginseng. This study highlights the feasibility and application of our artificial intelligence-driven comparative metabolomics strategy for cultivar identification and geographic tracing of American ginseng, offering new insights into the molecular basis of metabolic variation in cultivated American ginseng.
Collapse
Affiliation(s)
- Rongrong Zhou
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Hunan Academy of Traditional Chinese Medicine, Changsha 410208, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yikun Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Lanping Zhen
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410208, China
| | - Bingbing Shen
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410208, China
| | - Hongping Long
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
3
|
Li M, Liu S, Wang Z, Liu F, Dong H, Qiao X, Wang X. Comparing the Drying Characteristics, Phytochemicals, and Antioxidant Characterization of Panax quinquefolium L. Treated by Different Processing Techniques. Foods 2025; 14:815. [PMID: 40077518 PMCID: PMC11899330 DOI: 10.3390/foods14050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
American ginseng (AG) has long been used as an ingredient in the food and pharmaceutical industries because of its nutritional and economic value. AG is rich in nutrients, and its quality is greatly affected by how it is processed. However, there is a relative paucity of research on the comprehensive evaluation of different processing techniques of AG. This study evaluated the differences in quality formation and properties of low-temperature softened, blanched, steamed followed by hot air drying, and vacuum freeze-dried AG (LTS-HAD, BL-HAD, ST-HAD, and VFD, respectively). The results demonstrated that AGs treated with VFD had the fastest drying time (85 h) and succeeded in preserving the color and microstructure of fresh ginseng. The contents of ginsenoside Rg1 and Rb1 in LTS-HAD samples were 2.81 ± 0.01 mg/g and 10.68 ± 0.66 mg/g, respectively, which were significantly higher than those in VFD samples (p < 0.05). Moreover, ST-HAD samples had an attractive reddish-brown appearance and higher antioxidant activity. Simultaneously, the formation of the ginsenosides Rg6, (S) Rg3, (R) Rg3, Rk1, and Rg5 was discovered. BL-HAD samples had an intermediate quality among the above samples. A total of 58 volatile compounds were identified, including aldehydes (14), alcohols (13), ketones (10), esters (6), terpenes (6), acids (5), and heterocyclic compounds (4). PCA of ginsenosides and volatile components, as well as correlation analysis with color and antioxidant activity, resulted in the identification of different processed products and potential bioactive components.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (M.L.)
- Shandong Academy of Chinese Medicine, Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shuang Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (M.L.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhenqiang Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (M.L.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Feng Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (M.L.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (M.L.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Road, Tai’an 271018, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (M.L.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
4
|
Zhang Y, Hou L, Hu J, Wang X, Guo S, Xie H, Zhou Y, Ai W, Li L, Wang X, Ren L, Zhao F, Fang X, Han J, Shan C. American ginseng fruit: Antioxidant capacity, bioactive components, and biosynthesis mechanism during development. Food Res Int 2025; 203:115884. [PMID: 40022396 DOI: 10.1016/j.foodres.2025.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
American ginseng (Panax quinquefolius) is considered as a functional food and a medicinal plant, with its fruit containing valuable bioactive ingredients. However, limited knowledge is available regarding its antioxidant capacity, variation in bioactive components, and biosynthetic pathways at various growth stages. The present study examined the in vitro antioxidant capacity of the American ginseng fruit from Wendeng, Shandong at various growth stages, and conducted metabolomic as well as transcriptomic analyses to elucidate the accumulation patterns and biosynthesis of bioactive compounds. The results showed that antioxidant capacity, total flavonoid content (TFC), and total phenolic content (TPC) in fruits at early, middle, and late developmental stages were significantly higher than those in 4-year-old ginseng roots. Notably, fruits at the early developmental stage exhibited the highest antioxidant capacity, which initially declined and subsequently increased as the fruits continued to grow and develop. TFC and TPC were closely correlated with antioxidant capacity in fruits. Widely targeted metabolomics identified 1,094 metabolites with significant changes throughout fruit development, including 223 terpenoids, 164 phenolic acids, and 149 flavonoids. A total of 139 metabolites were closely associated with antioxidant activity in the American ginseng fruits. Furthermore, several genes, such as DFR, LDOX, F3H, CHI, DDS, CYP, UGT, BAHD, as well as MYB, bHLH, and NAC transcription factors (TFs) were identified to be potentially associated with the fruit flavonoids and ginsenosides biosynthesis and their corresponding regulatory networks. The findings provid valuable insights for enhancing the development and utilization of American ginseng fruits as functional foods as well as advancing their quality and breeding practices.
Collapse
Affiliation(s)
- Yujuan Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lijuan Hou
- Weihai Academy of Agricultural Sciences, Weihai 264200, China
| | - Jing Hu
- Weihai Academy of Agricultural Sciences, Weihai 264200, China
| | - Xianchang Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shujing Guo
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Hongqing Xie
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yun Zhou
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wen Ai
- Weihai Wendeng Chuanfu Ginseng Industry Co., Ltd, Weihai 264411, China
| | - Lin Li
- Weihai Wendeng Chuanfu Ginseng Industry Co., Ltd, Weihai 264411, China
| | - Xin Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Li Ren
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fangzhou Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xinsheng Fang
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Jinlong Han
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Chenggang Shan
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
5
|
Jin Y, Qu Z, Pang S, Li Z, Wang Y, Zhang H. A new ocotillol-type ginsenoside from American ginseng berry. Nat Prod Res 2025; 39:73-78. [PMID: 37667570 DOI: 10.1080/14786419.2023.2252566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
A new ocotillol-type ginsenoside, named pseudoginsenoside F12 (1), was isolated from American ginseng berry, whose structure was elucidated as 6-O-[α-L-2,3-epoxy-rhamnopyranosyl-(1-2)-β-D-glucopyranosyl]-dammar-20S,24R-epoxy-3β, 6α,12β,25-tetraol. In addition, the known alkaloids β-carboline-1-carboxylic acid (2) and anoectochine (3) were isolated for the first time from the Araliaceae family. The new compound 1 was evaluated for cytotoxicity against MDA-MB-231 breast cancer cell line.
Collapse
Affiliation(s)
- Yinping Jin
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agriculture University, Changchun, China
| | - Zhengyi Qu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shifeng Pang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zheng Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yingping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agriculture University, Changchun, China
| | - Hao Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
6
|
Jiang J, Fan G, Wen R, Liu T, He S, Yang S, Zi S. Effects of osthole and Bacillus amyloliquefaciens on the physiological growth of Panax quinquefolius in a forest. Front Microbiol 2024; 15:1497987. [PMID: 39726959 PMCID: PMC11670745 DOI: 10.3389/fmicb.2024.1497987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The biological activities of osthole have been widely reported in recent years. However, few studies have been conducted on osthole in agriculture, and its effects on plant growth have little been reported. Methods Three experimental treatments were set up in this experiment: blank control (CK), osthole (CLS), and B. amyloliquefaciens (LKWS). In this study, the effects of osthole and Bacillus amyloliquefaciens on the growth parameters, photosynthesis, antioxidant enzyme activities, disease incidence, and microbiome of forested P. quinquefolius were tested. Results This study demonstrates that the use of osthole and B. amyloliquefaciens significantly improved the growth of Panax quinquefolius in a forest compared to that in the control treatment, increased the total chlorophyll and carotenoid content of P. quinquefolius, significantly increased its net photosynthetic rate, and decreased the stomatal conductance and intercellular CO2 levels. In addition, the use of osthole and B. amyloliquefaciens significantly improved ascorbate peroxidase and peroxidase (POD) activities, enhanced antioxidant activities of the P. quinquefolius POD, and reduced the disease incidence and index of American ginseng anthracnose. Based on the American ginseng microbiome analysis, the use of osthole and B. amyloliquefaciens could change the structure of the American ginseng microbial community, significantly increase the diversity of American ginseng bacteria, significantly decrease the diversity of American ginseng fungi, stimulate the recruitment of more growth-promoting microorganisms to American ginseng, and build a more stable microbial network in American ginseng. Discussion In conclusion, we found that the application of osthole had a positive effect on the growth of American ginseng, providing a theoretical basis for its subsequent application in agriculture.
Collapse
Affiliation(s)
- Jinhui Jiang
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Guangxiong Fan
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Rong Wen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Tao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Shuran He
- College of Resources and Environment, Yunnan Agricultural University (YNAU), Kunming, China
| | - Shengchao Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, China
| | - Shuhui Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| |
Collapse
|
7
|
Han D, Zhao Z, Mao T, Gao M, Yang X, Gao Y. Ginsenoside Rg1: A Neuroprotective Natural Dammarane-Type Triterpenoid Saponin With Anti-Depressive Properties. CNS Neurosci Ther 2024; 30:e70150. [PMID: 39639753 PMCID: PMC11621566 DOI: 10.1111/cns.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Depression, a widespread mental disorder, presents significant risks to both physical and mental health due to its high rates of recurrence and suicide. Currently, single-target antidepressants typically alleviate depressive symptoms or delay the progression of depression rather than cure it. Ginsenoside Rg1 is one of the main ginsenosides found in Panax ginseng roots. It improves depressive symptoms through various mechanisms, suggesting its potential as a treatment for depression. MATERIALS AND METHODS We evaluated preclinical studies to comprehensively discuss the antidepressant mechanism of ginsenoside Rg1 and review its toxicity and medicinal value. Additionally, pharmacological network and molecular docking analyses were performed to further validate the antidepressant effects of ginsenoside Rg1. RESULTS The antidepressant mechanism of ginsenoside Rg1 may involve various pharmacological mechanisms and pathways, such as inhibiting neuroinflammation and over-activation of microglia, preserving nerve synapse structure, promoting neurogenesis, regulating monoamine neurotransmitter levels, inhibiting hyperfunction of the hypothalamic-pituitary-adrenal axis, and combatting antioxidative stress. Moreover, ginsenoside Rg1 preserves astrocyte gap junction function by regulating connexin43 protein biosynthesis and degradation, contributing to its antidepressant effect. Pharmacological network and molecular docking studies identified five targets (AKT1, STAT3, EGFR, PPARG, and HSP90AA1) as potential molecular regulatory sites of ginsenoside Rg1. CONCLUSIONS Ginsenoside Rg1 may exert its antidepressant effects via various pharmacological mechanisms. In addition, multicenter clinical case-control and molecular targeted studies are required to confirm both the clinical efficacy of ginsenoside Rg1 and its potential direct targets.
Collapse
Affiliation(s)
- Dong Han
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zheng Zhao
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Tinghui Mao
- Department of Organ Transplantation and Hepatobiliary SurgeryThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Man Gao
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yang
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yan Gao
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
8
|
Yan X, Inta A, Yang X, Pandith H, Disayathanoowat T, Yang L. An Investigation of the Effect of the Traditional Naxi Herbal Formula Against Liver Cancer Through Network Pharmacology, Molecular Docking, and In Vitro Experiments. Pharmaceuticals (Basel) 2024; 17:1429. [PMID: 39598341 PMCID: PMC11597843 DOI: 10.3390/ph17111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The formula Chong-Lou-Yao-Fang (CLYF) is an herbal medicinal formulation developed by the indigenous Naxi people for treating liver cancer. This study was to reveal the biological activity, potential targets, and molecular mechanisms of CLYF for cancer treatment. Methods: Network pharmacology, microarray data analysis, survival analysis, and molecular docking were employed to predict potential compounds, targets, and pathways for the treatment of liver cancer. In vitro experiments and Western blot validation were conducted to confirm these predictions. Results: 35 key compounds and 20 core targets were screened from CLYF, involving signaling pathways for PI3K-Akt, MAPK, hepatitis B and C, which were effective for liver cancer treatment. Microarray data analysis and survival analysis indicated that EGFR and TP53 serve as promising biomarkers for diagnosis and prognosis in liver cancer. Molecular docking revealed stable binding between EGFR, TP53, and AKT1 with active ingredients. Cell experiments confirmed that CLYF-A suppressed cell proliferation, induced apoptosis, and caused cell cycle arrest in HepG2 cells, which were associated with a loss of mitochondrial membrane potential. Compared to the control group, the relative protein expression levels of EGFR and AKT1 significantly decreased following treatment with CLYF-A, while TP53 levels increased significantly. Conclusions: Verification of the anticancer activity of CLYF and its potential mechanisms may have important implications for anticancer therapies. Our results may provide a scientific basis for the clinical use of CLYF for cancer treatment and have important implications for developing pharmaceutical preparations, which also need more pharmacological experiments, clinical experiments, and in vivo experiments.
Collapse
Affiliation(s)
- Xiuxiang Yan
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (X.Y.)
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; (A.I.); (H.P.)
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; (A.I.); (H.P.)
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (X.Y.)
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Hataichanok Pandith
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; (A.I.); (H.P.)
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; (A.I.); (H.P.)
| | - Lixin Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (X.Y.)
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| |
Collapse
|
9
|
Liang L, Liu X, Shao J, Shen J, Yao Y, Huang X, Cai G, Guo Y, Gong J. Identification of Potential α-Glucosidase Inhibitors from American Ginseng Processed Products by UHPLC-Q-Orbitrap/MS and Molecular Docking. FOOD BIOPHYS 2024; 19:688-700. [DOI: 10.1007/s11483-024-09860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/13/2024] [Indexed: 01/03/2025]
|
10
|
Duan W, Chen X, Ding Y, Mao X, Song Z, Bao J, Fang L, Guo L, Zhou J. Intricate microbe-plant-metabolic remodeling mediated by intercropping enhances the quality of Panax quinquefolius L. PHYSIOLOGIA PLANTARUM 2024; 176:e14499. [PMID: 39221485 DOI: 10.1111/ppl.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Improving the cultivation mode and technology for traditional Chinese medicine has become important for its sustainable development. Monoculture enhances plant diseases, which decreases yield and quality. Intercropping is an effective measure to counterbalance that negative effect. In this study, we focused on Panax quinquefolium L. (ginseng) and four treatments were set up: the control without intercropping, P. quinquefolius + ryegrass (Lolium perenne L.), P. quinquefolius + red clover (Trifolium pratense L.), and P. quinquefolius + ryegrass + red clover. An LC-MS/MS system was used to detect the changes in the P. quinquefolius secondary metabolites, and high-throughput sequencing technology was used to determine the changes in the P. quinquefolius' rhizosphere soil microorganisms. Ginsenoside content, soil enzyme activities, and arbuscular mycorrhizal infection rate of P. quinquefolius were also measured using HPLC, ELISA kits, and microscopy, respectively. Co-intertia and Pearson's analysis were performed to explore the relationship between the metabolites and the P. quinquefolius microorganisms. Intercropping significantly increased the content of ginsenoside metabolites and recruited a large number of beneficial bacteria to the P. quinquefolius rhizosphere. The P. quinquefolius secondary metabolites were associated with the rhizosphere microbial community. For example, the dominant microorganisms, such as Acidobacteriota and Chloroflexi, played a key role in promoting the synthesis of ginsenoside Rd and (20R) ginsenoside Rg3 by P. quinquefolius. Intercropping led to changes in the P. quinquefolius secondary metabolites by driving and reshaping the rhizosphere microorganisms. These findings revealed the potential application of intercropping for improving the quality of P. quinquefolius.
Collapse
Affiliation(s)
- Wanying Duan
- School of Biological Science and Technology, University of Jinan, Jinan, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, P. R. China
| | - Xiaoli Chen
- School of Biological Science and Technology, University of Jinan, Jinan, P. R. China
| | - Yu Ding
- School of Biological Science and Technology, University of Jinan, Jinan, P. R. China
| | - Xinying Mao
- School of Biological Science and Technology, University of Jinan, Jinan, P. R. China
| | - Zhengjian Song
- Weihai (Wendeng) Authentic Ginseng Industry Development Co., Ltd., Wendeng, P. R. China
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, Jinan, P. R. China
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan, P. R. China
- Shandong Engineering Research Center of Key Technologies for High-Value and High-Efficiency Full Industry Chain of Lonicera japonica, Linyi, P. R. China
- Pingyi Fangyuan Pharmaceutical Co., Ltd., Linyi, P. R. China
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, P. R. China
| | - Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, P. R. China
- Shandong Engineering Research Center of Key Technologies for High-Value and High-Efficiency Full Industry Chain of Lonicera japonica, Linyi, P. R. China
| |
Collapse
|
11
|
Tian L, Gao R, Cai Y, Chen J, Dong H, Chen S, Yang Z, Wang Y, Huang L, Xu Z. A systematic review of ginsenoside biosynthesis, spatiotemporal distribution, and response to biotic and abiotic factors in American ginseng. Food Funct 2024; 15:2343-2365. [PMID: 38323507 DOI: 10.1039/d3fo03434h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
American ginseng (Panax quinquefolius) has gained recognition as a medicinal and functional food homologous product with several pharmaceutical, nutritional, and industrial applications. However, the key regulators involved in ginsenoside biosynthesis, the spatiotemporal distribution characteristics of ginsenosides, and factors influencing ginsenosides are largely unknown, which make it challenging to enhance the quality and chemical extraction processes of the cultivated American ginseng. This review presents an overview of the pharmacological effects, biosynthesis and spatiotemporal distribution of ginsenosides, with emphasis on the impacts of biotic and abiotic factors on ginsenosides in American ginseng. Modern pharmacological studies have demonstrated that American ginseng has neuroprotective, cardioprotective, antitumor, antidiabetic, and anti-obesity effects. Additionally, most genes involved in the upregulation of ginsenoside biosynthesis have been identified, while downstream regulators (OSCs, CYP450, and UGTs) require further investigation. Futhermore, limited knowledge exists regarding the molecular mechanisms of the impact of biotic and abiotic factors on ginsenosides. Notably, the nonmedicinal parts of American ginseng, particularly its flowers, fibrous roots, and leaves, exhibit higher ginsenoside content than its main roots and account for a considerable amount of weight in the whole plant, representing promising resources for ginsenosides. Herein, the prospects of molecular breeding and metabolic engineering based on multi-omics to improve the unstable quality of cultivated American ginseng and the shortage of ginsenosides are proposed. This review highlights the gaps in the current research on American ginseng and proposes solutions to address these limitations, providing a guide for future investigations into American ginseng ginsenosides.
Collapse
Affiliation(s)
- Lixia Tian
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Ranran Gao
- The Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Yuxiang Cai
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Junxian Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Hongmei Dong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, 100700, China
| | - Zaichang Yang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yu Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, 150006, China.
| |
Collapse
|
12
|
Kim HW, Kim DH, Ryu B, Chung YJ, Lee K, Kim YC, Lee JW, Kim DH, Jang W, Cho W, Shim H, Sung SH, Yang TJ, Kang KB. Mass spectrometry-based ginsenoside profiling: Recent applications, limitations, and perspectives. J Ginseng Res 2024; 48:149-162. [PMID: 38465223 PMCID: PMC10920005 DOI: 10.1016/j.jgr.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 03/12/2024] Open
Abstract
Ginseng, the roots of Panax species, is an important medicinal herb used as a tonic. As ginsenosides are key bioactive components of ginseng, holistic chemical profiling of them has provided many insights into understanding ginseng. Mass spectrometry has been a major methodology for profiling, which has been applied to realize numerous goals in ginseng research, such as the discrimination of different species, geographical origins, and ages, and the monitoring of processing and biotransformation. This review summarizes the various applications of ginsenoside profiling in ginseng research over the last three decades that have contributed to expanding our understanding of ginseng. However, we also note that most of the studies overlooked a crucial factor that influences the levels of ginsenosides: genetic variation. To highlight the effects of genetic variation on the chemical contents, we present our results of untargeted and targeted ginsenoside profiling of different genotypes cultivated under identical conditions, in addition to data regarding genome-level genetic diversity. Additionally, we analyze the other limitations of previous studies, such as imperfect variable control, deficient metadata, and lack of additional effort to validate causation. We conclude that the values of ginsenoside profiling studies can be enhanced by overcoming such limitations, as well as by integrating with other -omics techniques.
Collapse
Affiliation(s)
- Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Dae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byeol Ryu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - You Jin Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kyungha Lee
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea
| | - Young Chang Kim
- Future Agriculture Strategy Team, Research Policy Bureau, Rural Development Administration, Jeonju, Republic of Korea
| | - Jung Woo Lee
- Ginseng Division, Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Dong Hwi Kim
- Ginseng Division, Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Woojong Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Republic of Korea
| | - Woohyeon Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Hyun Sung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Pang S, Piao X, Zhang X, Chen X, Zhang H, Jin Y, Li Z, Wang Y. Discrimination for geographical origin of Panax quinquefolius L. using UPLC Q-Orbitrap MS-based metabolomics approach. Food Sci Nutr 2023; 11:4843-4852. [PMID: 37576031 PMCID: PMC10420767 DOI: 10.1002/fsn3.3461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/11/2023] [Accepted: 05/20/2023] [Indexed: 08/15/2023] Open
Abstract
American ginseng, Panax quinquefolius L., is an important medicinal plant with multiple pharmacological effects and high nutritional value. American ginseng from different geographical origins varies in quality and price. However, there was no approach for discriminating American ginseng from different geographical origins to date. In this study, a metabolomic method based on the UPLC-Orbitrap fusion platform was established to comprehensively determine and analyze metabolites of American ginseng from America and Canada, Heilongjiang, Jilin, Liaoning, and Shandong provinces in China. A total of 382 metabolites were detected, including 230 saponins, 30 amino acids and derivatives, 27 organic acids and derivatives, 25 lipids, 17 carbohydrates and derivatives, 10 phenols, 8 nucleotides, and derivatives, as well as 35 other metabolites. Metabolite differences between North America and Asia producing areas were more obvious than within Asia. Twenty metabolites, contributed most to the differentiation of producing areas, were identified as potential markers with prediction accuracy higher than 91%. The results provide new insights into the metabolite composition of American ginseng from different origins, which will help discriminate origins and promote quality control of American ginseng.
Collapse
Affiliation(s)
- Shifeng Pang
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunChina
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and PropagationChangchunChina
| | - Xiangmin Piao
- State‐Local Joint Engineering Research Center of Ginseng Breeding and ApplicationJilin Agricultural UniversityChangchunChina
| | - Xiaohao Zhang
- Department of CardiologyThe Second Hospital of Jilin UniversityChangchunChina
| | - Xiaolin Chen
- Ginseng Antler Office of Jilin Province (TCM Development Center of Department of Agriculture and Rural Affairs of Jilin Province)ChangchunChina
| | - Hao Zhang
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunChina
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and PropagationChangchunChina
| | - Yinping Jin
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunChina
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and PropagationChangchunChina
| | - Zheng Li
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunChina
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and PropagationChangchunChina
| | - Yingping Wang
- State‐Local Joint Engineering Research Center of Ginseng Breeding and ApplicationJilin Agricultural UniversityChangchunChina
| |
Collapse
|
14
|
Xia H, Dai Y, Zhao C, Zhang H, Shi Y, Lou H. Chromatographic and mass spectrometric technologies for chemical analysis of Euodiae fructus: A review. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:5-29. [PMID: 36442477 DOI: 10.1002/pca.3187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Euodiae fructus, also known as Evodiae fructus, is a popular Chinese herbal medicine derived from the dried, nearly ripe fruits of Tetradium ruticarpum (A. Juss.) T. G. Hartley. The main bioactive constituents of Euodiae fructus are alkaloids, limonoids, flavonoids, and anthraquinones. The contents of these compounds vary greatly between different plant species, geographic locations, and harvest times, which thus affect the therapeutic effects. OBJECTIVES We aimed to summarize the chromatographic and mass spectrometric technologies applied for chemical analysis and quality evaluation of Euodiae fructus. Moreover, we aimed to emphasize the diverse soft ionization techniques and mass analyzers of LC-MS methods for assessment of Euodiae fructus. METHODOLOGY A literature study was carried out by retrieving articles published between January 1988 and December 2021 from well-known databases, including PubMed, ASC, Elsevier, ScienceDirect, J·STAGE, Thieme, Taylor & Francis, Springer Link, Wiley Online Library, and CNKI. The chemical analysis methods were described in several categories in accordance with the used analytical techniques, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), high-performance liquid chromatography-mass spectrometry (HPLC-MS), gas chromatography-mass spectrometry (GC-MS), capillary electrophoresis (CE), and counter-current chromatography (CCC). RESULTS This review systematically summarizes the achievements in chemical analysis and quality evaluation of Euodiae fructus published in over three decades, covering the various chromatographic and mass spectrometric technologies applied for identification and quantification of phytochemical constituents. CONCLUSION The summary serves as an important basis for future phytochemical research and implementation of quality control methods in order to ensure the efficacy and safety of Euodiae fructus.
Collapse
Affiliation(s)
- Hongmin Xia
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- Key Disciplines on Analysis of Traditional Chinese Medicine of SATCM, the Key Unit for Research of Technique and Principle of Honey-Processing and Carbonizing of SATCM, Shandong Key Laboratory of Chinese Medicine Quality Standard Research, Taishan Scholar-Distinguished Experts Position, Shandong Academy of Chinese Medicine, Jinan, China
| | - Yanpeng Dai
- Key Disciplines on Analysis of Traditional Chinese Medicine of SATCM, the Key Unit for Research of Technique and Principle of Honey-Processing and Carbonizing of SATCM, Shandong Key Laboratory of Chinese Medicine Quality Standard Research, Taishan Scholar-Distinguished Experts Position, Shandong Academy of Chinese Medicine, Jinan, China
| | - Chengxin Zhao
- The People's Republic of China Taian Customs, Taian, China
| | - Huimin Zhang
- Key Disciplines on Analysis of Traditional Chinese Medicine of SATCM, the Key Unit for Research of Technique and Principle of Honey-Processing and Carbonizing of SATCM, Shandong Key Laboratory of Chinese Medicine Quality Standard Research, Taishan Scholar-Distinguished Experts Position, Shandong Academy of Chinese Medicine, Jinan, China
| | - Yusheng Shi
- Key Laboratory of Biotechnology and Bioresources Utilization, Educational of Minister, College of Life Science, Dalian Nationalities University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hongxiang Lou
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
15
|
Liu Z, Moore R, Gao Y, Chen P, Yu L, Zhang M, Sun J. Comparison of Phytochemical Profiles of Wild and Cultivated American Ginseng Using Metabolomics by Ultra-High Performance Liquid Chromatography-High-Resolution Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010009. [PMID: 36615206 PMCID: PMC9821851 DOI: 10.3390/molecules28010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
American ginseng (Panax quinquefolius L.) has been recognized as a valuable herb medicine, and ginsenosides are the most important components responsible for the health-beneficial effects. This study investigated the secondary metabolites responsible for the differentiation of wild and cultivated American ginsengs with ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-based metabolomic approach. An in-house ginsenoside library was developed to facilitate data processing and metabolite identification. Data visualization methods, such as heatmaps and volcano plots, were utilized to extract discriminated ion features. The results suggested that the ginsenoside profiles of wild and cultivated ginsengs were significantly different. The octillol (OT)-type ginsenosides were present in greater abundance and diversity in wild American ginsengs; however, a wider distribution of the protopanaxadiol (PPD)-and oleanolic acid (OA)-type ginsenosides were found in cultivated American ginseng. Based on the tentative identification and semi-quantification, the amounts of five ginsenosides (i.e., notoginsenoside H, glucoginsenoside Rf, notoginsenoside R1, pseudoginsenoside RT2, and ginsenoside Rc) were 2.3-54.5 fold greater in wild ginseng in comparison to those in their cultivated counterparts, and the content of six ginsenosides (chicusetsusaponin IVa, malonylginsenoside Rd, pseudoginsenoside Rc1, malonylfloralginsenoside Rd6, Ginsenoside Rd, and malonylginsenoside Rb1) was 2.6-14.4 fold greater in cultivated ginseng compared to wild ginseng. The results suggested that the in-house metabolite library can significantly reduce the complexity of the data processing for ginseng samples, and UHPLC-HRMS is effective and robust for identifying characteristic components (marker compounds) for distinguishing wild and cultivated American ginseng.
Collapse
Affiliation(s)
- Zhihao Liu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Roderick Moore
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Ying Gao
- School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
- Correspondence: (M.Z.); (J.S.)
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (M.Z.); (J.S.)
| |
Collapse
|
16
|
Jen CT, Hsu BY, Chen BH. A study on anti-fatigue effects in rats by nanoemulsion and liposome prepared from American ginseng root residue extract. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
DI P, YAN Y, WANG P, YAN M, WANG YP, HUANG LQ. Integrative SMRT sequencing and ginsenoside profiling analysis provide insights into the biosynthesis of ginsenoside in Panax quinquefolium. Chin J Nat Med 2022; 20:614-626. [DOI: 10.1016/s1875-5364(22)60198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/28/2022]
|
18
|
Yang Z, Deng J, Liu M, He C, Feng X, Liu S, Wei S. A review for discovering bioactive minor saponins and biotransformative metabolites in Panax quinquefolius L. Front Pharmacol 2022; 13:972813. [PMID: 35979234 PMCID: PMC9376941 DOI: 10.3389/fphar.2022.972813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Panax quinquefolius L. has attracted extensive attention worldwide because of its prominent pharmacological properties on type 2 diabetes, cancers, central nervous system, and cardiovascular diseases. Ginsenosides are active phytochemicals of P. quinquefolius, which can be classified as propanaxdiol (PPD)-type, propanaxtriol (PPT)-type, oleanane-type, and ocotillol-type oligo-glycosides depending on the skeleton of aglycone. Recently, advanced analytical and isolated methods including ultra-performance liquid chromatography tandem with mass detector, preparative high-performance liquid chromatography, and high speed counter-current chromatography have been used to isolate and identify minor components in P. quinquefolius, which accelerates the clarification of the material basis. However, the poor bioavailability and undetermined bio-metabolism of most saponins have greatly hindered both the development of medicines and the identification of their real active constituents. Thus, it is essential to consider the bio-metabolism of constituents before and after absorption. In this review, we described the structures of minor ginsenosides in P. quinquefolius, including naturally occurring protype compounds and their in vivo metabolites. The preclinical and clinical pharmacological studies of the ginsenosides in the past few years were also summarized. The review will promote the reacquaint of minor saponins on the growing appreciation of their biological role in P. quinquefolius.
Collapse
Affiliation(s)
- Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jiahang Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Mingxin Liu
- College of Electrical and Information Engineering, Guangdong Ocean University, Zhanjiang, China
| | - Chuantong He
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xinyue Feng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shuai Wei
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
19
|
Zhu J, Xu X, Zhang X, Zhuo Y, Chen S, Zhong C, Liu M, Wang Z. Efficacy of ginseng supplements on disease-related fatigue: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29767. [PMID: 35776997 PMCID: PMC9239648 DOI: 10.1097/md.0000000000029767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ginseng has been believed to provide energy, physical health, and well-being to patients for hundreds of years. Fatigue is a multidimensional symptom with unknown etiology and varying severity, and lots of patients suffer from fatigue. METHODS We search for research of ginseng treatment of disease-related fatigue in adult patients in Pubmed, Embase, Medline, and Cochrane library. Two independent reviewers assessed included studies and met to develop consensus on included studies. And we used Review Manager 5.3 software to evaluate the risk of bias. RESULTS The present meta-analysis included 12 randomized controlled trial containing 1298 patients. In the fixed-effect meta-analysis of 12 randomized controlled trial, ginseng supplements had a statistically significant efficacy on disease-related fatigue reduction (standardized mean difference = 0.33, 95% confidence interval = 0.44-0.22). CONCLUSIONS The use of ginseng supplements is benefit for patients to reduce disease-related fatigue.
Collapse
Affiliation(s)
- Jianxun Zhu
- Changchun University of Chinese Medicine, Jingyue Economic Development District, Changchun, People’s Republic of China
| | - Xiaoru Xu
- Changchun University of Chinese Medicine, Jingyue Economic Development District, Changchun, People’s Republic of China
| | - Xin Zhang
- Changchun University of Chinese Medicine, Jingyue Economic Development District, Changchun, People’s Republic of China
| | - Yue Zhuo
- Changchun University of Chinese Medicine, Jingyue Economic Development District, Changchun, People’s Republic of China
| | - Shaotao Chen
- Changchun University of Chinese Medicine, Jingyue Economic Development District, Changchun, People’s Republic of China
| | - Chongwen Zhong
- Changchun University of Chinese Medicine, Jingyue Economic Development District, Changchun, People’s Republic of China
| | - Mingjun Liu
- Changchun University of Chinese Medicine, Jingyue Economic Development District, Changchun, People’s Republic of China
- *Correspondence: Mingjun Liu, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun 130117, People Republic of China (e-mail: )
| | - Zhihong Wang
- Changchun University of Chinese Medicine, Jingyue Economic Development District, Changchun, People’s Republic of China
- *Correspondence: Zhihong Wang, Changchun University of Chinese Medicine, Jingyue Economic Development District, Changchun 130117, People Republic of China (e-mail: )
| |
Collapse
|
20
|
Jin Y, Hao Y, Zhang H, Qu Z, Wang Y, Piao X. Dynamic changes of ginsenosides in Panax quinquefolium fruit at different development stages measured using UHPLC-Orbitrap MS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9270. [PMID: 35178804 DOI: 10.1002/rcm.9270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Some studies have shown that Panax quinquefolium fruit (PQF) could also be used as a potential medicinal resource. However, little is known about the composition of ginsenosides and their dynamic changes at different development stages of PQF. Therefore, this study is of great significance for the metabolomics and rational utilization of PQF. METHODS The samples were analyzed using ultra-high-performance liquid chromatography combined with an Orbitrap mass spectrometer (UHPLC-Orbitrap MS), and the method of metabonomics was applied to profile the dynamic changes of ginsenosides in PQF at different development stages. RESULTS A total of 109 ginsenosides were identified or tentatively characterized. Samples collected from different development stages were significantly discriminated according to ginsenoside contents. A total of 25 potential chemical markers enabling the differentiation were discovered. CONCLUSIONS For the first time, the study developed an UHPLC-Orbitrap MS-based approach to detect ginsenoside in PQF at different development stages using a non-targeted mode. This comprehensive phytochemical profile study revealed the structural diversity and discrimination of ginsenosides in PQF at different development stages, which could provide the basis for the metabolomics and rational application of PQF.
Collapse
Affiliation(s)
- Yinping Jin
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yan Hao
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Hao Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhengyi Qu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yingping Wang
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Xiangmin Piao
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| |
Collapse
|
21
|
Li W, Li C, Sun K, Chi C, Li Z, Xu L, Zhao Y, Liu R. An enhanced analytical strategy integrating offline two‐dimensional liquid chromatography with high‐resolution accurate mass spectrometry and molecular networking: Comprehensive characterization of HuangLian JieDu Decoction as a case study. J Sep Sci 2022; 45:2734-2745. [DOI: 10.1002/jssc.202200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/30/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Wenjing Li
- School of Pharmacy Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Yantai University Yantai 264005 China
| | - Caihong Li
- School of Pharmacy Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Yantai University Yantai 264005 China
| | - Kang Sun
- School of Pharmacy Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Yantai University Yantai 264005 China
| | - Chenglin Chi
- School of Pharmacy Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Yantai University Yantai 264005 China
| | - Zongchao Li
- School of Pharmacy Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Yantai University Yantai 264005 China
| | - Lixiao Xu
- School of Pharmacy Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Yantai University Yantai 264005 China
| | - Yan Zhao
- School of Pharmacy Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Yantai University Yantai 264005 China
| | - Rongxia Liu
- School of Pharmacy Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Yantai University Yantai 264005 China
| |
Collapse
|
22
|
Chen LH, Zhang YB, Yang XW, Xu W, Wang YP. Characterization and quantification of ginsenosides from the root of Panax quinquefolius L. by integrating untargeted metabolites and targeted analysis using UPLC-Triple TOF-MS coupled with UFLC-ESI-MS/MS. Food Chem 2022; 384:132466. [PMID: 35202989 DOI: 10.1016/j.foodchem.2022.132466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/04/2022]
Abstract
The root of Panax quinquefolius L. (RPQ) is considered as an important functional food and rich in bioactive components, ginsenosides. To comprehensively characterize ginsenosides and evaluate the quality of RPQ from different sources, UPLC-Triple TOF-MS coupled with UFLC-ESI-MS/MS was applied to untargeted metabolites and targeted analysis for the first time. In untargeted metabolites analysis, a total of 225 ginsenosides were identified from RPQ using UPLC-Triple TOF-MS combined with SWATH data-independent strategy. Furthermore, the contents of 39 targeted ginsenoside markers in 14 RPQ samples were analyzed by a rapid and sensitive UFLC-ESI-MS/MS method. In addition, the results of chemometric analysis showed the quality of American RPQ was distinguished from that of Chinese RPQ according to the amount of targeted ginsenosides. This newly developed approach provides a powerful tool for enriching the diversity of saponins database and assessing the quality of RPQ, which can be further extended to other ginseng products and functional foods.
Collapse
Affiliation(s)
- Li-Hua Chen
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - You-Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiu-Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying-Ping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, International Joint Research Center of Plants of the Genus Panax, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
23
|
Hyun SH, Bhilare KD, In G, Park CK, Kim JH. Effects of Panax ginseng and ginsenosides on oxidative stress and cardiovascular diseases: pharmacological and therapeutic roles. J Ginseng Res 2022; 46:33-38. [PMID: 35058725 PMCID: PMC8753520 DOI: 10.1016/j.jgr.2021.07.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023] Open
Abstract
Traditionally, Asian ginseng or Korean ginseng, Panax ginseng has long been used in Korea and China to treat various diseases. The main active components of Panax ginseng is ginsenoside, which is known to have various pharmacological treatment effects such as antioxidant, vascular easing, anti-allergic, anti-inflammatory, anti-diabetes, and anticancer. Most reactive oxygen species (ROS) cause chronic diseases such as myocardial symptoms and cause fatal oxidative damage to cell membrane lipids and proteins. Therefore, many studies that inhibit the production of oxidative stress have been conducted in various fields of physiology, pathophysiology, medicine and health, and disease. Recently, ginseng or ginsenosides have been known to act as antioxidants in vitro and in vivo results, which have a beneficial effect on preventing cardiovascular disease. The current review aims to provide mechanisms and inform precious information on the effects of ginseng and ginsenosides on the prevention of oxidative stress and cardiovascular disease in animals and clinical trials.
Collapse
Affiliation(s)
- Sun Hee Hyun
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Kiran D. Bhilare
- College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Jeollabuk-do, Republic of Korea
| | - Gyo In
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
- Corresponding author. College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeollabuk-do, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Jeollabuk-do, Republic of Korea
- Corresponding author. Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea.
| |
Collapse
|
24
|
Current Status and Research Trends of Panax Between 1900-2019: A Bibliometric Analysis. Chin J Integr Med 2021; 28:547-553. [PMID: 34921646 DOI: 10.1007/s11655-021-3315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate the current status and further development of Panax genus and 6 important individual species including P. notoginseng, P. quinquefolium, P. vietnamensis, P. japonicus, P. stipuleanatus and P. zingiberensis. METHODS The bibliometric analysis was based on the Web of Science core database platform from Thomson Reuters. Totally, 7,574 records of scientific research of Panax species published from 1900-2019 were analyzed. The statistical and visualization analysis was performed by CiteSpace and HistCite software. RESULTS The academic research of Panax species increase promptly. Plant science is the main research field while research and experimental medicine and agricultural engineering will be the further development tendency. Particularly, the discrimination research of P. notoginseng will be the research tendency among Panax species, especially diversity research. In addition, P. vietnamensis deserves more attention in the genus Panax. CONCLUSION This research provides a reference for further research of the genus and individual species.
Collapse
|
25
|
Dai C, Yusuf A, Sun H, Shu G, Deng X. A characterized saponin extract of Panax japonicus suppresses hepatocyte EMT and HSC activation in vitro and CCl 4-provoked liver fibrosis in mice: Roles of its modulatory effects on the Akt/GSK3β/Nrf2 cascade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153746. [PMID: 34634746 DOI: 10.1016/j.phymed.2021.153746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND PURPOSE Liver fibrosis constitutes a pathologic condition resulting in a series of advanced liver diseases. Oleanane-type saponins are distinctive active constituents in the medicinal plant Panax japonicus C. A. Mey (P. japonicus). Herein, we assessed protective effects of a characterized saponin extract of rhizomes of P. japonicus (SEPJ) on hepatocyte EMT and HSC activation in vitro and liver fibrosis in mice. We also investigated molecular mechanisms underlying the hepatoprotective activity of SEPJ. METHODS EMT of AML-12 hepatocytes was evaluated by observing morphology of cells and quantifying EMT marker proteins. Activation of LX-2 HSCs was assessed via scratch assay, transwell assay, and EdU-incorporation assay, and by quantifying activation marker proteins. Liver fibrosis in mice was evaluated by HE, SR, and Masson staining, and by measuring related serum indicators. Immunoblotting and RT-PCR were performed to study mechanisms underlying the action of SEPJ. RESULTS SEPJ inhibited TGF-β-induced EMT in AML-12 hepatocytes and activation of LX-2 HSCs. SEPJ elevated Akt phosphorylation at Ser473 and GSK3β phosphorylation at Ser9 in these cells, giving rise to a descent of the catalytic activity of GSK3β. These events increased levels of both total and nuclear Nrf2 protein and upregulated expressions of Nrf2-responsive antioxidative genes. In addition, enhanced phosphorylation of Akt and GSK3β acted upstream of SEPJ-mediated activation of Nrf2. Knockdown of Nrf2 or inhibition of Akt diminished the protective activity of SEPJ against TGF-β in both AML-12 and LX-2 cells. Our further in vivo experiments revealed that SEPJ imposed a considerable alleviation on CCl4-provoked mouse liver fibrosis. Moreover, hepatic Akt/GSK3β/Nrf2 cascade were potentiated by SEPJ. Taken together, our results unveiled that SEPJ exerted protective effects against fibrogenic cytokine TGF-β in vitro and ameliorated liver fibrosis in mice. Mechanistically, SEPJ regulated the Akt/GSK3β/Nrf2 signaling which subsequently enhanced intracellular antioxidative capacity. CONCLUSIONS SEPJ inhibits hepatocyte EMT and HSC activation in vitro and alleviates liver fibrosis in mice. Modulation of the Akt/GSK3β/Nrf2 cascade attributes to its hepatoprotective effects. Our findings support a possible application of SEPJ in the control of liver fibrosis.
Collapse
Affiliation(s)
- Chenxi Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Arslan Yusuf
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Natural Ingredients from Medicine Food Homology as Chemopreventive Reagents against Type 2 Diabetes Mellitus by Modulating Gut Microbiota Homoeostasis. Molecules 2021; 26:molecules26226934. [PMID: 34834027 PMCID: PMC8625827 DOI: 10.3390/molecules26226934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a noteworthy worldwide public health problem. It represents a complex metabolic disorder, mainly characterized as hyperglycemia and lipid dysfunction. The gut microbiota dysbiosis has been proposed to play a role in the development of diabetes. Recently, there has been considerable interest in the use of medicine food homology (MFH) and functional food herbs (FF) to ameliorate diabetes and lead to a natural and healthy life. Hence, this review compiles some reports and findings to demonstrate that the practical use of the MFH/FF can modulate the homoeostasis of gut microbiota, thereby ameliorating the development of T2DM. The results provided useful data to support further investigation of the functional basis and application of MFH/FF to treat T2DM through maintaining intestinal homeostasis.
Collapse
|
27
|
Tian L, Ou J, Sun X, Miao Y, Pei J, Zhao L, Huang L. The discovery of pivotal fungus and major determinant factor shaping soil microbial community composition associated with rot root of American ginseng. PLANT SIGNALING & BEHAVIOR 2021; 16:1952372. [PMID: 34304705 PMCID: PMC8525955 DOI: 10.1080/15592324.2021.1952372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
American ginseng, a valuable medicinal and food plant, is threatened by rot root, which affects its yield and quality. However, limited studies have investigated the changes in soil microbial community and physiochemical properties between healthy and rot root American ginseng. Here, high-throughput sequencing and soil physiochemical properties were used to characterize these changes. The soil physiochemical properties showed significance differences between the soil of healthy and rot root, in which the pH, available potassium, available phosphorus, soil organic carbon and soil organic matter were significantly higher in healthy root soil. Besides, fungal α-diversity was also higher in healthy root soil than that in rot root. Importantly, the dominant fungal genera differed between soils of healthy and rot root of American ginseng, and LEfSe further indicated that six fungal genera (Devriesia, Chrysosporium, Dichotomopilus, Pseudeurotium, Acaulium and Scedosporium) were significantly enriched in the soil of healthy plants, whereas six fungal genera (Gibellulopsis, Fusarium, Plectosphaerella, Tetracladium, Gibberella and Ilyonectri) were significantly enriched in the soil of rot root, suggesting that an increase in the relative abundance of these pathogenic fungi (Fusarium, Plectosphaerella, and Ilyonectri) may be associated with ginseng rot root. Notably, this study is the first to report that an increase in the relative abundances of Gibellulopsis and Gibberella in the rot root soil of American ginseng may be associated with the onset of rot root symptoms in this plant. The functional profile prediction showed that the there was a significantly Pathotrophs increase in the rot root soil compared with healthy root soil and Saprotrophs were more abundant in the healthy root soil. Finally, correlation analyses revealed that soil cation exchange capacity was an important factors affecting the composition of rot root of American ginseng soil microbial communities. This study not only used a new approach to explore the new fungal associated with rot root in American ginseng but also excavated the major soil physiochemical properties affecting the microbiome diversity, providing foundation for developing biocontrol strategies against rot root.
Collapse
Affiliation(s)
- Lixia Tian
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiarong Ou
- Tongren Municipal People’s Hospital, Tongren, China
| | - Xiao Sun
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yujing Miao
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jin Pei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lei Zhao
- Central Medical District of Chinese PLA General Hospital, Beijing, China
| | - Linfang Huang
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Yao Y, Bai L, Tian H, Wu X, Zhang N, Wu L, Jia Y, Ren X. A fluorinated chitosan-based QuEChERS method for simultaneous determination of 20 organophosphorus pesticide residues in ginseng using GC-MS/MS. Biomed Chromatogr 2021; 35:e5209. [PMID: 34216008 DOI: 10.1002/bmc.5209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 11/06/2022]
Abstract
In this study, a new fluorinated methacrylamide (MACF) was synthesized and evaluated as an adsorbent in the dispersive solid-phase extraction for the effective determination and extraction of 20 organophosphorus pesticides (OPPs) from ginseng samples using the QuEChERS (quick, easy, cheap, effective, rugged, safe) method coupled with GC-MS/MS. The properties of MACF were characterized using Fourier-transform infrared spectroscopy, elemental analysis, and high-resolution 19 F NMR. MACF, chitosan, primary and secondary amine, octadecylsilane, graphitized carbon black, Z-Sep, Z-Sep+ , and EMR-Lipid were compared in terms of extraction efficiency. The best results were obtained when MACF was used. Matrix-matched calibration was employed for quantification. All the OPPs exhibited good linearity (r2 > 0.9969) with the concentration at their respective concentration ranges. The limits of detection were 1.5-3.0 μg/kg, and the limits of quantification were 5.0-10.0 μg/kg. The trueness of the 20 pesticides at four spiked levels ranged from 86.1 to 111.1%, and the relative standard deviation was less than 11.3%. The modified QuEChERS method using MACF as the adsorbent was sensitive, reliable, and cost-effective and could be used for the determination of 20 OPP residues in ginseng.
Collapse
Affiliation(s)
- Yunheng Yao
- Product Quality Inspection Institute of Yanbian Korean Autonomous Prefecture, Yanji, China
| | - Longlv Bai
- Product Quality Inspection Institute of Yanbian Korean Autonomous Prefecture, Yanji, China
| | - Haifeng Tian
- Product Quality Inspection Institute of Yanbian Korean Autonomous Prefecture, Yanji, China
| | - Xinzi Wu
- Product Quality Inspection Institute of Yanbian Korean Autonomous Prefecture, Yanji, China
| | - Nianjie Zhang
- Product Quality Inspection Institute of Yanbian Korean Autonomous Prefecture, Yanji, China
| | - Lunpeng Wu
- National Ginseng Products Quality Supervision Inspection Center, Yanji, China
| | - Yifan Jia
- Polymer Materials and Engineering, College of Engineering, Yanbian University, Yanji, China
| | - Xiuli Ren
- Polymer Materials and Engineering, College of Engineering, Yanbian University, Yanji, China
| |
Collapse
|
29
|
Hou M, Wang R, Zhao S, Wang Z. Ginsenosides in Panax genus and their biosynthesis. Acta Pharm Sin B 2021; 11:1813-1834. [PMID: 34386322 PMCID: PMC8343117 DOI: 10.1016/j.apsb.2020.12.017] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides are a series of glycosylated triterpenoids which belong to protopanaxadiol (PPD)-, protopanaxatriol (PPT)-, ocotillol (OCT)- and oleanane (OA)-type saponins known as active compounds of Panax genus. They are accumulated in plant roots, stems, leaves, and flowers. The content and composition of ginsenosides are varied in different ginseng species, and in different parts of a certain plant. In this review, we summarized the representative saponins structures, their distributions and the contents in nearly 20 Panax species, and updated the biosynthetic pathways of ginsenosides focusing on enzymes responsible for structural diversified ginsenoside biosynthesis. We also emphasized the transcription factors in ginsenoside biosynthesis and non-coding RNAs in the growth of Panax genus plants, and highlighted the current three major biotechnological applications for ginsenosides production. This review covered advances in the past four decades, providing more clues for chemical discrimination and assessment on certain ginseng plants, new perspectives for rational evaluation and utilization of ginseng resource, and potential strategies for production of specific ginsenosides.
Collapse
Key Words
- ABA, abscisic acid
- ADP, adenosine diphosphate
- AtCPR (ATR), Arabidopsis thaliana cytochrome P450 reductase
- BARS, baruol synthase
- Biosynthetic pathway
- Biotechnological approach
- CAS, cycloartenol synthase
- CDP, cytidine diphosphate
- CPQ, cucurbitadienol synthase
- CYP, cytochrome P450
- DDS, dammarenediol synthase
- DM, dammarenediol-II
- DMAPP, dimethylallyl diphosphate
- FPP, farnesyl pyrophosphate
- FPPS (FPS), farnesyl diphosphate synthase
- GDP, guanosine diphosphate
- Ginsenoside
- HEJA, 2-hydroxyethyl jasmonate
- HMGR, HMG-CoA reductase
- IPP, isopentenyl diphosphate
- ITS, internal transcribed spacer
- JA, jasmonic acid
- JA-Ile, (+)-7-iso-jasmonoyl-l-isoleucine
- JAR, JA-amino acid synthetase
- JAZ, jasmonate ZIM-domain
- KcMS, Kandelia candel multifunctional triterpene synthases
- LAS, lanosterol synthase
- LUP, lupeol synthase
- MEP, methylerythritol phosphate
- MVA, mevalonate
- MVD, mevalonate diphosphate decarboxylase
- MeJA, methyl jasmonate
- NDP, nucleotide diphosphate
- Non-coding RNAs
- OA, oleanane or oleanic acid
- OAS, oleanolic acid synthase
- OCT, ocotillol
- OSC, oxidosqualene cyclase
- PPD, protopanaxadiol
- PPDS, PPD synthase
- PPT, protopanaxatriol
- PPTS, PPT synthase
- Panax species
- RNAi, RNA interference
- SA, salicylic acid
- SE (SQE), squalene epoxidase
- SPL, squamosa promoter-binding protein-like
- SS (SQS), squalene synthase
- SUS, sucrose synthase
- TDP, thymine diphosphate
- Transcription factors
- UDP, uridine diphosphate
- UGPase, UDP-glucose pyrophosphosphprylase
- UGT, UDP-dependent glycosyltransferase
- WGD, whole genome duplication
- α-AS, α-amyrin synthase
- β-AS, β-amyrin synthase
Collapse
Affiliation(s)
- Maoqi Hou
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rufeng Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
30
|
Akhter KF, Mumin MA, Lui EMK, Charpentier PA. Transdermal nanotherapeutics: Panax quinquefolium polysaccharide nanoparticles attenuate UVB-induced skin cancer. Int J Biol Macromol 2021; 181:221-231. [PMID: 33774070 DOI: 10.1016/j.ijbiomac.2021.03.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Ultraviolet (UV) radiation is known to cause an imbalance of the endogenous antioxidant system leading to an increase in skin cancer. Panax quinquefolium (American ginseng) polysaccharides (GPS) can inhibit such an imbalance due to its anti-oxidative and anti-inflammatory properties. The aim of this study was to investigate the therapeutic effects of topical formulations containing GPS nanoparticles (NPs) to inhibit UVB induced oxidative damage and skin cancer. Photoaging was conducted under UVB irradiation with a dose of 300 mJ/cm2 on SKH1 hairless mice. The treatment groups (n = 5) were as follows: sham control, native GPS, GPS NPs and fluorescent labeled GPS NPs. To compare the photoprotective performance, the topical formulations were applied before and after UVB induction (pre-treatment and post-treatment), followed by sacrificing the animals. Then, skin and blood samples were collected, and inflammatory cytokines production was measured using ELISA. Compared to the sham control, GPS NPs pre-treated mice skin and blood samples exhibited a significant lowering in all cytokine production. In addition, skin histology analysis showed that pre-treatment of GPS NPs prevented epidermal damage and proliferation. The results support that topical formulation containing GPS NPs can inhibit UVB induced oxidative damage and skin cancer.
Collapse
Affiliation(s)
- Kazi Farida Akhter
- Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Md Abdul Mumin
- Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Edmund M K Lui
- Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Paul A Charpentier
- Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Biomedical Engineering, University of Western Ontario, London, Ontario N6A 3K7, Canada.
| |
Collapse
|
31
|
Yang Y, Zhang Y, Zhang X, Yang L, Wang Z. Ginsenoside Contents in Ginseng: Quality by Design-Coupled Two-Dimensional Liquid Chromatography Technique. J Chromatogr Sci 2021; 60:164-172. [PMID: 34013323 DOI: 10.1093/chromsci/bmab063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 11/12/2022]
Abstract
Red ginseng and white ginseng, with different chemical constituents, exhibit different antioxidative, anticancer, antiasthmatic and immunomodulatory properties. The aim of this study was to determine the amount of ginsenoside contents (Rg1, Re, Rb1, Rb2, Rc, Rd and Ro) in red and white ginseng. A rapid and comprehensive method was developed using the quality-by-design (QbD) and heart-cutting two-dimensional liquid chromatography (2D-LC) techniques. The temperature (25°C), mobile phase constituent (0.1%H3PO4), flow rate (0.35 mL/min) and concentrations of the final (45%) and initial (19.5%) organic solvents were optimized to efficient chromatography-based isolation method. The gradient program was optimized by QbD Fusion AE system. A selective column (Thermo Acclaim RSLC Polar Advantage II 2.2 μm, 100 × 2.1 mm) was used for the studies. The ginsenoside Rb1, Rc and Ro exhibiting poor separation resolution were separated using the heart-cutting 2D-LC technique. The average Rb1, Rb2 and Rc contents in red ginseng were significantly higher than the average Rb1, Rb2 and Rc contents in white ginseng. Ginsenoside Ro can be potentially used as a marker to evaluate the qualities of white and red ginseng. This comprehensive and rapid method can be potentially used to screen the quality of the markers in the future.
Collapse
Affiliation(s)
- Yuangui Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanhai Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoqun Zhang
- Department of Pharmacy, Shaanxi Traditional Chinese Medicine Hospital, Xi'an 710003, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China
| |
Collapse
|
32
|
Comprehensive Investigation on Ginsenosides in Different Parts of a Garden-Cultivated Ginseng Root and Rhizome. Molecules 2021; 26:molecules26061696. [PMID: 33803599 PMCID: PMC8003075 DOI: 10.3390/molecules26061696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
Background: Ginseng is widely used as herb or food. Different parts of ginseng have diverse usages. However, the comprehensive analysis on the ginsenosides in different parts of ginseng root is scarce. Methods: An ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) combined with UNIFI informatics platform and ultra-high-performance liquid chromatography-charged aerosol detection (UHPLC-CAD) were employed to evaluate the different parts of cultivated ginseng root. Results: 105 ginsenosides including 16 new compounds were identified or tentatively characterized. 22 potential chemical markers were identified, 20, 17, and 19 for main root (MR) and fibrous root (FR), main root (MR) and branch root (BR), and main root (MR) and rhizome (RH), respectively. The relative contents of Re, Rb1, 20(R)-Rh1, Rd, and Rf were highest in FR. The relative content of Rg1 was highest in RH. The total relative content of pharmacopoeia indicators Rg1, Re, and Rb1 was highest in FR. Conclusion: The differences among these parts were the compositions and relative contents of ginsenosides. Under our research conditions, the peak area ratio of Rg1 and Re could distinguish the MR and FR samples. Fibrous roots showed rich ingredients and high ginsenosides contents which should be further utilized.
Collapse
|
33
|
Sicard J. Place du ginseng dans la lutte contre la fatigue liée au cancer. ACTUALITES PHARMACEUTIQUES 2021. [DOI: 10.1016/j.actpha.2020.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Huang LF, Tian LX, Li JH, Zhang L, Ahmad B. Discrimination of five species of Panax genus and their geographical origin using electronic tongue combined with chemometrics. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_80_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
Song H, Lee YY, Park J, Lee Y. Korean Red Ginseng suppresses bisphenol A-induced expression of cyclooxygenase-2 and cellular migration of A549 human lung cancer cell through inhibition of reactive oxygen species. J Ginseng Res 2021; 45:119-125. [PMID: 33437163 PMCID: PMC7790882 DOI: 10.1016/j.jgr.2020.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Korean Red Ginseng (KRG) is a natural product with antiinflammatory and anticarcinogenic effects. We have previously reported that the endocrine-disrupting compound bisphenol A (BPA)-induced cyclooxygenase-2 (COX-2) via nuclear translocation of nuclear factor-kappa B (NF-κB) and activation of mitogen-activated protein kinase and promoted the migration of A549. Here, in this study, we assessed the protective effect of KRG on the BPA-induced reactive oxygen species (ROS) and expression of COX-2 and matrix metalloproteinase-9 (MMP-9) in A549 cells. METHODS The effects of KRG on the upregulation of ROS production and COX-2 and MMP-9 expression by BPA were evaluated by fluorescence-activated cell sorting (FACs) analysis, quantitative reverse transcription polymerase chain reaction, and western blotting. Antimigration ability by KRG was evaluated by migration assay in A549 cells. RESULTS KRG significantly suppressed the BPA-induced COX-2, the activity of NF-κB, the production of ROS, and the migration of A549 cells. These effects led to the downregulation of the expression of MMP-9. CONCLUSIONS Overall, our results suggest that KRG exerts an antiinflammatory effect on BPA-treated A549 cells via the suppression of ROS and downregulation of NF-κB activation and COX-2 expression which leads to a decrease in cellular migration and MMP-9 expression. These results provide a new possible therapeutic application of KRG to protect BPA-induced possible inflammatory disorders.
Collapse
Affiliation(s)
- Heewon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Hyun SH, Ahn HY, Kim HJ, Kim SW, So SH, In G, Park CK, Han CK. Immuno-enhancement effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial. J Ginseng Res 2020; 45:191-198. [PMID: 33437171 PMCID: PMC7790881 DOI: 10.1016/j.jgr.2020.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023] Open
Abstract
Background Most clinical studies of immune responses activated by Korean Red Ginseng (KRG) have been conducted exclusively in patients. However, there is still a lack of clinical research on immune-boosting benefits of KRG for healthy persons. This study aims to confirm how KRG boosts the immune system of healthy subjects. Methods A total of 100 healthy adult subjects were randomly divided into two groups that took either a 2 g KRG tablet or a placebo per day for 8 weeks. The primary efficacy evaluation variables included changes in T cells, B cells, and white blood cells (WBCs) before and after eight weeks of KRG ingestion. Cytokines (TNF-α, INF-γ, IL-2 and IL-4), WBC differential count, and incidence of colds were measured in the secondary efficacy evaluation variables. Safety evaluation variables were used to identify changes in laboratory test results that incorporated adverse reactions, vital signs, hematological tests, blood chemistry tests, and urinalysis. Results Compared to the placebo group, the KRG intake group showed a significant increase in the number of T cells (CD3) and its subtypes (CD4 and CD8), B cells, and the WBC count before and after eight weeks of the intake. There were no clinically significant adverse reactions or other notable results in the safety evaluation factors observed. Conclusion This study has proven through its eight-week intake test and subsequent analysis that KRG boosts the immune system through an increase in T cells, B cells, and WBCs, and that it is safe according to the study's safety evaluation.
Collapse
Affiliation(s)
- Sun Hee Hyun
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Ha-Young Ahn
- Department of Obstetrics and Gynecology, Oriental Medical Hospital, Se-Myung University, Chungcheongbuk-do, Republic of Korea
| | - Hyeong-Jun Kim
- Department of Obstetrics and Gynecology, Oriental Medical Hospital, Se-Myung University, Chungcheongbuk-do, Republic of Korea
| | - Sung Won Kim
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Seung-Ho So
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Gyo In
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
37
|
Hyun SH, Kim SW, Seo HW, Youn SH, Kyung JS, Lee YY, In G, Park CK, Han CK. Physiological and pharmacological features of the non-saponin components in Korean Red Ginseng. J Ginseng Res 2020; 44:527-537. [PMID: 32617032 PMCID: PMC7322739 DOI: 10.1016/j.jgr.2020.01.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Panax ginseng, a medicinal plant, has been used as a blood-nourishing tonic for thousands of years in Asia, including Korea and China. P. ginseng exhibits adaptogen activity that maintains homeostasis by restoring general biological functions and non-specifically enhancing the body's resistance to external stress. Several P. ginseng effects have been reported. Korean Red Ginseng, in particular, has been reported in both basic and clinical studies to possess diverse effects such as enhanced immunity, fatigue relief, memory, blood circulation, and anti-oxidation. Moreover, it also protects against menopausal symptoms, cancer, cardiac diseases, and neurological disorders. The active components found in most Korean Red Ginseng varieties are known to include ginsenosides, polysaccharides, peptides, alkaloids, polyacetylene, and phenolic compounds. In this review, the identity and bioactivity of the non-saponin components of Korean Red Ginseng discovered to date are evaluated and the components are classified into polysaccharide and nitrogen compounds (protein, peptide, amino acid, nucleic acid, and alkaloid), as well as fat-soluble components such as polyacetylene, phenols, essential oils, and phytosterols. The distinct bioactivity of Korean Red Ginseng was found to originate from both saponin and non-saponin components rather than from only one or two specific components. Therefore, it is important to consider saponin and non-saponin elements together.
Collapse
Affiliation(s)
- Sun Hee Hyun
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Sung Won Kim
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Hwi Won Seo
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Soo Hyun Youn
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Jong Soo Kyung
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Yong Yook Lee
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Gyo In
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
38
|
Zhang H, Abid S, Ahn JC, Mathiyalagan R, Kim YJ, Yang DC, Wang Y. Characteristics of Panax ginseng Cultivars in Korea and China. Molecules 2020; 25:E2635. [PMID: 32517049 PMCID: PMC7321059 DOI: 10.3390/molecules25112635] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Ginseng (Panax ginseng Meyer) is one of the most important medicinal herbs in Asia. Its pharmacological activity comes from ginsenosides, and its roots are produced commercially for traditional and Oriental medicine. Though 17 Panax species are available around the world, there was a need to develop cultivars adapted to different climatic conditions and resistant to various diseases while still producing high-quality, high-yield roots. Thus, 12 and 9 commercial P. ginseng cultivars have been registered in South Korea and China, respectively. Those varieties show superiority to local landraces. For example, Chunpoong is more highly resistant to rusty rot disease than the local Jakyungjong landrace and has a good root shape; it is highly cultivated to produce red ginseng. The Chinese cultivar Jilin Huangguo Renshen has higher ginsenoside content than its local landraces. This review provides information about P. ginseng cultivars and offers directions for future research, such as intra- and interspecific hybridization.
Collapse
Affiliation(s)
- Hao Zhang
- State-Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China;
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Suleman Abid
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Jong Chan Ahn
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Yu-Jin Kim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Deok-Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Yingping Wang
- State-Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
39
|
Tian X, Lv S, Tian H, Wang R, Wang H. Development of an accurate and reliable DNA method for botanical origin authentication of ginseng food products. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Yang Y, Ju Z, Yang Y, Zhang Y, Yang L, Wang Z. Phytochemical analysis of Panax species: a review. J Ginseng Res 2020; 45:1-21. [PMID: 33437152 PMCID: PMC7790905 DOI: 10.1016/j.jgr.2019.12.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.
Collapse
Affiliation(s)
- Yuangui Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Zhengcai Ju
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Yingbo Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Yanhai Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China.,Shanghai R&D Center for Standardization of Chinese Medicines, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China.,Shanghai R&D Center for Standardization of Chinese Medicines, China
| |
Collapse
|
41
|
Retention behavior of ginsenosides in a sulfo-based high performance liquid chromatography column. J Chromatogr A 2020; 1610:460542. [PMID: 31558273 DOI: 10.1016/j.chroma.2019.460542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/22/2022]
Abstract
We herein report the use of a sulfo-based column and hydrophilic interaction chromatography (HILIC) to separate 14 ginsenosides, namely Rb1, Rb2, Rb3, Rc, Rd, Rf, Re, Rg1, Rg2, Rg3, Rh1, Rh2, F2, and C-K. In addition to its rapid and efficient ability to separate these ginsenosides, the sulfo-based column exhibited a good relationship between the ginsenoside capacity factor (k') and molecular weight (Mw) and a strict elution order corresponding to the polarity (P) of the ginsenosides, as confirmed by thin layer chromatography.
Collapse
|
42
|
In-depth profiling, characterization, and comparison of the ginsenosides among three different parts (the root, stem leaf, and flower bud) of Panax quinquefolius L. by ultra-high performance liquid chromatography/quadrupole-Orbitrap mass spectrometry. Anal Bioanal Chem 2019; 411:7817-7829. [DOI: 10.1007/s00216-019-02180-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
|
43
|
Zhang P, Zhang L, Shi J, Zhang N, Li Y, Wu T, Cheng Z. TLC-electrostatic field induced spray ionization-MS analysis of diverse structural skeletons and its coupling with TLC bioautography for characterization of lipase inhibitory components in American ginseng. J Pharm Biomed Anal 2019; 174:486-494. [DOI: 10.1016/j.jpba.2019.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
|
44
|
Liang J, Chen L, Guo YH, Zhang M, Gao Y. Simultaneous Determination and Analysis of Major Ginsenosides in Wild American Ginseng Grown in Tennessee. Chem Biodivers 2019; 16:e1900203. [PMID: 31197924 DOI: 10.1002/cbdv.201900203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Abstract
Ginsenosides are the major constituent that is responsible for the health effects of American ginseng. The ginsenoside profile of wild American ginseng is ultimately the result of germplasm, climate, geography, vegetation species, water, and soil conditions. This is the first report to address the ginsenoside profile of wild American ginseng grown in Tennessee (TN), the third leading state for production of wild American ginseng. In the present study, ten major ginsenosides in wild American ginseng roots grown in TN, including Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, and Rg3, were determined simultaneously. The chemotypic differences among TN wild ginseng, cultivated American ginseng, and Asian ginseng were assessed based on the widely used markers of ginsenoside profiling, including the top three ginsenosides, ratios of PPD/PPT, Rg1/Rb1, Rg1/Re, and Rb2/Rc. Our findings showed marked variation in ginsenoside profile for TN wild ginseng populations. Nevertheless, TN wild ginseng has significant higher ginsenoside content and more ginsenoside diversity than the cultivated ginseng. The total ginsenoside content in TN wild ginseng, as well as ginsenosides Rg1 and Re, increases with the age of the roots. Marked chemotypic differences between TN wild ginseng and cultivated American ginseng were observed based on the chemotypic markers. Surprisingly, we found that TN wild ginseng is close to Asian ginseng with regard to these characteristics in chemical composition. This study verified an accessible method to scientifically elucidate the difference in chemical constituents to distinguish wild from the cultivated American ginseng. This work is critical for the ecological and biological assessments of wild American ginseng so as to facilitate long-term sustainability of the wild population.
Collapse
Affiliation(s)
- Jian Liang
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA.,Research Center for Traditional Chinese Medicine Resourcing and Ethnic Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China.,Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Li Chen
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA.,Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, P. R. China
| | - Yu-Hang Guo
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA.,Faculty of International Education, Guangxi University of Chinese Medicine, Nanning, 530001, P. R. China
| | - Mengliang Zhang
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA.,Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Ying Gao
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| |
Collapse
|
45
|
Efficient separation determination of protopanaxatriol ginsenosides Rg1, Re, Rf, Rh1, Rg2 by HPLC. J Pharm Biomed Anal 2019; 170:48-53. [DOI: 10.1016/j.jpba.2019.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/28/2022]
|
46
|
Szczuka D, Nowak A, Zakłos-Szyda M, Kochan E, Szymańska G, Motyl I, Blasiak J. American Ginseng ( Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties. Nutrients 2019; 11:E1041. [PMID: 31075951 PMCID: PMC6567205 DOI: 10.3390/nu11051041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Panax quinquefolium L. (American Ginseng, AG) is an herb characteristic for regions of North America and Asia. Due to its beneficial properties it has been extensively investigated for decades. Nowadays, it is one of the most commonly applied medical herbs worldwide. Active compounds of AG are ginsenosides, saponins of the glycosides group that are abundant in roots, leaves, stem, and fruits of the plant. Ginsenosides are suggested to be primarily responsible for health-beneficial effects of AG. AG acts on the nervous system; it was reported to improve the cognitive function in a mouse model of Alzheimer's disease, display anxiolytic activity, and neuroprotective effects against neuronal damage resulting from ischemic stroke in animals, demonstrate anxiolytic activity, and induce neuroprotective effects against neuronal damage in ischemic stroke in animals. Administration of AG leads to inhibition of hypertrophy in heart failure by regulation of reactive oxygen species (ROS) in mice as well as depletion of cardiac contractile function in rats. It also has an anti-diabetic and anti-obesity potential as it increases insulin sensitivity and inhibits formation of adipose tissue. AG displays anti-cancer effect by induction of apoptosis of cancer cells and reducing local inflammation. It exerts antimicrobial effects against several pathogenic strains of bacteria. Therefore, AG presents a high potential to induce beneficial health effects in humans and should be further explored to formulate precise nutritional recommendations, as well as to assess its value in prevention and therapy of some disorders, including cancer.
Collapse
Affiliation(s)
- Daria Szczuka
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Małgorzata Zakłos-Szyda
- Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Ewa Kochan
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Grażyna Szymańska
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Ilona Motyl
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
47
|
Zhao N, Cheng M, Huang S, Liu D, Zhao Q, Bai Y, Zhang X. Various Multicharged Anions of Ginsenosides in Negative Electrospray Ionization with QTOF High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:403-418. [PMID: 30644055 DOI: 10.1007/s13361-018-2089-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
When characterizing components from ginseng, we found a vast number of multicharged anions presented in the liquid chromatography-mass spectrometry (LC-MS) chromatograms. The source of these anions is unclear yet, while ginsenosides, the major components of ginseng, are the main suspected type of molecules because of their sugar moiety. Our investigation using 14 pure ginsenosides affirmed that the multicharged anions were formed by ginsenosides rather than other types of ingredients in ginseng. Various anions could be observed for each ginsenoside. These anions contain ions ([M-2H]2-, [M+Adduct]2-), as well as those formed by polymerization of at least two ginsenosides, such as [nM-2H]2-, [nM-H+Adduct]2-, and [nM-3H]3-. The presence of so different types of ions from a ginsenoside explains the reason for the large number of anions in the LC-MS analysis of ginseng. We further found that formation of [nM-2H]2- ions was influenced by the number of sugar chains: ginsenosides containing two sugar chains produced all [nM-2H]2- ion types, whereas ginsenosides containing one sugar chain did not produce [2M-2H]2-. Thus, [2M-2H]2- and [3M-2H]2- can be utilized to rapidly identify monodesmosidic and/or bidesmosidic ginsenosides as joint diagnostic anions. The position of the glycosyl radical might be the key factor affecting the formation of multicharged multimer ions from monodesmosidic ginsenosides. Consequently, three groups of ginsenoside isomers were differentiated by characteristic [nM-2H]2- anions. Using concentration-dependent characteristics and collision-induced dissociation (CID), we confirmed that [nM-2H]2- ions are non-covalently bound multimers whose aggregation has marked distinction between monodesmosidic and bidesmosidic ginsenosides, accounting for the differentiated formation of [nM-2H]2- between them. Graphical Abstract.
Collapse
Affiliation(s)
- Nan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, People's Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, People's Republic of China
| | - Mengchun Cheng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, People's Republic of China
| | - Shuai Huang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, People's Republic of China
| | - Dan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, People's Republic of China
| | - Qiang Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, People's Republic of China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yunpeng Bai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, People's Republic of China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, People's Republic of China.
| |
Collapse
|
48
|
Setzer WN. The Phytochemistry of Cherokee Aromatic Medicinal Plants. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E121. [PMID: 30424560 PMCID: PMC6313439 DOI: 10.3390/medicines5040121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines.
Collapse
Affiliation(s)
- William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| |
Collapse
|
49
|
Shi X, Yang W, Huang Y, Hou J, Qiu S, Yao C, Feng Z, Wei W, Wu W, Guo D. Direct screening of malonylginsenosides from nine Ginseng extracts by an untargeted profiling strategy incorporating in-source collision-induced dissociation, mass tag, and neutral loss scan on a hybrid linear ion-trap/Orbitrap mass spectrometer coupled to ultra-high performance liquid chromatography. J Chromatogr A 2018; 1571:213-222. [DOI: 10.1016/j.chroma.2018.08.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/25/2018] [Accepted: 08/10/2018] [Indexed: 12/27/2022]
|
50
|
Liu H, Wang J, Liu M, Zhao H, Yaqoob S, Zheng M, Cai D, Liu J. Antiobesity Effects of Ginsenoside Rg1 on 3T3-L1 Preadipocytes and High Fat Diet-Induced Obese Mice Mediated by AMPK. Nutrients 2018; 10:E830. [PMID: 29954059 PMCID: PMC6073290 DOI: 10.3390/nu10070830] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 01/03/2023] Open
Abstract
Ginsenosides Rg1 is one of the major pharmacologically active saponins in ginseng, which as an antioxidant reduces oxidative damage in the liver and can also be used to prevent cardiovascular diseases and diabetes. However, there is no research targeting the effect of lipid metabolism in high-fat diet (HFD)-induced mice. In this study, we evaluated the anti-obesity effects of Rg1 in 3T3-L1 adipocyte cells and HFD-induced obese C57BL/6J mice. Administration of Rg1 to HFD-induced obese mice significantly decreased body weight, total cholesterol, and total triglyceride levels. In addition to effects in 3T3-L1 cells, Rg1 reduced the accumulation of lipid droplets in a dose-dependent manner. Furthermore, Rg1 exhibits an anti-adipogenic effect via regulation of the expression of the transcriptional factors and lipid metabolism-related genes in vivo and in vitro. We observed that Rg1 administration significantly increased the phosphorylation level of AMP-activated protein kinase (AMPK) in both epididymal white adipose tissue and 3T3-L1 cells. These results indicated that Rg1 works both in an anti-adipogenic and anti-obesity manner through inducing AMPK activation, inhibiting lipogenesis, and decreasing intracellular lipid content, adipocyte size, and adipose weight.
Collapse
Affiliation(s)
- Huimin Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China.
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jing Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Meihong Liu
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Hongyu Zhao
- Chinese Medicine Science Academy of Jilin Province, Changchun, Jilin 130118, China.
| | - Sanabil Yaqoob
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Mingzhu Zheng
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Dan Cai
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|