1
|
Bo X. Microalgae and exercise: from molecular mechanisms and brain health to clinical perspectives in the context of 3P medicine. EPMA J 2025; 16:351-386. [PMID: 40438495 PMCID: PMC12106266 DOI: 10.1007/s13167-025-00405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/11/2025] [Indexed: 06/01/2025]
Abstract
Microalgae are emerging as innovative bioresources with diverse therapeutic applications, particularly in cardiovascular health, neuroprotection, anti-inflammatory, and antioxidant responses. These bioactive compounds effectively reduce inflammatory mediators, mitigate oxidative stress, and support mitochondrial health-critical factors in exercise performance, recovery, and chronic disease management. Notably, microalgae such as Spirulina and Chlorella exhibit promising biological activities in preclinical and limited clinical studies, including anti-inflammatory and neuroprotective effects. However, large-scale, randomized controlled trials (RCTs) remain scarce, limiting their clinical translation. Although preliminary evidence suggests potential benefits for sports performance, oxidative stress reduction, and cognitive function, most studies are small-scale, preclinical, or observational. Large, well-powered RCTs are needed to confirm their efficacy and safety. Within the framework of Predictive, Preventive, and Personalized Medicine (PPPM/3PM), this review explores microalgae's potential in predictive diagnostics, targeted prevention, and individualized supplementation strategies. Despite promising findings, clinical application requires a cautious approach due to insufficient high-quality trials supporting microalgae-based interventions in medical practice. Future research should prioritize RCTs, pharmacokinetic studies, and long-term safety assessments to establish evidence-based guidelines for their use in health and disease management.
Collapse
Affiliation(s)
- Xuanyu Bo
- University of Glasgow, Gilmorehill, Glasgow, Scotland G128QQ UK
| |
Collapse
|
2
|
Pinto-Leite M, Martins D, Ferreira AC, Silva C, Trindade F, Saraiva F, Vitorino R, Barros R, Lima PA, Leite-Moreira A, Ferreira JP, S. Barros A, Miranda IM. The Role of Chlorella and Spirulina as Adjuvants of Cardiovascular Risk Factor Control: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2025; 17:943. [PMID: 40289965 PMCID: PMC11945647 DOI: 10.3390/nu17060943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Chlorella and Spirulina supplementation may reduce the risk of cardiometabolic diseases by better controlling blood cholesterol, triglycerides, glucose, weight, and blood pressure (BP). However, the available studies are limited in size and have used different outcomes. Methods: To gain power in assessing the impact of microalgae supplements on cardiovascular risk factors, we searched PubMed on 3 February 2023 for randomised controlled trials assessing the effects of Chlorella and Spirulina on modifiable cardiovascular risk factors. Results: We found 12 studies in Chlorella and 9 studies on Spirulina. Depending on the available outcomes, varying numbers of participants (Chlorella: 168 to 279; Spirulina: 101 to 299) were included. Our analysis showed that Chlorella supplementation had a neutral effect on BP and lipemia. On the other hand, Spirulina intake led to a significant reduction in diastolic BP (-0.42, 95% CI: -0.81 to -0.02, p = 0.04) but did not significantly affect lipemia indexes, despite a trend toward a reduction in total cholesterol (-0.17, 95% CI: -0.39 to 0.06, p = 0.15). This meta-analysis suggests Spirulina supplementation can be used as an adjuvant to control cardiometabolic risk factors, particularly for BP. However, the magnitude of this effect is small and of uncertain clinical significance. Conclusions: Further randomised trials are needed to better assess the potential of these supplements as adjuvants for the control of cardiovascular risk factors.
Collapse
Affiliation(s)
- Mariana Pinto-Leite
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Diana Martins
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - António Carlos Ferreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Cláudia Silva
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Fábio Trindade
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Francisca Saraiva
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Rui Vitorino
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Raquel Barros
- Sea4Us, SA, Porto da Baleeira, Armazém 8, 8650-368 Sagres, Portugal
| | - Pedro A. Lima
- Sea4Us, SA, Porto da Baleeira, Armazém 8, 8650-368 Sagres, Portugal
| | - Adelino Leite-Moreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - João Pedro Ferreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - António S. Barros
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Isabel M. Miranda
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Kazeminejad S, Arzhang P, Baniasadi MM, Hatami A, Azadbakht L. The Effect of Algae Supplementation on Anthropometric Indices in Adults: A GRADE-Assessed Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr Rev 2025; 83:405-421. [PMID: 39461896 DOI: 10.1093/nutrit/nuae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
CONTEXT Inconsistent results have been reported regarding the effects of different types of algae, such as Spirulina and Chlorella, on anthropometric indices. OBJECTIVE To conduct a meta-analysis to assess the efficacy of algae supplementation on anthropometric indices. DATA SOURCES A comprehensive systematic search was conducted to find relevant articles published from January 1990 to January 2024. DATA EXTRACTION Randomized controlled trials (RCTs) comparing algae supplementation with a placebo or control group were included. The risk of bias and certainty of the evidence were evaluated using the Cochrane risk-of-bias tool and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, respectively. The random-effects model was used to find the Weighted mean differences (WMDs) for each outcome. DATA ANALYSIS Of 9079 distinct articles in the initial screening, 61 clinical trials were included in this meta-analysis. Algae supplementation resulted in lower body mass index (WMD, -0.27 kg/m2 (95% CI, -0.42 to -0.13); GRADE rating, low), body weight (WMD: -0.78 kg [-1.18 to -0.38]; GRADE rating, low), waist circumference (WMD, -0.68 cm [-1.27 to -0.10]; GRADE rating, very low), kilograms of body fat (WMD, -0.65 kg [-1.13 to -0.17]; GRADE rating, low), and body fat percentage (WMD, -0.9% [-1.62 to -0.17]; GRADE rating, very low) compared with placebo or controls. Nevertheless, the statistically significant effects of algae supplementation on hip circumference (WMD, -0.20 cm [-0.73 to 0.32]; GRADE rating, moderate), waist to hip ratio (WMD, -0.01 [-0.01 to 0.00]; GRADE rating, moderate), and lean body mass (WMD, -0.30 kg [-0.62 to 0.02]; GRADE rating, moderate) were not observed. CONCLUSIONS Overall, the findings of this meta-analysis indicate supplementation with algae may exert beneficial effects on anthropometric indices. However, due to between-studies heterogeneity and very low to low levels of GRADE for significant outcomes, the results should be interpreted with caution. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42024522923.
Collapse
Affiliation(s)
- Shervin Kazeminejad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
| | - Pishva Arzhang
- Kermanshah University of Medical Sciences, Qods Hospital, Kermanshah, Iran
| | - Mohammadreza Moradi Baniasadi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
| | - Alireza Hatami
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 91778 99191, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, 81745, Iran
| |
Collapse
|
4
|
Hosny S, Elshobary ME, El-Sheekh MM. Unleashing the power of microalgae: a pioneering path to sustainability and achieving the sustainable development goals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35885-8. [PMID: 39920498 DOI: 10.1007/s11356-025-35885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025]
Abstract
This study explores the remarkable potential of algae in addressing global sustainability challenges. Microalgae, in particular, emerge as sustainability champions. Their applications span an impressive array of industries and processes, including food and feed production, biofuels, cosmetics, pharmaceuticals, and environmental remediation. This versatility positions algae as key players in achieving over 50% of UN Sustainable Development Goals (SDGs) simultaneously, addressing issues such as climate action, clean water and sanitation, affordable and clean energy, and zero hunger. From sequestering carbon, purifying wastewater, and producing clean energy to combating malnutrition, algae demonstrates unparalleled potential. Their ability to flourish in extreme conditions and their rapid growth rates further enhance their appeal for large-scale cultivation. As research advances, innovative applications continue to emerge, such as algae-based bioplastics and dye-sensitized solar cells, promising novel solutions to pressing global issues. This study illuminates how harnessing the power of algae can drive us towards a more resilient, sustainable world. By leveraging algae's multifaceted capabilities, we can tackle climate change, resource scarcity, and economic development concurrently. The research highlights the critical role of algae in promoting circular economy principles and achieving a harmonious balance between human needs and environmental preservation, paving the way for a greener, more sustainable future.
Collapse
Affiliation(s)
- Shimaa Hosny
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Mostafa E Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Aquaculture Research, Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, Bremerhaven, 27570, Germany.
| | - Mostafa M El-Sheekh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Handu D, Stote K, Piemonte T. Evaluating Bioactive-Substance-Based Interventions for Adults with MASLD: Results from a Systematic Scoping Review. Nutrients 2025; 17:453. [PMID: 39940310 PMCID: PMC11820841 DOI: 10.3390/nu17030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
Objective: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic condition affecting a broad population. This review aimed to identify and summarize the current evidence on bioactive-substance-based interventions for adults with MASLD, formerly known as nonalcoholic fatty liver disease (NAFLD), covering publications from 2000 to 2023. Methods: A search was conducted across six databases (MEDLINE, CINAHL, Cochrane CENTRAL, Cochrane Database of Systematic Reviews, Food Science Source, and SPORTDiscus) for randomized controlled trials and other study types (e.g., prospective cohort studies and systematic reviews), reflecting the scoping nature of this review. The search was limited to studies in adults (>18 years old), with an intervention of interest and at least one comparator group. Results: A total of 4572 articles were retrieved, with 201 full-text articles screened for eligibility. Of these, 131 primary studies and 49 systematic reviews were included in the scoping review. The most studied bioactive substances were Curcumin (Turmeric) (n = 25), Silymarin (Milk Thistle) (n = 17), Resveratrol (n = 10), Coffee (n = 7), Green Tea (n = 5), and Berberine (n = 5 each). Moreover, 46 studies reported on 36 other bioactive substances with 2 or fewer articles each. Among the included systematic reviews, 13 focused on Curcumin, 12 on Coffee or Tea, 10 on bioactive substance combinations, 6 on Resveratrol, and 2 each on Silymarin and Artichoke Leaf. The included studies showed substantial heterogeneity in reported outcomes, which primarily focused on hepatic health, body weight, adverse events, glycemic control, blood lipids, and body composition. Conclusions: This scoping review highlights a range of bioactive substances used in the treatment of MASLD. While evidence is abundant for bioactive substances like Curcumin and Silymarin, further research and synthesis of findings is necessary to establish the clinical efficacy of all bioactive substances.
Collapse
Affiliation(s)
- Deepa Handu
- Academy of Nutrition and Dietetics, Chicago, IL 60606, USA;
| | - Kim Stote
- Department of Allied Health Sciences, State University of New York, Empire State University, Saratoga Springs, NY 12866, USA;
| | - Tami Piemonte
- Academy of Nutrition and Dietetics, Chicago, IL 60606, USA;
| |
Collapse
|
6
|
Wen H, Deng H, Yang L, Li L, Lin J, Zheng P, Bjelakovic M, Ji G. Vitamin E for people with non-alcoholic fatty liver disease. Cochrane Database Syst Rev 2024; 10:CD015033. [PMID: 39412049 PMCID: PMC11481097 DOI: 10.1002/14651858.cd015033.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2024]
Abstract
RATIONALE Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is the most common liver disease worldwide, affecting an estimated 3 in 10 people. The available treatment is far from optimal. Diet and lifestyle changes to promote weight loss and weight loss maintenance are the basic management of NAFLD, but these are difficult to achieve and maintain. Vitamin E has shown beneficial effects on oxidative stress, which plays a major role in the pathogenesis of NAFLD. However, there is uncertainty about the effects of vitamin E for people with NAFLD. OBJECTIVES To evaluate the beneficial and harmful effects of vitamin E alone, or vitamin E in combination with other vitamins or minerals, versus placebo or no intervention in people with NAFLD. SEARCH METHODS We used recommended Cochrane search methods. The latest search was performed on 2 February 2024. ELIGIBILITY CRITERIA We included randomised clinical trials that compared vitamin E alone, or in combination with other vitamins or minerals, at any dose, duration, and route of administration, versus placebo or no intervention, in people with NAFLD of any age, sex, or ethnic origin. We included participants with imaging techniques or histology-proven NAFLD and minimal alcohol intake, and participants with steatohepatitis who had liver biopsies. OUTCOMES Our critical outcomes were all-cause mortality, liver-related mortality, and serious adverse events. Our important outcomes were liver-related morbidity, health-related quality of life, non-serious adverse events, biochemical response, and imaging assessment of the degree of fatty liver. RISK OF BIAS We used Cochrane's RoB 2 tool to assess risk of bias for each of the predefined outcomes. SYNTHESIS METHODS We used standard Cochrane methods. We used GRADE to assess the certainty of evidence. INCLUDED STUDIES We included 16 randomised clinical trials involving 1066 paediatric and adult participants with NAFLD. Experimental groups received vitamin E alone (14 trials) or vitamin E in combination with vitamin C (2 trials). Control groups received placebo in 13 trials and no intervention in three trials. Daily dosages of oral vitamin E ranged from 298 international units (IU) to 1000 IU. Co-interventions were lifestyle and low-calorie diet interventions in 13 trials, ursodeoxycholic acid in one trial, unchanged diet and physical activity in one trial, and baseline treatments for type 2 diabetes in one trial. Nine trials had more than two intervention groups, but we used only the groups in which vitamin E alone or vitamin E in combination with vitamin C were compared with placebo or no intervention. In total, 7.9% (84/1066) of participants dropped out. Follow-up ranged from 2 months to 24 months. SYNTHESIS OF RESULTS Vitamin E versus placebo or no intervention The effects of vitamin E versus placebo or no intervention on all-cause mortality (risk ratio (RR) 3.45, 95% confidence interval (CI) 0.57 to 20.86; 3 trials, 351 participants; very low certainty evidence) and serious adverse events (RR 1.91, 95% CI 0.30 to 12.01; 2 trials, 283 participants; very low certainty evidence) are very uncertain. There were no data on liver-related mortality or liver-related morbidity. The effects of vitamin E versus placebo or no intervention on physical health-related quality of life (mean difference (MD) 0.74, 95% CI -0.52 to 2.01; 2 trials, 251 participants; higher scores indicate better quality of life; very low certainty evidence); psychosocial health-related quality of life (MD -0.57, 95% CI -4.11 to 2.97; 2 trials, 251 participants; higher scores indicate better quality of life; very low certainty evidence); and non-serious adverse events (RR 0.86, 95% CI 0.64 to 1.17; 2 trials, 283 participants; very low certainty evidence) are also very uncertain. There were no data on proportion of participants without a decrease in liver enzymes. Vitamin E likely slightly reduces serum alanine transaminase (ALT) (MD -9.29, 95% CI -13.69 to -4.89; 11 trials, 708 participants; moderate certainty evidence) and aspartate aminotransferase (AST) (MD -4.90, 95% CI -7.24 to -2.57; 11 trials, 695 participants; moderate certainty evidence) levels compared with placebo or no intervention. Vitamin E may slightly reduce serum alkaline phosphatase (ALP) levels (MD -5.21, 95% CI -9.88 to -0.54; 5 trials, 416 participants; very low certainty evidence), but the evidence is very uncertain. Vitamin E plus vitamin C versus placebo There were no data on all-cause mortality, liver-related mortality, serious adverse events, liver-related morbidity, health-related quality of life, and non-serious adverse events. The effects of vitamin E plus vitamin C on reducing serum ALT (MD -0.50, 95% CI -4.58 to 3.58; 2 trials, 133 participants; very low certainty evidence), AST (MD 0.09, 95% CI -3.39 to 3.57; 1 trial, 88 participants; very low certainty evidence), and gamma-glutamyl transferase (GGT) levels (MD 1.58, 95% CI -3.22 to 6.38; 1 trial, 88 participants; very low certainty evidence) are very uncertain. We identified three ongoing trials, and six trials are awaiting classification. AUTHORS' CONCLUSIONS Given the very low certainty evidence, we do not know if long-term treatment (18 months to 24 months) with vitamin E administered alone affects all-cause mortality, serious adverse events, quality of life, or non-serious adverse events in people with NAFLD when compared with placebo or no intervention. We found no data on liver-related mortality, liver-related morbidity, or proportion of participants without a decrease in liver enzymes. Vitamin E likely reduces ALT and AST slightly when compared with placebo, but whether this has any impact on the clinical course in people with NAFLD is unknown. The trials on vitamin E plus vitamin C did not report on all-cause mortality, liver-related mortality, serious adverse events, liver-related morbidity, health-related quality of life, or non-serious adverse events. Given the very low certainty evidence, we do not know the effects of vitamin E plus vitamin C on liver enzymes in people with NAFLD when compared with placebo. FUNDING Three trials disclosed no external funding. Five trials were industry funded. Five trials were funded by organisations with no vested interests. Three trials did not provide any information on clinical trial support or sponsorship. REGISTRATION Protocol: doi.org/10.1002/14651858.CD015033.
Collapse
Affiliation(s)
- Hongzhu Wen
- Department of Gastroenterology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyong Deng
- EBM Center of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lujin Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang Lin
- Department of Gastroenterology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiyong Zheng
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Milica Bjelakovic
- Clinic of Gastroenterohepatology, University Clinical Centre Nis, Nis, Serbia
| | - Guang Ji
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Abu-Zeid EH, El-Hady EW, Ahmed GA, Abd-Elhakim YM, Ibrahim D, Abd-Allah NA, Arisha AH, Sobh MS, Abo-Elmaaty AMA. Nicotine exacerbates liver damage in a mice model of Ehrlich ascites carcinoma through shifting SOD/NF-κB/caspase-3 pathways: ameliorating role of Chlorella vulgaris. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7767-7783. [PMID: 38722343 PMCID: PMC11450007 DOI: 10.1007/s00210-024-03120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/24/2024] [Indexed: 10/04/2024]
Abstract
Nicotine, a pervasive global environmental pollutant, is released throughout every phase of the tobacco's life cycle. This study examined the probable ameliorative role of Chlorella vulgaris (ChV) extract against nicotine (NIC)-induced hepatic injury in Ehrlich ascites carcinoma (EAC) bearing female Swiss mice. Sixty female Swiss mice were assigned to four equal groups orally gavaged 2% saccharin 0.2 mL/mouse (control group), orally intubated 100 mg ChV /kg (ChV group), orally intubated 100 µg/mL NIC in 2% saccharin (NIC group), and orally intubated NIC + ChV as in group 3 and 2 (NIC+ChV group). The dosing was daily for 4 weeks. Mice from all experimental groups were then inoculated intraperitoneally with viable tumor cells 2.5 × 106 (0.2 mL/mouse) in the fourth week, and the treatments were extended for another 2 weeks. The results have shown that NIC exposure significantly altered the serum levels of liver function indices, lipid profile, LDH, and ALP in the NIC-exposed group. NIC administration significantly increased hepatic inflammation, lipid peroxidation, and DNA damage-related biomarkers but reduced antioxidant enzyme activities. NIC exposure downregulated SOD1, SOD2, CAT, GPX1, and GPX2 but upregulated NF-κB hepatic gene expression. Notably, the presence of the EAC cells outside the liver was common in all mice groups. Liver tissue of the NIC-exposed group showed multifocal expansion of hepatic sinusoids by neoplastic cells. However, with no evidence of considerable infiltration of EAC cells inside the sinusoids or in periportal areas in the NIC + ChV groups. NIC significantly altered caspase-3, Bax, and BcL2 hepatic immune expression. Interestingly, ChV administration significantly mitigates NIC-induced alterations in hepatic function indices, lipid profile, and the mRNA expression of antioxidant and NF-κB genes and regulates the caspase-3, Bax, and BcL2 immunostaining. Finally, the in vivo protective outcomes of ChV against NIC-induced hepatic injury combined with EAC in female Swiss mice could suggest their helpful role for cancer patients who are directly or indirectly exposed to NIC daily.
Collapse
Affiliation(s)
- Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Eman W El-Hady
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Gehan A Ahmed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Noura A Abd-Allah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohammed S Sobh
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Azza M A Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
8
|
Rathnayake DW, Sooriyaarachchi P, Niriella MA, Ediriweera D, Perera J. Herbal treatments for non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. ADVANCES IN INTEGRATIVE MEDICINE 2024. [DOI: 10.1016/j.aimed.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Tejero Pérez A, Kapravelou G, Porres Foulquie JM, López Jurado Romero de la Cruz M, Martínez Martínez R. Potential benefits of microalgae intake against metabolic diseases: beyond spirulina-a systematic review of animal studies. Nutr Rev 2024; 82:872-891. [PMID: 37643736 DOI: 10.1093/nutrit/nuad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
CONTEXT Microalgae are a diverse source of bioactive molecules, such as polyphenols, carotenoids, and omega-3 fatty acids, with beneficial properties in biomarkers of metabolic diseases. Unlike the rest of the microalgae genera, Arthrospira sp., commonly called spirulina, has been widely studied. OBJECTIVE This review aims to describe the current knowledge about microalgae, besides spirulina, focusing on their beneficial properties against metabolic diseases. DATA SOURCES A systematic research of MEDLINE (via PubMed), Cochrane, and Scopus databases was conducted to identify relevant studies published after January 2012. In vivo animal studies including microalgae consumption, except for spirulina, that significantly improved altered biomarkers related to metabolic diseases were included. These biomarkers included body weight/composition, glucose metabolism, lipid metabolism, oxidative damage, inflammation markers, and gut microbiota. DATA EXTRACTION After the literature search and the implementation of inclusion and exclusion criteria, 37 studies were included in the revision out of the 132 results originally obtained after the application of the equation on the different databases. DATA ANALYSIS Data containing 15 microalgae genera were included reporting on a wide range of beneficial results at different levels, including a decrease in body weight and changes in plasma levels of glucose and lipoproteins due to molecular alterations such as those related to gene expression regulation. The most reported beneficial effects were related to gut microbiota and inflammation followed by lipid and glucose metabolism and body weight/composition. CONCLUSIONS Microalgae intake improved different altered biomarkers due to metabolic diseases and seem to have potential in the design of enriched foodstuffs or novel nutraceuticals. Nevertheless, to advance to clinical trials, more thorough/detailed studies should be performed on some of the microalgae genera included in this review to collect more information on their molecular mechanisms of action.
Collapse
Affiliation(s)
- Adrian Tejero Pérez
- Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Faculty of Medicine, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Garyfallia Kapravelou
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Jesús María Porres Foulquie
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - María López Jurado Romero de la Cruz
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Rosario Martínez Martínez
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| |
Collapse
|
10
|
Adepoju FO, Selezneva IS. Production and Evaluation of Set-Type Yoghurt Fortified with Chlorella vulgaris and Moringa oleifera Powder. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:531-538. [PMID: 38775982 DOI: 10.1007/s11130-024-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Considering the growing popularity of functional foods, fortifying yoghurt with natural ingredients with various flavours and appearances could improve its nutritional and health potential. The current study aimed to evaluate the effect of Chlorella vulgaris (0.3 and 0.5%) and Moringa oleifera (0.3 and 0.5%) on the fermentation kinetics, apparent viscosity, antioxidant activity, microbiological, sensorial, and FTIR properties of yoghurt during storage. The results demonstrated that the incorporation of Chlorella vulgaris and Moringa oleifera into yoghurt increased acidification rate and decreased fermentation time (p < 0.05). Moringa oleifera (0.5%) improved the growth and survival of lactic acid bacteria as well as the phenolic and antioxidant properties of yoghurt. However, Chlorella vulgaris, at a concentration of 0.5% reduced the viability of lactic acid bacteria, viscosity, total phenolic, and antioxidant properties of yoghurt. In conclusion, it was found that Chlorella vulgaris, at 0.3%, and Moringa oleifera improved the phenolic, antioxidant properties, and acidification rate of yoghurt.
Collapse
Affiliation(s)
- Feyisayo O Adepoju
- Institute of Chemical Technology, Ural Federal University, B. N. Yeltsin, Mira Street 28, Yekaterinburg, 620002, Russia.
| | - Irina S Selezneva
- Institute of Chemical Technology, Ural Federal University, B. N. Yeltsin, Mira Street 28, Yekaterinburg, 620002, Russia
| |
Collapse
|
11
|
Giuliani ME, Bigossi G, Lai G, Marcozzi S, Brunetti D, Malavolta M. Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes. Mar Drugs 2024; 22:210. [PMID: 38786601 PMCID: PMC11123485 DOI: 10.3390/md22050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Ageing represents a main risk factor for several pathologies. Among them, cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2DM) are predominant in the elderly population and often require prolonged use of multiple drugs due to their chronic nature and the high proportion of co-morbidities. Hence, research is constantly looking for novel, effective molecules to treat CVD and T2DM with minimal side effects. Marine active compounds, holding a great diversity of chemical structures and biological properties, represent interesting therapeutic candidates to treat these age-related diseases. This review summarizes the current state of research on marine compounds for the treatment of CVD and T2DM, from pre-clinical studies to clinical investigations and approved drugs, highlighting the potential of marine compounds in the development of new therapies, together with the limitations in translating pre-clinical results into human application.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20126 Milano, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| |
Collapse
|
12
|
Ahmed AQ, Mohammed NJ, Zefenkey ZF, Mamand SF, Hassannejad S, Hassan AO, Hassan RR. Investigate Freshwater Algae Extract's Efficacy in Treating Diabetes Ulcers and Its Anti-Staphylococcal Properties. Rep Biochem Mol Biol 2024; 13:114-123. [PMID: 39582826 PMCID: PMC11580128 DOI: 10.61186/rbmb.13.1.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/25/2024] [Indexed: 11/26/2024]
Abstract
Background Infection of diabetic foot ulcer is very common and leads in 20% of cases to amputation. Antibiotic-resistant Staphylococcus aureus is the main cause of severe infection. Antibiotic resistance is a major challenge to the global health system. This work aimed to investigate the antibacterial efficacy of some algae extracts against Staphylococcus aureus isolated from diabetic foot ulcers. Methods freshwater river samples were collected to isolate the algae, and PCR was used for identification. The ethanol, water, and ethyl acetate extract of these algae were prepared and analyzed using high-performance liquid chromatography-mass spectrometry to determine the key components that have antibacterial properties. The antibacterial activity of these extracts against S. aureus was determined by broth dilution and well diffusion methods. Results Chlorella vulgaris and Anabaena flos-aquae were isolated from freshwater river and identified by PCR. Anabaena flos-aquae has a greater antibacterial efficacy against Staphylococcus aureus in comparison to Chlorella vulgaris, and the ethanolic extract demonstrated superior outcomes compared to the aqueous and ethyl acetate extracts. The MS spectrum of both algae had a very similar pattern, but the frequency of detected peaks was different. Conclusions Ethanolic extract of A. flos-aquae and Chlorella vulgaris can be suggested to treat and control diabetic foot ulcer infection caused by S. aureus. Further studies are required to explore the full potential of these algae safely and extensively.
Collapse
Affiliation(s)
- Alwan Qader Ahmed
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq.
| | - Nyan Jasim Mohammed
- Department of Medical Microbiology, College of Science, Knowledge University, Erbil 44001, Iraq.
| | - Zean Fetehallah Zefenkey
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq.
| | - Shilan Farhad Mamand
- Department of Medical Microbiology, College of Science, Knowledge University, Erbil 44001, Iraq.
| | - Sahar Hassannejad
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq.
| | - Abdullah Othman Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq.
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq.
| |
Collapse
|
13
|
Ferrazzano GF, D’Ambrosio F, Caruso S, Gatto R, Caruso S. Bioactive Peptides Derived from Edible Insects: Effects on Human Health and Possible Applications in Dentistry. Nutrients 2023; 15:4611. [PMID: 37960264 PMCID: PMC10650930 DOI: 10.3390/nu15214611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Novel foods, including edible insects, are emerging because of their nutritional characteristics and low environmental impacts and could represent a valid alternative source of food in a more sustainable way. Edible insects have been shown to have beneficial effects on human health. Insect-derived bioactive peptides exert antihypertensive, antioxidant, anti-inflammatory, and antimicrobial properties and have protective effects against common metabolic conditions. In this review, the roles of edible insects in human health are reported, and the possible applications of these peptides in clinical practice are discussed. A special mention is given to the role of antimicrobial peptides and their potential applications in controlling infections in orthodontic procedures. In this context, insects' antimicrobial peptides might represent a potential tool to face the onset of infective endocarditis, with a low chance to develop resistances, and could be manipulated and optimized to replace common antibiotics used in clinical practice so far. Although some safety concerns must be taken into consideration, and the isolation and production of insect-derived proteins are far from easy, edible insects represent an interesting source of peptides, with beneficial effects that may be, in the future, integrated into clinical and orthodontic practice.
Collapse
Affiliation(s)
- Gianmaria Fabrizio Ferrazzano
- UNESCO Chair in Health Education and Sustainable Development, Paediatric Dentistry Section, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Francesca D’Ambrosio
- Department of Laboratory and Infectious Diseases Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Caruso
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (R.G.); (S.C.)
| | - Roberto Gatto
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (R.G.); (S.C.)
| | - Silvia Caruso
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (R.G.); (S.C.)
| |
Collapse
|
14
|
Wu JY, Tso R, Teo HS, Haldar S. The utility of algae as sources of high value nutritional ingredients, particularly for alternative/complementary proteins to improve human health. Front Nutr 2023; 10:1277343. [PMID: 37904788 PMCID: PMC10613476 DOI: 10.3389/fnut.2023.1277343] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
As the global population continues to grow, the demand for dietary protein is rapidly increasing, necessitating the exploration of sustainable and nutritious protein sources. Algae has emerged as a promising food source due to their high value ingredients such as proteins, as well as for their environmental sustainability and abundance. However, knowledge gaps surrounding dietary recommendations and food applications restrict algae's utilization as a viable protein source. This review aims to address these gaps by assessing the suitability of both microalgae and macroalgae as alternative/complementary protein sources and exploring their potential applications in food products. The first section examines the potential suitability of algae as a major food source by analyzing the composition and bioavailability of key components in algal biomass, including proteins, lipids, dietary fiber, and micronutrients. Secondly, the biological effects of algae, particularly their impact on metabolic health are investigated with an emphasis on available clinical evidence. While evidence reveals protective effects of algae on glucose and lipid homeostasis as well as anti-inflammatory properties, further research is required to understand the longer-term impact of consuming algal protein, protein isolates, and concentrates on metabolic health, including protein metabolism. The review then explores the potential of algal proteins in food applications, including ways to overcome their sensory limitations, such as their dark pigmentation, taste, and odor, in order to improve consumer acceptance. To maximize algae's potential as a valuable protein source in the food sector, future research should prioritize the production of more acceptable algal biomass and explore new advances in food sciences and technology for improved consumer acceptance. Overall, this paper supports the potential utility of algae as a sustainable and healthy ingredient source for widespread use in future food production.
Collapse
Affiliation(s)
- Jia Yee Wu
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rachel Tso
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hwee Sze Teo
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sumanto Haldar
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, United Kingdom
| |
Collapse
|
15
|
Townsend JR, Kirby TO, Sapp PA, Gonzalez AM, Marshall TM, Esposito R. Nutrient synergy: definition, evidence, and future directions. Front Nutr 2023; 10:1279925. [PMID: 37899823 PMCID: PMC10600480 DOI: 10.3389/fnut.2023.1279925] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Nutrient synergy refers to the concept that the combined effects of two or more nutrients working together have a greater physiological impact on the body than when each nutrient is consumed individually. While nutrition science traditionally focuses on isolating single nutrients to study their effects, it is recognized that nutrients interact in complex ways, and their combined consumption can lead to additive effects. Additionally, the Dietary Reference Intakes (DRIs) provide guidelines to prevent nutrient deficiencies and excessive intake but are not designed to assess the potential synergistic effects of consuming nutrients together. Even the term synergy is often applied in different manners depending on the scientific discipline. Considering these issues, the aim of this narrative review is to investigate the potential health benefits of consuming different nutrients and nutrient supplements in combination, a concept we define as nutrient synergy, which has gained considerable attention for its impact on overall well-being. We will examine how nutrient synergy affects major bodily systems, influencing systemic health. Additionally, we will address the challenges associated with promoting and conducting research on this topic, while proposing potential solutions to enhance the quality and quantity of scientific literature on nutrient synergy.
Collapse
Affiliation(s)
- Jeremy R. Townsend
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
- Health & Human Performance, Concordia University Chicago, River Forest, IL, United States
| | - Trevor O. Kirby
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
| | - Philip A. Sapp
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
| | - Adam M. Gonzalez
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY, United States
| | - Tess M. Marshall
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
| | - Ralph Esposito
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
- Department of Nutrition, Food Studies, and Public Health, New York University-Steinhardt, New York, NY, United States
| |
Collapse
|
16
|
Barghchi H, Dehnavi Z, Nattagh-Eshtivani E, Alwaily ER, Almulla AF, Kareem AK, Barati M, Ranjbar G, Mohammadzadeh A, Rahimi P, Pahlavani N. The effects of Chlorella vulgaris on cardiovascular risk factors: A comprehensive review on putative molecular mechanisms. Biomed Pharmacother 2023; 162:114624. [PMID: 37018990 DOI: 10.1016/j.biopha.2023.114624] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
High incidence rate of cardiovascular disease (CVD) make this condition as an important public health concern. The use of natural products in treating this chronic condition has increased in recent years one of which is the single-celled green alga Chlorella. Chlorella vulgaris (CV) has been studied for its potential benefits to human health due to its biological and pharmacological features. CV contains a variety of macro and micronutrients, including proteins, omega-3, polysaccharides, vitamins, and minerals. Some studies have indicated that taking CV as a dietary supplement can help reduce inflammation and oxidative stress. In some studies, cardiovascular risk factors that are based on hematological indices did not show these benefits, and no molecular mechanisms have been identified. This comprehensive review summarized the research on the cardio-protective benefits of chlorella supplementation and the underlying molecular processes.
Collapse
Affiliation(s)
- Hanieh Barghchi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Dehnavi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elyas Nattagh-Eshtivani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali K Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | - Mehdi Barati
- Department of Pathobiology and Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Golnaz Ranjbar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Mohammadzadeh
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Pegah Rahimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; School of Medical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| |
Collapse
|
17
|
Eilam Y, Khattib H, Pintel N, Avni D. Microalgae-Sustainable Source for Alternative Proteins and Functional Ingredients Promoting Gut and Liver Health. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200177. [PMID: 37205927 PMCID: PMC10190620 DOI: 10.1002/gch2.202200177] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Indexed: 05/21/2023]
Abstract
Dietary proteins derived from animal sources, although containing well-balanced profiles of essential amino acids, have considerable environmental and adverse health effects associated with the intake of some animal protein-based products. Consuming foods based on animal proteins carries a higher risk of developing non-communicable diseases such as cancer, heart disease, non-alcoholic fatty liver disease (NAFLD), and inflammatory bowel disease (IBD). Moreover, dietary protein consumption is increasing due to population growth, posing a supply challenge. There is, therefore, growing interest in discovering novel alternative protein sources. In this context, microalgae have been recognized as strategic crops that can provide a sustainable source of protein. Compared to conventional high-protein crops, using microalgal biomass for protein production presents several advantages in food and feed in terms of productivity, sustainability, and nutritional value. Moreover, microalgae positively impact the environment by not exploiting land or causing water pollution. Many studies have revealed the potential of microalgae as an alternative protein source with the added value of positive effects on human health due to their anti-inflammatory, antioxidant, and anti-cancer properties. The main emphasis of this review is on the potential health-promoting applications of microalgae-based proteins, peptides, and bioactive substances for IBD and NAFLD.
Collapse
Affiliation(s)
- Yahav Eilam
- Sphingolipids, Active Metabolites, and Immune Modulation LaboratoryMIGAL – Galilee Research InstituteTarshish 2Kiryat ShemonaNorth1101600Israel
- Department of BiotechnologyTel Hai CollegeUpper GalileeNorth1220800Israel
| | - Hamdan Khattib
- Sphingolipids, Active Metabolites, and Immune Modulation LaboratoryMIGAL – Galilee Research InstituteTarshish 2Kiryat ShemonaNorth1101600Israel
| | - Noam Pintel
- Sphingolipids, Active Metabolites, and Immune Modulation LaboratoryMIGAL – Galilee Research InstituteTarshish 2Kiryat ShemonaNorth1101600Israel
| | - Dorit Avni
- Sphingolipids, Active Metabolites, and Immune Modulation LaboratoryMIGAL – Galilee Research InstituteTarshish 2Kiryat ShemonaNorth1101600Israel
- Department of BiotechnologyTel Hai CollegeUpper GalileeNorth1220800Israel
| |
Collapse
|
18
|
Tutunchi H, Arefhosseini S, Ebrahimi-Mameghani M. Clinical effectiveness of α-lipoic acid, myo-inositol and propolis supplementation on metabolic profiles and liver function in obese patients with NAFLD: A randomized controlled clinical trial. Clin Nutr ESPEN 2023; 54:412-420. [PMID: 36963888 DOI: 10.1016/j.clnesp.2023.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/10/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND To compare the effects of α-lipoic acid (ALA), myo-inositol (MI) and propolis supplementation on metabolic parameters and liver function in obese patients with non-alcoholic fatty liver disease (NAFLD) METHODS: Ninety-two obese patients with NAFLD were randomly allocated into one of the four groups (ALA, MI, propolis, and control groups) for 8 weeks. At pre-and post-intervention, anthropometric measures, metabolic parameters and liver function were assessed. Clinical effectiveness was assessed using Absolute Risk Reduction (ARR) and Number Needed to Treat (NNT). RESULTS After 8 weeks, apart from waist-to-hip ratio, all studied anthropometric measures decreased significantly in each of the groups over the trial. Although the greatest improvements in glycemic indices were observed in MI group (p < 0.05), the differences among the groups were not significant. Control group showed the greatest reduction in serum triglyceride level (p = 0.026) while the greatest improvements in serum total cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were observed in MI group (p = 0.043, p = 0.019 and p = 0.041, respectively). Alanine aminotransferase (ALT) levels reduced significantly in all groups, particularly in propolis group (p = 0.012). The greatest reduction in serum aspartate transaminase (AST) level was observed in control group (p < 0.001), however, the difference among the groups was statistically marginal (p = 0.058). The estimated NNTs for one grade reduction in liver steatosis for MI, ALA and propolis supplementation compared with control group were 1.5, 2.2 and 3, respectively. CONCLUSION Dietary recommendation for weight loss accompanied by MI and then ALA supplementation improved metabolic parameters and liver steatosis. "Registered under ClinicalTrials.gov Identifier no: IRCT20100209003320N22".
Collapse
Affiliation(s)
- Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Arefhosseini
- Student Research Committee, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Sanayei M, Kalejahi P, Mahinkazemi M, Fathifar Z, Barzegar A. The effect of Chlorella vulgaris on obesity related metabolic disorders: a systematic review of randomized controlled trials. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:833-842. [PMID: 33951762 DOI: 10.1515/jcim-2021-0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Chlorella vulgaris (CV) as a unicellular algae is a dietary supplement with beneficial nutritious content, used for decades in some countries. Positive effects for CV supplementation on metabolic parameters has been established in animal and human studies. However there is a gap for this results summary for a definite conclusion announce. This systematic review aimed to summarize the effects of CV on body weight, lipid profile, and blood glucose. CONTENT PRISMA guidelines were charted in this review. Subject search was performed in MEDLINE, ProQuest, PubMed, ISI web of sciences, Google scholar, Cochrane and Scopus databases for randomized clinical trials published in English languages, until December 2020, which assessed the effects of CV on metabolic syndrome related symptoms in clinical trials. SUMMARY Out of 4,821 records screened, after duplicate and irrelevant exclusion by title and abstract, 20 articles remained for full text screening. Finally a total of 12 articles met the study inclusion criteria and were assessed for study method and results. OUTLOOK The findings showed controversies in anthropometric, glycemic and lipid profile effects. CV may have beneficial effects on obesity-related metabolic disorders; however, collected studies lacked statistical power to reach a definite conclusion. More well-designed studies are required.
Collapse
Affiliation(s)
- Mahzad Sanayei
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Kalejahi
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Mahinkazemi
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Fathifar
- Student Research Committee, Faculty of Health Information Management, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Barzegar
- Nutrition Research Center, Department of Community Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
High-intensity interval training with or without chlorella vulgaris supplementation in obese and overweight women: effects on mitochondrial biogenesis, performance and body composition. Br J Nutr 2022; 128:200-210. [PMID: 34433510 DOI: 10.1017/s0007114521003287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The beneficial effects of high-intensity interval training (HIIT) and chlorella vulgaris (CV) on body composition and mitochondrial biogenesis have been shown in some mechanistic studies. This study aimed to determine the effects of CV and/or HIIT on mitochondrial biogenesis, performance and body composition among overweight/obese women. There was a significant reduction in the fat mass (FM) of the CV + HIIT group, as compared with the placebo group (P = 0·005). A marginal significant increase in body water (P = 0·050) and PPAR-γ coactivator-1α (P = 0·050) was also found only in the CV + HIIT group, as compared with the placebo. Relative (P < 0·001) and absolute (P < 0·001) VO2max, as well as Bruce MET (P < 0·001), were significantly increased in the HIIT and HIIT + CV groups. Besides, the synergistic effect of CV and HIIT on the Bruce MET increment was found (interaction P-value = 0·029). No significant changes were observed in BMI, fat-free mass, visceral fat, silent information regulator 1 and fibroblast growth factor-21. In this randomised clinical trial, forty-six overweight/obese women were assigned to four groups including CV + HIIT and HIIT + placebo groups that received three capsules of CV (300 mg capsules, three times a day) or corn starch, in combination with three sessions/week of HIIT. CV and placebo groups only received 900 mg of CV or corn starch, daily, for 8 weeks. Biochemical assessments, performance assessment and body composition were obtained at the beginning and end of the intervention. HIIT may be, therefore, effective in improving mitochondrial biogenesis, performance and body composition in overweight/obese women.
Collapse
|
22
|
Cui H, Su Y, Wei W, Xu F, Gao J, Zhang W. How Microalgae is Effective in Oxygen Deficiency Aggravated Diseases? A Comprehensive Review of Literature. Int J Nanomedicine 2022; 17:3101-3122. [PMID: 35874112 PMCID: PMC9297331 DOI: 10.2147/ijn.s368763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Hypoxia can aggravate the conditions of many oxygen-deficiency-aggravated diseases (ODAD), such as cancer, ischemic heart disease, and chronic wounds. Photosynthetic microalgae can alleviate the hepatotoxicity of the local microenvironment by producing oxygen. In addition, microalgae extracts have antitumor, anti-inflammatory, antibacterial, and antioxidant effects. These properties make them attractive candidates for developing methods to treat ODAD. Although researchers have exploited the advantages of microalgae and developed a variety of microalgae-based biomaterials to treat ODAD, a comprehensive review of this topic has not been presented previously. Therefore, in this review, we summarize the development and progress made in the field of developing microalgae-based biomaterials toward the treatment of ODAD. The challenges and prospects of this field are also discussed.
Collapse
Affiliation(s)
- Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, People's Republic of China
| | - Yidan Su
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, People's Republic of China
| | - Wei Wei
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Fei Xu
- Department of Plastic Surgery, Naval Medical Center, Naval Medical University, Shanghai, 200052, People's Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Wenjun Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
23
|
Arefhosseini S, Tutunchi H, Nomi-Golzar S, Mahboob S, Pouretedal Z, Ebrahimi-Mameghani M. The effect of hydroxy citric acid supplementation with calorie-restricted diet on metabolic, atherogenic and inflammatory biomarkers in women with non-alcoholic fatty liver disease: a randomized controlled clinical trial. Food Funct 2022; 13:5124-5134. [PMID: 35416190 DOI: 10.1039/d1fo03685h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of the present study was to examine the effects of hydroxy citric acid (HCA) extracts from Garcinia cambogia on metabolic, atherogenic and inflammatory biomarkers in obese women with non-alcoholic fatty liver disease (NAFLD). The present clinical trial was carried out on 40 overweight/obese women with NAFLD. The patients were randomly allocated into either the "HCA group" (receiving calorie-restricted diet (-700 kcal d-1) accompanied by HCA tablets) and the "control group" (receiving only calorie-restricted diet) for eight weeks. Weight, height, body mass index (BMI), and waist circumference (WC) were measured. Fasting blood sugar (FBS), lipid profile, liver enzymes, as well as inflammatory biomarkers were determined at baseline and after the intervention. Dietary intake was assessed at baseline and at the end of the trial and food intake data were analyzed by the Nutritionist IV software. Results showed a decrease in energy and macronutrient intake in both groups (p < 0.05). Weight, BMI, WC, and hip circumference as well as FBS, triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) decreased and high-density lipoprotein cholesterol (HDL-C) increased significantly in the HCA group (p < 0.05). There were also significant reductions in WC, FBS, TG, total cholesterol, LDL-C in the control group while inter-group changes in FBS, TG, LDL-C and HDL-C were statistically significant. Although atherogenic indices reduced significantly in both groups, inter-group comparison revealed that the HCA group showed greater decrease in the TG/HDL-C ratio than the control group (p = 0.004). Other atherogenic indices including TC/HDL-C and non-HDL-C/HDL-C ratio showed greater reduction in the control versus HCA group (p < 0.01). Some inflammatory factors were reduced in the HCA group; however, no significant within- or between-group differences were revealed post-intervention. Our results indicated that HCA supplementation plus calorie-restricted diet could improve some metabolic factors without any significant effect on inflammation in patients with NAFLD.
Collapse
Affiliation(s)
- Sara Arefhosseini
- Student Research Committee, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Nomi-Golzar
- Student Research Committee, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soltanali Mahboob
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohre Pouretedal
- Standard Research Institute, Food Technology and Agricultural Products Research Center, Microbiology and Biology Group, Tehran, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Lucakova S, Branyikova I, Kovacikova S, Masojidek J, Ranglova K, Branyik T, Ruzicka MC. Continuous electrocoagulation of Chlorella vulgaris in a novel channel-flow reactor: A pilot-scale harvesting study. BIORESOURCE TECHNOLOGY 2022; 351:126996. [PMID: 35292383 DOI: 10.1016/j.biortech.2022.126996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The most frequently used method to harvest microalgae on an industrial scale is centrifugation, although this has very high energy costs. To reduce these costs, a continuous electrocoagulation process for harvesting Chlorella vulgaris was developed and tested using a pilot-scale 111 L working volume device consisting of an electrolyser with iron electrodes, aggregation channel and lamellar settler. The flow rate of the microalgal suspension through the device was 240 L/h. When using controlled cultivation and subsequent electrocoagulation, a high harvesting efficiency (above 85%), a low Fe contamination in the harvested biomass (<4 mg Fe/g dry biomass, a harvested biomass complied with legislative requirements for food) and significant energy savings were achieved. When comparing electrocoagulation and subsequent centrifugation with the use of centrifugation alone, energy savings were 80 % for a biomass harvesting concentration of 0.23 g/L. Electrocoagulation was thus proven to be a feasible pre-concentration method for harvesting microalgae.
Collapse
Affiliation(s)
- Simona Lucakova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic; Department of Biotechnology, University of Chemistry and Technology, Technicka 5, Prague 6 166 28, Czech Republic
| | - Irena Branyikova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic.
| | - Sara Kovacikova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic
| | - Jiri Masojidek
- Institute of Microbiology of the Czech Academy of Sciences, Novohradska 237 - Opatovicky mlyn, Trebon 379 01, Czech Republic
| | - Karolina Ranglova
- Institute of Microbiology of the Czech Academy of Sciences, Novohradska 237 - Opatovicky mlyn, Trebon 379 01, Czech Republic
| | - Tomas Branyik
- Department of Biotechnology, University of Chemistry and Technology, Technicka 5, Prague 6 166 28, Czech Republic
| | - Marek C Ruzicka
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic
| |
Collapse
|
25
|
Zhuang D, He N, Khoo KS, Ng EP, Chew KW, Ling TC. Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. CHEMOSPHERE 2022; 291:132932. [PMID: 34798100 DOI: 10.1016/j.chemosphere.2021.132932] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Microalgae is an autotrophic organism with fast growth, short reproduction cycle, and strong environmental adaptability. In recent years, microalgae and the bioactive ingredients extracted from microalgae are regarded as potential substitutes for raw materials in the pharmaceutical and the cosmetics industry. In this review, the characteristics and efficacy of the high-value components of microalgae are discussed in detail, along with the sources and extraction technologies of algae used to obtain high-value ingredients are reviewed. Moreover, the latest trends in biotherapy based on high-value algae extracts as materials are discussed. The excellent antioxidant properties of microalgae derivatives are regarded as an attractive replacement for safe and environmentally friendly cosmetics formulation and production. Through further studies, the mechanism of microalgae bioactive compounds can be understood better and reasonable clinical trials conducted can safely conclude the compliance of microalgae-derived drugs or cosmetics to be necessary standards to be marketed.
Collapse
Affiliation(s)
- Dingling Zhuang
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ning He
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University. No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Kit Wayne Chew
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China; School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
How Healthy Are Non-Traditional Dietary Proteins? The Effect of Diverse Protein Foods on Biomarkers of Human Health. Foods 2022; 11:foods11040528. [PMID: 35206005 PMCID: PMC8871094 DOI: 10.3390/foods11040528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
Future food security for healthy populations requires the development of safe, sustainably-produced protein foods to complement traditional dietary protein sources. To meet this need, a broad range of non-traditional protein foods are under active investigation. The aim of this review was to evaluate their potential effects on human health and to identify knowledge gaps, potential risks, and research opportunities. Non-traditional protein sources included are algae, cereals/grains, fresh fruit and vegetables, insects, mycoprotein, nuts, oil seeds, and legumes. Human, animal, and in vitro data suggest that non-traditional protein foods have compelling beneficial effects on human health, complementing traditional proteins (meat/poultry, soy, eggs, dairy). Improvements in cardiovascular health, lipid metabolism, muscle synthesis, and glycaemic control were the most frequently reported improvements in health-related endpoints. The mechanisms of benefit may arise from their diverse range of minerals, macro- and micronutrients, dietary fibre, and bioactive factors. Many were also reported to have anti-inflammatory, antihypertensive, and antioxidant activity. Across all protein sources examined, there is a strong need for quality human data from randomized controlled intervention studies. Opportunity lies in further understanding the potential effects of non-traditional proteins on the gut microbiome, immunity, inflammatory conditions, DNA damage, cognition, and cellular ageing. Safety, sustainability, and evidence-based health research will be vital to the development of high-quality complementary protein foods that enhance human health at all life stages.
Collapse
|
27
|
Wan Afifudeen CL, Teh KY, Cha TS. Bioprospecting of microalgae metabolites against cytokine storm syndrome during COVID-19. Mol Biol Rep 2022; 49:1475-1490. [PMID: 34751914 PMCID: PMC8576090 DOI: 10.1007/s11033-021-06903-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023]
Abstract
In viral respiratory infections, disrupted pathophysiological outcomes have been attributed to hyper-activated and unresolved inflammation responses of the immune system. Integration between available drugs and natural therapeutics have reported benefits in relieving inflammation-related physiological outcomes and microalgae may be a feasible source from which to draw from against future coronavirus-infections. Microalgae represent a large and diverse source of chemically functional compounds such as carotenoids and lipids that possess various bioactivities, including anti-inflammatory properties. Therefore in this paper, some implicated pathways causing inflammation in viral respiratory infections are discussed and juxtaposed along with available research done on several microalgal metabolites. Additionally, the therapeutic properties of some known anti-inflammatory, antioxidant and immunomodulating compounds sourced from microalgae are reported for added clarity.
Collapse
Affiliation(s)
- Che Lah Wan Afifudeen
- Satreps-Cosmos Laboratory, Central Laboratory Complex, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| | - Kit Yinn Teh
- Satreps-Cosmos Laboratory, Central Laboratory Complex, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| | - Thye San Cha
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
- Satreps-Cosmos Laboratory, Central Laboratory Complex, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| |
Collapse
|
28
|
Hosseini AM, Keshavarz SA, Nasli-Esfahani E, Amiri F, Janani L. The effects of Chlorella supplementation on glycemic control, lipid profile and anthropometric measures on patients with type 2 diabetes mellitus. Eur J Nutr 2021; 60:3131-3141. [PMID: 33532874 DOI: 10.1007/s00394-021-02492-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Diabetes is a chronic disease and the prevalence of it is rapidly increasing. Recently, the use of natural products in chronic diseases such as diabetes has gained more attention. Chlorella, a single-celled green alga, is one of them. There have been some studies on the effects of chlorella supplementation in chronic diseases such as NAFLD, prediabetes, and diabetic mice, but none of them examined the effects of chlorella in patients with T2DM. The present study was designed to evaluate the effects of chlorella supplementation on glycemic control, lipid profile, and anthropometric indices in type 2 diabetic patients. METHODS This study is a double-blind, randomized controlled trial. 84 patients with T2DM assigned into two groups, receiving 1500 mg/day C. vulgaris or placebo for 8 weeks. Anthropometric information, blood pressure, 24-h food intake recall, and blood samples were collected at the beginning and end of the study to determine the changes of FBS, HbA1c, insulin concentration, insulin resistance, and lipid profile. RESULTS None of the variables investigated in this study showed a significant change after 8 weeks of intervention with C. vulgaris. CONCLUSION According to the findings of this study, supplementation with C. vulgaris with a dosage of 1500 mg/day for 8 weeks, does not improve the anthropometric measurements, glycemic status, and lipid profile as well. Thus, it cannot be considered as a complementary therapeutic approach to common medications at this dosage and duration. However, future studies with a higher dosage of C. vulgaris and more prolonged than 8 weeks are needed to be done.
Collapse
Affiliation(s)
- Amir Mehdi Hosseini
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Ali Keshavarz
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemehsadat Amiri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Moradi MN, Behrouj H, Alipoor B, Kheiripour N, Ghasemi H, Ghasemi H. Chlorella vulgaris is an effective supplement in counteracting non-alcoholic fatty liver disease-related complications through modulation of dyslipidemia, insulin resistance, and inflammatory pathways. J Food Biochem 2021; 45:e13914. [PMID: 34459004 DOI: 10.1111/jfbc.13914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022]
Abstract
This study was aimed to investigate the effect of microalgae Chlorella vulgaris (C. vulgaris) on nonalcoholic fatty liver disease (NAFLD)-related complications induced by high-fat diet (HFD). Fifty adult male rats were divided into six groups. Control group and HFD group treated with or without C. vulgaris 5% and 10%. Biochemical parameters in serum were measured by spectrophotometric and enzyme-linked immunosorbent assay (ELISA) methods. The relative gene expression levels of Tumor Necrosis Factor-alpha (TNF-α), NF-kappa B (NF-ƙB), and p38 Mitogen-Activated Protein Kinases (p38 MAPK) in the liver were assessed by using quantitative real-time PCR, while the protein levels of NF-ƙB and TNF-α in the liver homogenate were determined by ELISA. The effects of HFD significantly were reversed by C. vulgaris, especially at a 10% dose. Therefore, it can be concluded that C. vulgaris therapeutically could be useful to improve NAFLD and its complications. PRACTICAL APPLICATIONS: It is established that NAFLD is associated with the resistance to insulin, dyslipidemia, and inflammation. Accordingly, modulating of these conditions may be useful in the management of NAFLD. Our results showed the effectiveness of C. vulgaris against NAFLD-related complication through the alleviating insulin resistance, dyslipidemia and also down-regulation of inflammatory genes in p38 MAPK/TNF-α/NF-ƙB pathway. The results of our study may be useful for scientist to prepare an effective supplement from C. vulgaris to overcoming NAFLD-related complications.
Collapse
Affiliation(s)
- Mohamad-Nabi Moradi
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadi Ghasemi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
30
|
Komolafe O, Buzzetti E, Linden A, Best LM, Madden AM, Roberts D, Chase TJ, Fritche D, Freeman SC, Cooper NJ, Sutton AJ, Milne EJ, Wright K, Pavlov CS, Davidson BR, Tsochatzis E, Gurusamy KS. Nutritional supplementation for nonalcohol-related fatty liver disease: a network meta-analysis. Cochrane Database Syst Rev 2021; 7:CD013157. [PMID: 34280304 PMCID: PMC8406904 DOI: 10.1002/14651858.cd013157.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The prevalence of non-alcohol-related fatty liver disease (NAFLD) varies between 19% and 33% in different populations. NAFLD decreases life expectancy and increases risks of liver cirrhosis, hepatocellular carcinoma, and the requirement for liver transplantation. Uncertainty surrounds relative benefits and harms of various nutritional supplements in NAFLD. Currently no nutritional supplement is recommended for people with NAFLD. OBJECTIVES • To assess the benefits and harms of different nutritional supplements for treatment of NAFLD through a network meta-analysis • To generate rankings of different nutritional supplements according to their safety and efficacy SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, Science Citation Index Expanded, Conference Proceedings Citation Index-Science, the World Health Organization International Clinical Trials Registry Platform, and trials registers until February 2021 to identify randomised clinical trials in people with NAFLD. SELECTION CRITERIA We included only randomised clinical trials (irrespective of language, blinding, or status) for people with NAFLD, irrespective of method of diagnosis, age and diabetic status of participants, or presence of non-alcoholic steatohepatitis (NASH). We excluded randomised clinical trials in which participants had previously undergone liver transplantation. DATA COLLECTION AND ANALYSIS We performed a network meta-analysis with OpenBUGS using Bayesian methods whenever possible and calculated differences in treatments using hazard ratios (HRs), odds ratios (ORs), and rate ratios with 95% credible intervals (CrIs) based on an available-case analysis, according to National Institute of Health and Care Excellence Decision Support Unit guidance. MAIN RESULTS We included in the review a total of 202 randomised clinical trials (14,200 participants). Nineteen trials were at low risk of bias. A total of 32 different interventions were compared in these trials. A total of 115 trials (7732 participants) were included in one or more comparisons. The remaining trials did not report any of the outcomes of interest for this review. Follow-up ranged from 1 month to 28 months. The follow-up period in trials that reported clinical outcomes was 2 months to 28 months. During this follow-up period, clinical events related to NAFLD such as mortality, liver cirrhosis, liver decompensation, liver transplantation, hepatocellular carcinoma, and liver-related mortality were sparse. We did not calculate effect estimates for mortality because of sparse data (zero events for at least one of the groups in the trial). None of the trials reported that they measured overall health-related quality of life using a validated scale. The evidence is very uncertain about effects of interventions on serious adverse events (number of people or number of events). We are very uncertain about effects on adverse events of most of the supplements that we investigated, as the evidence is of very low certainty. However, people taking PUFA (polyunsaturated fatty acid) may be more likely to experience an adverse event than those not receiving an active intervention (network meta-analysis results: OR 4.44, 95% CrI 2.40 to 8.48; low-certainty evidence; 4 trials, 203 participants; direct evidence: OR 4.43, 95% CrI 2.43 to 8.42). People who take other supplements (a category that includes nutritional supplements other than vitamins, fatty acids, phospholipids, and antioxidants) had higher numbers of adverse events than those not receiving an active intervention (network meta-analysis: rate ratio 1.73, 95% CrI 1.26 to 2.41; 6 trials, 291 participants; direct evidence: rate ratio 1.72, 95% CrI 1.25 to 2.40; low-certainty evidence). Data were sparse (zero events in all groups in the trial) for liver transplantation, liver decompensation, and hepatocellular carcinoma. So, we did not perform formal analysis for these outcomes. The evidence is very uncertain about effects of other antioxidants (antioxidants other than vitamins) compared to no active intervention on liver cirrhosis (HR 1.68, 95% CrI 0.23 to 15.10; 1 trial, 99 participants; very low-certainty evidence). The evidence is very uncertain about effects of interventions in any of the remaining comparisons, or data were sparse (with zero events in at least one of the groups), precluding formal calculations of effect estimates. Data were probably because of the very short follow-up period (2 months to 28 months). It takes follow-up of 8 to 28 years to detect differences in mortality between people with NAFLD and the general population. Therefore, it is unlikely that differences in clinical outcomes are noted in trials providing less than 5 to 10 years of follow-up. AUTHORS' CONCLUSIONS The evidence indicates considerable uncertainty about effects of nutritional supplementation compared to no additional intervention on all clinical outcomes for people with non-alcohol-related fatty liver disease. Accordingly, high-quality randomised comparative clinical trials with adequate follow-up are needed. We propose registry-based randomised clinical trials or cohort multiple randomised clinical trials (study design in which multiple interventions are trialed within large longitudinal cohorts of patients to gain efficiencies and align trials more closely to standard clinical practice) comparing interventions such as vitamin E, prebiotics/probiotics/synbiotics, PUFAs, and no nutritional supplementation. The reason for the choice of interventions is the impact of these interventions on indirect outcomes, which may translate to clinical benefit. Outcomes in such trials should be mortality, health-related quality of life, decompensated liver cirrhosis, liver transplantation, and resource utilisation measures including costs of intervention and decreased healthcare utilisation after minimum follow-up of 8 years (to find meaningful differences in clinically important outcomes).
Collapse
Affiliation(s)
| | - Elena Buzzetti
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Audrey Linden
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Lawrence Mj Best
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Angela M Madden
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Danielle Roberts
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Thomas Jg Chase
- Department of General Surgery, Homerton University Hospital NHS Foundation Trust, London, UK
| | | | - Suzanne C Freeman
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nicola J Cooper
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Alex J Sutton
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Kathy Wright
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Chavdar S Pavlov
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Brian R Davidson
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Emmanuel Tsochatzis
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Kurinchi Selvan Gurusamy
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
31
|
Sanayei M, Izadi A, Hajizadeh-Sharafabad F, Amirsasan R, Kaviani M, Barzegar A. Chlorella vulgaris in combination with high intensity interval training in overweight and obese women: a randomized double-blind clinical trial. J Diabetes Metab Disord 2021; 20:781-792. [PMID: 34178863 DOI: 10.1007/s40200-021-00816-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022]
Abstract
Background Chlorella vulgaris (CV) as a multifunctional dietary supplement is known with lots of health benefits. It is possible that CV consumption along with high-intensity interval training (HIIT), a short period exercise is more beneficial. This investigation aimed to evaluate the effects of CV and/or HIIT on anthropometric parameters and cardiometabolic risk factors among overweight or obese women. Methods Present randomized double-blind clinical trial, included 46 women with overweight or obesity and randomly assigned them to four groups including CV, HIIT, CV+HIIT, and placebo. CV supplementation was 900 mg a day and HIIT program 3 sessions a week. Dietary intake, anthropometric assays and blood samples were taken at the commencement and completion of 8-week intervention. Results After 8 weeks, waist circumference (WC) significantly reduced in CV+HIIT group in comparison with placebo group. Significant decreases in triglycerides (TG) and low-density lipoprotein (LDL) cholesterol levels were found after CV supplementation and/or HIIT exercise in comparison with placebo group. A significant rise in high-density lipoprotein (HDL) cholesterol level was observed in HIIT and HIIT + CV groups in comparison with placebo group, however CV consumption failed to affect HDL cholesterol levels. CV and/or HIIT significantly lowered, visceral adiposity index (VAI), lipid accumulating product (LAP) and atherogenic index of plasma (AIP) in comparison with placebo. However, concurrent administration of CV and HII resulted in greater reduction in this indexes. Among glycemic indices a significant reduction in insulin resistance in CV+HIIT group compared with placebo group were seen. Conclusions In conclusion, CV and HIIT could improve lipid profile and glycemic status in overweight and obese women.
Collapse
Affiliation(s)
- Mahzad Sanayei
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azimeh Izadi
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hajizadeh-Sharafabad
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Amirsasan
- Associate Professor in Exercise Physiology and Sport Nutrition, University of Tabriz, Tabriz, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Faculty of Pure and Applied Science, Acadia University, Nova Scotia, Canada
| | - Ali Barzegar
- Nutrition Research Center, Department of Community Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Bagherniya M, Johnston TP, Sahebkar A. Regulation of Apolipoprotein B by Natural Products and Nutraceuticals: A Comprehensive Review. Curr Med Chem 2021; 28:1363-1406. [PMID: 32338202 DOI: 10.2174/0929867327666200427092114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular Disease (CVD) is the most important and the number one cause of mortality in both developing and industrialized nations. The co-morbidities associated with CVD are observed from infancy to old age. Apolipoprotein B100 (Apo B) is the primary apolipoprotein and structural protein of all major atherogenic particles derived from the liver including Very-Low- Density Lipoproteins (VLDL), Intermediate-density Lipoprotein (IDL), and Low-density Lipoprotein (LDL) particles. It has been suggested that measurement of the Apo B concentration is a superior and more reliable index for the prediction of CVD risk than is the measurement of LDL-C. Nutraceuticals and medicinal plants have attracted significant attention as it pertains to the treatment of non-communicable diseases, particularly CVD, diabetes mellitus, hypertension, and Nonalcoholic Fatty Liver Disease (NAFLD). The effect of nutraceuticals and herbal products on CVD, as well as some of its risk factors such as dyslipidemia, have been investigated previously. However, to the best of our knowledge, the effect of these natural products, including herbal supplements and functional foods (e.g. fruits and vegetables as either dry materials, or their extracts) on Apo B has not yet been investigated. Therefore, the primary objective of this paper was to review the effect of bioactive natural compounds on plasma Apo B concentrations. It is concluded that, in general, medicinal plants and nutraceuticals can be used as complementary medicine to reduce plasma Apo B levels in a safe, accessible, and inexpensive manner in an attempt to prevent and treat CVD.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | |
Collapse
|
33
|
Wang K, Gao Z, Wang Y, Meng C, Li J, Qin S, Cui Y. The chloroplast genetic engineering of a unicellular green alga Chlorella vulgaris with two foreign peptides co-expression. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Chiu HF, Lee HJ, Han YC, Venkatakrishnan K, Golovinskaia O, Wang CK. Beneficial effect of Chlorella pyrenoidosa drink on healthy subjects: A randomized, placebo-controlled, double-blind, cross-over clinical trial. J Food Biochem 2021; 45:e13665. [PMID: 33755227 DOI: 10.1111/jfbc.13665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022]
Abstract
The current study aims to explore the anti-inflammatory activity of Chlorella pyrenoidosa on RAW 267.4 cells and followed by a cross-over clinical trial in healthy subjects to check the antioxidant and anti-aging properties of Chlorella water extract (CWE). For the clinical trial, 44 healthy subjects were requested to consume 27 ml of either placebo or CWE for 90 days (phase I) and vice-versa manner for 90 days (phase II) with 4 weeks of washout period. The RAW 264.7 macrophages treated with Chlorella display potent anti-inflammatory activity by significantly downregulating (p < .05) the protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Whereas, the subjects supplemented with CWE showed improved (p < .05) antioxidant status (TEAC, SOD, CAT, and DHEAs) and lower (p < .05) oxidative stress/aging markers (TBARS and 8-OHdG) as well as considerably (p < .05) protected liver (by lowering GOT and GPT). Thus, consumption of chlorella could significantly improve the overall health status by suppressing various oxidative stress markers and aging stress markers. PRACTICAL APPLICATIONS: Chlorella is considered as a popular functional food owing to its rich nutrient value and its array of biological activities. Numerous studies indicated that treatment with Chlorella spp. would considerably lower oxidative stress, inflammation, and regulate immune response which might contribute to anti-aging property in various cell and animal models. Based on the above information, we expected that Chlorella would be a better contender for the development of a novel anti-aging agent. Hence, we designed this clinical trial to assess the beneficial effects of Chlorella pyrenoidosa especially anti-aging. In agreement with our hypothesis, our results also showed that subjected supplemented with Chlorella water extract could significantly improve overall health status by suppressing various oxidative stress markers and aging stress markers. Hence, Chlorella could be developed into a novel anti-aging agent. In the future, it can be prescribed with standard anti-aging agents to improve the overall health status of the elderly population. However, large-scale clinical studies are needed to confirm our statements.
Collapse
Affiliation(s)
- Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health and Well-Being, Taichung, Taiwan, ROC
| | - Hsiao-Ju Lee
- School of Nutrition, Chung Shan Medical University, Taichung City, Taiwan, ROC
| | - Yi-Chun Han
- School of Nutrition, Chung Shan Medical University, Taichung City, Taiwan, ROC
| | | | | | - Chin-Kun Wang
- School of Nutrition, Chung Shan Medical University, Taichung City, Taiwan, ROC
| |
Collapse
|
35
|
Lucakova S, Branyikova I, Kovacikova S, Pivokonsky M, Filipenska M, Branyik T, Ruzicka MC. Electrocoagulation reduces harvesting costs for microalgae. BIORESOURCE TECHNOLOGY 2021; 323:124606. [PMID: 33385625 DOI: 10.1016/j.biortech.2020.124606] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Centrifugation is the most commonly used method for harvesting autotrophically produced microalgae, but it is expensive due to high energy demands. With the aim of reducing these costs, we tested electrocoagulation with iron electrodes for harvesting Chlorella vulgaris. During extensive lab-scale experiments, the following factors were studied to achieve a high harvesting efficiency and a low iron content in the harvested biomass: electric charge, initial biomass concentration, pH, temperature, agitation intensity, residual salt content and electrolysis time. A harvesting efficiency greater than 95% was achieved over a broad range of conditions and the residual iron content in the biomass complied with legislative requirements for food. Using electrocoagulation as the pre-concentration step prior to centrifugation, total energy costs were reduced to 0.136 kWh/kg of dry biomass, which is less than 14% of that for centrifugation alone. Our data show that electrocoagulation is a suitable and cost-effective method for harvesting microalgae.
Collapse
Affiliation(s)
- Simona Lucakova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic; Department of Biotechnology, University of Chemistry and Technology, Technicka 5, Prague 6 166 28, Czech Republic
| | - Irena Branyikova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic.
| | - Sara Kovacikova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic
| | - Martin Pivokonsky
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, Prague 6 166 12, Czech Republic
| | - Monika Filipenska
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, Prague 6 166 12, Czech Republic
| | - Tomas Branyik
- Department of Biotechnology, University of Chemistry and Technology, Technicka 5, Prague 6 166 28, Czech Republic
| | - Marek C Ruzicka
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic
| |
Collapse
|
36
|
Zhao M, Chen S, Ji X, Shen X, You J, Liang X, Yin H, Zhao L. Current innovations in nutraceuticals and functional foods for intervention of non-alcoholic fatty liver disease. Pharmacol Res 2021; 166:105517. [PMID: 33636349 DOI: 10.1016/j.phrs.2021.105517] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
As innovations in global agricultural production and food trading systems lead to major dietary shifts, high morbidity rates from non-alcoholic fatty liver disease (NAFLD), accompanied by elevated risk of lipid metabolism-related complications, has emerged as a growing problem worldwide. Treatment and prevention of NAFLD and chronic liver disease depends on the availability of safe, effective, and diverse therapeutic agents, the development of which is urgently needed. Supported by a growing body of evidence, considerable attention is now focused on interventional approaches that combines nutraceuticals and functional foods. In this review, we summarize the pathological progression of NAFLD and discuss the beneficial effects of nutraceuticals and the active ingredients in functional foods. We also describe the underlying mechanisms of these compounds in the intervention of NAFLD, including their effects on regulation of lipid homeostasis, activation of signaling pathways, and their role in gut microbial community dynamics and the gut-liver axis. In order to identify novel targets for treatment of lipid metabolism-related diseases, this work broadly explores the molecular mechanism linking nutraceuticals and functional foods, host physiology, and gut microbiota. Additionally, the limitations in existing knowledge and promising research areas for development of active interventions and treatments against NAFLD are discussed.
Collapse
Affiliation(s)
- Mengyao Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Shumin Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoguo Ji
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Shen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangshan You
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyi Liang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; School of Life Science, Shandong University of Technology, Zibo, Shandong 255000, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
37
|
Ramos-Romero S, Torrella JR, Pagès T, Viscor G, Torres JL. Edible Microalgae and Their Bioactive Compounds in the Prevention and Treatment of Metabolic Alterations. Nutrients 2021; 13:nu13020563. [PMID: 33572056 PMCID: PMC7916042 DOI: 10.3390/nu13020563] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Marine and freshwater algae and their products are in growing demand worldwide because of their nutritional and functional properties. Microalgae (unicellular algae) will constitute one of the major foods of the future for nutritional and environmental reasons. They are sources of high-quality protein and bioactive molecules with potential application in the modern epidemics of obesity and diabetes. They may also contribute decisively to sustainability through carbon dioxide fixation and minimization of agricultural land use. This paper reviews current knowledge of the effects of consuming edible microalgae on the metabolic alterations known as metabolic syndrome (MS). These microalgae include Chlorella, Spirulina (Arthrospira) and Tetraselmis as well as Isochrysis and Nannochloropsis as candidates for human consumption. Chlorella biomass has shown antioxidant, antidiabetic, immunomodulatory, antihypertensive, and antihyperlipidemic effects in humans and other mammals. The components of microalgae reviewed suggest that they may be effective against MS at two levels: in the early stages, to work against the development of insulin resistance (IR), and later, when pancreatic -cell function is already compromised. The active components at both stages are antioxidant scavengers and anti-inflammatory lipid mediators such as carotenoids and -3 PUFAs (eicosapentaenoic acid/docosahexaenoic acid; EPA/DHA), prebiotic polysaccharides, phenolics, antihypertensive peptides, several pigments such as phycobilins and phycocyanin, and some vitamins, such as folate. As a source of high-quality protein, including an array of bioactive molecules with potential activity against the modern epidemics of obesity and diabetes, microalgae are proposed as excellent foods for the future. Moreover, their incorporation into the human diet would decisively contribute to a more sustainable world because of their roles in carbon dioxide fixation and reducing the use of land for agricultural purposes.
Collapse
Affiliation(s)
- Sara Ramos-Romero
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
- Correspondence: ; Tel.: +34-934-021-556
| | - Joan Ramon Torrella
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
| | - Teresa Pagès
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
| | - Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
| | - Josep Lluís Torres
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
| |
Collapse
|
38
|
Li H, Gu Y, Wu X, Rayamajhi S, Bian S, Zhang Q, Meng G, Liu L, Wu H, Zhang S, Wang Y, Zhang T, Wang X, Thapa A, Sun S, Wang X, Jia Q, Song K, Niu K. Association between consumption of edible seaweeds and newly diagnosed non-alcohol fatty liver disease: The TCLSIH Cohort Study. Liver Int 2021; 41:311-320. [PMID: 32885579 DOI: 10.1111/liv.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Seaweeds are rich sources of anti-oxidants and anti-inflammatory properties, which are beneficial to non-alcoholic fatty liver disease (NAFLD). However, whether seaweed consumption is associated with NAFLD is unknown. We investigated the association of seaweed consumption with newly diagnosed NAFLD in a large-scale adult population. METHODS This cross-sectional study involved 24 572 participants aged over 18 years. NAFLD was diagnosed by results of liver ultrasonography and alcohol intake. Dietary information was assessed using a validated and standardized 100-item food frequency questionnaire. Multivariate logistic analysis was used to evaluate the association between seaweed consumption and NAFLD. RESULTS The prevalence of newly diagnosed NAFLD was 20.1%. After adjustment for sociodemographic characteristics, lifestyle factors, and other dietary intakes, the multivariable adjusted odds ratios (95% confidence intervals) of newly diagnosed NAFLD across seaweed consumption were 1.00 (reference) for almost never, 1.03 (0.93, 1.15) for <1 time/wk, 1.01 (0.90, 1.13) for 1 time/wk, and 0.84 (0.73, 0.96) for >1 times/wk (P for trend < .001). Stratified analyses suggested a potential effect modification by obesity status; the odds ratios (95% confidence intervals) across extreme quartiles was 0.77 (0.66, 0.91) in non-obese participants and 1.02 (0.79, 1.33) in obese participants (P for interaction < .001). CONCLUSION Seaweed consumption is negatively associated with NAFLD, especially in non-obese participants.
Collapse
Affiliation(s)
- Huiping Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaohui Wu
- College of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Sabina Rayamajhi
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shanshan Bian
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shunming Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yawen Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Tingjing Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xuena Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Amrish Thapa
- Department of Medicine, Tianjin First Central Hospital, Tianjin Medical University, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
39
|
Yarmohammadi S, Hosseini-Ghatar R, Foshati S, Moradi M, Hemati N, Moradi S, Kermani MAH, Farzaei MH, Khan H. Effect of Chlorella vulgaris on Liver Function Biomarkers: a Systematic Review and Meta-Analysis. Clin Nutr Res 2021; 10:83-94. [PMID: 33564655 PMCID: PMC7850816 DOI: 10.7762/cnr.2021.10.1.83] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/17/2023] Open
Abstract
This study presents a comprehensive systematic review and meta-analysis of randomized controlled trials (RCTs) on Chlorella vulgaris (C. vulgaris) supplementation and liver function biomarkers. Pertinent studies were identified using Scopus, ISI Web of Science, PubMed, and Cochrane library databases up to August 2020. Mean differences were pooled using a random-effects model. Pooling 7 RCTs together showed that C. vulgaris supplementation led to a significant reduction of serum aspartate aminotransferase (AST) levels (weighted mean difference [WMD], −9.15 U/L; 95% confidence interval [CI], −16.09, −2.21), but not alanine aminotransferase (ALT) or alkaline phosphatase (ALP) levels compared to the placebo consumption. Subgroup-analysis indicated that C. vulgaris supplementation had more effect on AST decreasing among non-alcoholic fatty liver disease patients (WMD, −16.42 U/L; 95% CI, −29.75, −3.09) than others. Furthermore, subgroup analysis based on kind of compression showed that C. vulgaris supplementation significantly decreased ALT levels (WMD, −4.65 U/L; 95% CI, −8.88, −0.42) compared with the placebo, but not metformin consumption. It seems that C. vulgaris supplementation mainly affects AST levels rather than ALT and ALP levels, however, as mentioned the effect of C. vulgaris on those enzymes might be context-dependent. Therefore, further investigations with a large number of patients as well as on different disorders are necessary and can provide more definitive evidence.
Collapse
Affiliation(s)
- Samira Yarmohammadi
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran
| | - Reza Hosseini-Ghatar
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Sahar Foshati
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mojgan Moradi
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran
| | - Niloofar Hemati
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran
| | - Sajjad Moradi
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19899-34148, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| |
Collapse
|
40
|
Nascimento RDPD, Marostica Junior MR. Emerging Prebiotics: Nutritional and Technological Considerations. PROBIOTICS AND PREBIOTICS IN FOODS 2021:13-46. [DOI: 10.1016/b978-0-12-819662-5.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Cyanobacteria and Microalgae as Sources of Functional Foods to Improve Human General and Oral Health. Molecules 2020; 25:molecules25215164. [PMID: 33171936 PMCID: PMC7664199 DOI: 10.3390/molecules25215164] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
In the scenario of promising sources of functional foods and preventive drugs, microalgae and cyanobacteria are attracting global attention. In this review, the current and future role of microalgae as natural sources of functional foods for human health and, in particular, for oral health has been reported and discussed in order to provide an overview on the state of art on microalgal effects on human oral health. It is well known that due to their richness in high-valuable products, microalgae offer good anti-inflammatory, antioxidant, antitumoral, anti-glycemic, cholesterol-lowering, and antimicrobial activity. Moreover, the findings of the present research show that microalgae could also have a significant impact on oral health: several studies agree on the potential application of microalgae for oral cancer prevention as well as for the treatment of chronic periodontitis and different oral diseases with microbial origin. Thus, beneficial effects of microalgae could be implemented in different medical fields. Microalgae and cyanobacteria could represent a potential natural alternative to antibiotic, antiviral, or antimycotic therapies, as well as a good supplement for the prevention and co-adjuvant treatment of different oral diseases. Nevertheless, more studies are required to identify strains of interest, increase overall functioning, and make safe, effective products available for the whole population.
Collapse
|
42
|
Santos HO, Price JC, Bueno AA. Beyond Fish Oil Supplementation: The Effects of Alternative Plant Sources of Omega-3 Polyunsaturated Fatty Acids upon Lipid Indexes and Cardiometabolic Biomarkers-An Overview. Nutrients 2020; 12:E3159. [PMID: 33081119 PMCID: PMC7602731 DOI: 10.3390/nu12103159] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases remain a global challenge, and lipid-associated biomarkers can predict cardiovascular events. Extensive research on cardiovascular benefits of omega-3 polyunsaturated fatty acids (n3-PUFAs) is geared towards fish oil supplementation and fish-rich diets. Nevertheless, vegetarianism and veganism are becoming more popular across all segments of society, due to reasons as varied as personal, ethical and religious values, individual preferences and environment-related principles, amongst others. Due to the essentiality of PUFAs, plant sources of n3-PUFAs warrant further consideration. In this review, we have critically appraised the efficacy of plant-derived n3-PUFAs from foodstuffs and supplements upon lipid profile and selected cardiometabolic markers. Walnuts and flaxseed are the most common plant sources of n3-PUFAs, mainly alpha-linolenic acid (ALA), and feature the strongest scientific rationale for applicability into clinical practice. Furthermore, walnuts and flaxseed are sources of fibre, potassium, magnesium, and non-essential substances, including polyphenols and sterols, which in conjunction are known to ameliorate cardiovascular metabolism. ALA levels in rapeseed and soybean oils are only slight when compared to flaxseed oil. Spirulina and Chlorella, biomasses of cyanobacteria and green algae, are important sources of n3-PUFAs; however, their benefits upon cardiometabolic markers are plausibly driven by their antioxidant potential combined with their n3-PUFA content. In humans, ALA is not sufficiently bioconverted into eicosapentaenoic and docosahexaenoic acids. However, evidence suggests that plant sources of ALA are associated with favourable cardiometabolic status. ALA supplementation, or increased consumption of ALA-rich foodstuffs, combined with reduced omega-6 (n6) PUFAs intake, could improve the n3/n6 ratio and improve cardiometabolic and lipid profile.
Collapse
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia 38408-100, Brazil
| | - James C. Price
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, UK; (J.C.P.); (A.A.B.)
| | - Allain A. Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, UK; (J.C.P.); (A.A.B.)
| |
Collapse
|
43
|
Effect of Chlorella vulgaris supplementation with eccentric exercise on serum interleukin 6 and insulin resistance in overweight men. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Bito T, Okumura E, Fujishima M, Watanabe F. Potential of Chlorella as a Dietary Supplement to Promote Human Health. Nutrients 2020; 12:E2524. [PMID: 32825362 PMCID: PMC7551956 DOI: 10.3390/nu12092524] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Chlorella is a green unicellular alga that is commercially produced and distributed worldwide as a dietary supplement. Chlorella products contain numerous nutrients and vitamins, including D and B12, that are absent in plant-derived food sources. Chlorella contains larger amounts of folate and iron than other plant-derived foods. Chlorella supplementation to mammals, including humans, has been reported to exhibit various pharmacological activities, including immunomodulatory, antioxidant, antidiabetic, antihypertensive, and antihyperlipidemic activities. Meta-analysis on the effects of Chlorella supplementation on cardiovascular risk factors have suggested that it improves total cholesterol levels, low-density lipoprotein cholesterol levels, systolic blood pressure, diastolic blood pressure, and fasting blood glucose levels but not triglycerides and high-density lipoprotein cholesterol levels. These beneficial effects of Chlorella might be due to synergism between multiple nutrient and antioxidant compounds. However, information regarding the bioactive compounds in Chlorella is limited.
Collapse
Affiliation(s)
- Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan;
| | - Eri Okumura
- Sun Chlorella Corporation, Kyoto 600-8177, Japan; (E.O.); (M.F.)
| | - Masaki Fujishima
- Sun Chlorella Corporation, Kyoto 600-8177, Japan; (E.O.); (M.F.)
| | - Fumio Watanabe
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan;
| |
Collapse
|
45
|
Silva METD, Correa KDP, Martins MA, da Matta SLP, Martino HSD, Coimbra JSDR. Food safety, hypolipidemic and hypoglycemic activities, and in vivo protein quality of microalga Scenedesmus obliquus in Wistar rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
46
|
Nova P, Pimenta-Martins A, Laranjeira Silva J, Silva AM, Gomes AM, Freitas AC. Health benefits and bioavailability of marine resources components that contribute to health - what's new?. Crit Rev Food Sci Nutr 2020; 60:3680-3692. [PMID: 31920109 DOI: 10.1080/10408398.2019.1704681] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The strict connection between nutritional intake and health leads to a necessity of understanding the beneficial and protective role of healthy nutrients and foods. The marine environment is a source of a plethora of many organisms with unique properties, extremely rich in bioactive compounds and with remarkable potential for medical, industrial and biotechnological applications. Marine organisms are an extreme valuable source of functional ingredients such as polysaccharides, vitamins, minerals, pigments, enzymes, proteins and peptides, polyunsaturated fatty acids (PUFA), phenolic compounds and other secondary metabolites that prevent or have the potential to treat several diseases given their cardiovascular protective, anti-inflammatory, anti-hypertensive, anti-oxidant, anti-coagulant, anti-proliferative and anti-diabetic activities. This review provides an overview on the current advances regarding health benefits of marine bioactive compounds on several diseases and on human gut microbiota. In addition, it is discussed a crucial factor that is related to the effectiveness of these compounds on human organism namely its real bioavailability.
Collapse
Affiliation(s)
- Paulo Nova
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Pimenta-Martins
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | | | | | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Cristina Freitas
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
47
|
Riccio G, Lauritano C. Microalgae with Immunomodulatory Activities. Mar Drugs 2019; 18:E2. [PMID: 31861368 PMCID: PMC7024220 DOI: 10.3390/md18010002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Microalgae are photosynthetic microorganisms adapted to live in very different environments and showing an enormous biochemical and genetic diversity, thus representing an excellent source of new natural products with possible applications in several biotechnological sectors. Microalgae-derived compounds have shown several properties, such as anticancer, antimicrobial, anti-inflammatory, and immunomodulatory. In the last decade, compounds stimulating the immune system, both innate immune response and adaptive immune response, have been used to prevent and fight various pathologies, including cancer (cancer immunotherapy). In this review we report the microalgae that have been shown to possess immunomodulatory properties, the cells and the cellular mediators involved in the mechanisms of action and the experimental models used to test immunostimulatory activities. We also report information on fractions or pure compounds from microalgae identified as having immunostimulatory activity. Given the increasing interest in microalgae as new eco-friendly source of bioactive compounds, we also discuss their possible role as source of new classes of promising drugs to treat human pathologies.
Collapse
Affiliation(s)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy
| |
Collapse
|
48
|
Soft hydrogel based on modified chitosan containing P. granatum peel extract and its nano-forms: Multiparticulate study on chronic wounds treatment. Int J Biol Macromol 2019; 135:407-421. [DOI: 10.1016/j.ijbiomac.2019.05.156] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 02/01/2023]
|
49
|
Alizadeh Khaledabad M, Ghasempour Z, Moghaddas Kia E, Rezazad Bari M, Zarrin R. Probiotic yoghurt functionalised with microalgae and Zedo gum: chemical, microbiological, rheological and sensory characteristics. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12625] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mohammad Alizadeh Khaledabad
- Department of Food Science and Technology, Faculty of Agriculture Urmia University 11km SERO Road57561-51818Urmia Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Daneshghah street, Atar Neishabori avenue 51666-14711 Tabriz Iran
| | - Ehsan Moghaddas Kia
- Department of Food Science and Technology Maragheh University of Medical Sciences North Moallem Street55137-37196 MaraghehIran
| | - Mahmoud Rezazad Bari
- Department of Food Science and Technology, Faculty of Agriculture Urmia University 11km SERO Road57561-51818Urmia Iran
| | - Rasoul Zarrin
- Nutrition Department, School of Medicine Urmia University of Medical Sciences Nazlou Pardis, Sero Ave 57157-99313 Urmia Iran
| |
Collapse
|
50
|
Medicinal impact of microalgae collected from high rate algal ponds; phytochemical and pharmacological studies of microalgae and its application in medicated bandages. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|