1
|
Neuhoff BKS. Viral Hepatitis. Clin Obstet Gynecol 2025:00003081-990000000-00216. [PMID: 40247447 DOI: 10.1097/grf.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Viral hepatitis poses a significant public health challenge. Five types (A, B, C, D, E) have distinct transmission, prognosis, and management. Hepatitis A (HAV), spread through fecal-oral contamination, is typically self-limiting with supportive therapy. Hepatitis B (HBV) is sexually transmitted but may also be spread perinatally. HBV can progress into cirrhosis or hepatocellular carcinoma. Hepatitis C (HCV), a bloodborne virus, can also cause chronic infection and severe liver disease. Vaccination can prevent HAV and HBV; HCV is curable with antiviral therapy but lacks a vaccine. Pregnant patients and those with HIV require special management considerations. Here, we review the pathogenesis, diagnosis, treatment, and prevention of viral hepatitis.
Collapse
|
2
|
Shang AQ, Yan H, Xiang Z, Chen JQ, Jiang B, Jiang C, Ling B, Wu J. Serum exosome-derived ALDH1A1 can greatly predict the prognosis of patients with hepatitis E virus-related acute liver failure. Hepatobiliary Pancreat Dis Int 2025; 24:170-176. [PMID: 39753426 DOI: 10.1016/j.hbpd.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Despite the insights into the role of aldehyde dehydrogenase 1 family member A1 (ALDH1A1) in various liver diseases, the expression and its prognostic significance in patients with hepatitis E virus-related acute liver failure (HEV-ALF) remain unclear. This study delved into the assessment of serum exosome-derived ALDH1A1 expression and its prognostic implications for HEV-ALF patients. METHODS Between January 2018 and December 2023, a total of 226 individuals with acute hepatitis E (AHE) and 210 patients with HEV-ALF were recruited from member units of Chinese Consortium for the Study of Hepatitis E. According to the number of organ failure, we categorized 210 HEV-ALF patients into three groups: two organs failure (n = 131), three organs failure (n = 46), and more than three organs failure (n = 33). In addition, 200 health controls from Suzhou Municipal Hospital were included. RESULTS The levels of serum exosome-derived ALDH1A1 in HEV-ALF patients were significantly higher than those in AHE patients and health controls (both P < 0.05). Furthermore, the levels of serum exosome-derived ALDH1A1 were the highest in more than three organs failure group, followed by three organs failure group and two organs failure group (all P < 0.001). Moreover, serum exosome-derived ALDH1A1 was positively correlated with total bilirubin in HEV-ALF patients (r = 0.315, P < 0.001). The comparisons of serum exosome-derived ALDH1A1 levels in treatment response showed that serum exosome-derived ALDH1A1 levels were decreased in the improvement group, while increased in the fluctuation and deterioration groups (all P < 0.001). Moreover, serum exosome-derived ALDH1A1 was an independent risk factor for predicting the 30-day mortality (P < 0.001). Furthermore, the area under the receiver operating characteristic curve was 0.943, with the sensitivity of 94.87% and specificity of 87.72%, indicating the robust decision-making ability. However, no significant differences were found in serum exosome-derived ALDH1A1 levels between patients aged < 60 and ≥ 60 years old (P = 0.131). CONCLUSIONS Serum exosome-derived ALDH1A1 can greatly predict the prognosis of HEV-ALF patients.
Collapse
Affiliation(s)
- An-Quan Shang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang & The Oncology Hospital of Lianyungang, Lianyungang 222006, China
| | - Hong Yan
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jia-Qi Chen
- Jiangsu University School of Medicine, Zhenjiang 212013, China
| | - Bin Jiang
- Department of Laboratory Medicine, The Central Blood Station of Yancheng City, Yancheng 224000, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Bai Ling
- Department of Pharmacy, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng 224006, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
3
|
Shahid Y, Butt AS, Jamali I, Ismail FW. Rising incidence of acute hepatitis A among adults and clinical characteristics in a tertiary care center of Pakistan. World J Virol 2025; 14:97482. [PMID: 40134835 PMCID: PMC11612870 DOI: 10.5501/wjv.v14.i1.97482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND For decades, hepatitis A virus (HAV) has been a leading cause of acute hepatitis among children and was less prevalent among adults. However, recently a paradigm shift has been observed in the epidemiology of HAV, as evident by cases of acute hepatitis due to HAV among adults. AIM To estimate frequency of HAV in acute viral hepatitis and compare characteristics in HAV and hepatitis E virus (HEV) infection. METHODS This was a trend analysis conducted at Aga Khan University Hospital Karachi (Sindh, Pakistan) from February 2024 to May 2024. Individuals aged 18 years and older diagnosed with acute viral hepatitis attributed to hepatotropic viruses in 2024 were reviewed. To compare the trend patients admitted with acute hepatitis during 2019-2023 were also reviewed. Data regarding clinical and laboratory parameters were recorded. The yearly trend of acute hepatitis due to HAV and HEV was analyzed, and comparative analysis was done between HAV and HEV cases among adults. RESULTS A total of 396 patients were found to have acute hepatitis during our study duration. HAV was diagnosed in 234 patients (59%) while 157 patients (39.6%) were found to have acute HEV infection. Additionally, acute hepatitis B virus infection was identified in 3 patients (0.7%), whereas acute hepatitis C virus infection was found in 2 (0.5%) cases of acute hepatitis. Yearly trends showed increasing occurrence of HAV infection among adults over last 5 years. The patients with acute HAV were younger than patients with HEV (28 years ± 8 years vs 30 years ± 8 years; P < 0.01). Higher levels of total bilirubin were seen in HEV infection, while higher levels of alanine transaminase were seen in HAV infection. However, a higher proportion of acute liver failure (ALF), coagulopathy, and mortality were observed in HEV. CONCLUSION An increase in acute hepatitis A cases among adults shows less severity than hepatitis E, highlighting the need for better sanitation, hygiene, and adult hepatitis A vaccination programs.
Collapse
Affiliation(s)
- Yumna Shahid
- Division of Gastroenterology, Department of Medicine, Aga Khan University Hospital, Karachi 74800, Pakistan
| | - Amna Subhan Butt
- Department of Medicine, Aga Khan University Hospital, Karachi 74800, Pakistan
| | - Iqra Jamali
- Department of Medicine, Aga Khan University Hospital, Karachi 74800, Pakistan
| | - Faisal Wasim Ismail
- Department of Medicine, Aga Khan University Hospital, Karachi 74800, Pakistan
| |
Collapse
|
4
|
Elois MA, da Silva Grisard HB, Rodríguez-Lázaro D, Fongaro G. Challenges and global trends in combating enteric hepatitis. J Gen Virol 2024; 105. [PMID: 39693132 DOI: 10.1099/jgv.0.002059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Enteric hepatitis, represented by the hepatitis A virus (HAV) and hepatitis E virus (HEV), remains a significant global public health concern. While much progress has been made, many aspects of the biology and pathophysiology of HAV and HEV are still not fully understood. One of the major challenges is the absence of a reliable system for virus replication. Additionally, the lack of standardized and widely accessible diagnostic tests contributes to the underestimation of the true prevalence of these viruses. Factors such as climate change, environmental shifts, globalization and increased population mobility further complicate the spread of these infections by affecting pathogen transmission, water quality and the distribution of vectors. This review approaches the emergent research challenges and trends of enteric hepatitis and focuses on developing more efficient diagnostic tools, exploring the role of zoonotic transmission and addressing the impact of environmental and climate changes on disease dynamics, underscoring the need for collaborative, interdisciplinary efforts to effectively combat enteric hepatitis in a rapidly changing world.
Collapse
Affiliation(s)
- Mariana Alves Elois
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Henrique Borges da Silva Grisard
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
5
|
Roy PK, Roy A, Jeon EB, DeWitt CAM, Park JW, Park SY. Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products. Compr Rev Food Sci Food Saf 2024; 23:e13410. [PMID: 39030812 DOI: 10.1111/1541-4337.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Anamika Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | | | - Jae W Park
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| |
Collapse
|
6
|
Alshiban NM, Aleyiydi MS, Nassar MS, Alhumaid NK, Almangour TA, Tawfik YM, Damiati LA, Almutairi AS, Tawfik EA. Epidemiologic and clinical updates on viral infections in Saudi Arabia. Saudi Pharm J 2024; 32:102126. [PMID: 38966679 PMCID: PMC11223122 DOI: 10.1016/j.jsps.2024.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
In the past two decades, the world has witnessed devastating pandemics affecting the global healthcare infrastructure and disrupting society and the economy worldwide. Among all pathogens, viruses play a critical role that is associated with outbreaks due to their wide range of species, involvement of animal hosts, easily transmitted to humans, and increased rates of infectivity. Viral disease outbreaks threaten public health globally due to the challenges associated with controlling and eradicating them. Implementing effective viral disease control programs starts with ongoing surveillance data collection and analyses to detect infectious disease trends and patterns, which is critical for maintaining public health. Viral disease control strategies include improved hygiene and sanitation facilities, eliminating arthropod vectors, vaccinations, and quarantine. The Saudi Ministry of Health (MOH) and the Public Health Authority (also known as Weqayah) in Saudi Arabia are responsible for public health surveillance to control and prevent infectious diseases. The notifiable viral diseases based on the Saudi MOH include hepatitis diseases, viral hemorrhagic fevers, respiratory viral diseases, exanthematous viral diseases, neurological viral diseases, and conjunctivitis. Monitoring trends and detecting changes in these viral diseases is essential to provide proper interventions, evaluate the established prevention programs, and develop better prevention strategies. Therefore, this review aims to highlight the epidemiological updates of the recently reported viral infections in Saudi Arabia and to provide insights into the recent clinical treatment and prevention strategies.
Collapse
Affiliation(s)
- Noura M. Alshiban
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Munirah S. Aleyiydi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Majed S. Nassar
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Nada K. Alhumaid
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Thamer A. Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yahya M.K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | | | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
7
|
Rzymski P, Zarębska-Michaluk D, Genowska A, Tyszko P, Strukcinskiene B, Flisiak R. Trends of Hepatitis A Virus Infection in Poland: Assessing the Potential Impact of the COVID-19 Pandemic and War in Ukraine. Viruses 2024; 16:469. [PMID: 38543833 PMCID: PMC10975752 DOI: 10.3390/v16030469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
Hepatitis A virus (HAV) is the most common cause of acute viral hepatitis, which is preventable by vaccination. This study analyzed trends of HAV infections in Poland according to socio-demographic features in the years 2009-2022 and assessed the potential impact of the COVID-19 pandemic (2020-2023) and the migration of war refugees from Ukraine (since February 2022). In 2009-2022, 7115 new cases of HAV infection were diagnosed in Poland, especially among men (66.4%) and in urban areas (77.4%). Infections among men were most common at the age of 25-34 (median rate 0.43 per 105) and in women aged 15-24 (median rate 0.39 per 105). Analysis of the 14-year frequency of HAV infections exhibited three trends, regardless of gender, age, and residence. The infections revealed a downward trend in 2009-2014, increased significantly in 2014-2018, and decreased again after 2018. A particularly rapid increase in HAV infections occurred between March 2017 and February 2018 (median rate 0.79 per 105). The high level of new infections persisted until the beginning of the COVID-19 pandemic, at which point it dropped significantly but did not reach the level recorded before March 2017. During the Omicron SARS-CoV-2 dominance period, the median rate of HAV infections was 0.053 per 105, with a four-fold increase being observed from February 2022 (when the migration of war refugees from Ukraine began) to August 2022. The presented results can serve as a reference point for further observations in Central Europe. The HAV epidemiological situation is unlikely to escalate in Poland but requires further monitoring.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznań University of Medical Sciences, 60-806 Poznań, Poland
| | - Dorota Zarębska-Michaluk
- Department of Infectious Diseases and Allergology, Jan Kochanowski University, 25-317 Kielce, Poland;
| | - Agnieszka Genowska
- Department of Public Health, Medical University of Bialystok, 15-295 Bialystok, Poland;
| | - Piotr Tyszko
- Department of Social Medicine and Public Health, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Institute of Rural Health, 20-090 Lublin, Poland
| | | | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, 15-540 Bialystok, Poland
| |
Collapse
|
8
|
Sun L, Chen X, Zhu S, Wang J, Diao S, Liu J, Xu J, Li X, Sun Y, Huang C, Meng X, Lv X, Li J. Decoding m 6A mRNA methylation by reader proteins in liver diseases. Genes Dis 2024; 11:711-726. [PMID: 37692496 PMCID: PMC10491919 DOI: 10.1016/j.gendis.2023.02.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/22/2023] [Indexed: 09/12/2023] Open
Abstract
N6-methyladenosine (m6A) is a dynamic and reversible epigenetic regulation. As the most prevalent internal post-transcriptional modification in eukaryotic RNA, it participates in the regulation of gene expression through various mechanisms, such as mRNA splicing, nuclear export, localization, translation efficiency, mRNA stability, and structural transformation. The involvement of m6A in the regulation of gene expression depends on the specific recognition of m6A-modified RNA by reader proteins. In the pathogenesis and treatment of liver disease, studies have found that the expression levels of key genes that promote or inhibit the development of liver disease are regulated by m6A modification, in which abnormal expression of reader proteins determines the fate of these gene transcripts. In this review, we introduce m6A readers, summarize the recognition and regulatory mechanisms of m6A readers on mRNA, and focus on the biological functions and mechanisms of m6A readers in liver cancer, viral hepatitis, non-alcoholic fatty liver disease (NAFLD), hepatic fibrosis (HF), acute liver injury (ALI), and other liver diseases. This information is expected to be of high value to researchers deciphering the links between m6A readers and human liver diseases.
Collapse
Affiliation(s)
- Lijiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jianan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinjin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Yingyin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
9
|
Malik H, Malik H, Uderani M, Berhanu M, Soto CJ, Saleem F. Fulminant Hepatitis A and E Co-infection Leading to Acute Liver Failure: A Case Report. Cureus 2023; 15:e38101. [PMID: 37252544 PMCID: PMC10210521 DOI: 10.7759/cureus.38101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Acute liver failure (ALF) is a severe clinical condition with a high mortality rate. Although several factors can cause ALF, viral hepatitis remains one of the leading causes. Hepatitis A virus (HAV) and hepatitis E virus (HEV), which typically cause self-limiting acute disease, are rare but emerging causes of ALF, especially when both viruses infect the same individual. Both of these hepatotropic viruses share an enteric route and are most commonly transmitted through the fecal-oral route. The impact of HAV/HEV co-infection on acute hepatitis prognosis is not entirely understood, but dual infection can further exacerbate liver damage, leading to fulminant hepatic failure (FHF) with a higher mortality rate than a single virus infection. Here, we present a case of a 32-year-old male with no prior liver disease who presented to the emergency department with a two-week history of jaundice, abdominal pain, and hepatomegaly. Upon admission, he was disoriented with grade 2 encephalopathy. After a thorough investigation, co-infection with hepatitis A and E was identified as the primary cause of his ALF. The patient underwent intensive medical treatment and interventions, including dialysis. Unfortunately, the patient's survival was not possible due to the absence of availability of a transplanted organ, which is currently the only definitive treatment option. This case report underscores the significance of prompt diagnosis, timely intervention, and the accessibility of transplantation in the survival of liver failure, as it remains the sole definitive treatment for acute liver failure. Moreover, it provides a concise overview of the current literature on fulminant co-infection of HAV and HEV, including epidemiology, clinical characteristics, pathogenesis, diagnosis, treatment, and risk factors associated with co-infection of hepatitis A and E and their role in causing ALF. It also highlights the significance of identifying high-risk populations and implementing appropriate prevention and control measures such as vaccination, practising good hygiene and sanitation, and avoiding the consumption of contaminated food and water.
Collapse
Affiliation(s)
- Haider Malik
- Medical School, Shifa Tameer-E-Millat University Shifa College of Medicine, Islamabad, PAK
| | - Hamza Malik
- Medical School, Foundation University Medical College, Rawalpindi, PAK
| | - Muskan Uderani
- Internal Medicine, Liaquat University of Medical and Health Sciences, Hyderabad, PAK
| | - Mefthe Berhanu
- Health Science, University of Texas Health Science Center at Houston, Houston, USA
| | | | - Faraz Saleem
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Akhtar Saeed Medical and Dental College, Lahore, PAK
| |
Collapse
|
10
|
Medić S, Anastassopoulou C, Pustahija T, Petrović V, Dragnić N, Boufidou F, Tsakris A, Šaponjić V. Epidemiological Transition and Strategies for the Control of Hepatitis A in Serbia. Viruses 2023; 15:v15030753. [PMID: 36992462 PMCID: PMC10056894 DOI: 10.3390/v15030753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Improvements in socioeconomic and hygienic conditions during the past decades led to declining hepatitis A (HA) seroprevalence in many countries. Aiming at informing HA vaccination policy, we assessed current epidemiological trends in Serbia by analyzing surveillance data for 2002–2021. Methods: Data on cases and outbreaks were obtained from the Serbian national surveillance database and descriptively analyzed. HA incidence was calculated in relation to time, patients’ residence, and demographics. Results: Overall, 13,679 HA cases and 419 outbreaks were recorded with the highest incidence in the southeast. Downward HA trends were observed, while infant mortality was halved, and gross domestic product based on purchasing power parity (GDP PP) per capita, tripled. The average incidence dropped from 14.8 (95% CI 14.4–15.2)/100,000) in 2002–2006 to 1 (95% CI 0.9–1.1)/100,000)/100,000 in 2017–2021, while the number of outbreaks decreased (from 174 to 14). Sporadic cases and family clusters living in poor sanitary conditions occurred in recent years. The contact route of transmission was dominant (410/419, 97.9%). The highest average age-specific HA incidence shifted from 5–9 years in 2002–2006 to 10–19 years in 2017–2021.Serbia is transitioning towards very low HA endemicity. Enhanced surveillance and vaccination of high-risk groups are recommended as future public health priorities.
Collapse
Affiliation(s)
- Snežana Medić
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Center for Disease Control and Prevention, Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
- Correspondence: ; Tel.: +381-21-4897-800
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Tatjana Pustahija
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Center for Disease Control and Prevention, Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
| | - Vladimir Petrović
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Center for Disease Control and Prevention, Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
| | - Nataša Dragnić
- Department of Social Medicine and Health Statistics with Informatics, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Center for Informatics and Biostatistics, Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
| | - Fotini Boufidou
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vladan Šaponjić
- Institute of Public Health of Serbia, “Dr Milan Jovanović Batut”, Belgrade, Dr Subotića 5, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Park E, Yoo Y, Park S, Choi C, Yoon Y. siRNAs to Knock-down Antiviral Chemokine-related Genes in FRhK-4 Cells. J Food Prot 2023; 86:100076. [PMID: 36989860 DOI: 10.1016/j.jfp.2023.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
The objective of this study was to generate small interfering RNA (siRNA) to knockdown antiviral chemokine-related genes in fetal rhesus monkey kidney (FRhK-4) cells. We generated siRNA duplexes to suppress antiviral chemokines like CXCL10 and CCL4 in FRhK-4 cells by downregulating interferon regulatory factor (IRF) 3 and IRF7. Three siRNA duplexes (si-F-IRF3-1, si-F-IRF3-2, and si-F-IRF3-3) targeting IRF3, and one siRNA duplex (si-F-IRF7) targeting IRF7 were generated. A nontarget siRNA duplex was used as the negative control. The nontarget or target siRNA duplexes (si-F-IRF3-1, si-F-IRF3-2, si-F-IRF3-3, and si-F-IRF7) were transfected into FRhK-4 cells using transfection reagents, and they were then incubated at 37°C for 6 h with 5% CO2. After 6 h, the medium was removed, and fresh medium was added to each cell, and they were then incubated at 37°C for 48 h with 5% CO2. The transfected FRhK-4 cells were infected with hepatitis A virus (HAV) HM-175/18f (viral titer: 105 PFU/mL) and incubated at 37°C for 3 h with 5% CO2 for HAV propagation. The expression levels of chemokines, including CXCL10 and CCL4, under the regulation of IRF3 and IRF7 in the transfected FRhK-4 cells were measured using quantitative real-time polymerase chain reaction after 3 h of HAV infection. The results indicated that CXCL10 and CCL4 expression levels were decreased in FRhK-4 cells transfected with si-F-IRF3-1, si-F-IRF3-3, or si-F-IRF7 (p < 0.05) compared to those in the negative control. These results indicate that si-F-IRF3-1 and si-F-IRF3-3, and si-F-IRF7 successfully knocked down IRF3 and IRF7 in FRhK-4 cells, respectively and suppressed antiviral chemokines. These siRNAs could be used to suppress antiviral chemokines in FRhK-4 cells.
Collapse
|
12
|
Seroprevalence of Anti-Hepatitis E Virus Antibodies among Patients from a Tertiary Hospital from Northeast Romania. Medicina (B Aires) 2022; 58:medicina58081020. [PMID: 36013487 PMCID: PMC9414562 DOI: 10.3390/medicina58081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives. Being an enterically transmitted pathogen with a growing prevalence in developed countries, hepatitis E virus (HEV) infection remains an underdiagnosed disease in Eastern Europe. As far as Romania is concerned, only a few studies address this issue. Our goal was to estimate the prevalence of serum anti-HEV IgA/IgM/IgG antibodies in a group of patients admitted to the Clinical Hospital for Infectious Diseases “St. Parascheva” Iasi. Materials and Methods. The cross-sectional study consisted of enrollment of 98 patients admitted to the clinic for COVID-19 over a period of three months in 2020. Results. The median age in our study was 73 years, with an equal gender ratio and with a predominance of people from the urban environment (75%). The overall HEV antibody seroprevalence was 12.2%. The main risk factors associated with HEV infection were consumption of water from unsafe sources (58.3% HEV-positive patients vs. 26.7% HEV-negative patients, p = 0.026) and improperly cooked meat (58.3% HEV-positive patients vs. 23.2% HEV-negative patients, p = 0.01). Zoonotic transmission was an important criterion in our study, with patients reporting contact with pigs, poultry, rats, or other farms animals, but no significant differences were found between HEV antibody positive and negative groups. Conclusions. The seroprevalence rate of HEV antibodies was similar to other previous reports from our area but higher than in most European countries. The fact that HEV antibodies were detected in patients without identifiable risk factors for hepatitis E is evidence of subclinical infection as a silent threat.
Collapse
|
13
|
Sarma MS, Ravindranath A. Pediatric acute viral hepatitis with atypical variants: Clinical dilemmas and natural history. World J Hepatol 2022; 14:944-955. [PMID: 35721282 PMCID: PMC9157701 DOI: 10.4254/wjh.v14.i5.944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/20/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Classical acute viral hepatitis (AVH) has an uncomplicated outcome. Acute liver failure has a grave prognosis. Atypical manifestations of AVH are a group of disorders that causes significant morbidity and dilemmas in children. These include prolonged cholestasis, relapsing hepatitis, ascitic form of AVH, late-onset hepatic failure (LOHF), intravascular hemolysis, and provoking an autoimmune trigger leading to autoimmune hepatitis. These entities cause significant liver dysfunction or worsening and are often difficult to differentiate from chronic liver disease (CLD). Ascitic form of AVH, LOHF, decompensated CLD and acute-on-chronic liver failure have significant overlapping features that need to be carefully dissected out. In many cases, only on long-term follow-up, these clinical entities can be separately identified. Intravascular hemolysis is usually caused by associated glucose-6-phosphate dehydrogenase deficiency. Rarely CLD such as Wilson disease and autoimmune hepatitis can also present with hemolysis in the initial presentation, which can mimic AVH with hemolysis. Identifying deviations from typical manifestations aid in avoiding unnecessary investigations, allowing focused therapy and alleviating anxiety.
Collapse
Affiliation(s)
- Moinak Sen Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Aathira Ravindranath
- Division of Pediatric Gastroenterology, Apollo BGS Hospitals, Mysuru 570023, Karnataka, India
| |
Collapse
|
14
|
Liou JW, Mani H, Yen JH. Viral Hepatitis, Cholesterol Metabolism, and Cholesterol-Lowering Natural Compounds. Int J Mol Sci 2022; 23:ijms23073897. [PMID: 35409259 PMCID: PMC8999150 DOI: 10.3390/ijms23073897] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatitis is defined as inflammation of the liver; it can be acute or chronic. In chronic cases, the prolonged inflammation gradually damages the liver, resulting in liver fibrosis, cirrhosis, and sometimes liver failure or cancer. Hepatitis is often caused by viral infections. The most common causes of viral hepatitis are the five hepatitis viruses—hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). While HAV and HEV rarely (or do not) cause chronic hepatitis, a considerable proportion of acute hepatitis cases caused by HBV (sometimes co-infected with HDV) and HCV infections become chronic. Thus, many medical researchers have focused on the treatment of HBV and HCV. It has been documented that host lipid metabolism, particularly cholesterol metabolism, is required for the hepatitis viral infection and life cycle. Thus, manipulating host cholesterol metabolism-related genes and proteins is a strategy used in fighting the viral infections. Efforts have been made to evaluate the efficacy of cholesterol-lowering drugs, particularly 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, in the treatment of hepatitis viral infections; promising results have been obtained. This review provides information on the relationships between hepatitis viruses and host cholesterol metabolism/homeostasis, as well as the discovery/development of cholesterol-lowering natural phytochemicals that could potentially be applied in the treatment of viral hepatitis.
Collapse
Affiliation(s)
- Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hemalatha Mani
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
| | - Jui-Hung Yen
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: or ; Tel.: +886-3-856-5301 (ext. 2683)
| |
Collapse
|
15
|
Hsu CL, Duan Y, Fouts DE, Schnabl B. Intestinal virome and therapeutic potential of bacteriophages in liver disease. J Hepatol 2021; 75:1465-1475. [PMID: 34437908 PMCID: PMC8929164 DOI: 10.1016/j.jhep.2021.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022]
Abstract
Humans harbour a large quantity of microbes in the intestinal tract and have evolved symbiotic relationships with many of them. However, several specific bacterial pathobionts are associated with liver disease pathogenesis. Although bacteriophages (phages) and eukaryotic viruses (collectively known as "the virome") outnumber bacteria and fungi in the intestine, little is known about the intestinal virome in patients with liver disease. As natural predators of bacteria, phages can precisely edit the bacterial microbiota. Hence, there is interest in using them to target bacterial pathobionts in several diseases, including those of the liver. Herein, we will summarise changes in the faecal virome associated with fatty liver diseases and cirrhosis, and describe the therapeutic potential of phages and potential challenges to their clinical application.
Collapse
Affiliation(s)
- Cynthia L Hsu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
16
|
Sun HY, Tong HJ, Cui DW. Acute hepatitis associated with increased atypical lymphocyte. Hepatobiliary Pancreat Dis Int 2021; 20:508-510. [PMID: 34340920 DOI: 10.1016/j.hbpd.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/14/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Hai-Yan Sun
- Department of Clinical Laboratory, Shaoxing Second Hospital, Shaoxing 312000, China
| | - Hai-Jiang Tong
- Department of Clinical Laboratory, Shaoxing Second Hospital, Shaoxing 312000, China
| | - Da-Wei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
17
|
Pisano MB, Giadans CG, Flichman DM, Ré VE, Preciado MV, Valva P. Viral hepatitis update: Progress and perspectives. World J Gastroenterol 2021; 27:4018-4044. [PMID: 34326611 PMCID: PMC8311538 DOI: 10.3748/wjg.v27.i26.4018] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis, secondary to infection with hepatitis A, B, C, D, and E viruses, are a major public health problem and an important cause of morbidity and mortality. Despite the huge medical advances achieved in recent years, there are still points of conflict concerning the pathogenesis, immune response, development of new and more effective vaccines, therapies, and treatment. This review focuses on the most important research topics that deal with issues that are currently being solved, those that remain to be solved, and future research directions. For hepatitis A virus we will address epidemiology, molecular surveillance, new susceptible populations as well as environmental and food detections. In the case of hepatitis B virus, we will discuss host factors related to disease, diagnosis, therapy, and vaccine improvement. On hepatitis C virus, we will focus on pathogenesis, immune response, direct action antivirals treatment in the context of solid organ transplantation, issues related to hepatocellular carcinoma development, direct action antivirals resistance due to selection of resistance-associated variants, and vaccination. Regarding hepatitis D virus, we describe diagnostic methodology, pathogenesis, and therapy. Finally, for hepatitis E virus, we will address epidemiology (including new emerging species), diagnosis, clinical aspects, treatment, the development of a vaccine, and environmental surveillance.
Collapse
Affiliation(s)
- María B Pisano
- Virology Institute, CONICET, School of Medical Sciences, National University of Córdoba, Cordoba X5016, Argentina
| | - Cecilia G Giadans
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP) CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children’s Hospital, CABA C1425, Buenos Aires, Argentina
| | - Diego M Flichman
- Institute of Biomedical Investigations in Retrovirus and AIDS (INBIRS), School of Medicine, University of Buenos Aires, CONICET, CABA C1121ABG, Buenos Aires, Argentina
| | - Viviana E Ré
- Virology Institute, CONICET, School of Medical Sciences, National University of Córdoba, Cordoba X5016, Argentina
| | - María V Preciado
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP) CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children’s Hospital, CABA C1425, Buenos Aires, Argentina
| | - Pamela Valva
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP) CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children’s Hospital, CABA C1425, Buenos Aires, Argentina
| |
Collapse
|
18
|
Mechanism of Cross-Species Transmission, Adaptive Evolution and Pathogenesis of Hepatitis E Virus. Viruses 2021; 13:v13050909. [PMID: 34069006 PMCID: PMC8157021 DOI: 10.3390/v13050909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is the leading cause of acute hepatitis worldwide. While the transmission in developing countries is dominated by fecal-oral route via drinking contaminated water, the zoonotic transmission is the major route of HEV infection in industrialized countries. The discovery of new HEV strains in a growing number of animal species poses a risk to zoonotic infection. However, the exact mechanism and the determinant factors of zoonotic infection are not completely understood. This review will discuss the current knowledge on the mechanism of cross-species transmission of HEV infection, including viral determinants, such as the open reading frames (ORFs), codon usage and adaptive evolution, as well as host determinants, such as host cellular factors and the host immune status, which possibly play pivotal roles during this event. The pathogenesis of hepatitis E infection will be briefly discussed, including the special forms of this disease, including extrahepatic manifestations, chronic infection, and fulminant hepatitis in pregnant women.
Collapse
|
19
|
Talapko J, Meštrović T, Pustijanac E, Škrlec I. Towards the Improved Accuracy of Hepatitis E Diagnosis in Vulnerable and Target Groups: A Global Perspective on the Current State of Knowledge and the Implications for Practice. Healthcare (Basel) 2021; 9:133. [PMID: 33572764 PMCID: PMC7912707 DOI: 10.3390/healthcare9020133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
The hepatitis E virus (HEV) is a positive single-stranded, icosahedral, quasi-enveloped RNA virus in the genus Orthohepevirus of the family Hepeviridae. Orthohepevirus A is the most numerous species of the genus Orthohepevirus and consists of eight different HEV genotypes that can cause infection in humans. HEV is a pathogen transmitted via the fecal-oral route, most commonly by consuming fecally contaminated water. A particular danger is the HEV-1 genotype, which poses a very high risk of vertical transmission from the mother to the fetus. Several outbreaks caused by this genotype have been reported, resulting in many premature births, abortions, and also neonatal and maternal deaths. Genotype 3 is more prevalent in Europe; however, due to the openness of the market, i.e., trade-in animals which represent a natural reservoir of HEV (such as pigs), there is a possibility of spreading HEV infections outside endemic areas. This problem is indeed global and requires increased hygiene measures in endemic areas, which entails special care for pregnant women in both endemic and non-endemic regions. As already highlighted, pregnant women could have significant health consequences due to the untimely diagnosis of HEV infection; hence, this is a population that should be targeted with a specific combination of testing approaches to ensure optimal specificity and sensitivity. Until we advance from predominantly supportive treatment in pregnancy and appraise the safety and efficacy of a HEV vaccine in this population, such screening approaches represent the mainstay of our public health endeavors.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia;
| | - Tomislav Meštrović
- University Centre Varaždin, University North, HR-42000 Varaždin, Croatia;
- Clinical Microbiology and Parasitology Unit, Dr. Zora Profozić Polyclinic, HR-10000 Zagreb, Croatia
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia;
| |
Collapse
|