1
|
McClellan SA, Wright R, Muhammed F, Hazlett LD. Impact of Airborne Exposure to PM 10 Increases Susceptibility to P. aeruginosa Infection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:722. [PMID: 38928968 PMCID: PMC11203766 DOI: 10.3390/ijerph21060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
The effects of exposure to airborne particulate matter with a size of 10 μm or less (PM10) on C57BL/6 mouse corneas, their response to Pseudomonas aeruginosa (PA) infection, and the protective effects of SKQ1 were determined. C57BL/6 mouse corneas receiving PBS or SKQ1 were exposed to control (air) or PM10 for 2 weeks, infected, and the disease was documented by clinical score, PMN quantitation, bacterial plate count, RT-PCR and Western blot. PBS-treated, PM10-exposed corneas did not differ at 1 day postinfection (dpi), but exhibited earlier (3 dpi) corneal thinning compared to controls. By 3 dpi, PM10 significantly increased corneal mRNA levels of several pro-inflammatory cytokines, but decreased IL-10, NQO1, GR1, GPX4, and Nrf2 over control. SKQ1 reversed these effects and Western blot selectively confirmed the RT-PCR results. PM10 resulted in higher viable bacterial plate counts at 1 and 3 dpi, but SKQ1 reduced them at 3 dpi. PM10 significantly increased MPO in the cornea at 3 dpi and was reduced by SKQ1. SKQ1, used as an adjunctive treatment to moxifloxacin, was not significantly different from moxifloxacin alone. Exposure to PM10 increased the susceptibility of C57BL/6 to PA infection; SKQ1 significantly reversed these effects, but was not effective as an adjunctive treatment.
Collapse
Affiliation(s)
| | | | | | - Linda D. Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (S.A.M.); (R.W.); (F.M.)
| |
Collapse
|
2
|
Rockwell CE, Jin Y, Boss AP, Kaiser LM, Awali S. The Complicated Role of Nuclear Factor Erythroid-Derived 2-Like 2 in Allergy and Asthma. Drug Metab Dispos 2022; 50:500-507. [PMID: 34930784 PMCID: PMC11022934 DOI: 10.1124/dmd.121.000414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor erythroid-derived 2-like 2 (Nrf2) is a stress-activated transcription factor that is highly responsive to oxidative stress and electrophilic stimuli. Upon activation, Nrf2 upregulates a battery of cytoprotective genes meant to prevent cell death or damage. In many models of inflammation, Nrf2 protects against the immune response and decreases injury, including in the context of asthma and allergy. However, in some models of asthma and allergy, Nrf2 either does not play a role or can even exacerbate inflammation. In general, the reasons behind these discrepancies are not clear and the mechanisms by which Nrf2 modulates immune response are largely uncharacterized. The aim of this review is to highlight current literature assessing the role of Nrf2 in allergy and asthma to understand Nrf2 as a potential therapeutic target. SIGNIFICANCE STATEMENT: Nuclear factor erythroid-derived 2-like 2 (Nrf2) is an important immune mediator that modulates numerous immune cell types in various inflammatory diseases, including allergy and asthma. There is considerable interest in Nrf2 as a drug target in inflammation, which is complicated by the complex nature of Nrf2 in the immune system. This review focuses on the role of Nrf2 in asthma and allergy, including in regulating immune cell function and in detoxifying xenobiotics that exacerbate these diseases.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Yining Jin
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Allison P Boss
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Luca M Kaiser
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Saamera Awali
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
3
|
Li YJ, Takeda K, Yamamoto M, Kawada T. Potential of NRF2 Pathway in Preventing Developmental and Reproductive Toxicity of Fine Particles. FRONTIERS IN TOXICOLOGY 2022; 3:710225. [PMID: 35295150 PMCID: PMC8915851 DOI: 10.3389/ftox.2021.710225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Air pollution is associated with significant adverse health effects. Recent studies support the idea that inhalation of fine particles can instigate extrapulmonary effects on the cardiovascular system through several pathways. The systemic transfer of ultrafine particles (UFPs) or soluble particle components (organic compounds and metals) is of particular concern. An integral role of reactive oxygen species (ROS)-dependent pathways has been suggested in systemic inflammatory responses and vascular dysfunction at the molecular level. Accumulating lines of evidence suggest that fine particles affect fetal development, giving rise to low birth weight and a reduction in fetal growth, and also affect the immune, cardiovascular, and central nervous systems. Oxidative stress plays an important role in fine particles toxicity; pre-treatment with antioxidants partially suppresses the developmental toxicity of fine particles. On the other hand, Nuclear factor erythroid-derived 2-like 2 (Nfe2l2), also known as NRF2, is a transcription factor essential for inducible and/or constitutive expression of phase II and antioxidant enzymes. Studies using Nrf2-knockout mice revealed that NRF2 dysfunction is intimately involved in the pathogenesis of various human diseases. Multiple single nucleotide polymorphisms (SNPs) have been detected in human NRF2 locus. An NRF2 gene SNP (−617C > A; rs6721961), located in the upstream promoter region, affects the transcriptional level of NRF2 and thereby the protein level and downstream gene expression. It has been reported that the SNP-617 is associated with various diseases. The onset and exacerbation of the diseases are regulated by genetic predisposition and environmental factors; some people live in the air-polluted environment but are not affected and remain healthy, suggesting the presence of individual differences in the susceptibility to air pollutants. NRF2 polymorphisms may also be associated with the fetal effects of fine particles exposure. Screening high-risk pregnant women genetically susceptible to oxidative stress and prevention by antioxidant interventions to protect fetal development in air-polluted areas should be considered. This article reviews the recent advances in our understanding of the fetal health effects of fine particles and describes potential chemoprevention via the NRF2 pathway to prevent the developmental and reproductive toxicity of fine particles.
Collapse
Affiliation(s)
- Ying-Ji Li
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| | - Ken Takeda
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Sanyo-Onoda, Japan
| | - Masayuki Yamamoto
- Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyuki Kawada
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
4
|
Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, Shore R, Li Y, Chen J, Tian Y, Zhang R. Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med 2021; 26:72. [PMID: 34253165 PMCID: PMC8274666 DOI: 10.1186/s12199-021-00995-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development. METHOD In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM2.5) and ultrafine (PM0.1) PM. We highlight the established and emerging findings from epidemiologic studies and experimental models. RESULTS Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health. CONCLUSION Policies to reduce maternal exposure and health consequences in children should be a high priority. PM2.5 levels are regulated, yet it is recognized that minority and low socioeconomic status groups experience disproportionate exposures. Moreover, PM0.1 levels are not routinely measured or currently regulated. Consequently, preventive strategies that inform neighborhood/regional planning and clinical/nutritional recommendations are needed to mitigate maternal exposure and ultimately protect children's health.
Collapse
Affiliation(s)
- Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Jonathan C Behlen
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Navada Harvey
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Ross Shore
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jingshu Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
5
|
Nrf2 Lowers the Risk of Lung Injury via Modulating the Airway Innate Immune Response Induced by Diesel Exhaust in Mice. Biomedicines 2020; 8:biomedicines8100443. [PMID: 33096811 PMCID: PMC7589508 DOI: 10.3390/biomedicines8100443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
In the present study, we investigated the role of Nrf2 in airway immune responses induced by diesel exhaust (DE) inhalation in mice. C57BL/6J Nrf2+/+ and Nrf2−/− mice were exposed to DE or clean air for 8 h/day and 6 days/week for 4 weeks. After DE exposure, the number of neutrophils and macrophage inflammatory protein (MIP)-2 level in bronchoalveolar lavage fluid (BALF) and interleukin (IL)-17 level in the lung tissue increased in Nrf2−/− mice compared with Nrf2+/+ mice; however, the lack of an increase in the level of tumor necrosis factor (TNF)-α in the lung tissue in Nrf2+/+ mice and mild suppression of the level of TNF-α in Nrf2−/− mice were observed; the level of granulocyte macrophage colony-stimulating factor (GM-CSF) in the lung tissue decreased in Nrf2−/− mice than in Nrf2+/+ mice; the number of DE particle-laden alveolar macrophages in BALF were larger in Nrf2−/− mice than in Nrf2+/+ mice. The results of electron microscope observations showed alveolar type II cell injury and degeneration of the lamellar body after DE exposure in Nrf2−/− mice. Antioxidant enzyme NAD(P)H quinone dehydrogenase (NQO)1 mRNA expression level was higher in Nrf2+/+ mice than in Nrf2−/− mice after DE exposure. Our results suggested that Nrf2 reduces the risk of pulmonary disease via modulating the airway innate immune response caused by DE in mice.
Collapse
|
6
|
Almutairi AM, Akkam Y, Alajmi MF, Akkam N. Effect of Air Pollution on Glutathione S-Transferase Activity and Total Antioxidant Capacity: Cross Sectional Study in Kuwait. J Health Pollut 2020; 10:200906. [PMID: 32874762 PMCID: PMC7453819 DOI: 10.5696/2156-9614-10.27.200906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Air pollution poses a significant threat to human health worldwide. Investigating potential health impacts is essential to the development of regulations and legislation to minimize health risks. OBJECTIVES The aim of the present study was to investigate the potentially hazardous effect of air pollution on the Ali Sabah Al Salem residential area in Kuwait by comparing the pollution level to a control area (Al-Qirawan) by assessing two biomarkers: erythrocyte glutathione S-transferases (e-GST) and total blood antioxidant, and then correlating the activity to pollution-related oxidative stress. METHODS The average concentrations of several airborne gases were measured at Ali Sabah Al Salem and Al-Qirawan, including ozone, carbon monoxide, nitrogen dioxide, nitrogen oxides, particulate matter less than 10 μm (PM10), sulfur dioxide, ammonia, carbon dioxide, hydrogen sulfide, methane, and non-methane hydrocarbon. A total of fifty-eight participants were sampled from two different areas and divided into two groups. The study group was composed of 40 residents exposed to polluted ambient air in the Ali Sabah Al Salem residential area. A reference group composed of 18 residents in the Al-Qairawan area living far from major pollution sources was also tested. RESULTS All measured gases were higher in concentration at Ali Sabah Al Salem compared to the Al-Qirawan area. Furthermore, PM10 and sulfur dioxide were higher than World Health Organization (WHO) guidelines. The e-GST activity was lower among participants of the Ali Sabah Al Salem residential area compared to participants living in the Al-Qairawan area. The total antioxidant capacity in whole blood of Ali Sabah Al Salem residents was significantly (p<0.0001) higher than in control subjects. CONCLUSIONS Residents in Ali Sabah Al Salem are exposed to a high level of air pollution that has a serious impact on glutathione S-transferases levels. Subsequently, regulations on pollution sources are needed to lower current health risks. Furthermore, the present study provides evidence that finger-prick blood sampling is a quick, non-invasive method suitable for screening e-GST activity and total antioxidants which may be applied for surveillance purposes. PARTICIPANT CONSENT Obtained. ETHICS APPROVAL The study was approved by the Scientific Research Committee of the Public Authority for Applied Education and Training, Kuwait. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Abeer M. Almutairi
- Science Department, College of Basic Education, Public Authority for Applied Education and Training, (PAAET), Alardyia, Kuwait
| | - Yazan Akkam
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Mohammad F. Alajmi
- Department of Mathematics and Natural Sciences, College of Arts and Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait
| | - Nosaibah Akkam
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| |
Collapse
|
7
|
Zhang J, Cui H, Namani A, Yao J, Deng H, Tang X, Wang XJ. Transcriptomic profiling identifies a critical role of Nrf2 in regulating the inflammatory response to fly ash particles in mouse lung. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110132. [PMID: 31918253 DOI: 10.1016/j.ecoenv.2019.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Exposure to combustion-derived nanoparticles is recognized as a major health hazard, but the molecular responses are still insufficiently described. The transcription factor erythroid 2-related factor 2 (Nrf2, also known as NFE2L2) is a master regulator of the pulmonary defense system against insults by particulate matter. However, its downstream molecular processes are not fully characterized. In the current study, BALB/c wild-type (WT) and Nrf2-/- mice were exposed by intranasal administration to fly ash particles (F3-S; 20 mg/kg BW), which were collected from a municipal waste incinerator in China, for three consecutive days. Using a comparative transcriptomics approach, the pulmonary global gene expression profiles to F3-S exposure were characterized for both genotypes. The preponderance of the differentially-expressed genes (DEGs) in WT mice induced by the fly ash particles, was related to inflammation. Functional enrichment and molecular pathway mapping of the DEGs specific to Nrf2-/- mice exposed to the particles revealed that all of the top 10 perturbed molecular pathways were associated with the inflammatory response. Our study identified a transcriptional signature related to the initial pulmonary injury in mouse upon fly ash exposure, and suggests an anti-inflammatory role of Nrf2 in protecting the lung against such exposure.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Huiling Cui
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Akhileshwar Namani
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Jun Yao
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Hong Deng
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| |
Collapse
|
8
|
Sehsah R, Wu W, Ichihara S, Hashimoto N, Hasegawa Y, Zong C, Itoh K, Yamamoto M, Elsayed AA, El-Bestar S, Kamel E, Ichihara G. Role of Nrf2 in inflammatory response in lung of mice exposed to zinc oxide nanoparticles. Part Fibre Toxicol 2019; 16:47. [PMID: 31842927 PMCID: PMC6915997 DOI: 10.1186/s12989-019-0328-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Background Zinc oxide nanoparticles (ZnO-NPs) are widely used in many industrial sectors and previous studies have reported that exposure of the lungs to ZnO-NPs induces both acute and/or chronic pulmonary inflammation, but the exact mechanism underlying such response remains elusive. This study investigated the role of nuclear factor-erythroid 2-related factor (Nrf2) in pulmonary inflammation induced by exposure to ZnO-NPs using Nrf2 null (Nrf2−/−) mice. Methods Twenty-four male Nrf2−/− mice and thirty male wild type C57BL/6 J mice were divided into three groups of eight and ten each respectively, and exposed once to ZnO-NPs at 0, 10, 30 μg/mouse by pharyngeal aspiration. At 14 days after the exposure to ZnO-NPs, bronchoalveolar lavage fluid (BALF) and lungs were collected to quantify protein level and the number of inflammatory cells. The mRNA levels of Nrf2-dependent antioxidant enzymes and inflammatory cytokines in lung tissue were measured. Results Exposure to ZnO-NPs dose-dependently increased the number of total cells, macrophages, lymphocytes and eosinophils in BALF both in Nrf2−/− mice and wild type mice, but the magnitude of increase was significantly higher in Nrf2−/− mice than wild type mice. The number of neutrophils in BALF increased in Nrf2−/− mice, being accompanied by marginal trend of increase in mRNA expression of MIP-2, neutrophil chemoattractant, but such changes were not observed in wild type mice. Exposure to ZnO-NPs did not dose-dependently increase mRNA level of Nrf2-dependent antioxidant enzymes both in Nrf2−/− mice and wild type mice. Conclusion Pharyngeal aspiration of ZnO-NPs induced infiltration of inflammatory cells in the lung of mice, but minimally induced Nrf2-dependent antioxidant enzymes. The results suggest that Nrf2 play a role in negative regulation on ZnO-NP exposure-induced neutrophil migration, but does not demonstrate that the regulation is through suppression of oxidative stress.
Collapse
Affiliation(s)
- Radwa Sehsah
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Public Health and Community Medicine, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Wenting Wu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ahmed Ali Elsayed
- Department of Pathology, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Soheir El-Bestar
- Department of Public Health and Community Medicine, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Emily Kamel
- Department of Public Health and Community Medicine, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
| |
Collapse
|
9
|
Bhetraratana M, Orozco LD, Hong J, Diamante G, Majid S, Bennett BJ, Ahn IS, Yang X, Lusis AJ, Araujo JA. Diesel exhaust particles dysregulate multiple immunological pathways in murine macrophages: Lessons from microarray and scRNA-seq technologies. Arch Biochem Biophys 2019; 678:108116. [PMID: 31568751 DOI: 10.1016/j.abb.2019.108116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/05/2019] [Accepted: 09/24/2019] [Indexed: 01/08/2023]
Abstract
Exposure to ambient particulate matter has been shown to promote a variety of disorders, including cardiovascular diseases predominantly of ischemic etiology. However, the mechanisms linking inhaled particulates with systemic vascular effects, resulting in worsened atherosclerosis, are not well defined. We assessed the potential role of macrophages in translating these effects by analyzing gene expression patterns in response to diesel exhaust particles (DEP) at the average cell level, using Affymetrix microarrays in peritoneal macrophages in culture (in vitro), and at the individual cell level, using single-cell RNA sequencing (scRNA-seq) in alveolar macrophages collected from exposed mice (in vivo). Peritoneal macrophages were harvested from C57BL/6J mice and treated with 25 μg/mL of a DEP methanol extract (DEPe). These cells exhibited significant (FDR < 0.05) differential expression of a large number of genes and enrichment in pathways, especially engaged in immune responses and antioxidant defense. DEPe led to marked upregulation of heme oxygenase 1 (Hmox1), the most significantly upregulated gene (FDR = 1.75E-06), and several other antioxidant genes. For the in vivo work, C57BL/6J mice were subjected to oropharyngeal aspiration of 200 μg of whole DEP. The gene expression profiles of the alveolar macrophages harvested from these mice were analyzed at the single-cell level using scRNA-seq, which showed significant dysregulation of a broad number of genes enriched in immune system pathways as well, but with a large heterogeneity in how individual alveolar macrophages responded to DEP exposures. Altogether, DEP pollutants dysregulated immunological pathways in macrophages that may mediate the development of pulmonary and systemic vascular effects.
Collapse
Affiliation(s)
- May Bhetraratana
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Luz D Orozco
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jason Hong
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Sana Majid
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Brian J Bennett
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Jesus A Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Marrot L. Pollution and Sun Exposure: A Deleterious Synergy. Mechanisms and Opportunities for Skin Protection. Curr Med Chem 2019; 25:5469-5486. [PMID: 28925870 DOI: 10.2174/0929867324666170918123907] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pollutants are diverse chemical entities, including gases such as ozone and particulate matter PM. PM contains toxic chemicals such as polycyclic aromatic hydrocarbons (PAHs). Some PAHs can induce strong oxidative stress under UVA exposure. Pollution aggravates some skin diseases such as atopy or eczema, but epidemiological data also pointed to a correlation with early occurrence of (photo)-aging markers. OBJECTIVE This paper aims at reviewing current literature dealing with dermatological effects of pollution, either on in vitro models or using in vivo approaches (including humans). It particularly focuses on the probable deleterious synergy between pollutants and sunlight. RESULTS An exhaustive analysis of literature suggests that skin may be impacted by external stress through oxidation of some of its surface components. However, pollutants detected in plasma may also be provided to deep skin by the circulation of the blood. Oxidative stress, inflammation and metabolic impairments are among the most probable mechanisms of pollution- derived dermatological hazards. Moreover these stresses should be amplified by the deleterious synergy between pollution and sunlight. Some experiments from our lab identified few PAHs inducing a huge toxic stress, at nanomolar concentrations, when exposed to long UVA wavelengths. Prevention strategies should thus combine surface protection (long UVA sunscreens, antioxidants) and enhanced skin tissue resistance through stimulation of the natural antioxidation/detoxification pathway Nrf2. CONCLUSION In people exposed to highly polluted environments, pollutants and sunlight may synergistically damage skin, requiring a specific protection.
Collapse
|
11
|
Rychlik KA, Secrest JR, Lau C, Pulczinski J, Zamora ML, Leal J, Langley R, Myatt LG, Raju M, Chang RCA, Li Y, Golding MC, Rodrigues-Hoffmann A, Molina MJ, Zhang R, Johnson NM. In utero ultrafine particulate matter exposure causes offspring pulmonary immunosuppression. Proc Natl Acad Sci U S A 2019; 116:3443-3448. [PMID: 30808738 PMCID: PMC6397543 DOI: 10.1073/pnas.1816103116] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Early life exposure to fine particulate matter (PM) in air is associated with infant respiratory disease and childhood asthma, but limited epidemiological data exist concerning the impacts of ultrafine particles (UFPs) on the etiology of childhood respiratory disease. Specifically, the role of UFPs in amplifying Th2- and/or Th17-driven inflammation (asthma promotion) or suppressing effector T cells (increased susceptibility to respiratory infection) remains unclear. Using a mouse model of in utero UFP exposure, we determined early immunological responses to house dust mite (HDM) allergen in offspring challenged from 0 to 4 wk of age. Two mice strains were exposed throughout gestation: C57BL/6 (sensitive to oxidative stress) and BALB/C (sensitive to allergen exposure). Offspring exposed to UFPs in utero exhibited reduced inflammatory response to HDM. Compared with filtered air (FA)-exposed/HDM-challenged mice, UFP-exposed offspring had lower white blood cell counts in bronchoalveolar lavage fluid and less pronounced peribronchiolar inflammation in both strains, albeit more apparent in C57BL/6 mice. In the C57BL/6 strain, offspring exposed in utero to FA and challenged with HDM exhibited a robust response in inflammatory cytokines IL-13 and Il-17. In contrast, this response was lost in offspring exposed in utero to UFPs. Circulating IL-10 was significantly up-regulated in C57BL/6 offspring exposed to UFPs, suggesting increased regulatory T cell expression and suppressed Th2/Th17 response. Our results reveal that in utero UFP exposure at a level close to the WHO recommended PM guideline suppresses an early immune response to HDM allergen, likely predisposing neonates to respiratory infection and altering long-term pulmonary health.
Collapse
Affiliation(s)
- Kristal A Rychlik
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843
| | - Jeremiah R Secrest
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Jairus Pulczinski
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843
| | - Misti L Zamora
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843
| | - Jeann Leal
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Rebecca Langley
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843
| | - Louise G Myatt
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843
| | - Muppala Raju
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843
| | - Richard C-A Chang
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Michael C Golding
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| | | | - Mario J Molina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX 77843
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843;
| |
Collapse
|
12
|
Role of Nrf2 and Its Activators in Respiratory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7090534. [PMID: 30728889 PMCID: PMC6341270 DOI: 10.1155/2019/7090534] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a major regulator of antioxidant response element- (ARE-) driven cytoprotective protein expression. The activation of Nrf2 signaling plays an essential role in preventing cells and tissues from injury induced by oxidative stress. Under the unstressed conditions, natural inhibitor of Nrf2, Kelch-like ECH-associated protein 1 (Keap1), traps Nrf2 in the cytoplasm and promotes the degradation of Nrf2 by the 26S proteasome. Nevertheless, stresses including highly oxidative microenvironments, impair the ability of Keap1 to target Nrf2 for ubiquitination and degradation, and induce newly synthesized Nrf2 to translocate to the nucleus to bind with ARE. Due to constant exposure to external environments, including diverse pollutants and other oxidants, the redox balance maintained by Nrf2 is fairly important to the airways. To date, researchers have discovered that Nrf2 deletion results in high susceptibility and severity of insults in various models of respiratory diseases, including bronchopulmonary dysplasia (BPD), respiratory infections, acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), and lung cancer. Conversely, Nrf2 activation confers protective effects on these lung disorders. In the present review, we summarize Nrf2 involvement in the pathogenesis of the above respiratory diseases that have been identified by experimental models and human studies and describe the protective effects of Nrf2 inducers on these diseases.
Collapse
|
13
|
Bijnens EM, Zeegers MP, Derom C, Martens DS, Gielen M, Hageman GJ, Plusquin M, Thiery E, Vlietinck R, Nawrot TS. Telomere tracking from birth to adulthood and residential traffic exposure. BMC Med 2017; 15:205. [PMID: 29157235 PMCID: PMC5697215 DOI: 10.1186/s12916-017-0964-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Telomere attrition is extremely rapid during the first years of life, while lifestyle during adulthood exerts a minor impact. This suggests that early life is an important period in the determination of telomere length. We investigated the importance of the early-life environment on both telomere tracking and adult telomere length. METHODS Among 184 twins of the East Flanders Prospective Twin Survey, telomere length in placental tissue and in buccal cells in young adulthood was measured. Residential addresses at birth and in young adulthood were geocoded and residential traffic and greenness exposure was determined. RESULTS We investigated individual telomere tracking from birth over a 20 year period (mean age (SD), 22.6 (3.1) years) in association with residential exposure to traffic and greenness. Telomere length in placental tissue and in buccal cells in young adulthood correlated positively (r = 0.31, P < 0.0001). Persons with higher placental telomere length at birth were more likely to have a stronger downward shift in telomere ranking over life (P < 0.0001). Maternal residential traffic exposure correlated inversely with telomere length at birth. Independent of birth placental telomere length, telomere ranking between birth and young adulthood was negatively and significantly associated with residential traffic exposure at the birth address, while traffic exposure at the residential address at adult age was not associated with telomere length. CONCLUSIONS Longitudinal evidence of telomere length tracking from birth to adulthood shows inverse associations of residential traffic exposure in association with telomere length at birth as well as accelerated telomere shortening in the first two decades of life.
Collapse
Affiliation(s)
- Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.,Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maurice P Zeegers
- Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.,CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
| | - Catherine Derom
- Department of Obstetrics and Gynecology, Ghent University Hospitals, Ghent, Belgium.,Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Marij Gielen
- Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Geja J Hageman
- Department of Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Evert Thiery
- Department of Neurology, Ghent University Hospitals, Ghent, Belgium
| | - Robert Vlietinck
- Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium. .,Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium.
| |
Collapse
|
14
|
Ye P, Yang XL, Chen X, Shi C. Hyperoside attenuates OVA-induced allergic airway inflammation by activating Nrf2. Int Immunopharmacol 2017; 44:168-173. [PMID: 28107754 DOI: 10.1016/j.intimp.2017.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Allergic airways disease (AAD) is one of the most common medical illnesses that is associated with an increased allergic airway inflammation. Hyperoside, an active compound isolated from Rhododendron brachycarpum G. Don, has been reported to have anti-inflammatory effect. The aim of this study was to analyze the protective effect of hyperoside on OVA-induced allergic airway inflammation in mice. In the present study, the mouse asthma model was induced by given OVA and hyperoside was administrated 1h before OVA challenge. The levels of IL-4, IL-5, IL-13, and IgE were detected by ELISA. H&E staining was used to assess lung histopathological changes. The expression of NF-κB p65, IκB, HO-1, and Nf-E2 related factor 2 (Nrf2) were measured by western blot analysis. The results showed that hyperoside significantly reduced the inflammatory cells infiltration and the levels of IL-4, IL-5, IL-13, and IgE. Hyperoside significantly inhibited OVA-induced oxidative stress as demonstrated by decreased MDA, and increased GSH and SOD levels. Treatment of hyperoside also inhibited OVA-induced airway hyperresponsiveness (AHR). Furthermore, the results showed that treatment of hyperoside significantly inhibited LPS-induced NF-κB activation. In addition, hyperoside was found to activate Nrf2/HO-1 signaling pathway. In conclusion, these results suggest that hyperoside ameliorates OVA-induced allergic airway inflammation by activating Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xi-Liang Yang
- Pharmacy department of medical college, Wuhan University of Science and technology, Wuhan 430065, China
| | - Xing Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Cai Shi
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
15
|
Nrf2 Regulates the Risk of a Diesel Exhaust Inhalation-Induced Immune Response during Bleomycin Lung Injury and Fibrosis in Mice. Int J Mol Sci 2017; 18:ijms18030649. [PMID: 28304344 PMCID: PMC5372661 DOI: 10.3390/ijms18030649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 01/09/2023] Open
Abstract
The present study investigated the effects of diesel exhaust (DE) on an experimental model of bleomycin (BLM)-induced lung injury and fibrosis in mice. BLM was intravenously administered to both Nrf2+/+ and Nrf2−/− C57BL/6J mice on day 0. The mice were exposed to DE for 56 days from 28 days before the BLM injection to 28 days after the BLM injection. Inhalation of DE induced significant inhibition of airway clearance function and the proinflammatory cytokine secretion in macrophages, an increase in neutrophils, and severe lung inflammatory injury, which were greater in Nrf2−/− mice than in Nrf2+/+ mice. In contrast, inhalation of DE was observed to induce a greater increase of hydroxyproline content in the lung tissues and significantly higher pulmonary antioxidant enzyme mRNA expression in the Nrf2+/+ mice than in Nrf2−/− mice. DE is an important risk factor, and Nrf2 regulates the risk of a DE inhalation induced immune response during BLM lung injury and fibrosis in mice.
Collapse
|
16
|
Clarke JL, Murray JB, Park BK, Copple IM. Roles of Nrf2 in drug and chemical toxicity. CURRENT OPINION IN TOXICOLOGY 2016. [DOI: 10.1016/j.cotox.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Zhao H, Eguchi S, Alam A, Ma D. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 312:L155-L162. [PMID: 27864288 DOI: 10.1152/ajplung.00449.2016] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that upregulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. Activation of Nrf2 has been shown to be protective against lung injury. In the lung, diverse stimuli including environmental oxidants, medicinal agents, and pathogens can activate Nrf2. Nrf2 translocates to the nucleus and binds to an ARE. Through transcriptional induction of ARE-bearing genes encoding antioxidant-detoxifying proteins, Nrf2 induces cellular rescue pathways against oxidative pulmonary injury, abnormal inflammatory and immune responses, and apoptosis. The Nrf2-antioxidant pathway has been shown to be important in the protection against various lung injuries including acute lung injury/acute respiratory distress syndrome and bronchopulmonary dysplasia, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, asthma, and allergy and was widely examined for new therapeutic targets. The present review explores the protective role of Nrf-2 against lung injury and the therapeutic potential in targeting Nrf-2.
Collapse
Affiliation(s)
- Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| | - Shiori Eguchi
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| |
Collapse
|
18
|
Zhang R, Qiao H, Chen S, Chen X, Dou K, Wei L, Zhang J. Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS. Cancer Biol Ther 2016; 17:925-34. [PMID: 27416292 DOI: 10.1080/15384047.2016.1210728] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Lapatinib, a novel tyrosine kinase inhibitor of HER2/EGFR, is used to treat HER2-positive breast cancer. However, acquired drug resistance has limited the clinical therapeutic efficacy of lapatinib. Our previous study found that inhibition of autophagy can reduce the proliferation, DNA synthesis, and colony-forming capacity of lapatinib-resistant cells. Berberine has attracted extensive attention due to its wide range of biochemical and pharmacological effects in breast cancer treatment. It has been reported that berberine can induce oxidative stress and the mitochondrial-related apoptotic pathway in human breast cancer cells. In our current study, we found that a new combination therapy of berberine with lapatinib overcame lapatinib resistance. Furthermore, we found that berberine induced apoptosis of lapatinib-resistant cells through upregulating the level of ROS. Specially, lapatinib activated both the c-Myc/pro-Nrf2 pathway and GSK-3β signaling to stabilize Nrf2 and maintain a low level of ROS in resistant cells. However, berberine can upset the ROS balance by downregulating c-Myc to reverse the lapatinib resistance. Our finding provides a novel strategy of using berberine to overcome lapatinib resistance.
Collapse
Affiliation(s)
- Ruohan Zhang
- a The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology , The Fourth Military Medical University , Xi'an, Shaanxi , China.,b Department of Hepato-Biliary and Pancreto-Splenic Surgery , Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | - Hongyu Qiao
- c Department of Cardiology , Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | - Suning Chen
- d Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | - Xu Chen
- e Cadet Brigade of the Fourth Military Medical University, The Fourth Military Medical University , Xi'an , China
| | - Kefeng Dou
- b Department of Hepato-Biliary and Pancreto-Splenic Surgery , Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | - Li Wei
- f Department of Obstetrics and Gynecology , Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | - Jian Zhang
- a The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology , The Fourth Military Medical University , Xi'an, Shaanxi , China
| |
Collapse
|
19
|
Noël A, Xiao R, Perveen Z, Zaman HM, Rouse RL, Paulsen DB, Penn AL. Incomplete lung recovery following sub-acute inhalation of combustion-derived ultrafine particles in mice. Part Fibre Toxicol 2016; 13:10. [PMID: 26911867 PMCID: PMC4766714 DOI: 10.1186/s12989-016-0122-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022] Open
Abstract
Background Particulate matter (PM) is one of the six criteria pollutant classes for which National Ambient Air Quality Standards have been set by the United States Environmental Protection Agency. Exposures to PM have been correlated with increased cardio-pulmonary morbidity and mortality. Butadiene soot (BDS), generated from the incomplete combustion of 1,3-butadiene (BD), is both a model PM mixture and a real-life example of a petrochemical product of incomplete combustion. There are numerous events, including wildfires, accidents at refineries and tank car explosions that result in sub-acute exposure to high levels of airborne particles, with the people exposed facing serious health problems. These real-life events highlight the need to investigate the health effects induced by short-term exposure to elevated levels of PM, as well as to assess whether, and if so, how well these adverse effects are resolved over time. In the present study, we investigated the extent of recovery of mouse lungs 10 days after inhalation exposures to environmentally-relevant levels of BDS aerosols had ended. Methods Female BALB/c mice exposed to either HEPA-filtered air or to BDS (5 mg/m3 in HEPA filtered air, 4 h/day, 21 consecutive days) were sacrificed immediately, or 10 days after the final BDS exposure. Bronchoalveolar lavage fluid (BALF) was collected for cytology and cytokine analysis. Lung proteins and RNA were extracted for protein and gene expression analysis. Lung histopathology evaluation also was performed. Results Sub-acute exposures of mice to hydrocarbon-rich ultrafine particles induced: (1) BALF neutrophil elevation; (2) lung mucosal inflammation, and (3) increased BALF IL-1β concentration; with all three outcomes returning to baseline levels 10 days post-exposure. In contrast, (4) lung connective tissue inflammation persisted 10 days post-exposure; (5) we detected time-dependent up-regulation of biotransformation and oxidative stress genes, with incomplete return to baseline levels; and (6) we observed persistent particle alveolar load following 10 days of recovery. Conclusion These data show that 10 days after a 21-day exposure to 5 mg/m3 of BDS has ended, incomplete lung recovery promotes a pro-biotransformation, pro-oxidant, and pro-inflammatory milieu, which may be a starting point for potential long-term cardio-pulmonary effects.
Collapse
Affiliation(s)
- A Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - R Xiao
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Z Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - H M Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - R L Rouse
- United States Food and Drug Administration, Silver Spring, MD, USA
| | - D B Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - A L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA.
| |
Collapse
|
20
|
Association of Nrf2 with airway pathogenesis: lessons learned from genetic mouse models. Arch Toxicol 2015; 89:1931-57. [PMID: 26194645 DOI: 10.1007/s00204-015-1557-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/17/2015] [Indexed: 01/11/2023]
Abstract
Nrf2 is a key transcription factor for antioxidant response element (ARE)-bearing genes involved in diverse host defense functions including redox balance, cell cycle, immunity, mitochondrial biogenesis, energy metabolism, and carcinogenesis. Nrf2 in the airways is particularly essential as the respiratory system continuously interfaces with environmental stress. Since Nrf2 was determined to be a susceptibility gene for a model of acute lung injury, its protective capacity in the airways has been demonstrated in experimental models of human disorders using Nrf2 mutant mice which were susceptible to supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergens, virus, environmental pollutants, and fibrotic agents compared to wild-type littermates. Recent studies also determined that Nrf2 is indispensable in developmental lung injury. While association studies with genetic NRF2 polymorphisms supported a protective role for murine Nrf2 in oxidative airway diseases, somatic NRF2 mutations enhanced NRF2-ARE responses, and were favorable for lung carcinogenesis and chemoresistance. Bioinformatic tools have elucidated direct Nrf2 targets as well as Nrf2-interacting networks. Moreover, potent Nrf2-ARE agonists protected oxidant-induced lung phenotypes in model systems, suggesting a therapeutic or preventive intervention. Further investigations on Nrf2 should yield greater understanding of its contribution to normal and pathophysiological function in the airways.
Collapse
|
21
|
Qin S, Du R, Yin S, Liu X, Xu G, Cao W. Nrf2 is essential for the anti-inflammatory effect of carbon monoxide in LPS-induced inflammation. Inflamm Res 2015; 64:537-48. [PMID: 26049867 DOI: 10.1007/s00011-015-0834-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Carbon monoxide (CO) released from CORM-2 has anti-inflammatory function, but the critical molecule mediating the inflammation inhibition has not been elucidated. Previous studies indicate that CORM-2 can activate Nrf2, a key transcription factor regulating host defense against oxidative stress and inflammation-related disorders. In this study we use Nrf2 knockout mice to determine the role of Nrf2 in mediating the CO anti-inflammatory action. METHODS We compared CORM-2's inhibiting effect on pro-inflammatory cytokine expressions (TNF-α, IL-1β and IL-6 and iNOS) in primary peritoneal macrophages, mouse liver and brain tissues from Nrf2(+/+) and Nrf2(-/-) mice. We further assayed the inflammatory cell infiltration in both liver and brain tissues of the Nrf2(+/+) and Nrf2(-/-) mice. Finally, we examined CORM's influence on mouse mortality in a mouse sepsis model. RESULTS Our results showed that CORM-2 dramatically inhibited the expression of pro-inflammatory cytokines in Nrf2(+/+) mice, but not in Nrf2(-/-) mice. Furthermore CORM-2 substantially decreased LPS-induced mouse mortality of Nrf2(+/+) mice, but not of Nrf2(-/-) mice. CONCLUSION We conclude that Nrf2 is indispensable for CORM-2 inhibition of LPS-induced inflammation.
Collapse
Affiliation(s)
- SiYuan Qin
- Jiangsu Key Laboratory of Molecular Medicine, School of Medicine and State Key Lab of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | | | | | | | | | | |
Collapse
|
22
|
Bijnens E, Zeegers MP, Gielen M, Kicinski M, Hageman GJ, Pachen D, Derom C, Vlietinck R, Nawrot TS. Lower placental telomere length may be attributed to maternal residential traffic exposure; a twin study. ENVIRONMENT INTERNATIONAL 2015; 79:1-7. [PMID: 25756235 DOI: 10.1016/j.envint.2015.02.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND High variation in telomere length between individuals is already present before birth and is as wide among newborns as in adults. Environmental exposures likely have an impact on this observation, but remain largely unidentified. We hypothesize that placental telomere length in twins is associated with residential traffic exposure, an important environmental source of free radicals that might accelerate aging. Next, we intend to unravel the nature-nurture contribution to placental telomere length by estimating the heritability of placental telomere length. METHODS We measured the telomere length in placental tissues of 211 twins in the East Flanders Prospective Twin Survey. Maternal traffic exposure was determined using a geographic information system. Additionally, we estimated the relative importance of genetic and environmental sources of variance. RESULTS In this twin study, a variation in telomere length in the placental tissue was mainly determined by the common environment. Maternal residential proximity to a major road was associated with placental telomere length: a doubling in the distance to the nearest major road was associated with a 5.32% (95% CI: 1.90 to 8.86%; p=0.003) longer placental telomere length at birth. In addition, an interquartile increase (22%) in maternal residential surrounding greenness (5 km buffer) was associated with an increase of 3.62% (95% CI: 0.20 to 7.15%; p=0.04) in placental telomere length. CONCLUSIONS In conclusion, we showed that maternal residential proximity to traffic and lower residential surrounding greenness is associated with shorter placental telomere length at birth. This may explain a significant proportion of air pollution-related adverse health outcomes starting from early life, since shortened telomeres accelerate the progression of many diseases.
Collapse
Affiliation(s)
- Esmée Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Maurice P Zeegers
- Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Marij Gielen
- Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Michal Kicinski
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Geja J Hageman
- Department of Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Daniëlle Pachen
- Department of Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Catherine Derom
- Centre of Human Genetics, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Robert Vlietinck
- Centre of Human Genetics, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Department of Public Health, Leuven University (KU Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium.
| |
Collapse
|
23
|
Jaguin M, Fardel O, Lecureur V. Exposure to diesel exhaust particle extracts (DEPe) impairs some polarization markers and functions of human macrophages through activation of AhR and Nrf2. PLoS One 2015; 10:e0116560. [PMID: 25710172 PMCID: PMC4339390 DOI: 10.1371/journal.pone.0116560] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
Macrophages (MΦ), well-known to play an important role in immune response, also respond to environmental toxic chemicals such as diesel exhaust particles (DEP). Potential effects of DEPs towards MΦ polarization, a key hall-mark of MΦ physiology, remain however poorly documented. This study was therefore designed to evaluate the effects of a reference DEP extract (DEPe) on human MΦ polarization. Human blood monocytes-derived MΦ were incubated with IFNγ+LPS or IL-4 to obtain M1 and M2 subtypes, respectively; a 24 h exposure of polarizing MΦ to 10 μg/ml DEPe was found to impair expression of some macrophagic M1 and M2 markers, without however overall inhibition of M1 and M2 polarization processes. Notably, DEPe treatment increased the secretion of the M1 marker IL-8 and the M2 marker IL-10 in both MΦ subtypes, whereas it reduced lipopolysaccharide-induced IL-6 and IL-12p40 secretion in M1 MΦ. In M2 MΦ, DEPe exposure led to a reduction of CD200R expression and of CCL17, CCL18 and CCL22 secretion, associated with a lower chemotaxis of CCR4-positive cells. DEPe activated the Nrf2 and AhR pathways and induced expression of their reference target genes such as Hmox-1 and cytochrome P-4501B1 in M1 and M2 MΦ. Nrf2 or AhR silencing through RNA interference prevented DEPe-related down-regulation of IL-6. AhR silencing also inhibited the down-secretion of IL-12p40 and CCL18 in M1- and M2-DEPe-exposed MΦ, respectively. DEPs are therefore likely to alter expression of some M1 and M2 markers in an AhR- and Nrf2-dependent manner; such regulations may contribute to deleterious immune effects of atmospheric DEP.
Collapse
Affiliation(s)
- Marie Jaguin
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
| | - Olivier Fardel
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Valérie Lecureur
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
- * E-mail:
| |
Collapse
|
24
|
He JL, Zhou ZW, Yin JJ, He CQ, Zhou SF, Yu Y. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 9:127-46. [PMID: 25552902 PMCID: PMC4277124 DOI: 10.2147/dddt.s68501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug metabolizing enzymes (DMEs) and drug transporters are regulated via epigenetic, transcriptional, posttranscriptional, and translational and posttranslational modifications. Phase I and II DMEs and drug transporters play an important role in the disposition and detoxification of a large number of endogenous and exogenous compounds. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a critical regulator of a variety of important cytoprotective genes that are involved in disposition and detoxification of xenobiotics. Schisandra chinensis (SC) is a commonly used traditional Chinese herbal medicine that has been primarily used to protect the liver because of its potent antioxidative and anti-inflammatory activities. SC can modulate some DMEs and drug transporters, but the underlying mechanisms are unclear. In this study, we aimed to explore the role of Nrf2 in the regulatory effect of SC extract (SCE) on selected DMEs and drug transporters in human hepatocellular liver carcinoma cell line (HepG2) cells. The results showed that SCE, schisandrin A, and schisandrin B significantly increased the expression of NAD(P)H: Nicotinamide Adenine Dinucleotide Phosphate-oxidase or:quinone oxidoreductase 1, heme oxygenase-1, glutamate–cysteine ligase, and glutathione S-transferase A4 at both transcriptional and posttranscriptional levels. Incubation of HepG2 cells with SCE resulted in a significant increase in the intracellular level of glutathione and total glutathione S-transferase content. SCE significantly elevated the messenger ribonucleic acid and protein levels of P-glycoprotein and multidrug resistance-associated protein 2 and 4, whereas the expression of organic anion transporting peptide 1A2 and 1B1 was significantly downregulated by SCE. Knockdown of Nrf2 by small interfering ribonucleic acid attenuated the regulatory effect of SCE on these DMEs and drug transporters. SCE significantly upregulated Nrf2 and promoted the translocation of Nrf2 from cytoplasm to the nuclei. Additionally, SCE significantly suppressed the expression of cytosolic Kelch-like ECH-associated protein 1 (the repressor of Nrf2) and remarkably increased Nrf2 stability in HepG2 cells. Taken together, our findings suggest that the hepatoprotective effects of SCE may be partially ascribed to the modulation of DMEs and drug transporters via Nrf2-mediated signaling pathway. SCE may alter the pharmacokinetics of other coadministered drugs that are substrates of these DMEs and transporters and thus cause unfavorable herb–drug interactions.
Collapse
Affiliation(s)
- Jin-Lian He
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Juan-Juan Yin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Chang-Qiang He
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yang Yu
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
25
|
Boyanapalli SSS, Paredes-Gonzalez X, Fuentes F, Zhang C, Guo Y, Pung D, Saw CLL, Kong ANT. Nrf2 knockout attenuates the anti-inflammatory effects of phenethyl isothiocyanate and curcumin. Chem Res Toxicol 2014; 27:2036-43. [PMID: 25387343 PMCID: PMC4269407 DOI: 10.1021/tx500234h] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
The
role of phytochemicals in preventive and therapeutic medicine
is a major area of scientific research. Several studies have illustrated
the mechanistic roles of phytochemicals in Nrf2 transcriptional activation.
The present study aims to examine the importance of the transcription
factor Nrf2 by treating peritoneal macrophages from Nrf2+/+ and Nrf2–/– mice ex vivo with phenethyl isothiocyanate (PEITC) and curcumin (CUR). The peritoneal
macrophages were pretreated with the drugs and challenged with lipopolysaccharides
(LPSs) alone and in combination with PEITC or CUR to assess their
anti-inflammatory and antioxidative effects based on gene and protein
expression in the treated cells. LPS treatment resulted in an increase
in the expression of inflammatory markers such as cycloxygenase-2
(COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6),
and tumor necrosis factor-α (TNF-α) in both Nrf2+/+ and Nrf2–/– macrophages, detected by quantitative
polymerase chain reaction (qPCR). Nrf2+/+ macrophages treated
with PEITC and CUR exhibited a significant decrease in the expression
of these anti-inflammatory genes along with an increase in the expression
of hemeoxygenase-1 (HO-1), which is an antioxidative stress gene downstream
of the Nrf2 transcription factor battery. Although there was no significant
decrease in the expression of the anti-inflammatory genes or an increase
in HO-1 expression in Nrf2–/– macrophages
treated with either PEITC or CUR, there was a significant decrease
in the protein expression of COX-2 and an increase in the expression
of HO-1 in Nrf2+/+ macrophages treated with PEITC compared
to that with CUR treatment. No significant changes were observed in
the macrophages from knockout animals. Additionally, there was a significant
decrease in LPS-induced IL-6 and TNF-α production following
PEITC treatment compared with that following CUR in Nrf2+/+ macrophages, whereas no change was observed in the macrophages from
knockout animals. The results from qPCR, western blot, and ELISA
analyses in macrophages from Nrf2+/+ and Nrf2 –/– mice indicate that Nrf2 plays an important role in the anti-inflammatory
and antioxidative effects of PEITC and CUR, as observed by their decreased
activities in Nrf2–/– macrophages.
Collapse
Affiliation(s)
- Sarandeep S S Boyanapalli
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey , 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ying YH, Lin XP, Zhou HB, Wu YF, Yan FG, Hua W, Xia LX, Qiu ZW, Chen ZH, Li W, Shen HH. Nuclear erythroid 2 p45-related factor-2 Nrf2 ameliorates cigarette smoking-induced mucus overproduction in airway epithelium and mouse lungs. Microbes Infect 2014; 16:855-63. [PMID: 25239867 DOI: 10.1016/j.micinf.2014.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Nuclear erythroid 2 p45-related factor-2 (Nrf2) is known to play important roles in airway disorders, whereas little has been investigated about its direct role in airway mucus hypersecretion. The aim of this study is to determine whether this factor could protect pulmonary epithelium and mouse airway from cigarette-induced mucus overproduction. METHODS Using genetic approaches, the role of Nrf2 on cigarette smoking extracts (CSE) induced MUC5AC expression was investigated in lung A549 cells. Nrf2 deficiency mice were smoked for various periods, and the airway inflammation and mucus production was characterized. RESULTS Acute smoking exposure induced expression of MUC5AC and Nrf2 in both A549 cells and mouse lungs. Genetic ablation of Nrf2 augmented, whereas overexpression of this molecule ameliorated CSE-induced expression of MUC5AC. Nrf2 knockout mice, after exposure to cigarette smoking, displayed enhanced airway inflammation and mucus production. CONCLUSION Nrf2 negatively regulated smoking-induced mucus production in vitro and in vivo, suggesting therapeutic potentials of this factor in airway diseases with hypersecreted mucus.
Collapse
Affiliation(s)
- Ying-Hua Ying
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiao-Ping Lin
- Department of Respiratory and Critical Care Medicine, Second Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Hong-bin Zhou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yin-fang Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fu-gui Yan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wen Hua
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Li-Xia Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhang-wei Qiu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; State Key Laboratory of Respiratory Diseases, Guangzhou 510120, China.
| |
Collapse
|
27
|
Egner PA, Chen JG, Zarth AT, Ng DK, Wang JB, Kensler KH, Jacobson LP, Muñoz A, Johnson JL, Groopman JD, Fahey JW, Talalay P, Zhu J, Chen TY, Qian GS, Carmella SG, Hecht SS, Kensler TW. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res (Phila) 2014; 7:813-823. [PMID: 24913818 DOI: 10.1158/1940-6207.capr-14-0103] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Broccoli sprouts are a convenient and rich source of the glucosinolate, glucoraphanin, which can generate the chemopreventive agent, sulforaphane, an inducer of glutathione S-transferases (GST) and other cytoprotective enzymes. A broccoli sprout-derived beverage providing daily doses of 600 μmol glucoraphanin and 40 μmol sulforaphane was evaluated for magnitude and duration of pharmacodynamic action in a 12-week randomized clinical trial. Two hundred and ninety-one study participants were recruited from the rural He-He Township, Qidong, in the Yangtze River delta region of China, an area characterized by exposures to substantial levels of airborne pollutants. Exposure to air pollution has been associated with lung cancer and cardiopulmonary diseases. Urinary excretion of the mercapturic acids of the pollutants, benzene, acrolein, and crotonaldehyde, were measured before and during the intervention using liquid chromatography tandem mass spectrometry. Rapid and sustained, statistically significant (P ≤ 0.01) increases in the levels of excretion of the glutathione-derived conjugates of benzene (61%), acrolein (23%), but not crotonaldehyde, were found in those receiving broccoli sprout beverage compared with placebo. Excretion of the benzene-derived mercapturic acid was higher in participants who were GSTT1-positive than in the null genotype, irrespective of study arm assignment. Measures of sulforaphane metabolites in urine indicated that bioavailability did not decline over the 12-week daily dosing period. Thus, intervention with broccoli sprouts enhances the detoxication of some airborne pollutants and may provide a frugal means to attenuate their associated long-term health risks.
Collapse
Affiliation(s)
- Patricia A Egner
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jian-Guo Chen
- Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200 China
| | - Adam T Zarth
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Derek K Ng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jin-Bing Wang
- Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200 China
| | - Kevin H Kensler
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Lisa P Jacobson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Alvaro Muñoz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jamie L Johnson
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - John D Groopman
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jed W Fahey
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Paul Talalay
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Jian Zhu
- Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200 China
| | - Tao-Yang Chen
- Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200 China
| | - Geng-Sun Qian
- Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200 China
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Thomas W Kensler
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261 USA
| |
Collapse
|
28
|
Burburan SM, Silva JD, Abreu SC, Samary CS, Guimarães IHL, Xisto DG, Morales MM, Rocco PRM. Effects of inhalational anaesthetics in experimental allergic asthma. Anaesthesia 2014; 69:573-82. [PMID: 24666314 DOI: 10.1111/anae.12593] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2013] [Indexed: 12/20/2022]
Abstract
We evaluated whether isoflurane, halothane and sevoflurane attenuate the inflammatory response and improve lung morphofunction in experimental asthma. Fifty-six BALB/c mice were sensitised and challenged with ovalbumin and anaesthetised with isoflurane, halothane, sevoflurane or pentobarbital sodium for one hour. Lung mechanics and histology were evaluated. Gene expression of pro-inflammatory (tumour necrosis factor-α), pro-fibrogenic (transforming growth factor-β) and pro-angiogenic (vascular endothelial growth factor) mediators, as well as oxidative process modulators, were analysed. These modulators included nuclear factor erythroid-2 related factor 2, sirtuin, catalase and glutathione peroxidase. Isoflurane, halothane and sevoflurane reduced airway resistance, static lung elastance and atelectasis when compared with pentobarbital sodium. Sevoflurane minimised bronchoconstriction and cell infiltration, and decreased tumour necrosis factor-α, transforming growth factor-β, vascular endothelial growth factor, sirtuin, catalase and glutathione peroxidase, while increasing nuclear factor erythroid-2-related factor 2 expression. Sevoflurane down-regulated inflammatory, fibrogenic and angiogenic mediators, and modulated oxidant-antioxidant imbalance, improving lung function in this model of asthma.
Collapse
Affiliation(s)
- S M Burburan
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Brazilian National Cancer Institute - INCa, and Ipanema Federal Hospital, Ministry of Health, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Martínez-Hernández A, Gutierrez-Malacatt H, Carrillo-Sánchez K, Saldaña-Alvarez Y, Rojas-Ochoa A, Crespo-Solis E, Aguayo-González A, Rosas-López A, Ayala-Sanchez JM, Aquino-Ortega X, Orozco L, Cordova EJ. Small MAF genes variants and chronic myeloid leukemia. Eur J Haematol 2013; 92:35-41. [PMID: 24118457 DOI: 10.1111/ejh.12211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 12/18/2022]
Abstract
Chronic myeloid leukemia (CML) is one of the most frequent hematological neoplasia worldwide. The abnormal accumulation of reactive oxygen species may be an important factor in CML development. The transcription factor NRF2 can regulate the transcription of a battery of antioxidant and detoxificant genes after heterodimerizing with small-Maf proteins. Although the participation of NRF2 in the development of chronic degenerative diseases has been thoroughly studied, the role of small-Maf genes has not been documented. We have identified polymorphisms in the three MAF genes (F, G and K) and assessed their association with CML. Over 266 subjects with CML and 399 unrelated healthy donors have been studied. After sequencing each MAF gene by Sanger technology, we found 17 variants in MAFF gene, eight in MAFG and seven in MAFK. In the case-control study, the homozygote genotype CC for the rs9610915 SNP of MAFF was significantly associated with CML. The frequency of the ACC haplotype from MAFK was significantly lower than controls. After stratification by gender, the ACC and GTG haplotypes were associated only with males with CML. These novel data suggest an association between MAFF and MAFG and the development of CML.
Collapse
Affiliation(s)
- Angelica Martínez-Hernández
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, México City, México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
A novel shogaol analog suppresses cancer cell invasion and inflammation, and displays cytoprotective effects through modulation of NF-κB and Nrf2-Keap1 signaling pathways. Toxicol Appl Pharmacol 2013; 272:852-62. [DOI: 10.1016/j.taap.2013.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/08/2013] [Accepted: 07/18/2013] [Indexed: 12/13/2022]
|
31
|
Li YJ, Shimizu T, Hirata Y, Inagaki H, Takizawa H, Azuma A, Kawada T, Sugawara I, Kudoh S, Sunazuka T, Omura S. EM, EM703 inhibit NF-kB activation induced by oxidative stress from diesel exhaust particle in human bronchial epithelial cells: Importance in IL-8 transcription. Pulm Pharmacol Ther 2013; 26:318-24. [DOI: 10.1016/j.pupt.2012.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/13/2012] [Accepted: 12/24/2012] [Indexed: 01/17/2023]
|
32
|
Exacerbated airway toxicity of environmental oxidant ozone in mice deficient in Nrf2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:254069. [PMID: 23766849 PMCID: PMC3665255 DOI: 10.1155/2013/254069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/29/2013] [Indexed: 12/20/2022]
Abstract
Ozone (O3) is a strong oxidant in air pollution that has harmful effects on airways and exacerbates respiratory disorders. The transcription factor Nrf2 protects airways from oxidative stress through antioxidant response element-bearing defense gene induction. The present study was designed to determine the role of Nrf2 in airway toxicity caused by inhaled O3 in mice. For this purpose, Nrf2-deficient (Nrf2(-/-)) and wild-type (Nrf2(+/+)) mice received acute and subacute exposures to O3. Lung injury was determined by bronchoalveolar lavage and histopathologic analyses. Oxidation markers and mucus hypersecretion were determined by ELISA, and Nrf2 and its downstream effectors were determined by RT-PCR and/or Western blotting. Acute and sub-acute O3 exposures heightened pulmonary inflammation, edema, and cell death more severely in Nrf2(-/-) mice than in Nrf2(+/+) mice. O3 caused bronchiolar and terminal bronchiolar proliferation in both genotypes of mice, while the intensity of compensatory epithelial proliferation, bronchial mucous cell hyperplasia, and mucus hypersecretion was greater in Nrf2(-/-) mice than in Nrf2(+/+) mice. Relative to Nrf2(+/+), O3 augmented lung protein and lipid oxidation more highly in Nrf2(-/-) mice. Results suggest that Nrf2 deficiency exacerbates oxidative stress and airway injury caused by the environmental pollutant O3.
Collapse
|
33
|
Nrf2 is a protective factor against oxidative stresses induced by diesel exhaust particle in allergic asthma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:323607. [PMID: 23738037 PMCID: PMC3655666 DOI: 10.1155/2013/323607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/18/2013] [Accepted: 04/08/2013] [Indexed: 11/18/2022]
Abstract
Epidemiological studies have shown that air pollutants, such as diesel exhaust particle (DEP), are implicated in the increased incidence of allergic airway disorders. In vitro studies of molecular mechanisms have focused on the role of reactive oxygen species generated directly and indirectly by the exposure to DEP. Antioxidants effectively reduce the allergic inflammatory effects induced by DEP both in vitro and in vivo. On the other hand, Nrf2 is a transcription factor essential for the inducible and/or constitutive expression of phase II and antioxidant enzymes. Disruption of Nrf2 enhances susceptibility to airway inflammatory responses and exacerbation of allergic inflammation induced by DEP in mice. Host responses to DEP are regulated by a balance between antioxidants and proinflammatory responses. Nrf2 may be an important protective factor against oxidative stresses induced by DEP in airway inflammation and allergic asthma and is expected to contribute to chemoprevention against DEP health effects in susceptible individuals.
Collapse
|
34
|
Li N, Wang M, Barajas B, Sioutas C, Williams MA, Nel AE. Nrf2 deficiency in dendritic cells enhances the adjuvant effect of ambient ultrafine particles on allergic sensitization. J Innate Immun 2013; 5:543-54. [PMID: 23595026 DOI: 10.1159/000347060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/11/2013] [Indexed: 11/19/2022] Open
Abstract
Particulate matter (PM) is an important risk factor for asthma. Generation of oxidative stress by PM is a major mechanism of its health effects. Transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) mediates antioxidant and phase II enzymes and is essential in protecting against oxidative stress and lung inflammation. We have previously shown that ambient ultrafine particles (UFP) could exert a potent adjuvant effect on allergic sensitization to ovalbumin (OVA) in mice. We hypothesized that Nrf2 deficiency in dendritic cells (DC) could enhance the adjuvant potential of UFP on allergic sensitization. We show that the adjuvant effect of intranasally instilled UFP is significantly enhanced in Nrf2 knockout (Nrf2(-/-)) mice compared with their wild-type (Nrf2(+/+)) counterparts. Under resting conditions, Nrf2(-/-) DC displayed an intrinsic predilection to a T helper 2-favoring cytokine profile characterized by a low level of IL-12p70 and a high level of IL-6 as compared to Nrf2(+/+) DC. Adoptive transfer of OVA/UFP-treated Nrf2(-/-) DC provoked a more severe allergic inflammation in the lung than Nrf2(+/+) DC in the same treatment group. We conclude that Nrf2 deficiency in DC may promote a constitutive immune-polarizing cytokine milieu, which we propose may have contributed to the augmented adjuvant effect of UFP on allergic sensitization.
Collapse
Affiliation(s)
- Ning Li
- Department of Pathology and Diagnostic Investigation, Michigan State University, East Lansing, Mich., USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The respiratory tract has a surface area of approximately 70 m(2) that is in direct contact with the external environment. Approximately 12,000 l of air are inhaled daily, exposing the airway epithelium to up to 25 million particles an hour. Several inhaled environmental triggers, like cigarette smoke, diesel exhaust, or allergens, are known inducers of endoplasmatic reticulum (ER) stress and cause a dysregulation in ER homeostasis. Furthermore, some epithelial cell types along the respiratory tract have a secretory function, producing large amounts of mucus or pulmonary surfactant, as well as innate host defense molecules like defensins. To keep up with their secretory demands, these cells must rely on the appropriate functioning and folding capacity of the ER, and they are particularly more vulnerable to conditions of unresolved ER stress. In the lung interstitium, triggering of ER stress pathways has a major impact on the functioning of vascular smooth muscle cells and fibroblasts, causing aberrant dedifferentiation and proliferation. Given the large amounts of foreign material inhaled, the lung is densely populated by various types of immune cells specialized in engulfing and killing pathogens and in secreting cytokines/chemokines for efficient microbial clearance. Unfolded protein response signaling cascades have been shown to intersect with the functioning of immune cells at all levels. The current review aims to highlight the role of ER stress in health and disease in the lung, focusing on its impact on different structural and inflammatory cell types.
Collapse
|
36
|
Chan JKW, Kodani SD, Charrier JG, Morin D, Edwards PC, Anderson DS, Anastasio C, Van Winkle LS. Age-specific effects on rat lung glutathione and antioxidant enzymes after inhaling ultrafine soot. Am J Respir Cell Mol Biol 2012; 48:114-24. [PMID: 23065132 DOI: 10.1165/rcmb.2012-0108oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAHs) and is a dominant contributor to urban particulate pollution (PM). Exposure to PM is linked to respiratory and cardiovascular morbidity and mortality in susceptible populations, such as children. PM can contribute to the development and exacerbation of asthma, and this is thought to occur because of the presence of electrophiles in PM or through electrophile generation via the metabolism of PAHs. Glutathione (GSH), an abundant intracellular antioxidant, confers cytoprotection through conjugation of electrophiles and reduction of reactive oxygen species. GSH-dependent phase II detoxifying enzymes glutathione peroxidase and glutathione S-transferase facilitate metabolism and conjugation, respectively. Ambient particulates are highly variable in composition, which complicates systematic study. In response, we have developed a replicable ultrafine premixed flame particle (PFP)-generating system for in vivo studies. To determine particle effects in the developing lung, 7-day-old neonatal and adult rats inhaled 22 μg/m(3) PFP during a single 6-hour exposure. Pulmonary GSH and related phase II detoxifying gene and protein expression were evaluated 2, 24, and 48 hours after exposure. Neonates exhibited significant depletion of GSH despite higher initial baseline levels of GSH. Furthermore, we observed attenuated induction of phase II enzymes (glutamate cysteine ligase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) in neonates compared with adult rats. We conclude that developing neonates have a limited ability to deviate from their normal developmental pattern that precludes adequate adaptation to environmental pollutants, which results in enhanced cytotoxicity from inhaled PM.
Collapse
Affiliation(s)
- Jackie K W Chan
- Center for Health and the Environment, University of California at Davis, Davis, California 95616-8732, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Radic Biol Med 2012; 52:2013-37. [PMID: 22391222 DOI: 10.1016/j.freeradbiomed.2012.02.035] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 12/12/2022]
Abstract
The role of inflammation in carcinogenesis has been extensively investigated and well documented. Many biochemical processes that are altered during chronic inflammation have been implicated in tumorigenesis. These include shifting cellular redox balance toward oxidative stress; induction of genomic instability; increased DNA damage; stimulation of cell proliferation, metastasis, and angiogenesis; deregulation of cellular epigenetic control of gene expression; and inappropriate epithelial-to-mesenchymal transition. A wide array of proinflammatory cytokines, prostaglandins, nitric oxide, and matricellular proteins are closely involved in premalignant and malignant conversion of cells in a background of chronic inflammation. Inappropriate transcription of genes encoding inflammatory mediators, survival factors, and angiogenic and metastatic proteins is the key molecular event in linking inflammation and cancer. Aberrant cell signaling pathways comprising various kinases and their downstream transcription factors have been identified as the major contributors in abnormal gene expression associated with inflammation-driven carcinogenesis. The posttranscriptional regulation of gene expression by microRNAs also provides the molecular basis for linking inflammation to cancer. This review highlights the multifaceted role of inflammation in carcinogenesis in the context of altered cellular redox signaling.
Collapse
|
38
|
Meher AK, Sharma PR, Lira VA, Yamamoto M, Kensler TW, Yan Z, Leitinger N. Nrf2 deficiency in myeloid cells is not sufficient to protect mice from high-fat diet-induced adipose tissue inflammation and insulin resistance. Free Radic Biol Med 2012; 52:1708-15. [PMID: 22370093 PMCID: PMC3383807 DOI: 10.1016/j.freeradbiomed.2012.02.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/23/2012] [Accepted: 02/15/2012] [Indexed: 12/28/2022]
Abstract
Activation of the transcription factor NF-E2-related factor 2 (Nrf2) by oxidative stress induces the expression of a variety of antioxidant and anti-inflammatory genes. Yet, genetic ablation of Nrf2 was shown to protect mice from high-fat diet (HFD)-induced obesity and insulin resistance. The mechanisms that underlie this seemingly paradoxical finding remain largely unexplored. Here we examined whether Nrf2 deficiency in myeloid cells contributes to protection against HFD-induced metabolic changes by decreasing adipose tissue inflammation. In vitro, induction of IL-1β by inflammatory stimuli was significantly reduced in Nrf2-deficient macrophages. Whereas inflammatory gene expression in the stromal vascular fraction was reduced in both global and chimeric Nrf2 KO mice, only global Nrf2-deficient, and not bone marrow-transplanted Nrf2 chimeric, mice were protected against HFD-induced adipose tissue inflammation. Whereas global Nrf2 deficiency resulted in significantly decreased expression of inflammatory genes and PPARγ2, there was no difference when Nrf2 was absent only from myeloid cells. In vitro coculture with adipocytes demonstrated that macrophage Nrf2 regulated inflammatory gene expression in macrophages; however, it was not required to induce inflammatory gene expression in adipocytes. Finally, in contrast to global Nrf2 knockout, Nrf2 deficiency in myeloid cells did not protect against HFD-induced insulin resistance. Together, our data demonstrate a dominant role for nonmyeloid Nrf2 in controlling HFD-induced adipose tissue inflammation and the development of insulin resistance.
Collapse
Affiliation(s)
- Akshaya K. Meher
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Poonam R. Sharma
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Vitor A. Lira
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Thomas W. Kensler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhen Yan
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Corresponding author: Norbert Leitinger, PhD, Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; Telephone: 4342436363; Fax: 4349823878; .
| |
Collapse
|
39
|
Weldy CS, White CC, Wilkerson HW, Larson TV, Stewart JA, Gill SE, Parks WC, Kavanagh TJ. Heterozygosity in the glutathione synthesis gene Gclm increases sensitivity to diesel exhaust particulate induced lung inflammation in mice. Inhal Toxicol 2012; 23:724-35. [PMID: 21967497 DOI: 10.3109/08958378.2011.608095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Inhalation of ambient fine particulate matter (PM₂.₅) is associated with adverse respiratory and cardiovascular effects. A major fraction of PM₂.₅ in urban settings is diesel exhaust particulate (DEP), and DEP-induced lung inflammation is likely a critical event mediating many of its adverse health effects. Oxidative stress has been proposed to be an important factor in PM₂.₅-induced lung inflammation, and the balance between pro- and antioxidants is an important regulator of this inflammation. An important intracellular antioxidant is the tripeptide thiol glutathione (GSH). Glutamate cysteine ligase (GCL) carries out the first step in GSH synthesis. In humans, relatively common genetic polymorphisms in both the catalytic (Gclc) and modifier (Gclm) subunits of GCL have been associated with increased risk for lung and cardiovascular diseases. OBJECTIVE This study was aimed to determine the effects of Gclm expression on lung inflammation following DEP exposure in mice. MATERIALS AND METHODS We exposed Gclm wild type, heterozygous, and null mice to DEP via intranasal instillation and assessed lung inflammation as determined by neutrophils and inflammatory cytokines in lung lavage, inflammatory cytokine mRNA levels in lung tissue, as well as total lung GSH, Gclc, and Gclm protein levels. RESULTS The Gclm heterozygosity was associated with a significant increase in DEP-induced lung inflammation when compared to that of wild type mice. DISCUSSION AND CONCLUSION This finding indicates that GSH synthesis can mediate DEP-induced lung inflammation and suggests that polymorphisms in Gclm may be an important factor in determining adverse health outcomes in humans following inhalation of PM₂.₅.
Collapse
Affiliation(s)
- Chad S Weldy
- Department of Environmental and Occupational Health, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rockwell CE, Zhang M, Fields PE, Klaassen CD. Th2 skewing by activation of Nrf2 in CD4(+) T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:1630-7. [PMID: 22250088 DOI: 10.4049/jimmunol.1101712] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NF erythroid 2-related factor 2 (Nrf2) is a transcription factor that mediates the upregulation of a battery of cytoprotective genes in response to cell stress. Recent studies showed that Nrf2 also modulates immune responses and exhibits anti-inflammatory activity. In this article, we demonstrate that a common food preservative, tert-butylhydroquinone, can activate Nrf2 in T cells, as evidenced by Nrf2 binding to the antioxidant response element and the subsequent upregulation of Nrf2 target genes. The activation of Nrf2 suppresses IFN-γ production, while inducing the production of the Th2 cytokines IL-4, IL-5, and IL-13. Nrf2 activation also suppresses T-bet DNA binding and promotes GATA-binding protein 3 DNA binding. Collectively, the present studies suggested that Nrf2 activation skews CD4(+) T cells toward Th2 differentiation and, thus, represents a novel regulatory mechanism in CD4(+) T cells. Further studies are needed to determine whether the commercial use of Nrf2 activators as food preservatives promotes food allergies in humans.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
41
|
Michaeloudes C, Chang PJ, Petrou M, Chung KF. Transforming growth factor-β and nuclear factor E2–related factor 2 regulate antioxidant responses in airway smooth muscle cells: role in asthma. Am J Respir Crit Care Med 2011; 184:894-903. [PMID: 21799075 PMCID: PMC3402549 DOI: 10.1164/rccm.201011-1780oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 07/01/2011] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and inflammatory function and induces oxidant release, are features of asthma. Nuclear factor E2-related factor 2 (Nrf2) activates antioxidant genes conferring protection against oxidative stress. OBJECTIVES To determine the role of Nrf2 in ASMCs and its modulation by TGF-β, and compare Nrf2 activity in ASMCs from subjects with severe and nonsevere asthma and healthy subjects. METHODS ASMCs were cultured from airways of subjects without asthma, and from airway biopsies from patients with severe and nonsevere asthma. We studied Nrf2 activation on antioxidant gene expression and proliferation, the effect of TGF-β on Nrf2 transcriptional activity, and the impact of Nrf2 activation on TGF-β–mediated proliferation and IL-6 release. Nrf2–antioxidant response elements binding and Nrf2-dependent antioxidant gene expression was determined in asthmatic ASMCs. MEASUREMENTS AND MAIN RESULTS Activation of Nrf2 led to up-regulation of the antioxidant genes heme oxygenase (HO)-1, NAD(P)H:quinone oxidoreductase, and manganese superoxide dismutase, and a reduction in proliferation. TGF-β reduced Nrf2-mediated antioxidant gene transcription through induction of activating transcription factor-3 expression. Nrf2 activation attenuated TGF-β–mediated reduction in HO-1,ASMC proliferation, and IL-6 release. Nrf2–antioxidant response elements binding was reduced in ASMCs from patients with severe asthma compared with ASMCs from patients with nonsevere asthma and normal subjects. HO-1 expression was reduced in ASMCs from patients with both nonsevere and severe asthma compared with healthy subjects. CONCLUSIONS Nrf2 regulates antioxidant responses and proliferation in ASMCs and is inactivated by TGF-β. Nrf2 reduction may underlie compromised antioxidant protection and aberrant ASM function in asthma.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Po-Jui Chang
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Mario Petrou
- Cardiovascular Science Heart Science Centre, Heart Science Centre, National Heart and Lung Institute, Imperial College London, Harefield Hospital, United Kingdom
| | - Kian Fan Chung
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
42
|
Abstract
The incidence of allergic diseases in most industrialized countries has increased. Although the exact mechanisms behind this rapid increase in prevalence remain uncertain, a variety of air pollutants have been attracting attention as one causative factor. Epidemiological and toxicological research suggests a causative relationship between air pollution and the increased incidence of asthma, allergic rhinitis, and other allergic disorders. These include ozone, nitrogen dioxide and, especially particulate matter, produced by traffic-related and industrial activities. Strong epidemiological evidence supports a relationship between air pollution and the exacerbation of asthma and other respiratory diseases. Recent studies have suggested that air pollutants play a role in the development of asthma and allergies. Researchers have elucidated the mechanisms whereby these pollutants induce adverse effects; they appear to affect the balance between antioxidant pathways and airway inflammation. Gene polymorphisms involved in antioxidant pathways can modify responses to air pollution exposure. While the characterization and monitoring of pollutant components currently dictates pollution control policies, it will be necessary to identify susceptible subpopulations to target therapy/prevention of pollution-induced respiratory diseases.
Collapse
Affiliation(s)
- Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
43
|
Integrated proteomic and transcriptomic investigation of the acetaminophen toxicity in liver microfluidic biochip. PLoS One 2011; 6:e21268. [PMID: 21857903 PMCID: PMC3152546 DOI: 10.1371/journal.pone.0021268] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/26/2011] [Indexed: 11/19/2022] Open
Abstract
Microfluidic bioartificial organs allow the reproduction of in vivo-like properties such as cell culture in a 3D dynamical micro environment. In this work, we established a method and a protocol for performing a toxicogenomic analysis of HepG2/C3A cultivated in a microfluidic biochip. Transcriptomic and proteomic analyses have shown the induction of the NRF2 pathway and the related drug metabolism pathways when the HepG2/C3A cells were cultivated in the biochip. The induction of those pathways in the biochip enhanced the metabolism of the N-acetyl-p-aminophenol drug (acetaminophen-APAP) when compared to Petri cultures. Thus, we observed 50% growth inhibition of cell proliferation at 1 mM in the biochip, which appeared similar to human plasmatic toxic concentrations reported at 2 mM. The metabolic signature of APAP toxicity in the biochip showed similar biomarkers as those reported in vivo, such as the calcium homeostasis, lipid metabolism and reorganization of the cytoskeleton, at the transcriptome and proteome levels (which was not the case in Petri dishes). These results demonstrate a specific molecular signature for acetaminophen at transcriptomic and proteomic levels closed to situations found in vivo. Interestingly, a common component of the signature of the APAP molecule was identified in Petri and biochip cultures via the perturbations of the DNA replication and cell cycle. These findings provide an important insight into the use of microfluidic biochips as new tools in biomarker research in pharmaceutical drug studies and predictive toxicity investigations.
Collapse
|
44
|
Maresh JG, Campen MJ, Reed MD, Darrow AL, Shohet RV. Hypercholesterolemia potentiates aortic endothelial response to inhaled diesel exhaust. Inhal Toxicol 2011; 23:1-10. [PMID: 21222557 DOI: 10.3109/08958378.2010.535572] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Inhalation of diesel exhaust induces vascular effects including impaired endothelial function and increased atherosclerosis. OBJECTIVE To examine the in vivo effects of subchronic diesel exhaust exposure on endothelial cell transcriptional responses in the presence of hypercholesterolemia. METHODS ApoE (-/-) and ApoE (+/+) mice inhaled diesel exhaust diluted to particulate matter levels of 300 or 1000 μg/m³ vs. filtered air. After 30 days, endothelial cells were harvested from dispersed aortic cells by fluorescent-activated cell sorting (FACS). Relative mRNA abundance was evaluated by microarray analysis to measure strain-specific transcriptional responses in mice exposed to dilute diesel exhaust vs. filtered air. RESULTS Forty-nine transcripts were significantly dysregulated by >2.8-fold in the endothelium of ApoE (-/-) mice receiving diesel exhaust at 300 or 1000 μg/m³. These included transcripts with roles in plasminogen activation, endothelial permeability, inflammation, genomic stability, and atherosclerosis; similar responses were not observed in ApoE (+/+) mice. CONCLUSIONS The potentiation of diesel exhaust-related endothelial gene regulation by hypercholesterolemia helps to explain air pollution-induced vascular effects in animals and humans. The observed regulated transcripts implicate pathways important in the acceleration of atherosclerosis by air pollution.
Collapse
Affiliation(s)
- J Gregory Maresh
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | | | | | | | | |
Collapse
|
45
|
Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 2010; 13:1713-48. [PMID: 20446772 DOI: 10.1089/ars.2010.3221] [Citation(s) in RCA: 430] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cap'n'collar (CNC) bZIP transcription factor Nrf2 controls expression of genes for antioxidant enzymes, metal-binding proteins, drug-metabolising enzymes, drug transporters, and molecular chaperones. Many chemicals that protect against carcinogenesis induce Nrf2-target genes. These compounds are all thiol-reactive and stimulate an adaptive response to redox stress in cells. Such agents induce the expression of genes that posses an antioxidant response element (ARE) in their regulatory regions. Under normal homeostatic conditions, Nrf2 activity is restricted through a Keap1-dependent ubiquitylation by Cul3-Rbx1, which targets the CNC-bZIP transcription factor for proteasomal degradation. However, as the substrate adaptor function of Keap1 is redox-sensitive, Nrf2 protein evades ubiquitylation by Cul3-Rbx1 when cells are treated with chemopreventive agents. As a consequence, Nrf2 accumulates in the nucleus where it heterodimerizes with small Maf proteins and transactivates genes regulated through an ARE. In this review, we describe synthetic compounds and phytochemicals from edible plants that induce Nrf2-target genes. We also discuss evidence for the existence of different classes of ARE (a 16-bp 5'-TMAnnRTGABnnnGCR-3' versus an 11-bp 5'-RTGABnnnGCR-3', with or without the embedded activator protein 1-binding site 5'-TGASTCA-3'), species differences in the ARE-gene battery, and the identity of critical Cys residues in Keap1 required for de-repression of Nrf2 by chemopreventive agents.
Collapse
Affiliation(s)
- John D Hayes
- Biomedical Research Institute, Ninewells Hospital, University of Dundee, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
46
|
Li YJ, Takizawa H, Azuma A, Kohyama T, Yamauchi Y, Takahashi S, Yamamoto M, Kawada T, Kudoh S, Sugawara I. Nrf2 is closely related to allergic airway inflammatory responses induced by low-dose diesel exhaust particles in mice. Clin Immunol 2010; 137:234-41. [DOI: 10.1016/j.clim.2010.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/30/2010] [Accepted: 07/31/2010] [Indexed: 12/19/2022]
|
47
|
Hong Y, Yan W, Chen S, Sun CR, Zhang JM. The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol Sin 2010; 31:1421-30. [PMID: 20953205 DOI: 10.1038/aps.2010.101] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIM To determine whether Nrf2 signaling pathway activation could attenuate oxidative stress and neuronal damage following traumatic brain injury (TBI). METHODS Controlled cortical impact (CCI) injury was performed in Sprague-Dawley rats and Nrf2-knockout or control mice. Sulforaphane (SFN), a potent Nrf2 activator, was used to activate Nrf2. Oxidative stress, lesion volume, neuron degeneration, and neurologic dysfunction were determined using biochemical, histopathological and neuroethologic approaches. Protein and mRNA levels of Nrf2 and the antioxidant enzymes heme oxygenase 1 (HO-1) and NAD(P)H:quinine oxidoreductase 1 (NQO1) were assessed using Western blot analysis and RT-PCR. RESULTS Activation of Nrf2 by SFN( 5 mg/kg, ip) induced the nuclear translocation and activation of Nrf2, which resulted in an up-regulation of Nrf2-dependent antioxidant enzymes and a reduction of oxidative damage after TBI. In accordance with these biochemical changes, SFN also significantly reduced neuronal death, contusion volume, and neurological dysfunction after TBI. Furthermore, Nrf2-knockout mice showed more severe oxidative stress and neurologic deficits after TBI and did not benefit from the effects of SFN. CONCLUSION Nrf2 plays a pivotal role in cell defenses against the oxidative stress of TBI. In addition, pharmacological activation of the Nrf2 signaling pathway by small molecule inducers such as SFN attenuated oxidative stress and neuronal damage following TBI.
Collapse
|
48
|
Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, Kensler T, Ravichandran KS, Isakson BE, Wamhoff BR, Leitinger N. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 2010; 107:737-46. [PMID: 20651288 DOI: 10.1161/circresaha.109.215715] [Citation(s) in RCA: 440] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Macrophages change their phenotype and biological functions depending on the microenvironment. In atherosclerosis, oxidative tissue damage accompanies chronic inflammation; however, macrophage phenotypic changes in response to oxidatively modified molecules are not known. OBJECTIVE To examine macrophage phenotypic changes in response to oxidized phospholipids that are present in atherosclerotic lesions. METHODS AND RESULTS We show that oxidized phospholipid-treated murine macrophages develop into a novel phenotype (Mox) that is strikingly different from the conventional M1 and M2 macrophage phenotypes. Compared to M1 and M2, Mox macrophages show a different gene expression pattern, as well as decreased phagocytotic and chemotactic capacity. Treatment with oxidized phospholipids induces both M1 and M2 macrophages to switch to the Mox phenotype. Whole-genome expression array analysis and subsequent gene ontology clustering revealed that the Mox phenotype was characterized by abundant overrepresentation of Nrf2-mediated expression of redox-regulatory genes. In macrophages isolated from Nrf2(-/-) mice, oxidized phospholipid-induced gene expression and regulation of redox status were compromised. Moreover, we found that Mox macrophages comprise 30% of all macrophages in advanced atherosclerotic lesions of low-density lipoprotein receptor knockout (LDLR(-/-)) mice. CONCLUSIONS Together, we identify Nrf2 as a key regulator in the formation of a novel macrophage phenotype (Mox) that develops in response to oxidative tissue damage. The unique biological properties of Mox macrophages suggest this phenotype may play an important role in atherosclerotic lesion development as well as in other settings of chronic inflammation.
Collapse
Affiliation(s)
- Alexandra Kadl
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Menshikova EB, Tkachev VO, Zenkov NK. Redox-dependent signaling system Nrf2/ARE in inflammation. Mol Biol 2010. [DOI: 10.1134/s0026893310030015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Córdova EJ, Velázquez-Cruz R, Centeno F, Baca V, Orozco L. The NRF2 gene variant, -653G/A, is associated with nephritis in childhood-onset systemic lupus erythematosus. Lupus 2010; 19:1237-42. [PMID: 20507872 DOI: 10.1177/0961203310367917] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with oxidative stress and characterized by chronic inflammation. Kidney malfunction, an aggressive characteristic of this disease, is not present in all affected individuals. The Nrf2-Keap1 pathway is important in protecting against oxidative stress and inflammation. Mouse models and genome-wide scans have suggested NRF2 (Nuclear factor (erythroid-derived 2)-like 2) as a candidate gene for susceptibility to SLE. We therefore investigated whether NRF2 polymorphisms are associated with childhood-onset SLE in a Mexican Mestizo population. Two single nucleotide polymorphisms (SNPs) were genotyped by TaqMan((R)) assays in 362 patients with childhood-onset SLE and 379 controls. We found no significant association between susceptibility to SLE and NRF2 polymorphisms. However, after population stratification by gender, the heterozygous genotype of the -653G/A SNP was significantly associated with nephritis in females only [OR = 1.81, CI (1.04-3.12), p = 0.032]. This association was stronger in females affected with severe nephritis [classes IV-VI; OR = 2.16, CI (1.12-4.15), p = 0.019]. Our results suggest that NRF2 is not associated with susceptibility to childhood-onset SLE, but it could confer a risk for developing kidney malfunction in SLE-affected individuals.
Collapse
Affiliation(s)
- E J Córdova
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | | | | | | |
Collapse
|