1
|
Wang M, Sarma M, Lounder SJ, Mondal AN, Muthusamy L, Koley G, Asatekin A, Rodrigues DF. Organic Fouling on Zwitterionic Amphiphilic Copolymers: Implications in Biofouling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30149-30160. [PMID: 40328482 DOI: 10.1021/acsami.5c07057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Zwitterionic amphiphilic copolymers (ZACs) have shown promise in resisting the attachment of oil emulsions, proteins, and organic biomolecules, suggesting their potential to prevent microbial adhesion as well. However, there is a lack of comprehensive studies exploring the role of ZACs in regulating cell deposition and subsequent biofilm formation on surfaces. Here, we fabricated ZAC coatings including poly(trifluoroethyl methacrylate-random-sulfobetaine methacrylate) (PTFEMA-r-SBMA or PT:SBMA), poly(trifluoroethyl methacrylate-random-2-methacryloyloxyethyl phosphorylcholine) (PTFEMA-r-MPC or PT:MPC), poly(methyl methacrylate-random-sulfobetaine methacrylate) (PMMA-r-SBMA or PM:SBMA), and poly(methyl methacrylate-random-2-methacryloyloxyethyl phosphorylcholine) (PMMA-r-MPC or PM:MPC). These coatings were assessed for their resistance to conditioning with organic molecules, attachment of Gram-positive, Bacillus subtilis TR11 (B. subtilis), and Gram-negative, Escherichia coli K12 (E. coli), bacteria, and subsequent biofilm formation. Surface characterizations highlighted the role of organic molecule conditioning from the media in altering the ZAC-coated surface properties, subsequently influencing bacterial deposition and biofilm growth. Cell deposition results revealed that all ZAC coatings displayed higher resistance to B. subtilis attachment compared to E. coli, indicating that bacterial adhesion to the surfaces depends on the type of bacteria. Among the tested ZAC coatings, PT: SBMA demonstrated the highest potential for resisting adhesion by both types of bacterial cells as well as exhibiting lower surface energy and lower roughness after organic medium conditioning. These findings contribute to enhancing our fundamental understanding of how zwitterionic materials control biofouling.
Collapse
Affiliation(s)
- Meng Wang
- Department of Civil & Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| | - Murchana Sarma
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Samuel J Lounder
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Abhishek Narayan Mondal
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Lavanya Muthusamy
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Goutam Koley
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Debora F Rodrigues
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
2
|
Talluri SNL, Rittschof D, Winter RM, Salem DR. Cyanobacteria fouling in photobioreactors: current status and future perspectives for prevention. BIOFOULING 2025; 41:443-469. [PMID: 40337854 DOI: 10.1080/08927014.2025.2499107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/02/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025]
Abstract
Cyanobacteria biomass sources have the potential to contribute to the replacement of fossil fuels and to the reduction in global warming by sustainable conversion of atmospheric CO2 into biofuels and high-value chemicals. Cyanobacteria cultivation in photobioreactors (PBRs) results in biofouling on their transparent inner walls, which reduces photosynthetic efficiency and productivity. While cyanobacteria biofouling in PBRs is recognized as a significant operating challenge, this review draws attention to the lack of studies on antifouling strategies for PBRs involving cyanobacteria and discusses several areas related to cyanobacteria fouling mechanisms on PBR materials, which require further investigation. These include an in-depth analysis of conditioning films, the role of pili and EPS in gliding and adhesion, potential revisions to existing theoretical models for predicting adhesion, and material properties that affect cyanobacteria adhesion. We use knowledge from marine, medical, and industrial biofouling management to help identify strategies to combat cyanobacteria fouling in PBRs, and we review the applicability of various bioinspired physical and chemical strategies, as well as genetic engineering approaches to prevent cyanobacteria biofilm formation in PBRs.
Collapse
Affiliation(s)
- Suvarna N L Talluri
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composites and Polymer Engineering Laboratory, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composite and Nanocomposite Advanced Manufacturing-Biomaterials Center (CNAM-Bio), South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Daniel Rittschof
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University Marine Laboratory, Duke University, Beaufort, North Carolina, USA
| | - Robb M Winter
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composites and Polymer Engineering Laboratory, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composites and Polymer Engineering Laboratory, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composite and Nanocomposite Advanced Manufacturing-Biomaterials Center (CNAM-Bio), South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| |
Collapse
|
3
|
Biswas T, Ahmed M, Mondal S. Mixed species biofilm: Structure, challenge and its intricate involvement in hospital associated infections. Microb Pathog 2024; 195:106866. [PMID: 39159773 DOI: 10.1016/j.micpath.2024.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Hospital associated infections or healthcare associated infections (HAIs) are a major threat to healthcare and medical management, mostly because of their recalcitrant nature. The primary cause of these HAIs is bacterial associations, especially the interspecies interactions. In interspecies interactions, more than one species co-exists in a common platform of extracellular polymeric substances (EPS), establishing a strong interspecies crosstalk and thereby lead to the formation of mixed species biofilms. In this process, the internal microenvironment and the surrounding EPS matrix of the biofilms ensure the protection of the microorganisms and allow them to survive under antagonistic conditions. The communications between the biofilm members as well as the interactions between the bacterial cells and the matrix polymers, also aid in the rigidity of the biofilm structure and allow the microorganisms to evade both the host immune response and a wide range of anti-microbials. Therefore, to design a treatment protocol for HAIs is difficult and it has become a growing point of concern. This review therefore first aims to discuss the role of microenvironment, molecular structure, cell-cell communication, and metabolism of mixed species biofilms in manifestation of HAIs. In addition, we discuss the electrochemical properties of mixed-species biofilms and their mechanism in developing drug resistance. Then we focus on the most dreaded bacterial HAI including oral and gut multi-species infections, catheter-associated urinary tract infections, surgical site infections, and ventilator-associated pneumonia. Further, we highlight the challenges to eradication of the mixed species biofilms and the current and prospective future strategies for the treatment of mixed species-associated HAI. Together, the review presents a comprehensive understanding of mixed species biofilm-mediated infections in clinical scenario, and summarizes the current challenge and prospect of therapeutic strategies against HAI.
Collapse
Affiliation(s)
| | - Mehnaz Ahmed
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
4
|
Yang N, Yang S. Neglected sludge solid phase in sludge pretreatment process: Physicochemical characterization and mechanism study of its role in anaerobic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173769. [PMID: 38848921 DOI: 10.1016/j.scitotenv.2024.173769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The low anaerobic digestion efficiency of the solid phase separated from pre-treated sludge indicates the need to explore other suitable resource utilization pathways for sludge solid phase. However, there is a lack of comprehensive and in-depth research on the physicochemical properties of sludge solid phase. This study comprehensively analyzes the characteristics of sludge solid phase and elucidates the mechanism of sludge solid phase in the anaerobic degradation of toxic wastewater. The results show that the surface free energy of sludge solid phase after different pre-treatments is mainly contributed by Lewis acid-base hydration free energy. The distribution of proteins on the surface of sludge solid phase plays a major role in the adhesion between sludge solid particles. Metal ions in the sludge solid phase are mainly present in the exchange state, followed by the carbonate state and the organics-bound state. The sludge solid phase obtained by sludge pH 12 + 150 °C treatment has the highest conductivity (1.36 mS/m) and capacitance (25.51 μF/g), mainly due to the presence of melanoidins in the sludge solid phase, which has similar semiquinone radicals to humic acids, thus increasing conductivity. The addition of sludge solid phase promotes an increase in cumulative methane production and rate of methane production. The sludge solid phase might play a role of an auxiliary carbon source acting as an adsorbent to buffer against toxicity inhibition and facilitate electron transfer. This study reveals the characteristics of sludge solid phase and its role in anaerobic digestion, providing theoretical guidance for finding suitable resource utilization pathways for sludge solid phase.
Collapse
Affiliation(s)
- Ning Yang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shucheng Yang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
Bao T, Wang P, Hu B, Jin Q, Zheng T, Li D. Adsorption and distribution of heavy metals in aquatic environments: The role of colloids and effects of environmental factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134725. [PMID: 38838528 DOI: 10.1016/j.jhazmat.2024.134725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
The study investigated the distributions of heavy metals (Cd, Cr, Cu, Mn, and Pb) between dissolved fraction (<0.7 µm) and particles (>0.7 µm) during the adsorption process. The dissolved fraction was further separated into truly dissolved (<3 kDa) and colloidal (3 kDa-0.7 µm) fractions. Significant metal adsorption occurred on the colloids, resulting in their aggregation into particles, which in turn influenced the particle adsorption kinetics. Colloids could either accelerate or inhibit the transformation of metal ions into particulates, depending on their stability. Competitive metals for colloids (Pb and Cr) were more susceptible to the effects of colloids than other elements. DOM was the predominant environmental factor influencing colloid behavior. The XDLVO theory showed that DOM enhanced the negative charge of colloids and made the colloid surface more hydrophilic, inhibiting the aggregation of colloids. DOM resulted in substantial increases in the concentrations of colloidal Pb and Cr from 0.31 μg/L and 4.58 μg/L to 20.52 μg/L and 43.51 μg/L, respectively, whereas the increment for less competitive metals (Cd and Mn) was smaller. These findings suggest that the distribution of heavy metals is influenced not only by adsorption from particles and ions but also by the complex dynamics of colloids.
Collapse
Affiliation(s)
- Tianli Bao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China.
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China.
| | - Qiutong Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China
| | - Tianming Zheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China
| | - Dingxin Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China
| |
Collapse
|
6
|
Shu H, Chen P, Yang R. Advances in Antibacterial Polymer Coatings Synthesized via Chemical Vapor Deposition. CHEM & BIO ENGINEERING 2024; 1:516-534. [PMID: 39974606 PMCID: PMC11835172 DOI: 10.1021/cbe.4c00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 02/21/2025]
Abstract
Biofouling is a major issue across various industries ranging from healthcare to the production of food and water and transportation. Biofouling is often induced or mediated by environmental microbes, such as bacteria. Therefore, developing antibacterial coatings has been an essential focus of recent research on functional polymer thin films. To achieve high film quality, vapor-phase techniques represent promising alternatives to traditional solution-based methods, especially for the design and synthesis of antibacterial polymer coatings, as they enable highly uniform, chemically precise, and substrate-independent coatings. This Perspective examines the potential of vapor-phase polymerization techniques to create novel antibacterial polymer coatings. Current advancements in the design of antifouling, bactericidal, antibiofilm, and multifunctional coatings via vapor-phase techniques are organized based on their action mechanisms and design principles. The opportunities and challenges associated with implementing vapor-phase polymerization for developing antibacterial coatings are highlighted.
Collapse
Affiliation(s)
- Haonian Shu
- Robert Frederick Smith School
of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Pengyu Chen
- Robert Frederick Smith School
of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rong Yang
- Robert Frederick Smith School
of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Rosales AB, Causserand C, Coetsier C, Formosa-Dague C. Probing the reduction of adhesion forces between biofilms and anti-biofouling filtration membrane surfaces using FluidFM technology. Colloids Surf B Biointerfaces 2024; 234:113701. [PMID: 38101142 DOI: 10.1016/j.colsurfb.2023.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Biofouling is a persistent problem in many sectors (healthcare, medicine, marine, and membrane filtration processes). To control the biofouling of surfaces, it is essential to overcome or reduce the adhesion forces between biofilms and surfaces. To access and understand the molecular basis of these interactions, atomic force microscopy (AFM) is a well-suited technology that can measure adhesion forces at the piconewton level. However, AFM-based existing methods only probe interactions between individual cells and surfaces, which is not representative of realistic conditions given that bacteria mainly exist in biofilms. We develop here an original method using FluidFM, a combination of AFM and microfluidics, to probe the adhesion forces between biofilms and filtration membranes modified with an anti-biofouling agent, vanillin. This strategy involves i) growing bacterial biofilms on micrometer-sized polystyrene beads, ii) aspirating these biofilm beads at the aperture of microfluidic cantilevers and iii) using them as probes in force spectroscopy experiments. The results obtained first showed that COOH-functionalized polystyrene beads are more suitable for bacterial growth, and that biofilms obtained after 3 h of incubation could be used with FluidFM. Then, biofilm-scale force spectroscopy experiments showed a significant decrease in adhesion forces, adhesion work, and adhesion events after membrane modification, demonstrating the potential of vanillin-coated membranes to reduce biofouling. In addition, the comparison between results at the individual cell and biofilm scales highlighted the complexity of polymeric matrix unbinding and/or unfolding in the biofilm, showing that individual cells behave differently from biofilms. Overall, this method could have implications in the fields of materials science, chemical engineering, health, and the environment.
Collapse
Affiliation(s)
- Abigail Burato Rosales
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Christel Causserand
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Clémence Coetsier
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France; Fédération de Recherche Fermat, CNRS, 31000 Toulouse, France.
| | - Cécile Formosa-Dague
- TBI, Université de Toulouse, INSA, INRAE, CNRS, 31400 Toulouse, France; Fédération de Recherche Fermat, CNRS, 31000 Toulouse, France.
| |
Collapse
|
8
|
Song G, Zhao S, Wang J, Zhao K, Zhao J, Liang H, Liu R, Li YY, Hu C, Qu J. Enzyme-enhanced acidogenic fermentation of waste activated sludge: Insights from sludge structure, interfaces, and functional microflora. WATER RESEARCH 2024; 249:120889. [PMID: 38043351 DOI: 10.1016/j.watres.2023.120889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Anaerobic fermentation is widely installed to recovery valuable resources and energy as CH4 from waste activated sludge (WAS), and its implementation in developing countries is largely restricted by the slow hydrolysis, poor efficiency, and complicate inert components therein. In this study, enzyme-enhanced fermentation was conducted to improve sludge solubilization from 283 to 7728 mg COD/L and to enhance volatile fatty acids (VFAs) yield by 58.6 % as compared to the conventional fermentation. The rapid release of organic carbon species, especially for tryptophan- and tyrosine-like compounds, to outer layer of extracellular polymeric substance (EPS) occurred to reduce the structural complexity and improve the sludge biodegradability towards VFAs production. Besides, upon enzymatic pretreatment the simultaneous exposure of hydrophilic and hydrophobic groups on sludge surfaces increased the interfacial hydrophilicity. By quantitative analysis via interfacial thermodynamics and XDLVO theory, it was confirmed that the stronger hydrophilic repulsion and energy barriers in particle interface enhanced interfacial mass transfer and reactions involved in acidogenic fermentation. Meanwhile, these effects stimulate the fermentation functional microflora and predominant microorganism, and the enrichment of the hydrolytic and acid-producing bacteria in metaphase and the proliferation of acetogenic bacteria, e.g., Rubrivivax (+9.4 %), in anaphase also benefits VFAs formation. This study is practically valuable to recovery valuable VFAs as carbon sources and platform chemicals from WAS and agriculture wastes.
Collapse
Affiliation(s)
- Ge Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaqi Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - He Liang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Tsikopoulos A, Tsikopoulos K, Meroni G, Drago L, Triaridis S, Papaioannidou P. Strategies for Inhibition of Biofilm Formation on Silicone Rubber Voice Prostheses: A Systematic Review. J Voice 2023:S0892-1997(23)00222-9. [PMID: 37625903 DOI: 10.1016/j.jvoice.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Lifetime elongation of the silicone voice rubber prostheses by inhibition of biofilm formation is a primary objective in voice restoration of laryngectomized patients. This systematic review sought to explore the existing strategies in this direction. MATERIALS We conducted a systematic search of both in vitro and in vivo literature published in PubMed, Scopus, and Cochrane Central Register of Controlled Trials, until December 31, 2022, for published and unpublished trials assessing the strategies for inhibiting biofilm formation on silicone rubber voice prostheses, and appraised quality assessment with the modified Consolidated Standards of Reporting Trials tool. We analyzed the infection prevention capacity of the included antibacterial and antifungal agents. RESULTS The qualitative synthesis showed that both surface modification methods and prophylactic treatment of silicone rubber voice prostheses present adequate antibiofilm activity. Of note, the majority of the suggested prosthetic surfaces were not chronically exposed to both human fluids and biofilm-forming microorganisms. CONCLUSION Various experimental methods provide promising antibiofilm activity and, thus, possible lifespan elongation of silicone rubber voice prostheses.
Collapse
Affiliation(s)
- Alexios Tsikopoulos
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Konstantinos Tsikopoulos
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gabriele Meroni
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Milan, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology & Microbiome, Department of Biomedical Sciences for Health, School of Medicine, University of Milan, Milan, Italy
| | - Stefanos Triaridis
- 1st Department of Otorhinolaryngology - Head and Neck Surgery, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paraskevi Papaioannidou
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Khan SA, Shakoor A. Recent Strategies and Future Recommendations for the Fabrication of Antimicrobial, Antibiofilm, and Antibiofouling Biomaterials. Int J Nanomedicine 2023; 18:3377-3405. [PMID: 37366489 PMCID: PMC10290865 DOI: 10.2147/ijn.s406078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023] Open
Abstract
Biomaterials and biomedical devices induced life-threatening bacterial infections and other biological adverse effects such as thrombosis and fibrosis have posed a significant threat to global healthcare. Bacterial infections and adverse biological effects are often caused by the formation of microbial biofilms and the adherence of various biomacromolecules, such as platelets, proteins, fibroblasts, and immune cells, to the surfaces of biomaterials and biomedical devices. Due to the programmed interconnected networking of bacteria in microbial biofilms, they are challenging to treat and can withstand several doses of antibiotics. Additionally, antibiotics can kill bacteria but do not prevent the adsorption of biomacromolecules from physiological fluids or implanting sites, which generates a conditioning layer that promotes bacteria's reattachment, development, and eventual biofilm formation. In these viewpoints, we highlighted the magnitude of biomaterials and biomedical device-induced infections, the role of biofilm formation, and biomacromolecule adhesion in human pathogenesis. We then discussed the solutions practiced in healthcare systems for curing biomaterials and biomedical device-induced infections and their limitations. Moreover, this review comprehensively elaborated on the recent advances in designing and fabricating biomaterials and biomedical devices with these three properties: antibacterial (bacterial killing), antibiofilm (biofilm inhibition/prevention), and antibiofouling (biofouling inhibition/prevention) against microbial species and against the adhesion of other biomacromolecules. Besides we also recommended potential directions for further investigations.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
11
|
Soriano-Jerez Y, García-Abad L, Cerón-García MDC, Gallardo-Rodríguez JJ, Bressy C, García-Camacho F, Molina-Grima E. Long-lasting biofouling formation on transparent fouling-release coatings for the construction of efficient closed photobioreactors. BIOFOULING 2023; 39:483-501. [PMID: 37394974 DOI: 10.1080/08927014.2023.2228208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
In order to build an efficient closed-photobioreactor (PBR) in which biofouling formation is avoided, a non-toxic coating with high transparency is required, which can be applied to the interior surface of the PBR walls. Nowadays, amphiphilic copolymers are being used to inhibit microorganism adhesion, so poly(dimethylsiloxane)-based coatings mixed with poly(ethylene glycol)-based copolymers could be a good option. The 7 poly(dimethylsiloxane)-based coatings tested in this work contained 4% w/w of poly(ethylene glycol)-based copolymers. All were a good alternative to glass because they presented lower cell adhesion. However, the DBE-311 copolymer proved the best option due to its very low cell adhesion and high transmittance. Furthermore, XDLVO theory indicates that these coatings should have no cell adhesion at time 0 since they create a very high-energy barrier that microalgae cells cannot overcome. Nevertheless, this theory also shows that their surface properties change over time, making cell adhesion possible on all coatings after 8 months of immersion. The theory is useful in explaining the interaction forces between the surface and microalgae cells at any moment in time, but it should be complemented with models to predict the conditioning film formation and the contribution of the PBR's fluid dynamics over time.
Collapse
Affiliation(s)
- Yolanda Soriano-Jerez
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - Lucía García-Abad
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | | | | | - Christine Bressy
- Laboratoire MAPIEM, U.R. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, La Valette-du-Var, France
| | - Francisco García-Camacho
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - Emilio Molina-Grima
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| |
Collapse
|
12
|
Martín-García M, Aguilera-Correa JJ, Arenas MÁ, García-Diego IM, Conde A, de Damborenea JJ, Esteban J. Differences in In Vitro Bacterial Adherence between Ti6Al4V and CoCrMo Alloys. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1505. [PMID: 36837133 PMCID: PMC9959577 DOI: 10.3390/ma16041505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Prosthetic joint infection is an uncommon entity, but it supposes high costs, both from the economic side to the health systems and from the emotional side of the patient. The evaluation of the bacterial adherence to different materials frequently involved in joint prostheses allows us to better understand the mechanisms underlying this and provide information for the future development of prevention strategies. This study evaluated the bacterial adherence of four different species (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa) on Ti6Al4V and CoCrMo. The topography, surface contact angles, and linear average roughness were measured in the samples from both alloys. The interaction with the surface of both alloys was significantly different, with the CoCrMo showing an aggregating effect on all the species, with additional anti-adherent activity in the case of Pseudomonas aeruginosa. The viability also changes, with a significant decrease (p < 0.05) in the CoCrMo alloy. In the case of S. epidermidis, the viability in the supernatant from the samples was different, too, with a decrease in the colony-forming units in the Ti6Al4V, which could be related to cation release from the surface. Beyond adhesion is a multifactorial and complex process, and considering that topography and wettability were similar, the chemical composition could play a main role in the different properties observed.
Collapse
Affiliation(s)
- Marta Martín-García
- Department of Clinical Microbiology, University Hospital Fundación Jiménez Díaz, IIS-FJD, 28040 Madrid, Spain
| | - John Jairo Aguilera-Correa
- Department of Clinical Microbiology, University Hospital Fundación Jiménez Díaz, IIS-FJD, 28040 Madrid, Spain
- CIBERINFEC—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Ángeles Arenas
- CIBERINFEC—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Surface Engineering Corrosion and Durability, National Centre for Metallurgical Research (CENIM-CSIC), 28040 Madrid, Spain
| | - Ignacio M. García-Diego
- Department of Surface Engineering Corrosion and Durability, National Centre for Metallurgical Research (CENIM-CSIC), 28040 Madrid, Spain
| | - Ana Conde
- CIBERINFEC—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Surface Engineering Corrosion and Durability, National Centre for Metallurgical Research (CENIM-CSIC), 28040 Madrid, Spain
| | - Juan José de Damborenea
- CIBERINFEC—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Surface Engineering Corrosion and Durability, National Centre for Metallurgical Research (CENIM-CSIC), 28040 Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, University Hospital Fundación Jiménez Díaz, IIS-FJD, 28040 Madrid, Spain
- CIBERINFEC—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Laible AR, Dinius A, Schrader M, Krull R, Kwade A, Briesen H, Schmideder S. Effects and interactions of metal oxides in microparticle-enhanced cultivation of filamentous microorganisms. Eng Life Sci 2022; 22:725-743. [PMID: 36514528 PMCID: PMC9731605 DOI: 10.1002/elsc.202100075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Filamentous microorganisms are used as molecular factories in industrial biotechnology. In 2007, a new approach to improve productivity in submerged cultivation was introduced: microparticle-enhanced cultivation (MPEC). Since then, numerous studies have investigated the influence of microparticles on the cultivation. Most studies considered MPEC a morphology engineering approach, in which altered morphology results in increased productivity. But sometimes similar morphological changes lead to decreased productivity, suggesting that this hypothesis is not a sufficient explanation for the effects of microparticles. Effects of surface chemistry on particles were paid little attention, as particles were often considered chemically-inert and bioinert. However, metal oxide particles strongly interact with their environment. This review links morphological, physical, and chemical properties of microparticles with effects on culture broth, filamentous morphology, and molecular biology. More precisely, surface chemistry effects of metal oxide particles lead to ion leaching, adsorption of enzymes, and generation of reactive oxygen species. Therefore, microparticles interfere with gene regulation, metabolism, and activity of enzymes. To enhance the understanding of microparticle-based morphology engineering, further interactions between particles and cells are elaborated. The presented description of phenomena occurring in MPEC eases the targeted choice of microparticles, and thus, contributes to improving the productivity of microbial cultivation technology.
Collapse
Affiliation(s)
- Andreas Reiner Laible
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| | - Anna Dinius
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Marcel Schrader
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Institute for Particle TechnologyTechnische Universität BraunschweigBraunschweigGermany
| | - Rainer Krull
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Arno Kwade
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Institute for Particle TechnologyTechnische Universität BraunschweigBraunschweigGermany
| | - Heiko Briesen
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| | - Stefan Schmideder
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| |
Collapse
|
14
|
Zhao Y, Zhu S, Fan X, Zhang X, Ren H, Huang H. Precise portrayal of microscopic processes of wastewater biofilm formation: Taking SiO 2 as the model carrier. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157776. [PMID: 35926593 DOI: 10.1016/j.scitotenv.2022.157776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Precise characterization of the microscopic processes of wastewater biofilm formation is essential for regulating biofilm behavior. Nevertheless, it remains a great challenge. This study investigated biofilm formation on SiO2 carriers under gradually increasing shear force combining the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory in a Couette-Taylor reactor, and precisely revealed the micro-interface interaction and species colonization during biofilm formation. The results indicated that bacterial reversible adhesion distance on SiO2 carrier surface was 3.06 ± 0.48 nm. Meanwhile, the secondary minimum of total XDLVO interaction energy could be used as a novel indicator to distinguish biofilm formation stages. The revealed biofilm formation stages were also confirmed by the electrochemical analysis. Additionally, the pioneer species that colonized at first were Comamonadaceae, Azospira, Flavobacterium and Azonexus, while keystone species such as Hydrogenophaga, AKYH767, Aquimonas and Ignavibacterium determined the stability of microbial community. In conclusion, this study provided a methodological example to study wastewater biofilm micro-interface behavior through the integration of an experimental platform as well as multiple monitoring and analysis methods, which opened up new perspectives for biofilm research and provided useful guidance for the regulation of biofilm-related treatment processes and new technology development.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shanshan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xuan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
15
|
Fathiah Mohamed Zuki, Pourzolfaghar H, Edyvean RGJ, Hernandez JE. Interpretation of Initial Adhesion of Pseudomonas putida on Hematite and Quartz Using Surface Thermodynamics, DLVO, and XDLVO Theories. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2022. [DOI: 10.3103/s1068375522050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Xie Q, Gu R, Lin D, Liu N, Qu R, Ge F. In Situ Assay of Interfacial Interaction between ZnO Nanoparticles and Live Cell Disturbed by Surfactants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13066-13075. [PMID: 36053113 DOI: 10.1021/acs.est.2c02935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interfacial interaction between pollutants and organisms is a critical process in controlling the environmental fates of pollutants; however, in situ assay of the interaction is still a great challenge. Here, in situ determination of dissociation constants (Kd) for ZnO nanoparticles (ZnO NPs) from live algal cells disturbed by different-charged surfactants was established using microscale thermophoresis (MST). Moreover, in situ measurement of the adhesion force between the ZnO NPs probe and live single cell was performed using an atomic force microscope (AFM). Results showed that the cationic cetyltrimethylammonium chloride (CTAC) and anionic sodium dodecylbenzenesulfonate (SDBS) increased but nonionic Triton X-100 (TX-100) decreased the adhesion of ZnO NPs on cells. However, the force signature exhibited a smooth single retracted peak at short distances in the SDBS- and TX-100-treated groups, distinguished from the "see-saw" pattern peak in the CTAC-treated groups. The extended Derjaguin-Landau-Verway-Overbeek (XDLVO) calculation further confirmed that SDBS and TX-100 mainly disturbed the short-range hydration on the NP-cell interface, while CTAC reduced the long-range electrostatic repulsion. Furthermore, an excellent linear correlation between Zn bioaccumulation and two parameters (Kd and adhesion force) indicated that NP-cell interfacial interactions affected Zn bioaccumulation. Thus, in situ assay provides a quantitative basis for the pollutant-organism interfacial interaction to evaluate the environmental fate and ecological risk of pollutants.
Collapse
Affiliation(s)
- Qiting Xie
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Ruimin Gu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Daohui Lin
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Ruohua Qu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
17
|
Jang MH, Kim MS, Han M, Kwak DH. Experimental application of a zero-point charge based on pH as a simple indicator of microplastic particle aggregation. CHEMOSPHERE 2022; 299:134388. [PMID: 35337824 DOI: 10.1016/j.chemosphere.2022.134388] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Micro/nanoplastics - a useful but threatening material - continuously require fundamental research on its behaviors and properties for aggregation. Zeta potential (ζ) has been using as an indicator to determine the optimal aggregation for particle removal in water treatment processes. In the field work, however, an alternative method for streamlining these tasks and reducing the variability in processing efficiency is necessary. To improve practical utility in the field work, this study aimed at investigating applicability of the zero-point charge (ZPC) of the isoelectric point (IEP; ψpI) as an alternative indicator for aggregation in place of ζ. For the purpose, this study conducted laboratory experiments and model simulations. The experiments measured ψpI of microplastics in a trivalent-electrolyte aqueous solution using various concentrations of polyaluminum chloride (PAC) for reproducing the behavior of microplastics in natural water environments. As a result, ψpI for polyethylene (PE) and polyvinylchloride (PVC) were found to be pH 6.59 and 6.43, respectively. The removal rates (r) depended on the aggregation at the initial pH and optimal PAC concentration. The experimental attachment efficiency (αE), 0.14 to 0.4, showed a good correlation of over 95% with r, 0.04 to 0.84, both based on the pH change and PAC concentration and differing slightly with the type and size of the plastic. The highest αE was achieved with the highest r when ψpI was close to zero in the pH range of 6-8 using the optimized PAC concentration. Based on the experimental results, the model confirmed the applicability of ψpI instead of ζ as an indicator of the aggregation by simulating αE based on ψpI and ionic strength, which are themselves based on the change in pH. Therefore, this study provides some insights into behaviors of microplastics by using the isoelectric point (IEP, ψpI) as an indicator of aggregation of microplastics in place of ζ. The IEP method is limited by initial pH, optimal dosage of coagulant, and type and size of microplastics, but it will increase practical utility in the field.
Collapse
Affiliation(s)
- Min-Ho Jang
- Department of Bio-Convergence Science, Jeonbuk National University, 567 Baekjedae-ro, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Mi-Sug Kim
- School of Environmental Science, Engineering, and Policy, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, United States
| | - Michelle Han
- B.A.,Neuroscience, Dana & Dornsife College of Letters, Arts and Sciences, University of Southern California, United States
| | - Dong-Heui Kwak
- Department of Bio-Convergence Science, Jeonbuk National University, 567 Baekjedae-ro, Jeonju, Jeonbuk, 54896, Republic of Korea; Department of Bio-Active Material Science, Jeonbuk National University, 567 Baekjedae-ro, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
18
|
Li Z, Zhou J, Yuan X, Xu Y, Xu D, Zhang D, Feng D, Wang F. Marine Biofilms with Significant Corrosion Inhibition Performance by Secreting Extracellular Polymeric Substances. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47272-47282. [PMID: 34570482 DOI: 10.1021/acsami.1c14746] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of environmentally friendly and sustainable corrosion protection technologies is a longstanding yet difficult problem, especially for the marine environment. The utilization of living biofilms isolated from local environments is an effective strategy for infrastructure protection. In this study, three aerobic marine bacteria, Tenacibaculum mesophilum D-6, Tenacibaculum litoreum W-4, and Bacillus sp. Y-6, with strong biofilm-forming abilities were isolated and evaluated for the corrosion protection of X80 carbon steel. The corrosion inhibitory effect of the bacteria was found to be closely related to their biofilm-forming abilities. This conclusion was corroborated by biofilm characterization, electrochemical tests, weight loss analysis, and corrosion product analysis. Moreover, secreted extracellular polymeric substances were identified to play significant roles in corrosion inhibition. Herein, we proposed a novel, eco-friendly, and cost-effective method for corrosion protection of carbon steels in the marine environment, providing guiding principles for identifying corrosion inhibitory bacteria from the local marine environment.
Collapse
Affiliation(s)
- Zhong Li
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Jianyuan Zhou
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Xinyi Yuan
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Yan Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Dawei Zhang
- BRI Southeast Asia Network for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Danqing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361000, China
| | - Fuhui Wang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
| |
Collapse
|
19
|
Kim MS. Modeling study on fate of micro/nano-plastics in micro/nano-hydrodynamic flow of freshwater. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126397. [PMID: 34153615 DOI: 10.1016/j.jhazmat.2021.126397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
As the risk of micro/nano-plastics (MPs/NPs) on marine ecosystems is reported, there is a growing interest in behaviors of MPs/NPs in freshwater. Thus, this study aims at developing a plastics fate model linked with a flocculation kinetics model, PsFM/FKM, to understand the vertical behaviors of MPs/NPs in freshwater. Based on the Population Balance approach, the model numerically predicts vertical transport (sedimentation, resuspension, and burial) and transformation (degradation and aggregation) in water and sediments. This study performed model simulations to validate model accuracy and precision as estimating temporal changes in MPs/NPs concentration in water and sediments, based on the aggregation process to form homo-aggregates between plastics and hetero-aggregates between plastics and SS in water. It confirmed that a significant parameter of the aggregation was collision frequency in water and that attachment efficiency influenced the aggregation rate occurring in the collision. The model emphasized the importance of attachment efficiency with the size-dependence and confirmed that the formed hetero-aggregates promoted the sedimentation process to settle down to the sediments. The model validity was demonstrated by comparing experiments and simulations for attachment efficiency. A further study improves the model and extends its applicability to various types of MPs/NPs, SS, microalgae, and metal hydrate salts.
Collapse
Affiliation(s)
- Mi-Sug Kim
- Dept. of Environmental Engineering, Mokpo National University, 1666, Yeongsan-ro, Cheonggye-myeon, Muan-gun, Jeollanam-do 58554, Republic of Korea.
| |
Collapse
|
20
|
Abstract
In view of high energy cost and water consumption in microalgae cultivation, microalgal-biofilm-based cultivation system has been advocated as a solution toward a more sustainable and resource friendlier system for microalgal biomass production. Algal-derived extracellular polymeric substances (EPS) form cohesive network to interconnect the cells and substrates; however, their interactions within the biofilm are poorly understood. This scenario impedes the biofilm process development toward resource recovery. Herein, this review elucidates on various biofilm cultivation modes and contribution of EPS toward biofilm adhesion. Immobilized microalgae can be envisioned by the colloid interactions in terms of a balance of both dispersive and polar interactions among three interfaces (cells, mediums and substrates). Last portion of this review is dedicated to the future perspectives and challenges on the EPS; with regard to the biopolymers extraction, biopolymers’ functional description and cross-referencing between model biofilms and full-scale biofilm systems are evaluated. This review will serve as an informative reference for readers having interest in microalgal biofilm phenomenon by incorporating the three main players in attached cultivation systems: microalgae, EPS and supporting materials. The ability to mass produce these miniature cellular biochemical factories via immobilized biofilm technology will lay the groundwork for a more sustainable and feasible production.
Collapse
Affiliation(s)
- Yi Tong Cheah
- School of Chemical Engineering, Engineering Campus, University of Science Malaysia, Nibong Tebal, Penang, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Engineering Campus, University of Science Malaysia, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
21
|
Kalil MA, Baumgartner NR, Issa MW, Ryan SD, Wirth CL. Influence of PEG on the clustering of active Janus colloids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Ranjbaran M, Carciofi BAM, Datta AK. Engineering modeling frameworks for microbial food safety at various scales. Compr Rev Food Sci Food Saf 2021; 20:4213-4249. [PMID: 34486219 DOI: 10.1111/1541-4337.12818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/25/2021] [Indexed: 11/27/2022]
Abstract
The landscape of mathematical model-based understanding of microbial food safety is wide and deep, covering interdisciplinary fields of food science, microbiology, physics, and engineering. With rapidly growing interest in such model-based approaches that increasingly include more fundamental mechanisms of microbial processes, there is a need to build a general framework that steers this evolutionary process by synthesizing literature spread over many disciplines. The framework proposed here shows four interconnected, complementary levels of microbial food processes covering sub-cellular scale, microbial population scale, food scale, and human population scale (risk). A continuum of completely mechanistic to completely empirical models, widely-used and emerging, are integrated into the framework; well-known predictive microbiology modeling being a part of this spectrum. The framework emphasizes fundamentals-based approaches that should get enriched over time, such as the basic building blocks of microbial population scale processes (attachment, migration, growth, death/inactivation and communication) and of food processes (e.g., heat and moisture transfer). A spectrum of models are included, for example, microbial population modeling covers traditional predictive microbiology models to individual-based models and cellular automata. The models are shown in sufficient quantitative detail to make obvious their coupling, or their integration over various levels. Guidelines to combine sub-processes over various spatial and time scales into a complete interdisciplinary and multiphysics model (i.e., a system) are provided, covering microbial growth/inactivation/transport and physical processes such as fluid flow and heat transfer. As food safety becomes increasingly predictive at various scales, this synthesis should provide its roadmap. This big picture and framework should be futuristic in driving novel research and educational approaches.
Collapse
Affiliation(s)
- Mohsen Ranjbaran
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Bruno A M Carciofi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ashim K Datta
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Bae M, Oh JK, Liu S, Nagabandi N, Yegin Y, DeFlorio W, Cisneros-Zevallos L, Scholar EMA. Nanotoxicity of 2D Molybdenum Disulfide, MoS 2, Nanosheets on Beneficial Soil Bacteria, Bacillus cereus and Pseudomonas aeruginosa. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1453. [PMID: 34072663 PMCID: PMC8229097 DOI: 10.3390/nano11061453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Concerns arising from accidental and occasional releases of novel industrial nanomaterials to the environment and waterbodies are rapidly increasing as the production and utilization levels of nanomaterials increase every day. In particular, two-dimensional nanosheets are one of the most significant emerging classes of nanomaterials used or considered for use in numerous applications and devices. This study deals with the interactions between 2D molybdenum disulfide (MoS2) nanosheets and beneficial soil bacteria. It was found that the log-reduction in the survival of Gram-positive Bacillus cereus was 2.8 (99.83%) and 4.9 (99.9988%) upon exposure to 16.0 mg/mL bulk MoS2 (macroscale) and 2D MoS2 nanosheets (nanoscale), respectively. For the case of Gram-negative Pseudomonas aeruginosa, the log-reduction values in bacterial survival were 1.9 (98.60%) and 5.4 (99.9996%) for the same concentration of bulk MoS2 and MoS2 nanosheets, respectively. Based on these findings, it is important to consider the potential toxicity of MoS2 nanosheets on beneficial soil bacteria responsible for nitrate reduction and nitrogen fixation, soil formation, decomposition of dead and decayed natural materials, and transformation of toxic compounds into nontoxic compounds to adequately assess the environmental impact of 2D nanosheets and nanomaterials.
Collapse
Affiliation(s)
- Michael Bae
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Korea;
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Nirup Nagabandi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Yagmur Yegin
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - William DeFlorio
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Luis Cisneros-Zevallos
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA;
- Department of Horticultural Science, Texas A&M University, College Station, TX 77843, USA
| | - Ethan M. A. Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
24
|
Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183597. [PMID: 33652005 DOI: 10.1016/j.bbamem.2021.183597] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/17/2023]
Abstract
This review summarizes the theory of zeta potential (ZP) and the most relevant data about how it has been used for studying bacteria. We have especially focused on the discovery and characterization of novel antimicrobial compounds. The ZP technique may be considered an indirect tool to estimate the surface potential of bacteria, a physical characteristic that is key to maintaining optimal cell function. For this reason, targeting the bacterial surface is of paramount interest in the development of new antimicrobials. Surface-acting agents have been found to display a remarkable bactericidal effect and have simultaneously revealed a low tendency to trigger resistance. Changes in the bacterial surface as a result of various processes can also be followed by ZP measurements. However, due to the complexity of the bacterial surface, some considerations regarding the assessment of ZP must first be taken into account. Evidence on the application of ZP measurements to the characterization of bacteria and biofilm formation is presented next. We finally discuss the feasibility of using the ZP technique to assess antimicrobial-induced changes in the bacterial surface. Among these changes are those related to the interaction of the agent with different components of the cell envelope, membrane permeabilization, and loss of viability.
Collapse
|
25
|
Eskhan AO, Abu-Lail NI. Force-Averaging DLVO Model Predictions of the Adhesion Strengths Quantified for Pathogenic Listeria monocytogenes EGDe Grown under Variable pH Stresses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8947-8964. [PMID: 32633976 DOI: 10.1021/acs.langmuir.0c01500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The roles of the bacterial surface biopolymers of pathogenic Listeria monocytogenes EGDe grown under variable pH conditions in governing their adhesion to a model surface of silicon nitride were investigated using atomic force microscopy under water. Our results indicated that the adhesion forces were the highest for cells cultured in media adjusted to pH 7 followed by 1.39, 1.49, 1.57, and 2.18-fold reductions at pH 6, 8, 9, and 5, respectively. Adhesion energies followed the same trends with 1.35, 1.67, 2.20, and 2.79-fold reductions in energies at pH 6, 8, 9, and 5, respectively, compared to the energy measured at pH 7. Furthermore, the structural properties of the bacterial surface biopolymer brush represented by the biopolymer brush thickness (Lo) and the molecular density (Γ) were determined by fitting a steric model of repulsion to the approach force-distance data. The Lo values followed the same trends as adhesion forces and energies, with thickness being highest at pH 7 followed by 1.82, 2.99, 3.11, and 4.66-fold reductions at pH 6, 8, 9, and 5, respectively. Γ was the highest at pH 5 and was followed by 1.26, 1.27, 1.70, and 2.82-fold reductions at pH 8, 9, 6, and 7, respectively. Our results indicated that bacterial adhesion forces and energies increased linearly with the product of Lo and Γ representing the number of biopolymers per unit length of the bacterial surface. To predict the adhesion forces and energies measured, a force-averaging model of the soft-particle analysis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used. In addition to the standard parameters accounted for in the soft-particle analysis of the DLVO theory such as surface potential, hydrophobicity, and size, this averaging model incorporates in it structural bacterial parameters such as Lo and Γ as well as a surface coverage factor (ϕ) that represents the fraction of the bacterial surface covered by biopolymers. When the soft-particle analysis of DLVO was considered, repulsive hydrogen bond strengths were predicted at close distances of approach (<0.3 nm). In comparison, the force-averaging model predicted that attractive hydrogen bonds dominate the bacterial adhesion strengths quantified. The highest adhesion quantified for cells grown at pH 7 was related to longer and more spaced biopolymers, higher contents of cellular carbohydrates, and more hydrophilic biopolymers, each of which contributes to higher possibilities for hydrogen bonding formation. These results are significant in designing new strategies that aim at controlling bacterial adhesion to surfaces.
Collapse
Affiliation(s)
- Asma O Eskhan
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Nehal I Abu-Lail
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, United States
| |
Collapse
|
26
|
Kim MS, Han M, Kim TI, Lee JW, Kwak DH. Effect of nanobubbles for improvement of water quality in freshwater: Flotation model simulation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, Qiu J, Guan X, Huang T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front Microbiol 2020; 11:928. [PMID: 32508772 PMCID: PMC7253578 DOI: 10.3389/fmicb.2020.00928] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilms are complex surface attached communities of bacteria held together by self-produced polymer matrixs mainly composed of polysaccharides, secreted proteins, and extracellular DNAs. Bacterial biofilm formation is a complex process and can be described in five main phases: (i) reversible attachment phase, where bacteria non-specifically attach to surfaces; (ii) irreversible attachment phase, which involves interaction between bacterial cells and a surface using bacterial adhesins such as fimbriae and lipopolysaccharide (LPS); (iii) production of extracellular polymeric substances (EPS) by the resident bacterial cells; (iv) biofilm maturation phase, in which bacterial cells synthesize and release signaling molecules to sense the presence of each other, conducing to the formation of microcolony and maturation of biofilms; and (v) dispersal/detachment phase, where the bacterial cells depart biofilms and comeback to independent planktonic lifestyle. Biofilm formation is detrimental in healthcare, drinking water distribution systems, food, and marine industries, etc. As a result, current studies have been focused toward control and prevention of biofilms. In an effort to get rid of harmful biofilms, various techniques and approaches have been employed that interfere with bacterial attachment, bacterial communication systems (quorum sensing, QS), and biofilm matrixs. Biofilms, however, also offer beneficial roles in a variety of fields including applications in plant protection, bioremediation, wastewater treatment, and corrosion inhibition amongst others. Development of beneficial biofilms can be promoted through manipulation of adhesion surfaces, QS and environmental conditions. This review describes the events involved in bacterial biofilm formation, lists the negative and positive aspects associated with bacterial biofilms, elaborates the main strategies currently used to regulate establishment of harmful bacterial biofilms as well as certain strategies employed to encourage formation of beneficial bacterial biofilms, and highlights the future perspectives of bacterial biofilms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection & International College, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
28
|
Horká M, Šalplachta J, Karásek P, Ru̇žička F, Roth M. Online Concentration of Bacteria from Tens of Microliter Sample Volumes in Roughened Fused Silica Capillary with Subsequent Analysis by Capillary Electrophoresis and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. ACS Infect Dis 2020; 6:355-365. [PMID: 31887008 DOI: 10.1021/acsinfecdis.9b00200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study presents a timely, reliable, and sensitive method for identification of pathogenic bacteria in clinical samples based on a combination of capillary electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In this respect, a part of a single-piece fused silica capillary was etched with supercritical water with the aim of using it for static or dynamic cell-surface adhesion from tens of microliter sample volumes. The conditions for this procedure were optimized. Adhered cells of Staphylococcus aureus (methicillin-susceptible or methicillin-resistant) and of Pseudomonas aeruginosa were desorbed and preconcentrated from the rough part of the capillary surface using transient isotachophoretic stacking from a high conductivity model matrix. The charged cells were swep and separated again in micellar electrokinetic chromatography using a nonionogenic surfactant. Static adhesion of the cells onto the roughened part of the capillary is certainly volumetric limited. Dynamic adhesion allows the concentration of bacteria from 100 μL volumes of physiological saline solution, bovine serum, or human blood with the limits of detection at 1.8 × 102, 1.7 × 103, and 1.0 × 103 cells mL-1, respectively. The limits of detection were the same for all three examined bacterial strains. The recovery of the method was about 83% and it was independent of the sample matrix. A combination of capillary electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry required at least 4 × 103 cells mL-1 to obtain reliable results. The calibration plots were linear (R2 = 0.99) and the relative standard deviations of the peak area were at most 2.2%. The adhered bacteria, either individual or in a mixture, were online analyzed by micellar electrokinetic chromatography and then collected from the capillary and off-line analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry without interfering matrix components.
Collapse
Affiliation(s)
- Marie Horká
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| | - Jiří Šalplachta
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| | - Pavel Karásek
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| | - Filip Ru̇žička
- The Department of Microbiology, Faculty of Medicine, Masaryk University and St. Anne’s University Hospital, Brno, Pekařská 53, 602 00 Brno, Czech Republic
| | - Michal Roth
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| |
Collapse
|
29
|
Deschênes L, Ells T. Bacteria-nanoparticle interactions in the context of nanofouling. Adv Colloid Interface Sci 2020; 277:102106. [PMID: 31981890 DOI: 10.1016/j.cis.2020.102106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/15/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The attachment of microbial communities to surfaces is a well-known problem recognized to be involved in a variety of critical issues in the sectors of food processing, chronic wounds, infection from implants, clogging of membranes and corrosion of equipment. Considering the importance of the detrimental impact of biofouling, it has received much attention in the scientific community and from concerned stakeholders. With the development of nanotechnology and the nowadays widespread use of engineered nanoparticles (ENPs), concerns have been raised regarding their fate in terrestrial and aquatic environments. Safety aspects and public health issues are critical in the management of handling nanomaterials and their nanowastes. The interactions of various types of nanoparticles (NPs) with planktonic bacteria have also received attention due to their antimicrobial properties. However, their behavior in regard to biofilms is not well understood although, in the environment, most of the bacteria prefer living in sessile communities. The question appears relevant considering the need to build knowledge on the fate of nanoparticles and the fact that no one can exclude the risk of accumulation of nanoparticles in biofilms and on surfaces leading to a form of nanofouling involving both engineered nanoparticles (ENPs) and nanoplastics. The present analysis of recent research accounts allows in identifying that (1) research activities related to water remediation systems have been mostly oriented on the impact of NPs on pre-existing biofilms, (2) experimental designs are restricted to few scenarios of exposure, usually limited to relative short-time periods although nanofouling could favour the development of multi-resistant bacterial species through sub-lethal exposures over prolong periods of time (3) nanofouling in other systems in which biofilms develop remains to be addressed, and (4) new research directions are required for investigating the mechanisms involved and the subsequent impact of nanofouling on bacterial consortium responses encountered in a variety of environments such as those prevailing in food production/processing settings. Finally, this review aims at providing recent information and insights on nanoparticle-bacterial interactions in the context of biofilms in order to supply an updated outlook of research perspectives that could help establish the framework for production, use and fate of nanomaterials as well as future research directions.
Collapse
Affiliation(s)
- Louise Deschênes
- Saint-Hyacinthe Research and Development Centre, 3600 Casavant Blvd West, Saint-Hyacinthe, QC J2S 8E3, Canada.
| | - Timothy Ells
- Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5, Canada
| |
Collapse
|
30
|
Pacha-Olivenza MÁ, Rodríguez-Cano A, González-Martín ML, Gallardo-Moreno AM. Kinetic of Adhesion of S. epidermidis with Different EPS Production on Ti6Al4V Surfaces. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1437806. [PMID: 31915679 PMCID: PMC6930745 DOI: 10.1155/2019/1437806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022]
Abstract
Controlling initial bacterial adhesion is essential to prevent biofilm formation and implant-related infection. The search for surface coatings that prevent initial adhesion is a powerful strategy to obtain implants that are more resistant to infection. Tracking the progression of adhesion on surfaces from the beginning of the interaction between bacteria and the surface provides a deeper understanding of the initial adhesion behavior. To this purpose, we have studied the progression over time of bacterial adhesion from a laminar flow of a bacterial suspension, using a modified Robbins device (MRD). Comparing with other laminar flow devices, such as the parallel plate flow chamber, MRD allows the use of diverse substrata under the same controlled flow conditions simultaneously. Two different surfaces of Ti6Al4V and two strains of Staphylococcus epidermidis with different exopolymer production were tested. In addition, the modified Robbins device was examined for its convenience and suitability for the purpose of this study. Results were analyzed according to a pseudofirst order kinetic. The values of the parameters obtained from this model make it possible to discriminate the adhesive behavior of surfaces and bacteria. One of the fitting parameters depends on the bacterial strain and the other only on the surface properties of the substrate.
Collapse
Affiliation(s)
- Miguel Ángel Pacha-Olivenza
- Department of Biomedical Sciences, Faculty of Medicine, University of Extremadura, Avda de Elvas s/n, Badajoz 06006, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
- University Institute of Biosanitary Research of Extremadura (INUBE), Badajoz 06006, Spain
| | - Abraham Rodríguez-Cano
- Department of Applied Physics, Faculty of Science, University of Extremadura, Avda de Elvas s/n, Badajoz 06006, Spain
| | - M. Luisa González-Martín
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
- University Institute of Biosanitary Research of Extremadura (INUBE), Badajoz 06006, Spain
- Department of Applied Physics, Faculty of Science, University of Extremadura, Avda de Elvas s/n, Badajoz 06006, Spain
| | - Amparo M. Gallardo-Moreno
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
- University Institute of Biosanitary Research of Extremadura (INUBE), Badajoz 06006, Spain
- Department of Applied Physics, Faculty of Science, University of Extremadura, Avda de Elvas s/n, Badajoz 06006, Spain
| |
Collapse
|
31
|
Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 2019; 16:397-409. [PMID: 29720707 DOI: 10.1038/s41579-018-0019-y] [Citation(s) in RCA: 1235] [Impact Index Per Article: 205.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Medical device-associated infections account for a large proportion of hospital-acquired infections. A variety of opportunistic pathogens can cause implant infections, depending on the type of the implant and on the anatomical site of implantation. The success of these versatile pathogens depends on rapid adhesion to virtually all biomaterial surfaces and survival in the hostile host environment. Biofilm formation on implant surfaces shelters the bacteria and encourages persistence of infection. Furthermore, implant-infecting bacteria can elude innate and adaptive host defences as well as biocides and antibiotic chemotherapies. In this Review, we explore the fundamental pathogenic mechanisms underlying implant infections, highlighting orthopaedic implants and Staphylococcus aureus as a prime example, and discuss innovative targets for preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy. .,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
32
|
Jonáš A, Kochanczyk M, Ramirez AD, Speidel M, Florin EL. Mechanical Contact Spectroscopy: Characterizing Nanoscale Adhesive Contacts via Thermal Forces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5809-5820. [PMID: 30965006 DOI: 10.1021/acs.langmuir.8b04074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The adhesion of micro- and nanoparticles to solid substrates immersed in liquids is a problem of great scientific and technological importance. However, the quantitative characterization of such nanoscale adhesive contacts without rupturing them still presents a major experimental challenge. In this article, we introduce mechanical contact spectroscopy (MCS), an experimental technique for the nondestructive probing of particle adhesion in liquid environments. With MCS, the strength of adhesive contacts is inferred from residual position fluctuations of adherent particles excited by thermal forces. In particular, the strength of adhesion is correlated with the standard deviation of the particle lateral position x, with smaller position standard deviations [Formula: see text] indicating higher adhesive strength. For a given combination of particles, substrate, and immersion medium, the adhesion is characterized by the mechanical contact spectrum, which is a histogram of ξ values obtained from tracking an ensemble of adherent particles. Because the energy of thermal excitation at room temperature is very small in comparison to the typical total energy of adhesive contacts, the studied contacts remain in equilibrium during the measurement. Using MCS, we study the adhesion of micrometer-sized particles to planar solid substrates under a wide range of environmental conditions, including liquid immersion media of varying ionic strength and adhesion substrates with different chemical functionality of their surfaces. These experiments provide evidence that MCS is capable of reproducibly detecting minute changes in the particle-substrate work of adhesion while at the same time covering the range of adhesive contact strength relevant in the context of surface chemistry, biology, and microfabrication.
Collapse
Affiliation(s)
- Alexandr Jonáš
- The Czech Academy of Sciences , Institute of Scientific Instruments , Královopolská 147 , 61264 Brno , Czech Republic
| | - Martin Kochanczyk
- Center for Nonlinear Dynamics and Department of Physics , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Alexandro D Ramirez
- Center for Nonlinear Dynamics and Department of Physics , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Michael Speidel
- European Molecular Biology Laboratory , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | - Ernst-Ludwig Florin
- Center for Nonlinear Dynamics and Department of Physics , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
33
|
Fernandez-Moure JS, Mydlowska A, Shin C, Vella M, Kaplan LJ. Nanometric Considerations in Biofilm Formation. Surg Infect (Larchmt) 2019; 20:167-173. [DOI: 10.1089/sur.2018.237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
| | - Anna Mydlowska
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Michael Vella
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lewis J. Kaplan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Straub H, Bigger CM, Valentin J, Abt D, Qin X, Eberl L, Maniura‐Weber K, Ren Q. Bacterial Adhesion on Soft Materials: Passive Physicochemical Interactions or Active Bacterial Mechanosensing? Adv Healthc Mater 2019; 8:e1801323. [PMID: 30773835 DOI: 10.1002/adhm.201801323] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/27/2019] [Indexed: 11/08/2022]
Abstract
The influence of mechanical stiffness of biomaterials on bacterial adhesion is only sparsely studied and the mechanism behind this influence remains unclear. Here, bacterial adhesion on polydimethylsiloxane (PDMS) samples, having four different degrees of stiffness with Young's modulus ranging from 0.06 to 4.52 MPa, is investigated. Escherichia coli and Pseudomonas aeruginosa are found to adhere in greater numbers on soft PDMS (7- and 27-fold increase, respectively) than on stiff PDMS, whereas Staphylococcus aureus adheres in similar numbers on the four tested surfaces. To determine whether the observed adhesion behavior is caused by bacteria-specific mechanisms, abiotic polystyrene (PS) beads are employed as bacteria substitutes. Carboxylate-modified PS (PS-COOH) beads exhibit the same adhesion pattern as E. coli and P. aeruginosa with four times more adhered beads on soft PDMS than on stiff PDMS. In contrast, amine-modified PS (PS-NH2 ) beads adhere in similar numbers on all tested samples, reminiscent of S. aureus adhesion. This work demonstrates for the first time that the intrinsic physicochemical properties associated with PDMS substrates of different stiffness strongly influence bacterial adhesion and challenge the previously reported theory on active bacterial mechanosensing, which provides new insights into the design of antifouling surfaces.
Collapse
Affiliation(s)
- Hervé Straub
- Laboratory for BiointerfacesEmpa, Swiss Federal Laboratories for Materials Science & Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Claudio M. Bigger
- Laboratory for BiointerfacesEmpa, Swiss Federal Laboratories for Materials Science & Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Jules Valentin
- Laboratory for BiointerfacesEmpa, Swiss Federal Laboratories for Materials Science & Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Dominik Abt
- Department of UrologyCantonal Hospital St. Gallen Rorschacher Strasse 95 9007 St. Gallen Switzerland
| | - Xiao‐Hua Qin
- Institute for Biomechanics ETH Zürich Leopold‐Ruzicka‐Weg 4 8093 Zürich Switzerland
| | - Leo Eberl
- Department of Plant and Microbial BiologyUniversity of Zürich Zollikerstrasse 107 8008 Zürich Switzerland
| | - Katharina Maniura‐Weber
- Laboratory for BiointerfacesEmpa, Swiss Federal Laboratories for Materials Science & Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Qun Ren
- Laboratory for BiointerfacesEmpa, Swiss Federal Laboratories for Materials Science & Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| |
Collapse
|
35
|
Yuan H, Zhang X, Jiang Z, Chen X, Zhang X. Quantitative Criterion to Predict Cell Adhesion by Identifying Dominant Interaction between Microorganisms and Abiotic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3524-3533. [PMID: 30580526 DOI: 10.1021/acs.langmuir.8b03465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell adhesion is ubiquitous and plays an important role in various scientific and engineering problems. Herein, a quantitative criterion to predict cell adhesion was proposed by identifying the dominant interaction between microorganisms and abiotic surfaces. According to the criterion, the dominant interaction in cell adhesion could be identified as a Lewis acid-base (AB) interaction or electrostatic (EL) interaction via comparison of two expressions containing the electron-donor characteristics of the microorganism (γmv-) and abiotic surface (γsv-) and their ζ potentials (ζm, ζs). The results revealed that when dominated by the AB interaction, adhesion would decrease with increasing [Formula: see text]. However, when the EL interaction was dominant, adhesion would decrease with increasing (ζm + ζs)2. We have verified the criterion based on the adhesion of microalgae, bacteria, and fungi onto various surfaces obtained via our experiments and available in literature studies. The results demonstrated that the criterion had important implications in the prediction of cell adhesion in various applications.
Collapse
|
36
|
Ahmed W, Zhai Z, Gao C. Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio 2019; 2:100017. [PMID: 32159147 PMCID: PMC7061676 DOI: 10.1016/j.mtbio.2019.100017] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Bacterial infections on the implant surface may eventually lead to biofilm formation and thus threaten the use of implants in body. Despite efficient host immune system, the implant surface can be rapidly occupied by bacteria, resulting in infection persistence, implant failure, and even death of the patients. It is difficult to cope with these problems because bacteria exhibit complex adhesion mechanisms to the implants that vary according to bacterial strains. Different biomaterial coatings have been produced to release antibiotics to kill bacteria. However, antibiotic resistance occurs very frequently. Stimuli-responsive biomaterials have gained much attention in recent years but are not effective enough in killing the pathogens because of the complex mechanisms in bacteria. This review is focused on the development of highly efficient and specifically targeted biomaterials that release the antimicrobial agents or respond to bacteria on demands in body. The mechanisms of bacterial adhesion, biofilm formation, and antibiotic resistance are discussed, and the released substances accounting for implant infection are described. Strategies that have been used in past for the eradication of bacterial infections are also discussed. Different types of stimuli can be triggered only upon the existence of bacteria, leading to the release of antibacterial molecules that in turn kill the bacteria. In particular, the toxin-triggered, pH-responsive, and dual stimulus-responsive adaptive antibacterial biomaterials are introduced. Finally, the state of the art in fabrication of dual responsive antibacterial biomaterials and tissue integration in medical implants is discussed.
Collapse
Affiliation(s)
| | | | - C. Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
37
|
Zeriouh O, Reinoso-Moreno J, López-Rosales L, Cerón-García M, Sánchez Mirón A, García-Camacho F, Molina-Grima E. Assessment of a photobioreactor-coupled modified Robbins device to compare the adhesion of Nannochloropsis gaditana on different materials. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Rosu C, Jang Y, Jiang L, Champion J. Nature-Inspired and "Water-Skating" Paper and Polyester Substrates Enabled by the Molecular Structure of Poly(γ-stearyl-α,l-glutamate) Homopolypeptide. Biomacromolecules 2018; 19:4617-4628. [PMID: 30444119 DOI: 10.1021/acs.biomac.8b01312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate that the molecular structure of a synthetic homopolypeptide that resembles the leg architecture of water strider insects is effective to impart flexible polymeric surfaces with superhydrophobic behavior. Filter paper (FP) and polyester (PET) were modified with a coating consisting of low-molecular weight α-helical poly(γ-stearyl-α,l-glutamate) (PSLG, Mw = 4500 Da) homopolypeptide. PSLG-coated substrates displayed near to and superhydrophobic behavior (≥150°) as reflected by the contact angle values. Despite being physically adsorbed, the PSLG coating uniformly covered and was strongly adhered to the substrate surfaces. The thin coating layer displayed remarkable mechanical abrasion resistance and was insensitive to long-time exposure to ambient conditions. PLSG-coated textile fibers exhibited useful and interesting properties. Under an iron-containing load, PSLG-coated PET was able to float and "walk" on water when exposed to a magnet. The PSLG coating was able to reduce the adhesion of Escherichia coli, model Gram-negative bacteria. The results indicated that the molecular geometry of PSLG homopolypeptide, which possesses a α-helical backbone sprouting out of highly hydrophobic stearyl side chains, was the key feature responsible for the observed behaviors. This study is relevant for a broad range of potential applications: from crop and drinking water management in arid geographic areas to biomedical devices and implants.
Collapse
Affiliation(s)
- Cornelia Rosu
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,Georgia Tech Polymer Network, GTPN , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Yeongseon Jang
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Lu Jiang
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,Renewable Bioproducts Institute , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Julie Champion
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
39
|
Wyness AJ, Paterson DM, Defew EC, Stutter MI, Avery LM. The role of zeta potential in the adhesion of E. coli to suspended intertidal sediments. WATER RESEARCH 2018; 142:159-166. [PMID: 29870949 DOI: 10.1016/j.watres.2018.05.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/30/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
The extent of pathogen transport to and within aquatic systems depends heavily on whether the bacterial cells are freely suspended or in association with suspended particles. The surface charge of both bacterial cells and suspended particles affects cell-particle adhesion and subsequent transport and exposure pathways through settling and resuspension cycles. This study investigated the adhesion of Faecal Indicator Organisms (FIOs) to natural suspended intertidal sediments over the salinity gradient encountered at the transition zone from freshwater to marine environments. Phenotypic characteristics of three E. coli strains, and the zeta potential (surface charge) of the E. coli strains and 3 physically different types of intertidal sediments was measured over a salinity gradient from 0 to 5 Practical Salinity Units (PSU). A batch adhesion microcosm experiment was constructed with each combination of E. coli strain, intertidal sediment and 0, 2, 3.5 and 5 PSU. The zeta potential profile of one E. coli strain had a low negative charge and did not change in response to an increase in salinity, and the remaining E. coli strains and the sediments exhibited a more negative charge that decreased with an increase in salinity. Strain type was the most important factor in explaining cell-particle adhesion, however adhesion was also dependant on sediment type and salinity (2, 3.5 PSU > 0, 5 PSU). Contrary to traditional colloidal (Derjaguin, Landau, Vervey, and Overbeek (DLVO)) theory, zeta potential of strain or sediment did not correlate with cell-particle adhesion. E. coli strain characteristics were the defining factor in cell-particle adhesion, implying that diverse strain-specific transport and exposure pathways may exist. Further research applying these findings on a catchment scale is necessary to elucidate these pathways in order to improve accuracy of FIO fate and transport models.
Collapse
Affiliation(s)
- Adam J Wyness
- Sediment Ecology Research Group, Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St. Andrews, Fife, KY16 8LB, UK; Environmental and Biological Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen, UK.
| | - David M Paterson
- Sediment Ecology Research Group, Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St. Andrews, Fife, KY16 8LB, UK
| | - Emma C Defew
- Sediment Ecology Research Group, Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St. Andrews, Fife, KY16 8LB, UK
| | - Marc I Stutter
- Environmental and Biological Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen, UK
| | - Lisa M Avery
- Environmental and Biological Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen, UK
| |
Collapse
|
40
|
Champigneux P, Delia ML, Bergel A. Impact of electrode micro- and nano-scale topography on the formation and performance of microbial electrodes. Biosens Bioelectron 2018; 118:231-246. [PMID: 30098490 DOI: 10.1016/j.bios.2018.06.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023]
Abstract
From a fundamental standpoint, microbial electrochemistry is unravelling a thrilling link between life and materials. Technically, it may be the source of a large number of new processes such as microbial fuel cells for powering remote sensors, autonomous sensors, microbial electrolysers and equipment for effluent treatment. Microbial electron transfers are also involved in many natural processes such as biocorrosion. In these contexts, a huge number of studies have dealt with the impact of electrode materials, coatings and surface functionalizations but very few have focused on the effect of the surface topography, although it has often been pointed out as a key parameter impacting the performance of electroactive biofilms. The first part of the review gives an overview of the influence of electrode topography on abiotic electrochemical reactions. The second part recalls some basics of the effect of surface topography on bacterial adhesion and biofilm formation, in a broad domain reaching beyond the context of electroactivity. On these well-established bases, the effect of surface topography is reviewed and analysed in the field of electroactive biofilms. General trends are extracted and fundamental questions are pointed out, which should be addressed to boost future research endeavours. The objective is to provide basic guidelines useful to the widest possible range of research communities so that they can exploit surface topography as a powerful lever to improve, or to mitigate in the case of biocorrosion for instance, the performance of electrode/biofilm interfaces.
Collapse
Affiliation(s)
- Pierre Champigneux
- Laboratoire de Génie Chimique, CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, 31432 Toulouse, France
| | - Marie-Line Delia
- Laboratoire de Génie Chimique, CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, 31432 Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, 31432 Toulouse, France.
| |
Collapse
|
41
|
Perni S, Yang L, Preedy EC, Prokopovich P. Cobalt and Titanium nanoparticles influence on human osteoblast mitochondrial activity and biophysical properties of their cytoskeleton. J Colloid Interface Sci 2018; 531:410-420. [PMID: 30048889 DOI: 10.1016/j.jcis.2018.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Abstract
We investigated the biophysical effects (cell elasticity and spring constant) caused on Saos-2 human osteoblast-like cells by nanosized metal (Co and Ti) wear debris, as well as the adhesive characteristics of cells after exposure to the metal nanoparticles. Cell mitochondrial activity was investigated using the MTT assays; along with LDH assay, metal uptake, cell apoptosis and mineralisation output (alizarin red assay) of the cells. Osteoblasts mitochondrial activity was not affected by Ti nanoparticles at concentrations up to 1 mg/ml and by Cobalt nanoparticles at concentrations < 0.5 mg/ml; however elasticity and spring constant were significantly modified by the exposure to nanoparticles of these metals in agreement with the alteration of cell conformation (shape), as result of the exposure to simulated wear debris, demonstrated by fluorescence images after actin staining.
Collapse
Affiliation(s)
- Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Lirong Yang
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
42
|
Mohd-Sahib AA, Lim JW, Lam MK, Uemura Y, Ho CD, Oh WD, Tan WN. Mechanistic kinetic models describing impact of early attachment between Chlorella vulgaris and polyurethane foam material in fluidized bed bioreactor on lipid for biodiesel production. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
43
|
Conrad JC, Poling-Skutvik R. Confined Flow: Consequences and Implications for Bacteria and Biofilms. Annu Rev Chem Biomol Eng 2018; 9:175-200. [DOI: 10.1146/annurev-chembioeng-060817-084006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria overwhelmingly live in geometrically confined habitats that feature small pores or cavities, narrow channels, or nearby interfaces. Fluid flows through these confined habitats are ubiquitous in both natural and artificial environments colonized by bacteria. Moreover, these flows occur on time and length scales comparable to those associated with motility of bacteria and with the formation and growth of biofilms, which are surface-associated communities that house the vast majority of bacteria to protect them from host and environmental stresses. This review describes the emerging understanding of how flow near surfaces and within channels and pores alters physical processes that control how bacteria disperse, attach to surfaces, and form biofilms. This understanding will inform the development and deployment of technologies for drug delivery, water treatment, and antifouling coatings and guide the structuring of bacterial consortia for production of chemicals and pharmaceuticals.
Collapse
Affiliation(s)
- Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
44
|
McLay RB, Nguyen HN, Jaimes-Lizcano YA, Dewangan NK, Alexandrova S, Rodrigues DF, Cirino PC, Conrad JC. Level of Fimbriation Alters the Adhesion of Escherichia coli Bacteria to Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1133-1142. [PMID: 28976770 DOI: 10.1021/acs.langmuir.7b02447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adhesion of bacteria to interfaces is the first step in pathogenic infection, in biofilm formation, and in bioremediation of oil spills and other pollutants. Bacteria use a variety of surface structures to promote interfacial adhesion, with the level of expression of these structures varying in response to local conditions and environmental signals. Here, we investigated how overexpression of type 1 fimbriae, one such appendage, modifies the ability of Escherichia coli to adhere to solid substrates, via biofilm formation and yeast agglomeration, and to oil/water interfaces, via a microbial adhesion to hydrocarbon assay. A plasmid that enables inducible expression of E. coli MG1655 type 1 fimbriae was transformed into fimbriae-deficient mutant strain MG1655ΔfimA. The level of fimH gene expression in the engineered strain, measured using quantitative real-time PCR, could be tuned by changing the concentration of inducer isopropyl β-d-1-thiogalactopyranoside (IPTG), and was higher than that in strain MG1655. Increasing the degree of fimbriation only slightly modified the surface energy and zeta potential of the bacteria, but enhanced their ability to agglomerate yeast cells and to adhere to solid substrates (as measured by biofilm formation) and to oil/water interfaces. We anticipate that the tunable extent of fimbriation accessible with this engineered strain can be used to investigate how adhesin expression modifies the ability of bacteria to adhere to interfaces and to actively self-assemble there.
Collapse
Affiliation(s)
- Ryan B McLay
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Hang N Nguyen
- Department of Civil and Environmental Engineering, University of Houston , Houston, Texas 77204-4003, United States
| | - Yuly Andrea Jaimes-Lizcano
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Narendra K Dewangan
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Simone Alexandrova
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, University of Houston , Houston, Texas 77204-4003, United States
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
- Department of Biology and Biochemistry, University of Houston , Houston, Texas 77204-5008, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| |
Collapse
|
45
|
Gu H, Chen Y, Liu X, Wang H, Shen-Tu J, Wu L, Zeng L, Xu J. The effective migration of Massilia sp. WF1 by Phanerochaete chrysosporium and its phenanthrene biodegradation in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:695-703. [PMID: 28363181 DOI: 10.1016/j.scitotenv.2017.03.205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Pollutant-degrading bacteria migrated by fungi may enhance the contacts between microorganisms and pollutants and improve the bioremediation efficiency of persistent organic pollutants in soil. Here, the migration of phenanthrene (PHE)-degrading bacteria Massilia sp. WF1 and Mycobacterium sp. WY10 by the hydrophobic fungi Phanerochaete chrysosporium (P. chrysosporium) and its effects on the PHE biodegradation in soil were investigated. Migration of the hydrophilic bacterium WF1 was better than that of the hydrophobic bacterium WY10 by P. chrysosporium mycelia since strain WF1 possesses flagellum and the type III secretion system. The interaction energy change of P. chrysosporium-WF1 was lower, but the interaction forces (van der Waals attractions, capillary forces, and cross-linking effects) were stronger than those of P. chrysosporium-WY10. Thus, the adhesive attraction between strain WF1 and P. chrysosporium was stronger, and consequently, strain WF1 was migrated by P. chrysosporium to a greater extent than WY10. The corresponding migration mechanism was inferred to be a bacterial 'passive' method: bacteria adhered to mycelia before they migrated with the growing mycelia. Moreover, migrated strain WF1 via P. chrysosporium showed effective PHE biodegradation in soil. Fungus-mediated migration of pollutant-degrading bacteria may play an important role in the bioremediation of pollutants in soil.
Collapse
Affiliation(s)
- Haiping Gu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuanzhi Chen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xingmei Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Jue Shen-Tu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Lingzao Zeng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
46
|
An overview of carboxymethyl derivatives of chitosan: Their use as biomaterials and drug delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1349-1362. [DOI: 10.1016/j.msec.2017.03.198] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 11/19/2022]
|
47
|
Preedy EC, Perni S, Prokopovich P. Cobalt and titanium nanoparticles influence on mesenchymal stem cell elasticity and turgidity. Colloids Surf B Biointerfaces 2017; 157:146-156. [PMID: 28586727 DOI: 10.1016/j.colsurfb.2017.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/07/2017] [Indexed: 12/13/2022]
Abstract
Bone cells are damaged by wear particles originating from total joint replacement implants. We investigated Mesenchymal stem cells (MSCs) nanomechanical properties when exposed to cobalt and titanium nanoparticles (resembling wear debris) of different sizes for up to 3days using AFM nanoindentation; along with flow-cytometry and MTT assay. The results demonstrated that cells exposed to increasing concentrations of nanoparticles had a lower value of elasticity and spring constant without significant effect on cell metabolic activity and viability but some morphological alteration (bleeping). Cobalt induced greater effects than titanium and this is consistent with the general knowledge of cyto-compatibility of the later. This work demonstrates for the first time that metal nanoparticles do not only influence MSCs enzymes activity but also cell structure; however, they do not result in full membrane damage. Furthermore, the mechanical changes are concentration and particles composition dependent but little influenced by the particle size.
Collapse
Affiliation(s)
| | - Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
48
|
Zeriouh O, Reinoso-Moreno JV, López-Rosales L, Cerón-García MDC, Sánchez-Mirón A, García-Camacho F, Molina-Grima E. Biofouling in photobioreactors for marine microalgae. Crit Rev Biotechnol 2017; 37:1006-1023. [DOI: 10.1080/07388551.2017.1299681] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ouassim Zeriouh
- Department of Chemical Engineering, University of Almería, Almería, Spain
| | | | | | - María del Carmen Cerón-García
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| | - Asterio Sánchez-Mirón
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| | - Francisco García-Camacho
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| | - Emilio Molina-Grima
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| |
Collapse
|
49
|
Bittner M, Strejc J, Matoulkova D, Kolska Z, Pustelnikova L, Branyik T. Adhesion ofMegasphaera cerevisiaeonto solid surfaces mimicking materials used in breweries. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Milan Bittner
- Department of Biotechnology; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague Czech Republic
| | - Jan Strejc
- Department of Biotechnology; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague Czech Republic
| | - Dagmar Matoulkova
- Department of Microbiology; Research Institute of Brewing and Malting; Lipova 15 120 44 Prague Czech Republic
| | - Zdenka Kolska
- Faculty of Science; J. E. Purkyně University; Ceske mladeze 8, 40096 Ústi nad Labem Czech Republic
| | - Lucie Pustelnikova
- Department of Dairy, Fat and Cosmetics; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague Czech Republic
| | - Tomas Branyik
- Department of Biotechnology; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague Czech Republic
| |
Collapse
|
50
|
Competition between bacteria and phosphate for adsorption sites on gibbsite: An in-situ ATR-FTIR spectroscopic and macroscopic study. Colloids Surf B Biointerfaces 2016; 148:496-502. [DOI: 10.1016/j.colsurfb.2016.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 08/31/2016] [Accepted: 09/21/2016] [Indexed: 11/21/2022]
|