1
|
Wu J, Xu S, Li Z, Cong B, Yang Z, Yang Z, Gao W, Liu S, Yu Z, Xu S, Li N, Hou J, Wang G, Cao X, Liu S. SARS-CoV-2 enhances complement-mediated endothelial injury via the suppression of membrane complement regulatory proteins. Emerg Microbes Infect 2025; 14:2467781. [PMID: 39945674 PMCID: PMC11873982 DOI: 10.1080/22221751.2025.2467781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
Complement hyperactivation and thrombotic microangiopathy are closely associated with severe COVID-19. Endothelial dysfunction is a key mechanism underlying thrombotic microangiopathy. To address the relationship between endothelial injury, complement activation and thrombotic microangiopathy of severe COVID-19, we wonder whether, and if so, what and how SARS-CoV-2 factors make endothelial cells (ECs) sensitive to complement-mediated cytotoxicity. We revealed that multiple SARS-CoV-2 proteins enhanced complement-mediated cytotoxicity to ECs by inhibiting membrane complement regulatory proteins (CRPs) and enhancing the deposition of complement-recognizing component FCN1. By screening with CRISPR/Cas9-gRNA libraries, we identified that ADAMTS9, SYAP1, and HIGD1A as intrinsic regulators of CD59 on ECs, which were inhibited by the SARS-CoV-2 M, NSP16, and ORF9b proteins. IFN-γ, GM-CSF, and IFN-α upregulated CD55 and CD59, while IFN-γ antagonized the inhibition of CD59 by the three SARS-CoV-2 proteins. So, the deficiency of IFN-γ weakened the protection of ECs by CRPs against complement-mediated injury which may be enhanced during infection. Our findings illustrated the regulation of protection against complement-mediated attack on self-cells by SARS-CoV-2 infection and immune responses, providing insights into endothelial injury, thrombotic microangiopathy, and potential targets for treating severe COVID-19.
Collapse
Affiliation(s)
- Jian Wu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Sanpeng Xu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Zhiqing Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Boyi Cong
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Zongheng Yang
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhichao Yang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Wanfeng Gao
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Shuo Liu
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhou Yu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Sheng Xu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Guoping Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Shuxun Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Zhang W, Pei B, Zhou Y, Li H, Ma W, Zhou B, Zhou C, Jiang H, Ji X. Emerging Targets, Novel Directions, and Innovative Approaches in Thrombosis Therapy. Aging Dis 2025:AD.2024.1688. [PMID: 40153578 DOI: 10.14336/ad.2024.1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/11/2025] [Indexed: 03/30/2025] Open
Abstract
In clinical practice, antiplatelet, anticoagulant and fibrinolytic drugs are the mainstay of thrombosis treatment, but their potential bleeding side effects limit their widespread use. Therefore, modifying these existing drugs or developing new therapies that mitigate bleeding risks while maintaining their efficacy and utilization is necessary. Since the critical role of platelets in thrombosis is closely related to their cell surface receptors, intracellular signaling pathways and metabolism, current research focuses on these three major classes of platelet targets to develop new antithrombotic drugs. The coagulation cascade has always been the main target of anticoagulant drugs, but since the role of molecules of the contact system is more critical in thrombosis than in hemostasis, molecules targeting the contact system, such as FXIa and FXIIa, have become the main direction of anticoagulant drug research at present. Moreover, since the inflammatory response has been found to be significantly associated with thrombosis in recent years, the development of drugs that target inflammatory pathways, such as inflammasome, has also become a hot topic. This article provides a detailed description of these targets or drug formulations that are currently being investigated, including their mode of action and antithrombotic efficiency, and also points out their existing shortcomings. Moreover, antithrombotic nanomedicines can achieve precise release of drugs, which can greatly improve the thrombolytic efficiency and reduce side effects. In conclusion, this review focuses on summarizing the current new targets and new methods of antithrombotic drug research, hoping to provide a little reference for future related research.
Collapse
Affiliation(s)
- Weiyue Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Baoqing Pei
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Hui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Huimin Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
3
|
Lundstrom K. Immunobiology and immunotherapy of COVID-19. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:73-133. [PMID: 40246352 DOI: 10.1016/bs.pmbts.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The SARS-CoV-2 outbreak in late 2019 triggered a major increase in activities related to immunobiology and immunotherapy to cope with and find solutions to end the COVID-19 pandemic. The unprecedented approach to research and development of drugs and vaccines against SARS-CoV-2 has substantially improved the understanding of immunobiology for COVID-19, which can also be applied to other infectious diseases. Major efforts were dedicated to the repurposing of existing antiviral drugs and the development of novel ones. For this reason, numerous approaches to evaluating interferons, immunoglobulins, and cytokine inhibitors have been conducted. Antibody-based therapies, especially employing monoclonal antibodies have also been on the agenda. Cell-based therapies involving dendritic cells, macrophages, and CAR T-cell approaches have been evaluated. Many existing antiviral drugs have been repurposed for COVID-19 and novel formulations have been tested. The extraordinarily rapid development of efficient vaccines led to the breakthrough of novel vaccine approaches such as mRNA-based vaccines saving millions of lives. Waning immunity of existing vaccines and emerging SARS-CoV-2 variants have required additional booster vaccinations and re-engineering of new versions of COVID-19 vaccines.
Collapse
|
4
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
He Q, Wei Y, Qian Y, Zhong M. Pathophysiological dynamics in the contact, coagulation, and complement systems during sepsis: Potential targets for nafamostat mesilate. JOURNAL OF INTENSIVE MEDICINE 2024; 4:453-467. [PMID: 39310056 PMCID: PMC11411436 DOI: 10.1016/j.jointm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Sepsis is a life-threatening syndrome resulting from a dysregulated host response to infection. It is the primary cause of death in the intensive care unit, posing a substantial challenge to human health and medical resource allocation. The pathogenesis and pathophysiology of sepsis are complex. During its onset, pro-inflammatory and anti-inflammatory mechanisms engage in intricate interactions, possibly leading to hyperinflammation, immunosuppression, and long-term immune disease. Of all critical outcomes, hyperinflammation is the main cause of early death among patients with sepsis. Therefore, early suppression of hyperinflammation may improve the prognosis of these patients. Nafamostat mesilate is a serine protease inhibitor, which can inhibit the activation of the complement system, coagulation system, and contact system. In this review, we discuss the pathophysiological changes occurring in these systems during sepsis, and describe the possible targets of the serine protease inhibitor nafamostat mesilate in the treatment of this condition.
Collapse
Affiliation(s)
- Qiaolan He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yilin Wei
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqi Qian
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Bally I, Drumont G, Rossi V, Guseva S, Botova M, Reiser JB, Thépaut M, Dergan Dylon S, Dumestre-Pérard C, Gaboriaud C, Fieschi F, Blackledge M, Poignard P, Thielens NM. Revisiting the interaction between complement lectin pathway protease MASP-2 and SARS-CoV-2 nucleoprotein. Front Immunol 2024; 15:1419165. [PMID: 38911852 PMCID: PMC11190312 DOI: 10.3389/fimmu.2024.1419165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Complement activation is considered to contribute to the pathogenesis of severe SARS-CoV-2 infection, mainly by generating potent immune effector mechanisms including a strong inflammatory response. Involvement of the lectin complement pathway, a major actor of the innate immune anti-viral defense, has been reported previously. It is initiated by recognition of the viral surface Spike glycoprotein by mannose-binding lectin (MBL), which induces activation of the MBL-associated protease MASP-2 and triggers the proteolytic complement cascade. A role for the viral nucleoprotein (N) has also been reported, through binding to MASP-2, leading to protease overactivation and potentiation of the lectin pathway. In the present study, we reinvestigated the interactions of the SARS-CoV-2 N protein, produced either in bacteria or secreted by mammalian cells, with full-length MASP-2 or its catalytic domain, in either active or proenzyme form. We could not confirm the interaction of the N protein with the catalytic domain of MASP-2 but observed N protein binding to proenzyme MASP-2. We did not find a role of the N protein in MBL-mediated activation of the lectin pathway. Finally, we showed that incubation of the N protein with MASP-2 results in proteolysis of the viral protein, an observation that requires further investigation to understand a potential functional significance in infected patients.
Collapse
Affiliation(s)
| | | | | | | | - Maiia Botova
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | | | | | | | - Chantal Dumestre-Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratory of Immunology, Grenoble Alpes University Hospital, Grenoble, France
| | | | | | | | - Pascal Poignard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratory of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | | |
Collapse
|
7
|
Janneh AH. Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention. BIOCHEM 2024; 4:126-143. [PMID: 38894892 PMCID: PMC11185840 DOI: 10.3390/biochem4020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
8
|
Violi F, Harenberg J, Pignatelli P, Cammisotto V. COVID-19 and Long-COVID Thrombosis: From Clinical and Basic Science to Therapeutics. Thromb Haemost 2024; 124:286-296. [PMID: 37967846 DOI: 10.1055/s-0043-1776713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Coronavirus infectious disease-19 (COVID-19) is a pandemic characterized by serious lung disease and thrombotic events in the venous and circulation trees, which represent a harmful clinical sign of poor outcome. Thrombotic events are more frequent in patients with severe disease requiring intensive care units and are associated with platelet and clotting activation. However, after resolution of acute infection, patients may still have clinical sequelae, the so-called long-COVID-19, including thrombotic events again in the venous and arterial circulation. The mechanisms accounting for thrombosis in acute and long COVID-19 have not been fully clarified; interactions of COVID-19 with angiotensin converting enzyme 2 or toll-like receptor family or infection-induced cytokine storm have been suggested to be implicated in endothelial cells, leucocytes, and platelets to elicit clotting activation in acute as well in chronic phase of the disease. In acute COVID-19, prophylactic or full doses of anticoagulants exert beneficial effects even if the dosage choice is still under investigation; however, a residual risk still remains suggesting a need for a more appropriate therapeutic approach. In long COVID-19 preliminary data provided useful information in terms of antiplatelet treatment but definition of candidates for thrombotic prophylaxis is still undefined.
Collapse
Affiliation(s)
- Francesco Violi
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Via Orazio, Naples, Italy
| | - Job Harenberg
- Medical Faculty Mannheim, Ruprecht-karls University Heidelberg, Heidelberg, Germany
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Via Orazio, Naples, Italy
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Jiao Y, Zhou L, Huo J, Li H, Zhu H, Chen D, Lu Y. Flavonoid substituted polysaccharides from Tamarix chinensis Lour. alleviate H1N1-induced acute lung injury via inhibiting complement system. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117651. [PMID: 38135232 DOI: 10.1016/j.jep.2023.117651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viral pneumonia is a highly pathogenic respiratory infectious disease associated with excessive activation of the complement system. Our previous studies found that the anticomplement polysaccharides from some medicinal plants could significantly alleviate H1N1-induced acute lung injury (H1N1-ALI). The leaves and twigs of Tamarix chinensis Lour. are traditionally used as a Chinese medicine Xiheliu for treating inflammatory disorders. Interestingly, its crude polysaccharides (MBAP90) showed potent anticomplement activity in vitro. AIM OF THE STUDY To evaluate the therapeutic effects and possible mechanism of MBAP90 on viral pneumonia and further isolate and characterize the key active substance of MBAP90. MATERIALS AND METHODS The protective effects of MBAP90 were evaluated by survival tests and pharmacodynamic experiments on H1N1-ALI mice. Histopathological changes, viral load, inflammatory markers, and complement deposition in lungs were analyzed by H&E staining, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC), respectively. An anticomplement homogenous polysaccharide (MBAP-3) was obtained from MBAP90 by bio-guided separation, and its structure was further characterized by methylation analysis and NMR spectroscopy. RESULTS Oral administration of MBAP90 at a dose of 400 mg/kg significantly increased the survival rate of mice infected with the lethal H1N1 virus. In H1N1-induced ALI, mice treated with MBAP90 (200 and 400 mg/kg) could decrease the lung index, lung pathological injury, the levels of excessive proinflammatory cytokines (IL-6, TNF-α, MCP-1, IL-18, and IL-1β), and complement levels (C3c and C5b-9). In addition, MBAP-3 was characterized as a novel homogenous polysaccharide with potent in vitro anticomplement activity (CH50: 0.126 ± 0.002 mg/mL), containing 10.51% uronic acids and 9.67% flavonoids, which were similar to the composition of MBAP90. The backbone of MBAP-3 consisted of →4)-α-D-Glcp-(1→, →3,4,6)-α-D-Glcp-(1→, and →3,4)-α-D-Glcp-(1→, with branches comprising α-L-Araf-(1→, α-D-GlcpA-(1→, →4,6)-α-D-Manp-(1→ and →4)-β-D-Galp-(1 → . Particularly, O-6 of →4)-β-D-Galp-(1→ was conjugated with a flavonoid, myricetin. CONCLUSIONS MBAP90 could ameliorate H1N1-ALI by inhibiting inflammation and over-activation of the complement system. These polysaccharides (MBAP90 and MBAP-3) with relative high contents of uronic acid and flavonoid substituent might be vital components of T. chinensis for treating viral pneumonia.
Collapse
Affiliation(s)
- Yukun Jiao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Lishuang Zhou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Jiangyan Huo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China.
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China; Institutes of Integrative Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Baillie K, Davies HE, Keat SBK, Ladell K, Miners KL, Jones SA, Mellou E, Toonen EJM, Price DA, Morgan BP, Zelek WM. Complement dysregulation is a prevalent and therapeutically amenable feature of long COVID. MED 2024; 5:239-253.e5. [PMID: 38359836 DOI: 10.1016/j.medj.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/09/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Long COVID encompasses a heterogeneous set of ongoing symptoms that affect many individuals after recovery from infection with SARS-CoV-2. The underlying biological mechanisms nonetheless remain obscure, precluding accurate diagnosis and effective intervention. Complement dysregulation is a hallmark of acute COVID-19 but has not been investigated as a potential determinant of long COVID. METHODS We quantified a series of complement proteins, including markers of activation and regulation, in plasma samples from healthy convalescent individuals with a confirmed history of infection with SARS-CoV-2 and age/ethnicity/sex/infection/vaccine-matched patients with long COVID. FINDINGS Markers of classical (C1s-C1INH complex), alternative (Ba, iC3b), and terminal pathway (C5a, TCC) activation were significantly elevated in patients with long COVID. These markers in combination had a receiver operating characteristic predictive power of 0.794. Other complement proteins and regulators were also quantitatively different between healthy convalescent individuals and patients with long COVID. Generalized linear modeling further revealed that a clinically tractable combination of just four of these markers, namely the activation fragments iC3b, TCC, Ba, and C5a, had a predictive power of 0.785. CONCLUSIONS These findings suggest that complement biomarkers could facilitate the diagnosis of long COVID and further suggest that currently available inhibitors of complement activation could be used to treat long COVID. FUNDING This work was funded by the National Institute for Health Research (COV-LT2-0041), the PolyBio Research Foundation, and the UK Dementia Research Institute.
Collapse
Affiliation(s)
- Kirsten Baillie
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - Helen E Davies
- Department of Respiratory Medicine, University Hospital of Wales, Llandough, Penarth CF64 2XX, UK
| | - Samuel B K Keat
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - Samantha A Jones
- Department of Respiratory Medicine, University Hospital of Wales, Llandough, Penarth CF64 2XX, UK
| | - Ermioni Mellou
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - Erik J M Toonen
- R&D Department, Hycult Biotechnology, Frontstraat 2A, 5405 PB Uden, the Netherlands
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - B Paul Morgan
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK.
| | - Wioleta M Zelek
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
11
|
Chernov AS, Rodionov MV, Kazakov VA, Ivanova KA, Meshcheryakov FA, Kudriaeva AA, Gabibov AG, Telegin GB, Belogurov AA. CCR5/CXCR3 antagonist TAK-779 prevents diffuse alveolar damage of the lung in the murine model of the acute respiratory distress syndrome. Front Pharmacol 2024; 15:1351655. [PMID: 38449806 PMCID: PMC10915062 DOI: 10.3389/fphar.2024.1351655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction: The acute respiratory distress syndrome (ARDS), secondary to viral pneumonitis, is one of the main causes of high mortality in patients with COVID-19 (novel coronavirus disease 2019)-ongoing SARS-CoV-2 infection- reached more than 0.7 billion registered cases. Methods: Recently, we elaborated a non-surgical and reproducible method of the unilateral total diffuse alveolar damage (DAD) of the left lung in ICR mice-a publicly available imitation of the ARDS caused by SARS-CoV-2. Our data read that two C-C chemokine receptor 5 (CCR5) ligands, macrophage inflammatory proteins (MIPs) MIP-1α/CCL3 and MIP-1β/CCL4, are upregulated in this DAD model up to three orders of magnitude compared to the background level. Results: Here, we showed that a nonpeptide compound TAK-779, an antagonist of CCR5/CXCR3, readily prevents DAD in the lung with a single injection of 2.5 mg/kg. Histological analysis revealed reduced peribronchial and perivascular mononuclear infiltration in the lung and mononuclear infiltration of the wall and lumen of the alveoli in the TAK-779-treated animals. Administration of TAK-779 decreased the 3-5-fold level of serum cytokines and chemokines in animals with DAD, including CCR5 ligands MIP-1α/β, MCP-1, and CCL5. Computed tomography revealed rapid recovery of the density and volume of the affected lung in TAK-779-treated animals. Discussion: Our pre-clinical data suggest that TAK-779 is more effective than the administration of dexamethasone or the anti-IL6R therapeutic antibody tocilizumab, which brings novel therapeutic modality to TAK-779 and other CCR5 inhibitors for the treatment of virus-induced hyperinflammation syndromes, including COVID-19.
Collapse
Affiliation(s)
- Aleksandr S. Chernov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maksim V. Rodionov
- Medical Radiological Research Center (MRRC), A.F. Tsyb-Branch of the National Medical Radiological Research Center of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vitaly A. Kazakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Karina A. Ivanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Fedor A. Meshcheryakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Georgii B. Telegin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Biological Chemistry, Ministry of Health of Russian Federation, Russian University of Medicine, Moscow, Russia
| |
Collapse
|
12
|
Asteris PG, Gandomi AH, Armaghani DJ, Tsoukalas MZ, Gavriilaki E, Gerber G, Konstantakatos G, Skentou AD, Triantafyllidis L, Kotsiou N, Braunstein E, Chen H, Brodsky R, Touloumenidou T, Sakellari I, Alkayem NF, Bardhan A, Cao M, Cavaleri L, Formisano A, Guney D, Hasanipanah M, Khandelwal M, Mohammed AS, Samui P, Zhou J, Terpos E, Dimopoulos MA. Genetic justification of COVID-19 patient outcomes using DERGA, a novel data ensemble refinement greedy algorithm. J Cell Mol Med 2024; 28:e18105. [PMID: 38339761 PMCID: PMC10863978 DOI: 10.1111/jcmm.18105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 02/12/2024] Open
Abstract
Complement inhibition has shown promise in various disorders, including COVID-19. A prediction tool including complement genetic variants is vital. This study aims to identify crucial complement-related variants and determine an optimal pattern for accurate disease outcome prediction. Genetic data from 204 COVID-19 patients hospitalized between April 2020 and April 2021 at three referral centres were analysed using an artificial intelligence-based algorithm to predict disease outcome (ICU vs. non-ICU admission). A recently introduced alpha-index identified the 30 most predictive genetic variants. DERGA algorithm, which employs multiple classification algorithms, determined the optimal pattern of these key variants, resulting in 97% accuracy for predicting disease outcome. Individual variations ranged from 40 to 161 variants per patient, with 977 total variants detected. This study demonstrates the utility of alpha-index in ranking a substantial number of genetic variants. This approach enables the implementation of well-established classification algorithms that effectively determine the relevance of genetic variants in predicting outcomes with high accuracy.
Collapse
Affiliation(s)
- Panagiotis G. Asteris
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Amir H. Gandomi
- Faculty of Engineering & ITUniversity of Technology SydneySydneyNew South WalesAustralia
- University Research and Innovation Center (EKIK), Óbuda UniversityBudapestHungary
| | - Danial J. Armaghani
- School of Civil and Environmental EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Markos Z. Tsoukalas
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal MedicineAristotle University of ThessalonikiThessalonikiGreece
| | - Gloria Gerber
- Hematology DivisionJohns Hopkins UniversityBaltimoreUSA
| | - Gerasimos Konstantakatos
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Athanasia D. Skentou
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Leonidas Triantafyllidis
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Nikolaos Kotsiou
- 2nd Propedeutic Department of Internal MedicineAristotle University of ThessalonikiThessalonikiGreece
| | | | - Hang Chen
- Hematology DivisionJohns Hopkins UniversityBaltimoreUSA
| | | | | | - Ioanna Sakellari
- Hematology Department – BMT UnitG Papanicolaou HospitalThessalonikiGreece
| | | | - Abidhan Bardhan
- Civil Engineering DepartmentNational Institute of Technology PatnaPatnaIndia
| | - Maosen Cao
- Department of Engineering MechanicsHohai UniversityNanjingChina
| | - Liborio Cavaleri
- Department of Civil, Environmental, Aerospace and Materials EngineeringUniversity of PalermoPalermoItaly
| | - Antonio Formisano
- Department of Structures for Engineering and ArchitectureUniversity of Naples “Federico II”NaplesItaly
| | - Deniz Guney
- Engineering FacultySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Mahdi Hasanipanah
- Department of Geotechnics and Transportation, Faculty of Civil EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
| | - Manoj Khandelwal
- Institute of Innovation, Science and SustainabilityFederation University AustraliaBallaratVictoriaAustralia
| | | | - Pijush Samui
- Civil Engineering DepartmentNational Institute of Technology PatnaPatnaIndia
| | - Jian Zhou
- School of Resources and Safety EngineeringCentral South UniversityChangshaChina
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Medical School, Faculty of MedicineNational Kapodistrian University of AthensAthensGreece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, Medical School, Faculty of MedicineNational Kapodistrian University of AthensAthensGreece
| |
Collapse
|
13
|
Detsika MG, Palamaris K, Dimopoulou I, Kotanidou A, Orfanos SE. The complement cascade in lung injury and disease. Respir Res 2024; 25:20. [PMID: 38178176 PMCID: PMC10768165 DOI: 10.1186/s12931-023-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The complement system is an important arm of immune defense bringing innate and adaptive immunity. Although originally regarded as a major complementary defense mechanism against pathogens, continuously emerging evidence has uncovered a central role of this complex system in several diseases including lung pathologies. MAIN BODY Complement factors such as anaphylatoxins C3a and C5a, their receptors C3aR, C5aR and C5aR2 as well as complement inhibitory proteins CD55, CD46 and CD59 have been implicated in pathologies such as the acute respiratory distress syndrome, pneumonia, chronic obstructive pulmonary disease, asthma, interstitial lung diseases, and lung cancer. However, the exact mechanisms by which complement factors induce these diseases remain unclear. Several complement-targeting monoclonal antibodies are reported to treat lung diseases. CONCLUSIONS The complement system contributes to the progression of the acute and chronic lung diseases. Better understanding of the underlying mechanisms will provide groundwork to develop new strategy to target complement factors for treatment of lung diseases.
Collapse
Affiliation(s)
- M G Detsika
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece.
| | - K Palamaris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - I Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece
| | - A Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece
| | - S E Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece.
| |
Collapse
|
14
|
Chu L, Bi C, Wang C, Zhou H. The Relationship between Complements and Age-Related Macular Degeneration and Its Pathogenesis. J Ophthalmol 2024; 2024:6416773. [PMID: 38205100 PMCID: PMC10776198 DOI: 10.1155/2024/6416773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/08/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Age-related macular degeneration is a retinal disease that causes permanent loss of central vision in people over the age of 65. Its pathogenesis may be related to mitochondrial dysfunction, inflammation, apoptosis, autophagy, complement, intestinal flora, and lipid disorders. In addition, the patient's genes, age, gender, cardiovascular disease, unhealthy diet, and living habits may also be risk factors for this disease. Complement proteins are widely distributed in serum and tissue fluid. In the early 21st century, a connection was found between the complement cascade and age-related macular degeneration. However, little is known about the effect of complement factors on the pathogenesis of age-related macular degeneration. This article reviews the factors associated with age-related macular degeneration, the relationship between each factor and complement, the related functions, and variants and provides new ideas for the treatment of this disease.
Collapse
Affiliation(s)
- Liyuan Chu
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Chaoran Bi
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Caiming Wang
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Wang L, Hu Q, Yang Y, Chen M, Yang C, Han B. COVID-19 vaccination prevents a more severe course and treatment with complement inhibitors reduce worsening hemolysis during the Omicron pandemic in patients with PNH: a single-center study. Ann Med 2024; 55:2274510. [PMID: 38163328 PMCID: PMC10763918 DOI: 10.1080/07853890.2023.2274510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/16/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired disease characterized by chronic complement-mediated hemolysis. The concentrated outbreak of coronavirus disease 2019 (COVID-19) in China after 6 December 2022, provided an opportunity to observe the disease course of PNH during an active Omicron infection epidemic. PATIENTS AND METHOD Patients diagnosed with PNH at Peking Union Medical College Hospital (PUMCH) before 6 December 2022, were followed up until 10 April 2023. Clinical data related to coronavirus infection and hemolysis were recorded. Factors influencing the infection and severity rate of Omicron, as well as hemolysis provocation, were analyzed. RESULTS In total, 131 patients with PNH were included in this retrospective analysis; 87.8% were infected with Omicron. Among them, 15.7% met the criteria for severity, and 1 patient died (0.87%). No protective factors were identified against Omicron infections. However, patients with severe Omicron infection (n = 18) had a lower vaccination rate than those with non-severe infection (n = 97; p = 0.015). Among those infected (n = 115) with Omicron, there was a significant increase in lactate dehydrogenase (LDH) levels compared with those in the uninfected group (n = 16, p = 0.000). Patients with severe infections (n = 18) had even higher LDH increase rates than those without severe infections (n = 97; p = 0.002). 10 (37.0%) patients treated with complement inhibitors developed breakthrough hemolysis (BTH). Patients treated with complement inhibitors (n = 27) exhibited less severe hemolysis than treatment-naïve patients (n = 104; p = 0.003). CONCLUSIONS Omicron infection exacerbates hemolytic attacks in patients with PNH. Vaccination helps mitigate the severity of Omicron infection, and using complement inhibitors reduces hemolysis exacerbation.
Collapse
Affiliation(s)
- Leyu Wang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qinglin Hu
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Yang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Miao Chen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chen Yang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Yazdanpanah N, Sedikides C, Ochs HD, Camargo CA, Darmstadt GL, Cerda A, Cauda V, Peters GJ, Sellke F, Wong ND, Comini E, Jimeno AR, Glover V, Hatziargyriou N, Vincenot CE, Bordas SPA, Rao IM, Abolhassani H, Gharehpetian GB, Weiskirchen R, Gupta M, Chandel SS, Olusanya BO, Cheson B, Pomponio A, Tanzer M, Myles PS, Ma WX, Bella F, Ghavami S, Moein Moghimi S, Pratico D, Hernandez AM, Martinez-Urbistondo M, Urbistondo DM, Fereshtehnejad SM, Ali I, Kimura S, Wallace Hayes A, Cai W, Ernest CKJ, Thomas S, Rahimi K, Sorooshian A, Schreiber M, Kato K, Luong JHT, Pluchino S, Lozano AM, Seymour JF, Kosik KS, Hofmann SG, McIntyre RS, Perc M, Leemans A, Klein RS, Ogino S, Wlezien C, Perry G, Nieto JJ, Levin L, Klionsky DJ, Mobasher B, Dorigo T, Rezaei N. Global Challenges After a Global Challenge: Lessons Learned from the COVID-19 Pandemic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1457:1-31. [PMID: 39283418 DOI: 10.1007/978-3-031-61939-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Coronavirus disease 2019 (COVID-19) has affected not only individual lives but also the world and global systems, both natural and human-made. Besides millions of deaths and environmental challenges, the rapid spread of the infection and its very high socioeconomic impact have affected healthcare, economic status and wealth, and mental health across the globe. To better appreciate the pandemic's influence, multidisciplinary and interdisciplinary approaches are needed. In this chapter, world-leading scientists from different backgrounds share collectively their views about the pandemic's footprint and discuss challenges that face the international community.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- , Houston, USA
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hans D Ochs
- , Houston, USA
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA, USA
| | - Carlos A Camargo
- , Houston, USA
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gary L Darmstadt
- , Houston, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Artemi Cerda
- , Houston, USA
- Soil Erosion and Degradation Research Group, Department of Geography, Valencia University, Blasco Ibàñez, Valencia, Spain
| | - Valentina Cauda
- , Houston, USA
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, Turin, Italy
| | - Godefridus J Peters
- , Houston, USA
- Laboratory Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Amsterdam, the Netherlands
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Frank Sellke
- , Houston, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Providence, RI, USA
| | - Nathan D Wong
- , Houston, USA
- Heart Disease Prevention Program, Division of Cardiology, University of California Irvine, C-240 Medical Sciences, Irvine, CA, USA
| | - Elisabetta Comini
- , Houston, USA
- SENSOR Laboratory, University of Brescia, Brescia, Italy
| | - Alberto Ruiz Jimeno
- , Houston, USA
- Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
| | - Vivette Glover
- , Houston, USA
- Department of Metabolism, Digestion and Reproduction Hammersmith Hospital Campus, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Nikos Hatziargyriou
- , Houston, USA
- School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), Athens, Greece
| | - Christian E Vincenot
- , Houston, USA
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Grand Duchy of Luxembourg
| | - Stéphane P A Bordas
- , Houston, USA
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Grand Duchy of Luxembourg
| | - Idupulapati M Rao
- , Houston, USA
- Alliance of Bioversity International, International Center for Tropical Agriculture, Cali, Colombia
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Hassan Abolhassani
- , Houston, USA
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | - Ralf Weiskirchen
- , Houston, USA
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Manoj Gupta
- , Houston, USA
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Shyam Singh Chandel
- , Houston, USA
- Photovoltaics Research Group, Centre of Excellence in Energy Science and Technology, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | | | - Bruce Cheson
- , Houston, USA
- Center for Cancer and Blood Disorders, Bethesda, MD, USA
| | - Alessio Pomponio
- , Houston, USA
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| | - Michael Tanzer
- , Houston, USA
- Division of Orthopedic Surgery, McGill University, Montreal, QC, Canada
| | - Paul S Myles
- , Houston, USA
- Alfred Hospital and Monash University, Melbourne, Australia
| | - Wen-Xiu Ma
- , Houston, USA
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL, USA
- Department of Mathematics, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Material Science Innovation and Modelling, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Federico Bella
- , Houston, USA
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, Turin, Italy
| | - Saeid Ghavami
- , Houston, USA
- Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - S Moein Moghimi
- , Houston, USA
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Faculty of Health and Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Domenico Pratico
- , Houston, USA
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alfredo M Hernandez
- , Houston, USA
- Medicine and Endocrinology Department, Universidad de Valladolid and IMDEA, Madrid, Spain
| | | | | | - Seyed-Mohammad Fereshtehnejad
- , Houston, USA
- Division of Neurology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| | - Imran Ali
- , Houston, USA
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Shinya Kimura
- , Houston, USA
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - A Wallace Hayes
- , Houston, USA
- Center for Environmental/Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
- Michigan State University, East Lansing, MI, USA
| | - Wenju Cai
- , Houston, USA
- CSIRO Environment, Hobart, TAS, Australia
| | - Chua K J Ernest
- , Houston, USA
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Sabu Thomas
- , Houston, USA
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Kazem Rahimi
- , Houston, USA
- Deep Medicine, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Armin Sorooshian
- , Houston, USA
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Michael Schreiber
- , Houston, USA
- Institut für Physik, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Koichi Kato
- , Houston, USA
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - John H T Luong
- , Houston, USA
- School of Chemistry, University College Cork, Cork, T12 YN60, Ireland
| | - Stefano Pluchino
- , Houston, USA
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andres M Lozano
- , Houston, USA
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | - John F Seymour
- , Houston, USA
- Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Kenneth S Kosik
- , Houston, USA
- Department of Molecular Cellular Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Stefan G Hofmann
- , Houston, USA
- Department of Psychology, Philipps-University Marburg, Marburg, Germany
| | - Roger S McIntyre
- , Houston, USA
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Matjaz Perc
- , Houston, USA
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404332, Taiwan
- Alma Mater Europaea, Slovenska ulica 17, 2000, Maribor, Slovenia
- Complexity Science Hub Vienna, Josefstädterstraße 39, 1080, Vienna, Austria
- Department of Physics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Alexander Leemans
- , Houston, USA
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robyn S Klein
- , Houston, USA
- Center for Neuroimmunology and Neuroinfectious Diseases, St. Louis, MO, USA
- Departments of Medicine, Pathology and Immunology, and Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Shuji Ogino
- , Houston, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher Wlezien
- , Houston, USA
- Department of Government, University of Texas at Austin, Austin, TX, USA
| | - George Perry
- , Houston, USA
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Juan J Nieto
- , Houston, USA
- CITMAga, University of Santiago de Compostela, A Coruña, Spain
| | - Lisa Levin
- , Houston, USA
- Center for Marine Biodiversity and Conservation, Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Daniel J Klionsky
- , Houston, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bahram Mobasher
- , Houston, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Tommaso Dorigo
- , Houston, USA
- Lulea University of Technology, Laboratorievagen 14, Lulea, Sweden
- Istituto Nazionale di Fisica Nucleare (INFN), Via Francesco Marzolo, Sezione di Padova, Italy
| | - Nima Rezaei
- , Houston, USA.
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Tomo S, Kiran Kumar PVSN, Yadav D, Sankanagoudar S, Charan J, Purohit A, Nag VL, Bhatia PK, Singh K, Dutt N, Garg MK, Misra S, Sharma P, Purohit P. Association of Serum Complement C3 Levels with Severity and Mortality in COVID 19. Indian J Clin Biochem 2023; 38:447-456. [PMID: 37746543 PMCID: PMC10516839 DOI: 10.1007/s12291-023-01148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023]
Abstract
The severe acute respiratory distress syndrome-associated coronavirus-2 infection can activate innate and adaptive immune responses which may lead to harmful tissue damage, both locally and systemically. C3, a member of complement system of serum proteins, is a major component of innate immune and inflammatory responses. This study is aimed to assess serum C3 as a marker of COVID-19 severity and a predictor of disease progression. A total of 150 COVID-19 patients, confirmed by RT-PCR, and 50 healthy controls were recruited. Serum C3 levels were determined by using direct colorimetric method. Median levels of serum C3 in total cases and controls were 157.8 and 165.7 mg/dL respectively. Serum C3 although not significantly decreased, they were lower in cases when compared to controls. Similarly, significant differences were found between the groups, with severe group (140.6 mg/dL) having low levels of serum C3 protein when compared to mild (161.0 mg/dL) and moderate group (167.1 mg/dL). Interestingly, during hospitalization, significant difference between baseline (admission) and follow-up (discharge) was observed only in patients with moderate disease. Based on our results, lower levels of C3, with an increase in IL-6 and d-dimer levels, are associated with higher odds of mortality. Therefore, we would like to emphasize that measuring serum C3 levels along with other inflammatory markers might give an added advantage in early identification of patients who are prone to having a severe disease course and can help in a more effective follow-up of disease progression. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-023-01148-x.
Collapse
Affiliation(s)
- Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| | - PVSN Kiran Kumar
- Department of Biochemistry, Andhra Medical College, Visakhapatnam, India
| | - Dharamveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| | - Shrimanjunath Sankanagoudar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| | - Jayakaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhishek Purohit
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Vijaya Lakshmi Nag
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Pradeep Kumar Bhatia
- Department of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Jodhpur, India
| | - Kuldeep Singh
- Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Naveen Dutt
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Mahendra Kumar Garg
- Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| |
Collapse
|
18
|
Cheng J, Zeng H, Chen H, Fan L, Xu C, Huang H, Tang T, Li M. Current knowledge of thrombocytopenia in sepsis and COVID-19. Front Immunol 2023; 14:1213510. [PMID: 37841241 PMCID: PMC10568455 DOI: 10.3389/fimmu.2023.1213510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Thrombocytopenia, characterized by a decrease in platelet count, is commonly observed in sepsis and COVID-19. In sepsis, thrombocytopenia can result from various mechanisms, including impaired platelet production in the bone marrow, accelerated platelet destruction due to increased inflammation, sequestration of platelets in the spleen, immune-mediated platelet destruction, or dysregulated host responses. Similarly, thrombocytopenia has been reported in COVID-19 patients, but the immune-related mechanisms underlying this association remain unclear. Notably, interventions targeting thrombocytopenia have shown potential for improving outcomes in both sepsis and COVID-19 patients. Understanding these mechanisms is crucial for developing effective treatments.
Collapse
Affiliation(s)
- Junjie Cheng
- Intensive Care Unit, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linfeng Fan
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huaping Huang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianchi Tang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Li
- Intensive Care Unit, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
19
|
Murad D, Zafar Paracha R, Saeed MT, Ahmad J, Mushtaq A, Humayun M. Modelling and analysis of the complement system signalling pathways: roles of C3, C5a and pro-inflammatory cytokines in SARS-CoV-2 infection. PeerJ 2023; 11:e15794. [PMID: 37744234 PMCID: PMC10517668 DOI: 10.7717/peerj.15794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/04/2023] [Indexed: 09/26/2023] Open
Abstract
The complement system is an essential part of innate immunity. It is activated by invading pathogens causing inflammation, opsonization, and lysis via complement anaphylatoxins, complement opsonin's and membrane attack complex (MAC), respectively. However, in SARS-CoV-2 infection overactivation of complement system is causing cytokine storm leading to multiple organs damage. In this study, the René Thomas kinetic logic approach was used for the development of biological regulatory network (BRN) to model SARS-CoV-2 mediated complement system signalling pathways. Betweenness centrality analysis in cytoscape was adopted for the selection of the most biologically plausible states in state graph. Among the model results, in strongly connected components (SCCs) pro-inflammatory cytokines (PICyts) oscillatory behaviour between recurrent generation and downregulation was found as the main feature of SARS-CoV-2 infection. Diversion of trajectories from the SCCs leading toward hyper-inflammatory response was found in agreement with in vivo studies that overactive innate immunity response caused PICyts storm during SARS-CoV-2 infection. The complex of negative regulators FI, CR1 and DAF in the inhibition of complement peptide (C5a) and PICyts was found desirable to increase immune responses. In modelling role of MAC and PICyts in lowering of SARS-CoV-2 titre was found coherent with experimental studies. Intervention in upregulation of C5a and PICyts by C3 was found helpful in back-and-forth variation of signalling pattern linked with the levels of PICyts. Moreover, intervention in upregulation of PICyts by C5a was found productive in downregulation of all activating factors in the normal SCCs. However, the computational model predictions require experimental studies to be validated by exploring the activation role of C3 and C5a which could change levels of PICyts at various phases of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Didar Murad
- School of Interdisciplinary Engineering and Sciences/Department of Sciences, National University of Science and Technology, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Sciences/Department of Sciences, National University of Science and Technology, Islamabad, Pakistan
| | - Muhammad Tariq Saeed
- School of Interdisciplinary Engineering and Sciences/Department of Sciences, National University of Science and Technology, Islamabad, Pakistan
| | - Jamil Ahmad
- Department of Computer Science and Information Technology, University of Malakand, Chakdara, Malakand, Pakistan
| | - Ammar Mushtaq
- School of Interdisciplinary Engineering and Sciences/Department of Sciences, National University of Science and Technology, Islamabad, Pakistan
| | - Maleeha Humayun
- School of Interdisciplinary Engineering and Sciences/Department of Sciences, National University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
20
|
Fernandes DC, Tambourgi DV. Complement System Inhibitory Drugs in a Zebrafish ( Danio rerio) Model: Computational Modeling. Int J Mol Sci 2023; 24:13895. [PMID: 37762197 PMCID: PMC10530807 DOI: 10.3390/ijms241813895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The dysregulation of complement system activation usually results in acute or chronic inflammation and can contribute to the development of various diseases. Although the activation of complement pathways is essential for innate defense, exacerbated activity of this system may be harmful to the host. Thus, drugs with the potential to inhibit the activation of the complement system may be important tools in therapy for diseases associated with complement system activation. The synthetic peptides Cp40 and PMX205 can be highlighted in this regard, given that they selectively inhibit the C3 and block the C5a receptor (C5aR1), respectively. The zebrafish (Danio rerio) is a robust model for studying the complement system. The aim of the present study was to use in silico computational modeling to investigate the hypothesis that these complement system inhibitor peptides interact with their target molecules in zebrafish, for subsequent in vivo validation. For this, we analyzed molecular docking interactions between peptides and target molecules. Our study demonstrated that Cp40 and the cyclic peptide PMX205 have positive interactions with their respective zebrafish targets, thus suggesting that zebrafish can be used as an animal model for therapeutic studies on these inhibitors.
Collapse
Affiliation(s)
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil;
| |
Collapse
|
21
|
Das A, Meng W, Liu Z, Hasib MM, Galloway H, Ramos da Silva S, Chen L, Sica GL, Paniz-Mondolfi A, Bryce C, Grimes Z, Mia Sordillo E, Cordon-Cardo C, Paniagua Rivera K, Flores M, Chiu YC, Huang Y, Gao SJ. Molecular and immune signatures, and pathological trajectories of fatal COVID-19 lungs defined by in situ spatial single-cell transcriptome analysis. J Med Virol 2023; 95:e29009. [PMID: 37563850 PMCID: PMC10442191 DOI: 10.1002/jmv.29009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Despite intensive studies during the last 3 years, the pathology and underlying molecular mechanism of coronavirus disease 2019 (COVID-19) remain poorly defined. In this study, we investigated the spatial single-cell molecular and cellular features of postmortem COVID-19 lung tissues using in situ sequencing (ISS). We detected 10 414 863 transcripts of 221 genes in whole-slide tissues and segmented them into 1 719 459 cells that were mapped to 18 major parenchymal and immune cell types, all of which were infected by SARS-CoV-2. Compared with the non-COVID-19 control, COVID-19 lungs exhibited reduced alveolar cells (ACs) and increased innate and adaptive immune cells. We also identified 19 differentially expressed genes in both infected and uninfected cells across the tissues, which reflected the altered cellular compositions. Spatial analysis of local infection rates revealed regions with high infection rates that were correlated with high cell densities (HIHD). The HIHD regions expressed high levels of SARS-CoV-2 entry-related factors including ACE2, FURIN, TMPRSS2 and NRP1, and co-localized with organizing pneumonia (OP) and lymphocytic and immune infiltration, which exhibited increased ACs and fibroblasts but decreased vascular endothelial cells and epithelial cells, mirroring the tissue damage and wound healing processes. Sparse nonnegative matrix factorization (SNMF) analysis of niche features identified seven signatures that captured structure and immune niches in COVID-19 tissues. Trajectory inference based on immune niche signatures defined two pathological routes. Trajectory A primarily progressed with increased NK cells and granulocytes, likely reflecting the complication of microbial infections. Trajectory B was marked by increased HIHD and OP, possibly accounting for the increased immune infiltration. The OP regions were marked by high numbers of fibroblasts expressing extremely high levels of COL1A1 and COL1A2. Examination of single-cell RNA-seq data (scRNA-seq) from COVID-19 lung tissues and idiopathic pulmonary fibrosis (IPF) identified similar cell populations consisting mainly of myofibroblasts. Immunofluorescence staining revealed the activation of IL6-STAT3 and TGF-β-SMAD2/3 pathways in these cells, likely mediating the upregulation of COL1A1 and COL1A2 and excessive fibrosis in the lung tissues. Together, this study provides a spatial single-cell atlas of cellular and molecular signatures of fatal COVID-19 lungs, which reveals the complex spatial cellular heterogeneity, organization, and interactions that characterized the COVID-19 lung pathology.
Collapse
Affiliation(s)
- Arun Das
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wen Meng
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhentao Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Md Musaddaqul Hasib
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hugh Galloway
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Suzane Ramos da Silva
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Luping Chen
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gabriel L Sica
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Paniz-Mondolfi
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Clare Bryce
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zachary Grimes
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karla Paniagua Rivera
- Department of Electrical and Computer Engineering, KLESSE School of Engineering and Integrated Design, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mario Flores
- Department of Electrical and Computer Engineering, KLESSE School of Engineering and Integrated Design, University of Texas at San Antonio, San Antonio, TX, USA
| | - Yu-Chiao Chiu
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Ge X, Yu Z, Guo X, Li L, Ye L, Ye M, Yuan J, Zhu C, Hu W, Hou Y. Complement and complement regulatory proteins are upregulated in lungs of COVID-19 patients. Pathol Res Pract 2023; 247:154519. [PMID: 37244049 PMCID: PMC10165854 DOI: 10.1016/j.prp.2023.154519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
We explored the pathological changes and the activation of local complement system in COVID-19 pneumonia. Lung paraffin sections of COVID-19 infected patients were analyzed by HE (hematoxylin-eosin) staining. The deposition of complement C3, the deposition of C3b/iC3b/C3d and C5b-9, and the expression of complement regulatory proteins, CD59, CD46 and CD55 were detected by immunohistochemistry. In COVID-19 patients' lung tissues, fibrin exudation, mixed with erythrocyte, alveolar macrophage and shed pneumocyte are usually observed in the alveoli. The formation of an "alveolar emboli" structure may contribute to thrombosis and consolidation in lung tissue. In addition, we also found that compared to normal tissue, the lung tissues of COVID-19 patients displayed the hyper-activation of complement that is represented by extensive deposition of C3, C3b/iC3b/C3d and C5b-9, and the increased expression level of complement regulatory proteins CD55, and especially CD59 but not CD46. The thrombosis and consolidation in lung tissues may contribute to the pathogenesis of COVID-19. The increased expression of CD55 and CD59 may reflect a feedback of self-protection on the complement hyper-activation. Further, the increased C3 deposition and the strongly activated complement system in lung tissues may suggest the rationale of complement-targeted therapeutics in conquering COVID-19.
Collapse
Affiliation(s)
- Xiaowen Ge
- Department of Pathology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, PR China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Xinxin Guo
- Department of Pathology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, PR China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Dongan Road 270, Shanghai 200032, PR China
| | - Ling Ye
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Maosong Ye
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Chouwen Zhu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Dongan Road 270, Shanghai 200032, PR China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, PR China.
| |
Collapse
|
23
|
Zelek WM, Harrison RA. Complement and COVID-19: Three years on, what we know, what we don't know, and what we ought to know. Immunobiology 2023; 228:152393. [PMID: 37187043 PMCID: PMC10174470 DOI: 10.1016/j.imbio.2023.152393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was identified in China in 2019 as the causative agent of COVID-19, and quickly spread throughout the world, causing over 7 million deaths, of which 2 million occurred prior to the introduction of the first vaccine. In the following discussion, while recognising that complement is just one of many players in COVID-19, we focus on the relationship between complement and COVID-19 disease, with limited digression into directly-related areas such as the relationship between complement, kinin release, and coagulation. Prior to the 2019 COVID-19 outbreak, an important role for complement in coronavirus diseases had been established. Subsequently, multiple investigations of patients with COVID-19 confirmed that complement dysregulation is likely to be a major driver of disease pathology, in some, if not all, patients. These data fuelled evaluation of many complement-directed therapeutic agents in small patient cohorts, with claims of significant beneficial effect. As yet, these early results have not been reflected in larger clinical trials, posing questions such as who to treat, appropriate time to treat, duration of treatment, and optimal target for treatment. While significant control of the pandemic has been achieved through a global scientific and medical effort to comprehend the etiology of the disease, through extensive SARS-CoV-2 testing and quarantine measures, through vaccine development, and through improved therapy, possibly aided by attenuation of the dominant strains, it is not yet over. In this review, we summarise complement-relevant literature, emphasise its main conclusions, and formulate a hypothesis for complement involvement in COVID-19. Based on this we make suggestions as to how any future outbreak might be better managed in order to minimise impact on patients.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Dementia Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
24
|
Delgado AC, Cornett B, Choi YJ, Colosimo C, Stahel VP, Dziadkowiec O, Stahel PF. Investigational medications in 9,638 hospitalized patients with severe COVID-19: lessons from the "fail-and-learn" strategy during the first two waves of the pandemic in 2020. Patient Saf Surg 2023; 17:7. [PMID: 37041643 PMCID: PMC10088131 DOI: 10.1186/s13037-023-00358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND The early surge of the novel coronavirus disease 2019 (COVID-19) pandemic introduced a significant clinical challenge due to the high case-fatality rate in absence of evidence-based recommendations. The empirical treatment modalities were relegated to historical expertise from the traditional management of acute respiratory distress syndrome (ARDS) in conjunction with off-label pharmaceutical agents endorsed under the "emergency use authorization" (EUA) paradigm by regulatory agencies. This study was designed to evaluate the insights from the "fail-and-learn" strategy in 2020 before the availability of COVID-19 vaccines and access to reliable insights from high-quality randomized controlled trials. METHODS A retrospective, multicenter, propensity-matched, case-control study was performed on a data registry comprising 186 hospitals from a national health care system in the United States, designed to investigate the efficacy of empirical treatment modalities during the early surge of the COVID-19 pandemic in 2020. Reflective of the time-windows of the initial two surges of the pandemic in 2020, patients were stratified into "Early 2020" (March 1-June 30) versus "Late 2020" (July 1-December 31) study cohorts. Logistic regression was applied to determine the efficacy of prevalent medications (remdesivir, azithromycin, hydroxychloroquine, corticosteroids, tocilizumab) and supplemental oxygen delivery modalities (invasive vs. non-invasive ventilation) on patient outcomes. The primary outcome measure was in-hospital mortality. Group comparisons were adjusted for covariates related to age, gender, ethnicity, body weight, comorbidities, and treatment modalities pertinent to organ failure replacement. RESULTS From a total of 87,788 patients in the multicenter data registry screened in this study, 9,638 patients were included who received 19,763 COVID-19 medications during the first two waves of the 2020 pandemic. The results showed a minimal, yet statistically significant, association with hydroxychloroquine in "Early 2020" and remdesivir in "Late 2020" with reduced odds of mortality (odds ratios 0.72 and 0.76, respectively; P = 0.01). Azithromycin was the only medication associated with decreased odds of mortality during both study time-windows (odds ratios 0.79 and 0.68, respectively; P < 0.01). In contrast, the necessity for oxygen supply showed significantly increased odds of mortality beyond the effect of all investigated medications. Of all the covariates associated with increased mortality, invasive mechanical ventilation had the highest odds ratios of 8.34 in the first surge and 9.46 in in the second surge of the pandemic (P < 0.01). CONCLUSION This retrospective multicenter observational cohort study on 9,638 hospitalized patients with severe COVID-19 during revealed that the necessity for invasive ventilation had the highest odds of mortality, beyond the variable effects observed by administration of the prevalent EUA-approved investigational drugs during the first two surges of the early 2020 pandemic in the United States.
Collapse
Affiliation(s)
- Adam C Delgado
- Department of Surgery, Sky Ridge Medical Center, Lone Tree, CO, 80124, USA
| | - Brendon Cornett
- Graduate Medical Education, HCA Healthcare Continental Division, Denver, CO, 80237, USA
| | - Ye Ji Choi
- Graduate Medical Education, HCA Healthcare Continental Division, Denver, CO, 80237, USA
| | - Christina Colosimo
- Department of Surgery, Sky Ridge Medical Center, Lone Tree, CO, 80124, USA
| | | | - Oliwier Dziadkowiec
- Graduate Medical Education, HCA Healthcare Continental Division, Denver, CO, 80237, USA
| | - Philip F Stahel
- Mission Health, HCA Healthcare North Carolina Division, Asheville, NC, 28803, USA.
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA.
- Department of Specialty Medicine, College of Osteopathic Medicine, Rocky Vista University, Parker, CO, 80134, USA.
| |
Collapse
|
25
|
Kolb P, Giese S, Voll RE, Hengel H, Falcone V. Immune complexes as culprits of immunopathology in severe COVID-19. Med Microbiol Immunol 2023; 212:185-191. [PMID: 35871171 PMCID: PMC9308473 DOI: 10.1007/s00430-022-00743-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
Infection with the pandemic human coronavirus SARS-CoV-2 elicits a respiratory tract disease, termed Coronavirus disease 2019 (COVID-19). While a variable degree of disease-associated symptoms may emerge, severe COVID-19 is commonly associated with respiratory complications such as acute respiratory distress syndrome (ARDS), the necessity for mechanical ventilation or even extracorporeal membrane oxygenation (ECMO). Amongst others, disease outcome depends on age and pre-existing conditions like cardiovascular diseases, metabolic disorders but also age and biological sex. Intriguingly, increasing experimental and clinical evidence suggests that an exacerbated inflammatory response and in particular IgG immune complexes (ICs), significantly contribute to severe and prolonged COVID-19 disease progression. Vast amounts of deposited, unresolved ICs in tissue are capable to initiate an exaggerated Fc gamma receptor (FcγR) mediated signalling cascade which eventually results in common IC-associated organ diseases such as vasculitis, glomerulonephritis and arthritis, comorbidities that have been frequently reported for COVID-19. Moreover and independent of deposited ICs, very recent work identified soluble ICs (sIC) to be also present in the circulation of a majority of severely ill patients, where their systemic abundance correlated with disease severity. Thus, detection of circulating sICs in patients represents a potential marker for critical COVID-19 disease progression. Their detection early after clinical deterioration might become an indicator for the requirement of prompt anti-inflammatory treatment. Here, we review the role of ICs in COVID-19 progression, their possible origins and potential intervention strategies.
Collapse
Affiliation(s)
- Philipp Kolb
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| | - Sebastian Giese
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Reinhard Edmund Voll
- Faculty of Medicine, Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Hartmut Hengel
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Valeria Falcone
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 2023; 14:1100461. [PMID: 37006238 PMCID: PMC10064147 DOI: 10.3389/fimmu.2023.1100461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Susannah E. Nicholson
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tomas S. Cancio
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Leopoldo C. Cancio
- United States (US) Army Burn Center, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Yansong Li
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Geneva Foundation, Immunological Damage Control Resuscitation Program, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
27
|
Alternative pathway dysregulation in tissues drives sustained complement activation and predicts outcome across the disease course in COVID-19. Immunology 2023. [PMID: 36175370 PMCID: PMC9537932 DOI: 10.1111/imm.13585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Complement, a critical defence against pathogens, has been implicated as a driver of pathology in COVID-19. Complement activation products are detected in plasma and tissues and complement blockade is considered for therapy. To delineate roles of complement in immunopathogenesis, we undertook the largest comprehensive study of complement in COVID-19 to date, comprehensive profiling of 16 complement biomarkers, including key components, regulators and activation products, in 966 plasma samples from 682 hospitalized COVID-19 patients collected across the hospitalization period as part of the UK ISARIC4C (International Acute Respiratory and Emerging Infection Consortium) study. Unsupervised clustering of complement biomarkers mapped to disease severity and supervised machine learning identified marker sets in early samples that predicted peak severity. Compared to healthy controls, complement proteins and activation products (Ba, iC3b, terminal complement complex) were significantly altered in COVID-19 admission samples in all severity groups. Elevated alternative pathway activation markers (Ba and iC3b) and decreased alternative pathway regulator (properdin) in admission samples were associated with more severe disease and risk of death. Levels of most complement biomarkers were reduced in severe disease, consistent with consumption and tissue deposition. Latent class mixed modelling and cumulative incidence analysis identified the trajectory of increase of Ba to be a strong predictor of peak COVID-19 disease severity and death. The data demonstrate that early-onset, uncontrolled activation of complement, driven by sustained and progressive amplification through the alternative pathway amplification loop is a ubiquitous feature of COVID-19, further exacerbated in severe disease. These findings provide novel insights into COVID-19 immunopathogenesis and inform strategies for therapeutic intervention.
Collapse
|
28
|
Tsiftsoglou SA, Gavriilaki E, Touloumenidou T, Koravou EE, Koutra M, Papayanni PG, Karali V, Papalexandri A, Varelas C, Chatzopoulou F, Chatzidimitriou M, Chatzidimitriou D, Veleni A, Rapti E, Kioumis I, Kaimakamis E, Bitzani M, Boumpas DT, Tsantes A, Sotiropoulos D, Papadopoulou A, Sakellari I, Kokoris S, Anagnostopoulos A. Targeted genotyping of COVID-19 patients reveals a signature of complement C3 and factor B coding SNPs associated with severe infection. Immunobiology 2023; 228:152351. [PMID: 36805858 PMCID: PMC9928680 DOI: 10.1016/j.imbio.2023.152351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/19/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
We have attempted to explore further the involvement of complement components in the host COVID-19 (Coronavirus disease-19) immune responses by targeted genotyping of COVID-19 adult patients and analysis for missense coding Single Nucleotide Polymorphisms (coding SNPs) of genes encoding Alternative pathway (AP) components. We have identified a small group of common coding SNPs in Survivors and Deceased individuals, present in either relatively similar frequencies (CFH and CFI SNPs) or with stark differences in their relative abundance (C3 and CFB SNPs). In addition, we have identified several sporadic, potentially protective, coding SNPs of C3, CFB, CFD, CFH, CFHR1 and CFI in Survivors. No coding SNPs were detected for CD46 and CD55. Our demographic analysis indicated that the C3 rs1047286 or rs2230199 coding SNPs were present in 60 % of all the Deceased patients (n = 25) (the rs2230199 in 67 % of all Deceased Males) and in 31 % of all the Survivors (n = 105, p = 0.012) (the rs2230199 in 25 % of all Survivor Males). When we analysed these two major study groups using the presence of the C3 rs1047286 or rs2230199 SNPs as potential biomarkers, we noticed the complete absence of the protective CFB rs12614 and rs641153 coding SNPs from Deceased Males compared to Females (p = 0.0023). We propose that in these individuals, C3 carrying the R102G and CFB lacking the R32W or the R32Q amino acid substitutions, may contribute to enhanced association dynamics of the C3bBb AP pre-convertase complex assembly, thus enabling the exploitation of the activation of the Complement Alternative pathway (AP) by SARS-CoV-2.
Collapse
Affiliation(s)
- Stefanos A Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Eleni Gavriilaki
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece.
| | - Tasoula Touloumenidou
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | | | - Maria Koutra
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | | | - Vassiliki Karali
- Rheumatology and Clinical Immunology Unit, University General Hospital "Attikon", Αthens, Greece
| | - Apostolia Papalexandri
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Christos Varelas
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Fani Chatzopoulou
- Microbiology Department, Aristotle University of Thessaloniki, Greece
| | - Maria Chatzidimitriou
- Biomedical Sciences Alexander Campus International Hellenic University, Thessaloniki, Greece
| | | | - Anastasia Veleni
- Infectious Disease Committee, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Evdoxia Rapti
- Laboratory of Hematology and Hospital Blood Transfusion Department, University General Hospital "Attikon", NKUA, Medical School, Athens, Greece
| | - Ioannis Kioumis
- Respiratory Failure Department, G Papanicolaou Hospital-Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Milly Bitzani
- 1st Intensive Care Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Dimitrios T Boumpas
- Rheumatology and Clinical Immunology Unit, University General Hospital "Attikon", Αthens, Greece
| | - Argyris Tsantes
- Laboratory of Hematology and Hospital Blood Transfusion Department, University General Hospital "Attikon", NKUA, Medical School, Athens, Greece
| | - Damianos Sotiropoulos
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Anastasia Papadopoulou
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Ioanna Sakellari
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Styliani Kokoris
- Laboratory of Hematology and Hospital Blood Transfusion Department, University General Hospital "Attikon", NKUA, Medical School, Athens, Greece
| | | |
Collapse
|
29
|
Helmecke T, Hahn D, Matzke N, Ferdinand L, Franke L, Kühn S, Fischer G, Werner C, Maitz MF. Inflammation-Controlled Anti-Inflammatory Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206412. [PMID: 36581490 PMCID: PMC9982591 DOI: 10.1002/advs.202206412] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
While autoregulative adaptation is a common feature of living tissues, only a few feedback-controlled adaptive biomaterials are available so far. This paper herein reports a new polymer hydrogel platform designed to release anti-inflammatory molecules in response to the inflammatory activation of human blood. In this system, anti-inflammatory peptide drugs, targeting either the complement cascade, a complement receptor, or cyclophilin A, are conjugated to the hydrogel by a peptide sequence that is cleaved by elastase released from activated granulocytes. As a proof of concept, the adaptive drug delivery from the gel triggered by activated granulocytes and the effect of the released drug on the respective inflammatory pathways are demonstrated. Adjusting the gel functionalization degree is shown to allow for tuning the drug release profiles to effective doses within a micromolar range. Feedback-controlled delivery of covalently conjugated drugs from a hydrogel matrix is concluded to provide valuable safety features suitable to equip medical devices with highly active anti-inflammatory agents without suppressing the general immunosurveillance.
Collapse
Affiliation(s)
- Tina Helmecke
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Dominik Hahn
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Nadine Matzke
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Lisa Ferdinand
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Lars Franke
- Max Planck Institute for Multidisciplinary Sciences37077GöttingenGermany
| | - Sebastian Kühn
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Gunter Fischer
- Max Planck Institute for Multidisciplinary Sciences37077GöttingenGermany
| | - Carsten Werner
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
- Technische Universität DresdenCluster of Excellence Physics of LifeCenter for Regenerative Therapies Dresden and Faculty of Chemistry and Food ChemistryFetscherstraße 10501307DresdenGermany
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| |
Collapse
|
30
|
Nesterova IV, Atazhakhova MG, Teterin YV, Matushkina VA, Chudilova GA, Mitropanova MN. THE ROLE OF NEUTROPHIL EXTRACELLULAR TRAPS (NETS)
IN THE IMMUNOPATHOGENESIS OF SEVERE COVID-19: POTENTIAL IMMUNOTHERAPEUTIC STRATEGIES REGULATING NET FORMATION AND ACTIVITY. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-tro-2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The role of neutrophil granulocytes (NG) in the pathogenesis of COVID-19 is associated with the recruitment of NG into inflammatory foci, activation of their functions and enhanced formation of neutrophil extracellular networks (NETs). In this review, we analyzed a fairly large volume of scientific literature devoted to the peculiarities of the formation of NETs, their role in the pathogenesis of COVID-19, participation in the occurrence of immunothrombosis, vasculitis, acute respiratory distress syndrome, cytokine storm syndrome, multi-organ lesions. Convincing data are presented that clearly indicate the significant involvement of NETs in the immunopathogenesis of COVID-19 and the associated severe complications resulting from the intensification of the inflammation process, which is key for the course of infection caused by the SARS-CoV-2 virus. The presented role of NG and NETs, along with the role of other immune system cells and pro-inflammatory cytokines, is extremely important in understanding the development of an overactive immune response in severe COVID-19. The obtained scientific results, available today, allow identifying the possibilities of regulatory effects on hyperactivated NG, on the formation of NETs at various stages and on limiting the negative impact of already formed NETs on various tissues and organs. All of the above should help in the creation of new, specialized immunotherapy strategies designed to increase the chances of survival, reduce the severity of clinical manifestations in patients with COVID-19, as well as significantly reduce mortality rates. Currently, it is possible to use existing drugs and a number of new drugs are being developed, the action of which can regulate the amount of NG, positively affect the functions of NG and limit the intensity of NETs formation. Continuing research on the role of hyperactive NG and netosis, as well as understanding the mechanisms of regulation of the phenomenon of formation and restriction of NETs activity in severe COVID-19, apparently, are a priority, since in the future the new data obtained could become the basis for the development of targeted approaches not only to immunotherapy aimed at limiting education and blocking negative effects already formed NETs in severe COVID-19, but also to immunotherapy, which could be used in the complex treatment of other netopathies, first of all, autoimmune diseases, auto-inflammatory syndromes, severe purulent-inflammatory processes, including bacterial sepsis and hematogenous osteomyelitis.
Collapse
|
31
|
Snigdha M, Akter A, Amin MA, Islam MZ. Bioinformatics approach to analyse COVID-19 biomarkers accountable for generation of intracranial aneurysm in COVID-19 patients. INFORMATICS IN MEDICINE UNLOCKED 2023; 39:101247. [PMID: 37159621 PMCID: PMC10141791 DOI: 10.1016/j.imu.2023.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
COVID-19 became a health emergency on January 30, 2020. SARS-CoV-2 is the causative agent of the coronavirus disease known as COVID-19 and can develop cardiometabolic and neurological disorders. Intracranial aneurysm (IA) is considered the most significant reason for hemorrhagic stroke,and it accounts for approximately 85% of all subarachnoid hemorrhages (SAH). Retinoid signaling abnormalities may explain COVID-19's pathogenesis with inhibition of AEH2, from which COVID-19 infection may enhance aneurysm formation and rupture due to abrupt blood pressure changes, endothelial cell injury, and systemic inflammation. The objective of this study was to investigate the potential biomarkers, differentially expressed genes (DEGs), and metabolic pathways associated with both COVID-19 and intracranial aneurysm (IA) using simulation databases like DIsGeNET. The purpose was to confirm prior findings and gain a comprehensive understanding of the underlying mechanisms that contribute to the development of these conditions. We combined the regulated genes to describe intracranial aneurysm formation in COVID-19. To determine DEGs in COVID-19 and IA patient tissues, we compared gene expression transcriptomic datasets from healthy and diseased individuals. There were 41 differentially expressed genes (DEGs) shared by both the COVID-19 and IA datasets (27 up-regulated genes and 14 down-regulated genes). Using protein-protein interaction analysis, we were able to identify hub proteins (C3, NCR1, IL10RA, OXTR, RSAD2, CD38, IL10RB, MX1, IL10, GFAP, IFIT3, XAF1, USP18, OASL, IFI6, EPSTI1, CMPK2, and ISG15), which were not described as key proteins for both COVID-19 and IA before. We also used Gene Ontology analysis (6 significant ontologies were validated), Pathway analysis (the top 20 were validated), TF-Gene interaction analysis, Gene miRNA analysis, and Drug-Protein interaction analysis methods to comprehend the extensive connection between COVID-19 and IA. In Drug-Protein interaction analysis, we have gotten the following three drugs: LLL-3348, CRx139, and AV41 against IL10 which was both common for COVID-19 and IA disease. Our study with different cabalistic methods has showed the interaction between the proteins and pathways with drug analysis which may direct further treatment development for certain diseases.
Collapse
Affiliation(s)
- Mahajabin Snigdha
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh
| | - Azifa Akter
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Al Amin
- Department of Computer Science & Engineering, Prime University, Dhaka, 1216, Bangladesh
| | - Md Zahidul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
32
|
Gabrili JJM, Villas-Boas IM, Pidde G, Squaiella-Baptistão CC, Woodruff TM, Tambourgi DV. Complement System Inhibition Modulates the Inflammation Induced by the Venom of Premolis semirufa, an Amazon Rainforest Moth Caterpillar. Int J Mol Sci 2022; 23:13333. [PMID: 36362117 PMCID: PMC9658021 DOI: 10.3390/ijms232113333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
The caterpillar of the Premolis semirufa moth, commonly called Pararama, is found in the Brazilian Amazon region. Contact with the hairs can cause a chronic inflammatory reaction, termed "pararamosis". To date, there is still no specific treatment for pararamosis. In this study, we used a whole human blood model to evaluate the involvement of the complement in the proinflammatory effects of P. semirufa hair extract, as well as the anti-inflammatory potential of complement inhibitors in this process. After treatment of blood samples with the P. semirufa hair extract, there was a significant increase in the generation of soluble terminal complement complex (sTCC) and anaphylatoxins (C3a, C4a, and C5a), as well as the production of the cytokines TNF-α and IL-17 and the chemokines IL-8, RANTES, MIG, MCP-1, and IP-10. The inhibition of C3 with compstatin significantly decreased IL-17, IL-8, RANTES, and MCP-1 production. However, the use of the C5aR1 antagonist PMX205 promoted a reduction in the production of IL-8 and RANTES. Moreover, compstatin decreased CD11b, C5aR1, and TLR2 expression induced by P. semirufa hair extract in granulocytes and CD11b, TLR4, and TLR2 in monocytes. When we incubated vascular endothelial cells with extract-treated human plasma, there was an increase in IL-8 and MCP-1 production, and compstatin was able to decrease the production of these chemokines. C5aR1 antagonism also decreased the production of MCP-1 in endothelial cells. Thus, these results indicate that the extract of the Pararama bristles activates the complement system and that this action contributes to the production of cytokines and chemokines, modulation of the expression of surface markers in leukocytes, and activation of endothelial cells.
Collapse
Affiliation(s)
- Joel J. M. Gabrili
- Immunochemistry Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Giselle Pidde
- Immunochemistry Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Trent M. Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
33
|
Zhao J, Zhu J, Huang C, Zhu X, Zhu Z, Wu Q, Yuan R. Uncovering the information immunology journals transmitted for COVID-19: A bibliometric and visualization analysis. Front Immunol 2022; 13:1035151. [PMID: 36405695 PMCID: PMC9670819 DOI: 10.3389/fimmu.2022.1035151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Since the global epidemic of the coronavirus disease 2019 (COVID-19), a large number of immunological studies related to COVID-19 have been published in various immunology journals. However, the results from these studies were discrete, and no study summarized the important immunological information about COVID-19 released by these immunology journals. This study aimed to comprehensively summarize the knowledge structure and research hotspots of COVID-19 published in major immunology journals through bibliometrics. METHODS Publications on COVID-19 in major immunology journals were obtained from the Web of Science Core Collection. CiteSpace, VOSviewer, and R-bibliometrix were comprehensively used for bibliometric and visual analysis. RESULTS 1,331 and 5,000 publications of 10 journals with high impact factors and 10 journals with the most papers were included, respectively. The USA, China, England, and Italy made the most significant contributions to these papers. University College London, National Institute of Allergy and Infectious Diseases, Harvard Medical School, University California San Diego, and University of Pennsylvania played a central role in international cooperation in the immunology research field of COVID-19. Yuen Kwok Yung was the most important author in terms of the number of publications and citations, and the H-index. CLINICAL INFECTIOUS DISEASES and FRONTIERS IN IMMUNOLOGY were the most essential immunology journals. These immunology journals mostly focused on the following topics: "Delta/Omicron variants", "cytokine storm", "neutralization/neutralizing antibody", "T cell", "BNT162b2", "mRNA vaccine", "vaccine effectiveness/safety", and "long COVID". CONCLUSION This study systematically uncovered a holistic picture of the current research on COVID-19 published in major immunology journals from the perspective of bibliometrics, which will provide a reference for future research in this field.
Collapse
Affiliation(s)
- Jiefeng Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaojian Zhu
- Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhengming Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qinrong Wu
- Department of General Surgery, Yingtan City People’s Hospital, Yingtan, Jiangxi, China
| | - Rongfa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
34
|
Tang H, Liu Y, Ruan Y, Ge L, Zhang Q. Reconstructed Genome-Scale Metabolic Model Characterizes Adaptive Metabolic Flux Changes in Peripheral Blood Mononuclear Cells in Severe COVID-19 Patients. Int J Mol Sci 2022; 23:12400. [PMID: 36293257 PMCID: PMC9604493 DOI: 10.3390/ijms232012400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a mortal threat to human health. The elucidation of the relationship between peripheral immune cells and the development of inflammation is essential for revealing the pathogenic mechanism of COVID-19 and developing related antiviral drugs. The immune cell metabolism-targeting therapies exhibit a desirable anti-inflammatory effect in some treatment cases. In this study, based on differentially expressed gene (DEG) analysis, a genome-scale metabolic model (GSMM) was reconstructed by integrating transcriptome data to characterize the adaptive metabolic changes in peripheral blood mononuclear cells (PBMCs) in severe COVID-19 patients. Differential flux analysis revealed that metabolic changes such as enhanced aerobic glycolysis, impaired oxidative phosphorylation, fluctuating biogenesis of lipids, vitamins (folate and retinol), and nucleotides played important roles in the inflammation adaptation of PBMCs. Moreover, the main metabolic enzymes such as the solute carrier (SLC) family 2 member 3 (SLC2A3) and fatty acid synthase (FASN), responsible for the reactions with large differential fluxes, were identified as potential therapeutic targets. Our results revealed the inflammation regulation potentials of partial metabolic reactions with differential fluxes and their metabolites. This study provides a reference for developing potential PBMC metabolism-targeting therapy strategies against COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Qingye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
35
|
Remuzzi G, Schiaffino S, Santoro MG, FitzGerald GA, Melino G, Patrono C. Drugs for the prevention and treatment of COVID-19 and its complications: An update on what we learned in the past 2 years. Front Pharmacol 2022; 13:987816. [PMID: 36304162 PMCID: PMC9595217 DOI: 10.3389/fphar.2022.987816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 Committee of the Lincei Academy has reviewed the scientific evidence supporting the efficacy and safety of existing and new drugs/biologics for the preventing and treating of COVID-19 and its complications. This position paper reports what we have learned in the field in the past 2 years. The focus was on, but not limited to, drugs and neutralizing monoclonal antibodies, anti-SARS-CoV-2 agents, anti-inflammatory and immunomodulatory drugs, complement inhibitors and anticoagulant agents. We also discuss the risks/benefit of using cell therapies on COVID-19 patients. The report summarizes the available evidence, which supports recommendations from health authorities and panels of experts regarding some drugs and biologics, and highlights drugs that are not recommended, or drugs for which there is insufficient evidence to recommend for or against their use. We also address the issue of the safety of drugs used to treat underlying concomitant conditions in COVID-19 patients. The investigators did an enormous amount of work very quickly to understand better the nature and pathophysiology of COVID-19. This expedited the development and repurposing of safe and effective therapeutic interventions, saving an impressive number of lives in the community as well as in hospitals.
Collapse
Affiliation(s)
- Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Maria Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Philadelphia, Philadelphia, PA, United States
| | - Gennaro Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Patrono
- Department of Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
36
|
Mortazavi-Jahromi SS, Aslani M. Dysregulated miRNAs network in the critical COVID-19: An important clue for uncontrolled immunothrombosis/thromboinflammation. Int Immunopharmacol 2022; 110:109040. [PMID: 35839566 PMCID: PMC9271492 DOI: 10.1016/j.intimp.2022.109040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Known as a pivotal immunohemostatic response, immunothrombosis is activated to restrict the diffusion of pathogens. This beneficial intravascular defensive mechanism represents the close interaction between the immune and coagulation systems. However, its uncontrolled form can be life-threatening to patients with the critical coronavirus disease 2019 (COVID-19). Hyperinflammation and ensuing cytokine storm underlie the activation of the coagulation system, something which results in the provocation of more immune-inflammatory responses by the thrombotic mediators. This vicious cycle causes grave clinical complications and higher risks of mortality. Classified as an evolutionarily conserved family of the small non-coding RNAs, microRNAs (miRNAs) serve as the fine-tuners of genes expression and play a key role in balancing the pro/anticoagulant and pro-/anti-inflammatory factors maintaining homeostasis. Therefore, any deviation from their optimal expression levels or efficient functions can lead to severe complications. Despite their extensive effects on the molecules and processes involved in uncontrolled immunothrombosis, some genetic agents and uncontrolled immunothrombosis-induced interfering factors (e.g., miRNA-single nucleotide polymorphysms (miR-SNPs), the complement system components, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, and reactive oxygen species (ROS)) have apparently disrupted their expressions/functions. This review study aims to give an overview of the role of miRNAs in the context of uncontrolled immunothrombosis/thromboinflammation accompanied by some presumptive interfering factors affecting their expressions/functions in the critical COVID-19. Detecting, monitoring, and resolving these interfering agents mafy facilitate the design and development of the novel miRNAs-based therapeutic approaches to the reduction of complications incidence and mortality in patients with the critical COVID-19.
Collapse
Affiliation(s)
- Seyed Shahabeddin Mortazavi-Jahromi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran.
| | - Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW COVID-19 remains a major source of concern, particularly as new variants emerge and with recognition that patients may suffer long-term effects. Mechanisms underlying SARS-CoV-2 mediated organ damage and the associated vascular endotheliopathy remain poorly understood, hindering new drug development. Here, we highlight selected key concepts of how the complement system, a major component of innate immunity that is dysregulated in COVID-19, participates in the thromboinflammatory response and drives the vascular endotheliopathy. RECENT FINDINGS Recent studies have revealed mechanisms by which complement is activated directly by SARS-CoV-2, and how the system interfaces with other innate thromboinflammatory cellular and proteolytic pathways involving platelets, neutrophils, neutrophil extracellular traps and the coagulation and kallikrein-kinin systems. With this new information, multiple potential sites for therapeutic intervention are being uncovered and evaluated in the clinic. SUMMARY Infections with SARS-CoV-2 cause damage to the lung alveoli and microvascular endothelium via a process referred to as thromboinflammation. Although not alone in being dysregulated, complement is an early player, prominent in promoting the endotheliopathy and consequential organ damage, either directly and/or via the system's complex interplay with other cellular, molecular and biochemical pathways. Delineating these critical interactions is revealing novel and promising strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward L G Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Agnihotri R, Gaur S. C3 Targeted Complement Therapy for Chronic Periodontitis - A Scoping Review. J Int Soc Prev Community Dent 2022; 12:500-505. [PMID: 36532323 PMCID: PMC9753925 DOI: 10.4103/jispcd.jispcd_161_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023] Open
Abstract
Aim Chronic Periodontitis (CP) is a complex disease initiated by inflammation caused by dysbiotic bacterial communities in the subgingival environment. The Porphyromonas gingivalis, a keystone pathogen at low colonization, causes immune subversion of complement component C5aR, leading to complement C3-dependent destructive inflammation responsible for the inflammatory bone loss in CP. Animal studies have shown that targeting complement C3 with its inhibitor like AMY-101 may help reduce inflammatory bone loss in CP. This scoping review elaborates on the role of complement C3 targeted therapy for CP. Materials and Methods About 66 original studies were obtained during an initial electronic search in Medline (Pubmed), Scopus, Web of Science, and Embase. About four articles were included in the review after screening the duplicates and reading the full text. Their aims and objectives, drug dosage, route of administration, results, and conclusions were recorded. Results Of the four-original research, 3 were animal studies and one randomized Phase IIa clinical trial. They showed that C3 targeted complement therapy reduced the inflammatory and clinical periodontal parameters in CP. Conclusion C3 targeted complement therapy may be regarded as a valuable adjunct to non-surgical periodontal treatment for CP. However, the results are still under investigation and require further verification through clinical trials.
Collapse
Affiliation(s)
- Rupali Agnihotri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| |
Collapse
|
39
|
Chi H, Zhou K, Shen L, Xu J, Li J, Chen S, Wu X, Tung TH, Shen B, Zhu H. The evaluation of the immune status of COVID-19 recovered subjects with persistent abnormal lung CT after one year: A longitudinal cohort study. Int Immunopharmacol 2022; 110:109019. [PMID: 35816945 PMCID: PMC9257193 DOI: 10.1016/j.intimp.2022.109019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES COVID-19 is an immune-related disease caused by novel Coronavirus SARS-COV-2. Lung lesions persist in some recovered patients, making long-term follow-up monitoring of their health necessary. The mechanism of these abnormalities is still unclear. In this study, the immune status was observed to explore the immune mechanism of persistent lung CT abnormalities in one-year COVID-19 recovered subjects. METHODS One-year follow-up of 73 recovered patients from COVID-19 confirmed in Taizhou City, Zhejiang Province, was conducted to collect laboratory indicators such as blood immune cells, cytokines, complement series, immunoglobulin, and lung imaging; According to the results of lung CT, 60 patients were divided into normal CT group (n = 40) and abnormal CT group (n = 20). We compared the dynamic changes of immune indexes at three timepoints namely onset (T1), discharge (T2), and 1-year follow-up (T3), and studied the relationship between immune indexes and pulmonary sequelae. RESULTS Compared with the healthy control, there was no significant difference in immune-related indexes, and immune levels had recovered. Patients with elder age, high BMI, severe patients, and those with underlying diseases (hypertension or diabetes) had a higher CT abnormal rate after recovery. Longitudinal observation showed that immunoglobulin increased first and then decreased, immune cell TBNK decreased in the onset period and increased in the recovery period, cytokine level increased significantly in the onset period and decreased to the normal level in the recovery period, and complement series C1q, C3 and C4 increased at the onset and decreased during the one-year follow-up. Complement C3 remained at a high level in the CT abnormal group (CT normal group vs CT abnormal group; P = 0.036). Correlation analysis showed that C3 negatively correlated restrictive ventilation index (TLC-He (ratio) (r = -0.302, P = 0.017). The above results suggest that complement C3 is a negative factor correlating abnormal pulmonary function 1 year after the recovery. CONCLUSION After one year recovering from COVID-19, the subjects were with stable immune indicators. High levels of complement C3 were associated with persistent lung abnormalities in COVID-19 recovered subjects.
Collapse
Affiliation(s)
- Hongbo Chi
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Kai Zhou
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Liping Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jiaqin Xu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jun Li
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shiyong Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xiaomai Wu
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Tao-Hsin Tung
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.
| | - Hongguo Zhu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.
| |
Collapse
|
40
|
C3a and C5b-9 Differentially Predict COVID-19 Progression and Outcome. Life (Basel) 2022; 12:life12091335. [PMID: 36143371 PMCID: PMC9504647 DOI: 10.3390/life12091335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 01/15/2023] Open
Abstract
SARS-CoV-2 infection may result in severe pneumonia leading to mechanical ventilation and intensive care (ICU) treatment. Complement activation was verified in COVID-19 and implicated as a contributor to COVID-19 pathogenesis. This study assessed the predictive potential of complement factors C3a and C5b-9 for COVID-19 progression and outcome. We grouped 80 COVID-19 patients into severe COVID-19 patients (n = 38) and critically ill (n = 42) and subdivided into non-intubated (n = 48) and intubated (n = 32), survivors (n = 57) and non-survivors (n = 23). Results: A significant increase for C3a and C5b-9 levels was observed between: severely and critically ill patients (p < 0.001 and p < 0.0001), non-intubated vs intubated (p < 0.001 and p < 0.05), survivors vs non-survivors (p < 0.001 and p < 0.01). ROC analysis for the need for ICU treatment revealed a higher AUC for C5b-9 (0.764, p < 0.001) compared to C3a (AUC = 0.739, p < 0.01). A higher AUC was observed for C3a for the need for intubation (AUC = 0.722, p < 0.001) or mortality (AUC = 0.740, p < 0.0001) compared to C5b-9 (need for intubation AUC = 0.656, p < 0.05 and mortality AUC = 0.631, p = NS). Combining the two markers revealed a powerful prediction tool for ICU admission (AUC = 0.773, p < 0.0001), intubation (AUC = 0.756, p < 0.0001) and mortality (AUC = 0.753, p < 0.001). C3a and C5b-9 may be considered as prognostic tools separately or in combination for the progression and outcome of COVID-19.
Collapse
|
41
|
De Leeuw E, Van Damme KFA, Declercq J, Bosteels C, Maes B, Tavernier SJ, Detalle L, Smart T, Glatt S, Debeuf N, Deckers J, Lameire S, Vandecasteele SJ, De Neve N, Demedts IK, Govaerts E, Knoop C, Vanhove K, Moutschen M, Terryn W, Depuydt P, Van Braeckel E, Haerynck F, Hendrickx TCJ, Parrein V, Lalla M, Brittain C, Lambrecht BN. Efficacy and safety of the investigational complement C5 inhibitor zilucoplan in patients hospitalized with COVID-19: an open-label randomized controlled trial. Respir Res 2022; 23:202. [PMID: 35945604 PMCID: PMC9361275 DOI: 10.1186/s12931-022-02126-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The efficacy and safety of complement inhibition in COVID-19 patients is unclear. METHODS A multicenter randomized controlled, open-label trial. Hospitalized COVID-19 patients with signs of systemic inflammation and hypoxemia (PaO2/FiO2 below 350 mmHg) were randomized (2:1 ratio) to receive standard of care with or without the C5 inhibitor zilucoplan daily for 14 days, under antibiotic prophylaxis. The primary outcome was improvement in oxygenation at day 6 and 15. RESULTS 81 patients were randomly assigned to zilucoplan (n = 55) or the control group (n = 26). 78 patients were included in the safety and primary analysis. Most were men (87%) and the median age was 63 years. The mean improvement in PaO2/FiO2 from baseline to day 6 was 56.4 mmHg in the zilucoplan group and 20.6 mmHg in the control group (mean difference + 35.8; 95% confidence interval (CI) - 9.4 to 80.9; p = 0.12), an effect also observed at day 15. Day 28 mortality was 9% in the zilucoplan and 21% in the control group (odds ratio 0.4; 95% CI 0.1 to 1.5). At long-term follow up, the distance walked in a 6-min test was 539.7 m in zilucoplan and 490.6 m in the control group (p = 0.18). Zilucoplan lowered serum C5b-9 (p < 0.001) and interleukin-8 (p = 0.03) concentration compared with control. No relevant safety differences between the zilucoplan and control group were identified. CONCLUSION Administration of zilucoplan to COVID-19 patients in this proof-of-concept randomized trial was well tolerated under antibiotic prophylaxis. While not reaching statistical significance, indicators of respiratory function (PaO2/FiO2) and clinical outcome (mortality and 6-min walk test) suggest that C5 inhibition might be beneficial, although this requires further research in larger randomized studies.
Collapse
Affiliation(s)
- Elisabeth De Leeuw
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Karel F A Van Damme
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jozefien Declercq
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Cedric Bosteels
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bastiaan Maes
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Simon J Tavernier
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | | | | | - Nincy Debeuf
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Julie Deckers
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sahine Lameire
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Nikolaas De Neve
- Department of Anesthesiology and Intensive Care Medicine, OLV Hospital, Aalst, Belgium
| | - Ingel K Demedts
- Department of Respiratory Medicine, AZ Delta Roeselare-Menen, Roeselare, Belgium
| | - Elke Govaerts
- Department of Pulmonary Medicine, AZ Sint-Lucas Gent, Ghent, Belgium
| | - Christiane Knoop
- Department of Pulmonary Medicine, CHU Erasme Université Libre de Bruxelles, Brussels, Belgium
| | - Karolien Vanhove
- Department of Pneumology and Respiratory Oncology, AZ Vesalius, Tongeren, Belgium
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, CHU Sart-Tilman, Université de Liège, Liège, Belgium
| | - Wim Terryn
- Department of General Internal Medicine and Nephrology, Jan Yperman Hospital, Ieper, Belgium
| | - Pieter Depuydt
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Intensive Care Unit, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tine C J Hendrickx
- Clinical Trial Center, Pharmacy Department, AZ Sint-Lucas Gent, Ghent, Belgium
| | | | | | | | - Bart N Lambrecht
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
42
|
Ma L, Willey J. The interplay between inflammation and thrombosis in COVID-19: Mechanisms, therapeutic strategies, and challenges. THROMBOSIS UPDATE 2022; 8:100117. [PMID: 38620713 PMCID: PMC9270234 DOI: 10.1016/j.tru.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can cause life-threatening pathology characterized by a dysregulated immune response and coagulopathy. While respiratory failure induced by inflammation is the most common cause of death, micro-and macrovascular thrombosis leading to multiple organ failure are also causes of mortality. Dysregulation of systemic inflammation observed in severe COVID-19 patients is manifested by cytokine release syndrome (CRS) - the aberrant release of high levels of proinflammatory cytokines, such as IL-6, IL-1, TNFα, MP-1, as well as complement. CRS is often accompanied by activation of endothelial cells and platelets, coupled with perturbation of the balance between the pro-and antithrombotic mechanisms, resulting in thrombosis. Inflammation and thrombosis form a vicious circle, contributing to morbidity and mortality. Treatment of hyperinflammation has been shown to decrease thrombosis, while anti-thrombotic treatment also downregulates cytokine release. This review highlights the relationship between COVID-19-mediated systemic inflammation and thrombosis, the molecular pathways involved, the therapies targeting these processes, and the challenges currently encountered.
Collapse
Affiliation(s)
- Li Ma
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Joanne Willey
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| |
Collapse
|
43
|
Farhangnia P, Dehrouyeh S, Safdarian AR, Farahani SV, Gorgani M, Rezaei N, Akbarpour M, Delbandi AA. Recent advances in passive immunotherapies for COVID-19: The Evidence-Based approaches and clinical trials. Int Immunopharmacol 2022; 109:108786. [PMID: 35483235 PMCID: PMC9021130 DOI: 10.1016/j.intimp.2022.108786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/15/2022]
Abstract
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, causing a global pandemic called COVID-19. Currently, there is no definitive treatment for this emerging disease. Global efforts resulted in developing multiple platforms of COVID-19 vaccines, but their efficacy in humans should be wholly investigated in the long-term clinical and epidemiological follow-ups. Despite the international efforts, COVID-19 vaccination accompanies challenges, including financial and political obstacles, serious adverse effects (AEs), the impossibility of using vaccines in certain groups of people in the community, and viral evasion due to emerging novel variants of SARS-CoV-2 in many countries. For these reasons, passive immunotherapy has been considered a complementary remedy and a promising way to manage COVID-19. These approaches arebased on reduced inflammation due to inhibiting cytokine storm phenomena, immunomodulation,preventing acute respiratory distress syndrome (ARDS), viral neutralization, anddecreased viral load. This article highlights passive immunotherapy and immunomodulation approaches in managing and treating COVID-19 patients and discusses relevant clinical trials (CTs).
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Shiva Dehrouyeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Amir Reza Safdarian
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Department of Pathology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Soheila Vasheghani Farahani
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, United States.
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Moraes ECDS, Martins-Gonçalves R, da Silva LR, Mandacaru SC, Melo RM, Azevedo-Quintanilha I, Perales J, Bozza FA, Souza TML, Castro-Faria-Neto HC, Hottz ED, Bozza PT, Trugilho MRO. Proteomic Profile of Procoagulant Extracellular Vesicles Reflects Complement System Activation and Platelet Hyperreactivity of Patients with Severe COVID-19. Front Cell Infect Microbiol 2022; 12:926352. [PMID: 35937696 PMCID: PMC9354812 DOI: 10.3389/fcimb.2022.926352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/20/2022] [Indexed: 01/08/2023] Open
Abstract
Background Extracellular vesicles (EVs) are a valuable source of biomarkers and display the pathophysiological status of various diseases. In COVID-19, EVs have been explored in several studies for their ability to reflect molecular changes caused by SARS-CoV-2. Here we provide insights into the roles of EVs in pathological processes associated with the progression and severity of COVID-19. Methods In this study, we used a label-free shotgun proteomic approach to identify and quantify alterations in EV protein abundance in severe COVID-19 patients. We isolated plasma extracellular vesicles from healthy donors and patients with severe COVID-19 by size exclusion chromatography (SEC). Then, flow cytometry was performed to assess the origin of EVs and to investigate the presence of circulating procoagulant EVs in COVID-19 patients. A total protein extraction was performed, and samples were analyzed by nLC-MS/MS in a Q-Exactive HF-X. Finally, computational analysis was applied to signify biological processes related to disease pathogenesis. Results We report significant changes in the proteome of EVs from patients with severe COVID-19. Flow cytometry experiments indicated an increase in total circulating EVs and with tissue factor (TF) dependent procoagulant activity. Differentially expressed proteins in the disease groups were associated with complement and coagulation cascades, platelet degranulation, and acute inflammatory response. Conclusions The proteomic data reinforce the changes in the proteome of extracellular vesicles from patients infected with SARS-CoV-2 and suggest a role for EVs in severe COVID-19.
Collapse
Affiliation(s)
- Emilly Caroline dos Santos Moraes
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Remy Martins-Gonçalves
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Luana Rocha da Silva
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Samuel Coelho Mandacaru
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Reynaldo Magalhães Melo
- Laboratory Protein Chemistry and Biochemistry and Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | | | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernando A. Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Thiago Moreno Lopes Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Patricia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Monique R. O. Trugilho
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Gianni P, Goldin M, Ngu S, Zafeiropoulos S, Geropoulos G, Giannis D. Complement-mediated microvascular injury and thrombosis in the pathogenesis of severe COVID-19: A review. World J Exp Med 2022; 12:53-67. [PMID: 36157337 PMCID: PMC9350720 DOI: 10.5493/wjem.v12.i4.53] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) causes acute microvascular thrombosis in both venous and arterial structures which is highly associated with increased mortality. The mechanisms leading to thromboembolism are still under investigation. Current evidence suggests that excessive complement activation with severe amplification of the inflammatory response (cytokine storm) hastens disease progression and initiates complement-dependent cytotoxic tissue damage with resultant prothrombotic complications. The concept of thromboinflammation, involving overt inflammation and activation of the coagulation cascade causing thrombotic microangiopathy and end-organ damage, has emerged as one of the core components of COVID-19 pathogenesis. The complement system is a major mediator of the innate immune response and inflammation and thus an appealing treatment target. In this review, we discuss the role of complement in the development of thrombotic microangiopathy and summarize the current data on complement inhibitors as COVID-19 therapeutics.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Ulm 89070, Germany
| | - Mark Goldin
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New York, NY 11549, United States
- Feinstein Institutes for Medical Research at Northwell Health, Feinstein Institutes , New York, NY 11030, United States
| | - Sam Ngu
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New York, NY 11549, United States
| | - Stefanos Zafeiropoulos
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, New York, NY 11030, United States
| | - Georgios Geropoulos
- Department of General Surgery, University College London Hospitals, London NW12BU, United Kingdom
| | - Dimitrios Giannis
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New York, NY 11549, United States
- North Shore/Long Island Jewish General Surgery, Northwell Health, New York, NY 11021, United States
| |
Collapse
|
46
|
Jiao Y, Yang Y, Zhou L, Chen D, Lu Y. Two Natural Flavonoid Substituted Polysaccharides from Tamarix chinensis: Structural Characterization and Anticomplement Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144532. [PMID: 35889403 PMCID: PMC9315555 DOI: 10.3390/molecules27144532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
Two novel natural flavonoid substituted polysaccharides (MBAP-1 and MBAP-2) were obtained from Tamarix chinensis Lour. and characterized by HPGPC, methylation, ultra-high-performance liquid chromatography-ion trap tandem mass spectrometry (UPLC-IT-MSn), and NMR analysis. The results showed that MBAP-1 was a homogenous heteropolysaccharide with a backbone of 4)-β-d-Glcp-(1→ and →3,4,6)-β-d-Glcp-(1→. MBAP-2 was also a homogenous polysaccharide which possessed a backbone of →3)-α-d-Glcp-(1→, →4)-β-d-Glcp-(1→ and →3,4)-β-d-Glcp-2-OMe-(1→. Both the two polysaccharides were substituted by quercetin and exhibited anticomplement activities in vitro. However, MBAP-1 (CH50: 0.075 ± 0.004 mg/mL) was more potent than MBAP-2 (CH50: 0.249 ± 0.006 mg/mL) and its reduced product, MBAP-1R (CH50: 0.207 ± 0.008 mg/mL), indicating that multiple monosaccharides and uronic acids might contribute to the anticomplement activity of the flavonoid substituted polysaccharides of T. chinensis. Furthermore, the antioxidant activity of MBAP-1 was also more potent than that of MBAP-2. In conclusion, these two flavonoid substituted polysaccharides from T. chinensis were found to be potential oxidant and complement inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Yan Lu
- Correspondence: (D.C.); (Y.L.)
| |
Collapse
|
47
|
Loh JT, Zhang B, Teo JKH, Lai RC, Choo ABH, Lam KP, Lim SK. Mechanism for the attenuation of neutrophil and complement hyperactivity by MSC exosomes. Cytotherapy 2022; 24:711-719. [PMID: 35177337 PMCID: PMC8843421 DOI: 10.1016/j.jcyt.2021.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Complements and neutrophils are two key players of the innate immune system that are widely implicated as drivers of severe COVID-19 pathogenesis, as evident by the direct correlation of respiratory failure and mortality with elevated levels of terminal complement complex C5b-9 and neutrophils. In this study, we identified a feed-forward loop between complements and neutrophils that could amplify and perpetuate the cytokine storm seen in severe SARS-CoV-2-infected patients. We observed for the first time that the terminal complement activation complex C5b-9 directly triggered neutrophil extracellular trap (NET) release and interleukin (IL)-17 production by neutrophils. This is also the first report that the production of NETs and IL-17 induced by C5b-9 assembly on neutrophils could be abrogated by mesenchymal stem cell (MSC) exosomes. Neutralizing anti-CD59 antibodies abolished this abrogation. Based on our findings, we hypothesize that MSC exosomes could alleviate the immune dysregulation in acute respiratory failure, such as that observed in severe COVID-19 patients, by inhibiting complement activation through exosomal CD59, thereby disrupting the feed-forward loop between complements and neutrophils to inhibit the amplification and perpetuation of inflammation during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jia Tong Loh
- Singapore Immunology Network, Agency for Science, Technology and Research, Republic of Singapore
| | - Bin Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Republic of Singapore
| | - Joey Kay Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research, Republic of Singapore
| | - Ruenn Chai Lai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Republic of Singapore
| | - Andre Boon Hwa Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Republic of Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, Republic of Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore; School of Biological Sciences, College of Science, Nanyang Technological University, Republic of Singapore.
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Republic of Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore.
| |
Collapse
|
48
|
Li Q, Wang Y, Sun Q, Knopf J, Herrmann M, Lin L, Jiang J, Shao C, Li P, He X, Hua F, Niu Z, Ma C, Zhu Y, Ippolito G, Piacentini M, Estaquier J, Melino S, Weiss FD, Andreano E, Latz E, Schultze JL, Rappuoli R, Mantovani A, Mak TW, Melino G, Shi Y. Immune response in COVID-19: what is next? Cell Death Differ 2022; 29:1107-1122. [PMID: 35581387 PMCID: PMC9110941 DOI: 10.1038/s41418-022-01015-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 12/18/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has been a global pandemic for more than 2 years and it still impacts our daily lifestyle and quality in unprecedented ways. A better understanding of immunity and its regulation in response to SARS-CoV-2 infection is urgently needed. Based on the current literature, we review here the various virus mutations and the evolving disease manifestations along with the alterations of immune responses with specific focuses on the innate immune response, neutrophil extracellular traps, humoral immunity, and cellular immunity. Different types of vaccines were compared and analyzed based on their unique properties to elicit specific immunity. Various therapeutic strategies such as antibody, anti-viral medications and inflammation control were discussed. We predict that with the available and continuously emerging new technologies, more powerful vaccines and administration schedules, more effective medications and better public health measures, the COVID-19 pandemic will be under control in the near future. ![]()
Collapse
Affiliation(s)
- Qing Li
- The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine of Soochow University, Medical College, Suzhou, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Sun
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 2021RU008, 20 Dongda Street, 100071, Beijing, China
| | - Jasmin Knopf
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Liangyu Lin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingting Jiang
- The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine of Soochow University, Medical College, Suzhou, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine of Soochow University, Medical College, Suzhou, China
| | - Peishan Li
- The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine of Soochow University, Medical College, Suzhou, China
| | - Xiaozhou He
- The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine of Soochow University, Medical College, Suzhou, China
| | - Fei Hua
- The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine of Soochow University, Medical College, Suzhou, China
| | - Zubiao Niu
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 2021RU008, 20 Dongda Street, 100071, Beijing, China
| | - Chaobing Ma
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 2021RU008, 20 Dongda Street, 100071, Beijing, China
| | - Yichao Zhu
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 2021RU008, 20 Dongda Street, 100071, Beijing, China
| | | | - Mauro Piacentini
- Department of Biology, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Jerome Estaquier
- INSERM-U1124, Université Paris, Paris, France.,CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Sonia Melino
- Department of Biology, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Felix Daniel Weiss
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Emanuele Andreano
- Research and Development Center, GlaxoSmithKline (GSK), Siena, Italy
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Joachim L Schultze
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Rino Rappuoli
- Research and Development Center, GlaxoSmithKline (GSK), Siena, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy.,IRCCS Humanitas Clinical Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy.,William Harvey Research Institute, Queen Mary University, London, UK
| | - Tak Wah Mak
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.,Department of Pathology, University of Hong Kong, Hong Kong, Pok Fu Lam, 999077, Hong Kong
| | - Gerry Melino
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany. .,Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine of Soochow University, Medical College, Suzhou, China. .,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
49
|
Exploiting protease activation for therapy. Drug Discov Today 2022; 27:1743-1754. [PMID: 35314338 PMCID: PMC9132161 DOI: 10.1016/j.drudis.2022.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/14/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023]
Abstract
Proteases have crucial roles in homeostasis and disease; and protease inhibitors and recombinant proteases in enzyme replacement therapy have become key therapeutic applications of protease biology across several indications. This review briefly summarises therapeutic approaches based on protease activation and focuses on how recent insights into the spatial and temporal control of the proteolytic activation of growth factors and interleukins are leading to unique strategies for the discovery of new medicines. In particular, two emerging areas are covered: the first is based on antibody therapies that target the process of proteolytic activation of the pro-form of proteins rather than their mature form; the second covers a potentially new class of biopharmaceuticals using engineered, proteolytically activable and initially inactive pro-forms of antibodies or effector proteins to increase specificity and improve the therapeutic window.
Collapse
|
50
|
Blasco M, Guillén-Olmos E, Diaz-Ricart M, Palomo M. Complement Mediated Endothelial Damage in Thrombotic Microangiopathies. Front Med (Lausanne) 2022; 9:811504. [PMID: 35547236 PMCID: PMC9082680 DOI: 10.3389/fmed.2022.811504] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Thrombotic microangiopathies (TMA) constitute a group of different disorders that have a common underlying mechanism: the endothelial damage. These disorders may exhibit different mechanisms of endothelial injury depending on the pathological trigger. However, over the last decades, the potential role of the complement system (CS) has gained prominence in their pathogenesis. This is partly due to the great efficacy of complement-inhibitors in atypical hemolytic syndrome (aHUS), a TMA form where the primary defect is an alternative complement pathway dysregulation over endothelial cells (genetic and/or adquired). Complement involvement has also been demonstrated in other forms of TMA, such as thrombotic thrombocytopenic purpura (TTP) and in Shiga toxin-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS), as well as in secondary TMAs, in which complement activation occurs in the context of other diseases. However, at present, there is scarce evidence about the efficacy of complement-targeted therapies in these entities. The relationship between complement dysregulation and endothelial damage as the main causes of TMA will be reviewed here. Moreover, the different clinical trials evaluating the use of complement-inhibitors for the treatment of patients suffering from different TMA-associated disorders are summarized, as a clear example of the entry into a new era of personalized medicine in its management.
Collapse
Affiliation(s)
- Miquel Blasco
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIPABS), Malalties Nefro-Urològiques i Trasplantament Renal, Barcelona, Spain
| | - Elena Guillén-Olmos
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hematopathology Unit, Department of Pathology, Hospital Clínic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Barcelona, Spain
| | - Marta Palomo
- Hematopathology Unit, Department of Pathology, Hospital Clínic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|