1
|
Xiao L, Li J, Liao J, Wu M, Lu X, Li J, Zeng Y. BCL2A1‑ and G0S2‑driven neutrophil extracellular traps: A protective mechanism linking preeclampsia to reduced breast cancer risk. Oncol Rep 2025; 53:64. [PMID: 40242964 PMCID: PMC12030921 DOI: 10.3892/or.2025.8897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Preeclampsia has been associated with a reduced risk of breast cancer (BC), but the mechanisms underlying this relationship remain unclear. It has been suggested that neutrophil extracellular traps (NETs), which are released upon neutrophil activation, play a key role in both preeclampsia and BC. To investigate this link, the single‑cell RNA sequencing dataset GSE173193 was analyzed and upregulated genes BCL2A1 and G0/G1 switch gene 2 (G0S2) were identified in neutrophils from preeclamptic placentas. These findings were validated using reverse transcription‑quantitative PCR and western blotting. Combined analyses of preeclampsia and BC tissues, from Gene Expression Omnibus (GSE24129) and The Cancer Genome Atlas databases respectively, identified 2,040 upregulated differentially expressed genes, including BCL2A1 and G0S2. Furthermore, these genes showed clinical relevance to BC, as demonstrated by Receiver Operating Characteristic curve, survival analyses and weighted gene co‑expression network analysis. Functional experiments revealed that overexpression of BCL2A1 and G0S2 increased NET release and inhibited BC cell proliferation, invasion and migration. The present study provides novel insights into the shared molecular pathways of preeclampsia and BC, emphasizing NETs as a potential protective mechanism as increased NET production in preeclampsia may contribute to a reduced BC risk by influencing tumor progression and offer avenues for further research into therapeutic interventions.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiahao Liao
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Min Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiujing Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiehua Li
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yachang Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
2
|
Chen Y, Johnson SM, Burr SD, Povero D, Anderson AM, McMahon CE, Liu J. Absence of the intracellular lipolytic inhibitor G0S2 enhances intravascular triglyceride clearance and abolishes diet-induced hypertriglyceridemia. J Clin Invest 2025; 135:e181754. [PMID: 40100923 PMCID: PMC12077901 DOI: 10.1172/jci181754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
The interplay between intracellular and intravascular lipolysis is crucial for maintaining circulating lipid levels and systemic energy homeostasis. Adipose triglyceride lipase (ATGL) and lipoprotein lipase (LPL), the primary triglyceride (TG) lipases responsible for these two spatially separate processes, are highly expressed in adipose tissue. Yet the mechanisms underlying their coordinated regulation remain undetermined. Here, we demonstrate that genetic ablation of G0S2, a specific inhibitory protein of ATGL, completely abolished diet-induced hypertriglyceridemia and significantly attenuated atherogenesis in mice. These effects were attributable to enhanced whole-body TG clearance, not altered hepatic TG secretion. Specifically, G0S2 deletion increased circulating LPL concentration and activity, predominantly through LPL production from white adipose tissue (WAT). Strikingly, transplantation of G0S2-deficient WAT normalized plasma TG levels in mice with hypertriglyceridemia. In conjunction with improved insulin sensitivity and decreased ANGPTL4 expression, the absence of G0S2 enhanced the stability of LPL protein in adipocytes, a phenomenon that could be reversed upon ATGL inhibition. Collectively, these findings highlight the pivotal role of adipocyte G0S2 in regulating both intracellular and intravascular lipolysis, and the possibility of targeting G0S2 as a viable pharmacological approach to reducing levels of circulating TGs.
Collapse
Affiliation(s)
- Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Scott M. Johnson
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stephanie D. Burr
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, and
| | - Davide Povero
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic in Rochester, Rochester, Minnesota, USA
| | - Aaron M. Anderson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Cailin E. McMahon
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Molecular Biology and Genetics Department, Cornell College of Agriculture and Life Sciences, Ithaca, New York, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, and
| |
Collapse
|
3
|
Son S, Xu C, Jang J, Dinh M, Skorobogatko Y, Fu H, Valentine JM, An G, Ying W, Yu RT, Downes M, Evans RM, Saltiel AR. Sympathetic activation of white adipose tissue recruits neutrophils to limit energy expenditure. RESEARCH SQUARE 2025:rs.3.rs-6414640. [PMID: 40321773 PMCID: PMC12047989 DOI: 10.21203/rs.3.rs-6414640/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Adipose tissue maintains energy homeostasis by storing lipids during nutrient surplus and releasing them through lipolysis in times of energy demand. While lipolysis is essential for short term metabolic adaptation, prolonged metabolic stress requires adaptive changes that preserve energy reserves. Here, we report that β-adrenergic activation of adipocytes induces a transient and depot-specific infiltration of neutrophils into white adipose tissue (WAT), particularly in lipid-rich visceral WAT. Neutrophil recruitment requires the stimulation of both lipolysis and p38 MAPK activation in adipocytes. Recruited neutrophils locally secrete IL-1β, which suppresses lipolysis and limits excessive energy expenditure. Neutrophil depletion or blockade of IL-1β production increased lipolysis, leading to reduced WAT mass upon repeated β3-adrenergic stimulation. Together, these findings reveal an unexpected role of neutrophil-derived IL-1β in preserving lipid stores during metabolic stress, highlighting a physiological function of innate immune cells in maintaining energy homeostasis.
Collapse
Affiliation(s)
- Seunghwan Son
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Cindy Xu
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Janice Jang
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Maddox Dinh
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Yuliya Skorobogatko
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Haipeng Fu
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Joseph M. Valentine
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Garam An
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Alan R. Saltiel
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
4
|
Li Y, Wang B, Wang Z, Wen J, Zhou T, Tang J, Li Z. The Effect of G0S2 Gene Knockout on the Proliferation, Apoptosis, and Differentiation of Chicken Preadipocytes. Animals (Basel) 2025; 15:951. [PMID: 40218345 PMCID: PMC11988036 DOI: 10.3390/ani15070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
The G0/G1 switch gene 2 (G0S2) has been shown to be involved in cell proliferation, apoptosis, and differentiation in mammals. However, its function in poultry is not fully understood, especially in preadipocytes of chickens. This study aimed to establish a G0S2 knockout preadipocyte cell line in chickens through CRISPR/Cas9 technology and to thoroughly investigate the impact of G0S2 on chicken preadipocyte proliferation, apoptosis, and differentiation. To explore the involvement of G0S2 in chicken preadipocyte growth and development, transcriptome sequencing was performed. The results demonstrated that G0S2 was successfully deleted using the CRISPR/Cas9 system. G0S2 knockout significantly inhibited the differentiation of chicken preadipocytes while promoting their proliferation. Additionally, although G0S2 knockout exhibited a pro-apoptotic effect, it was relatively mild, primarily reflected in an increased proportion of early apoptotic cells. G0S2 deletion significantly affected the expression of important genes related to lipid metabolism, cell cycle control, and signaling pathways, based on transcriptomic analysis. In conclusion, our findings suggest that G0S2 performs a critical role in regulating chicken preadipocyte differentiation, proliferation, and apoptosis. This research offers valuable new insights into the molecular mechanisms and control of G0S2 in the growth and development of chicken preadipocytes.
Collapse
Affiliation(s)
- Yantao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Boyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Zhaochuan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Jintian Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Tianle Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Zhenhui Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Li Z, Zeng S, Du Q, Li X, Chen Q, Zhang S, Zhou X, Li H, Jiang A, Wang X, Shang P, Li M, Long K. The repression of the lipolytic inhibitor G0s2 enhancers affects lipid metabolism. Gene 2025; 938:149162. [PMID: 39667714 DOI: 10.1016/j.gene.2024.149162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The G0/G1 switch gene 2 (G0s2) is a selective inhibitor of adipose triglyceride lipase (ATGL) which is the rate-limiting enzyme for triglycerides (TGs) hydrolysis in adipocytes, and regulates the mobilization of TGs in adipocytes and hepatocytes. The expression and functional disorders of G0S2 are associated with various metabolic diseases and related pathological states, such as obesity and metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). However, the extent to which the transcriptional regulatory mechanisms mediated by the interaction between the G0s2 gene promoter and enhancer regions are involved remains unknown. Here, through the analysis of epigenomic data (H3K27ac, H3K4me1, and DHS-seq) and luciferase reporter assays, we identified three active enhancers of G0s2 in 3 T3-L1 adipocytes. Subsequently, using the dCas9-KRAB system for epigenetic inhibition of G0S2-En2, -En4, and -En5 revealed the functional role of these enhancers in regulating G0s2 expression and lipid droplet biosynthesis. Additionally, transcriptome analyses revealed that inhibition of G0S2-En5 downregulated pathways associated with lipid metabolism and lipid biosynthesis. Furthermore, overexpression of transcription factors (TFs) and motif mutation experiments identified that PPARG and RXRA regulate the activity of G0S2-En5. Taken together, we identified functional enhancers regulating G0s2 expression and elucidated the important role of the G0S2-En5 in lipid droplet biogenesis.
Collapse
Affiliation(s)
- Ziqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Sha Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinjiao Du
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaokai Li
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Qiuyue Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Songling Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Haohuan Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anan Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China.
| |
Collapse
|
6
|
Zhang L, Zhou Y, Yang Z, Jiang L, Yan X, Zhu W, Shen Y, Wang B, Li J, Song J. Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases. J Neuroinflammation 2025; 22:7. [PMID: 39806503 PMCID: PMC11730833 DOI: 10.1186/s12974-025-03334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders. Additionally, we also emphasize the paradoxical role of LDs in post-cerebral ischemia inflammation and explore potential underlying mechanisms, aiming to identify novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Longxiao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yunfei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zhongbo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liangchao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyang Yan
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenkai Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yi Shen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bolong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiaxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Jinning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
7
|
Shen XH, Xiong SP, Wang SP, Lu S, Wan YY, Zhang HQ. Mutation on JmjC domain of UTX impaired its antitumor effects in pancreatic cancer via inhibiting G0S2 expression and activating the Toll-like signaling pathway. Mol Med 2024; 30:258. [PMID: 39707168 DOI: 10.1186/s10020-024-01023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Recently, the incidence of pancreatic cancer (PC) has gradually increased. Research has shown that UTX mutants are critical in tumors. However, the underlying mechanisms remain incompletely understood. This study aimed to explore how UTX mutation would affect its related function in PC. METHOD Exome sequencing was used to analyze PC samples. MTT, transwell, and colony formation assays were performed to determine the cellular functions of PC cells. qRT-PCR, Western Blot, TUNEL, immunohistochemistry, CHIP, bioinformatics, and xenograft experiments were used to investigate the mechanism of UTX mutants in PC in vitro and in vivo. RESULTS We compared exome sequencing data from 12 PC samples and found a UTX missense mutation on the JmjC structure. Through cellular functions and xenograft experiments, wild-type UTX was found to significantly inhibit PC malignant progression in vitro and in vivo, while UTX mutation notably impaired this effect. Furthermore, G0S2 was identified as the key target gene for UTX, and wild-type UTX significantly increased its expression, while mutant one lost this function to a certain extent both in vitro and in vivo. More importantly, G0S2 overexpression not only inhibited tumor malignant phenotype and drug resistance for Gemcitabine in PC but also effectively reversed the roles of UTX mutant with Toll-like signaling pathway involved. In terms of mechanism, UTX mutation elevated the H3K27me3 modification level of the G0S2 promoter, which decreased its expression in PC cells. CONCLUSION In conclusion, UTX mutant weakened the antitumor effect of wild-type UTX in PC by inhibiting G0S2 expression and activating the Toll-like signaling pathway.
Collapse
Affiliation(s)
- Xiao-Hua Shen
- Department of Gastrointestinal Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Shu-Ping Xiong
- The Second Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Sheng-Peng Wang
- The Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shan Lu
- Department of Gastrointestinal Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Yi-Ye Wan
- Department of Gastrointestinal Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Hui-Qing Zhang
- Department of Gastrointestinal Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China.
- JXHC Key Laboratory of Tumor Microenvironment and Immunoregulation (Jiangxi Cancer Hospital), Nanchang, Jiangxi, 330029, People's Republic of China.
| |
Collapse
|
8
|
Wang X, Ye J, Wu Y, Zhang H, Li C, Liu B, Guan X, Tian X, Jia W, Liu Q, Li S, Sun R, Liu D, Xue G, Wang Z, Yan L, Lv A, Wu J, Qiu H, Hao C. Integrated lipidomics and RNA-seq reveal prognostic biomarkers in well-differentiated and dedifferentiated retroperitoneal liposarcoma. Cancer Cell Int 2024; 24:404. [PMID: 39696292 DOI: 10.1186/s12935-024-03585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Retroperitoneal liposarcoma (RLPS) is a mesenchymal malignant tumor characterized by different degrees of adipocytic differentiation. Well-differentiated liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS) are two of the most common subtypes of RLPS, exhibiting clear differences in biological behaviors and clinical prognosis. The metabolic features and genomic characteristics remain unclear. METHODS This study employed lipidomic and RNA-seq analyses of RLPS tissues from 19 WDLPS and 29 DDLPS patients. Western blot and immunohistochemistry staining were performed to verify the tumor tissue protein levels of TIMP1, FN1, MMP11, GPNMB, and ECM1. Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate different serum protein levels in 128 blood samples from patients with RLPS. Multivariate analysis was performed to identify the most crucial variables associated with overall survival (OS) and recurrence-free survival (RFS) of the RLPS patients. RESULTS Lipidomic analysis revealed a significant difference in lipid metabolism, particularly in phosphatidylcholines and triacylglycerides metabolism. RNA sequencing analysis revealed that 1,630 differentially expressed genes (DEGs) were significantly enriched in lipid metabolism, developmental process, and extracellular matrix (ECM) pathways. Integrated lipidomic and transcriptomic analysis identified 29 genes as potential biomarkers between WDLPS and DDLPS. Among the 29 DEGs, we found that TIMP1, FN1, MMP11, GPNMB, and ECM1 were increased in DDLPS tumor tissues than in WDLPS tumor tissues. The receiver operating characteristic (ROC) curve showed high specificity and sensitivity in diagnosing patients using a five-gene combination (AUC = 0.904). ELISA revealed a significant increase in the serum levels of ECM1 and GPNMB in patients with DDLPS compared to patients with WDLPS. ECM1 increased progressively across different FNCLCC Grades, correlating negatively with RFS (P = 0.043). GPNMB levels showed a negative correlation with OS (P = 0.019). CONCLUSIONS Our study reveals different lipid metabolism, several transcriptional pathways between WDLPS and DDLPS, and examines several serum markers associated with the prognosis of RLPS. These findings provide a vital basis for future endeavors in diagnosing and predicting the prognosis of retroperitoneal liposarcoma with different differentiations.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Jingjing Ye
- Trauma Treatment Center, Peking University People's Hospital; Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University), National Center for Trauma Medicine, Beijing, 100044, P. R. China
| | - Yan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Hongtao Zhang
- Guowen (Changchun) International Hospital, Changchun, 130000, P. R. China
| | - Chengpeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Bonan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Weiwei Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Qiao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Shuquan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Rongze Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Daoning Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Guoqiang Xue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Zhen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Ang Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Jianhui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Hui Qiu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China.
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China.
| |
Collapse
|
9
|
Grigorova N, Ivanova Z, Petrova V, Vachkova E, Beev G. Supernatants from Newly Isolated Lacticaseibacillus paracasei P4 Ameliorate Adipocyte Metabolism in Differentiated 3T3-L1 Cells. Biomedicines 2024; 12:2785. [PMID: 39767692 PMCID: PMC11673354 DOI: 10.3390/biomedicines12122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background:Lacticaseibacillus paracasei (L. paracasei) strains and their postbiotics show potential for managing metabolic disorders such as diabetes and obesity. Two newly isolated L. paracasei strains, M2.1 and P4, were yielded from Formica rufa anthills in Sinite Kamani National Park, Bulgaria. Their metabolic effects on mature 3T3-L1 adipocytes were investigated. Methods: Mature 3T3-L1 adipocytes were treated for 24 h with 10% (v/v) cell-free supernatants (CFSs) of M2.1 or P4. Two experimental (M2.1, P4) and two control groups (mature, untreated adipocytes and mature adipocytes, treated with 10% (v/v) MRS broth) were analyzed for intracellular lipid accumulation, glucose uptake, and the mRNA expression of lipid metabolism and beta-oxidation-related genes. Fold changes in gene expression were assessed using RT-qPCR. Results: Both M2.1 and P4 CFSs enhanced glucose uptake by over 30% compared to the control. P4 demonstrated a more favorable effect by significantly upregulating adipose triglyceride lipase-patatin-like phospholipase domain containing 2, adiponectin, and peroxisomal beta-oxidation enzymes-acyl-coenzyme A oxidase 1, palmitoyl. Intracellular lipid accumulation increased only with M2.1, while P4 supported improved lipid turnover without promoting excessive lipid storage or lipolysis. Conclusions: P4 CFS exhibits the potential to improve adipocyte metabolism by enhancing glucose uptake, promoting beta-oxidation, and increasing adiponectin expression, offering a promising strategy for managing metabolic dysfunctions.
Collapse
Affiliation(s)
- Natalia Grigorova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (Z.I.); (V.P.); (E.V.)
| | - Zhenya Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (Z.I.); (V.P.); (E.V.)
| | - Valeria Petrova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (Z.I.); (V.P.); (E.V.)
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (Z.I.); (V.P.); (E.V.)
| | - Georgi Beev
- Department of Biochemistry, Microbiology and Physics, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
10
|
Perumal SK, Day LZ, Arumugam MK, Chava S, Kumar V, Osna NA, Jacobs J, Rasineni K, Kharbanda KK. Lipid droplet-associated proteins in alcohol-associated fatty liver disease: A proteomic approach. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:2010-2021. [PMID: 39414381 PMCID: PMC11778054 DOI: 10.1111/acer.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND The earliest manifestation of alcohol-associated liver disease (ALD) is steatosis characterized by deposition of fat in specialized organelles called lipid droplets (LDs). While alcohol administration causes a rise in LD numbers in the hepatocytes, little is known regarding their characteristics that allow their accumulation and size to increase. The aim of the present study is to gain insights into underlying pathophysiological mechanisms by investigating the ethanol-induced changes in hepatic LD proteome as a function of LD size. METHODS Adult male Wistar rats (180-200 g BW) were fed with ethanol liquid diet for 6 weeks. At sacrifice, large-, medium-, and small-sized hepatic LD subpopulations (LD1, LD2, and LD3, respectively) were isolated and subjected to morphological and proteomic analyses. RESULTS Morphological analysis of LD1-LD3 fractions of ethanol-fed rats clearly demonstrated that LD1 contained larger LDs compared with LD2 and LD3 fractions. Our preliminary results from principal component analysis showed that the proteome of different-sized hepatic LD fractions was distinctly different. Proteomic data analysis identified over 2000 proteins in each LD fraction with significant alterations in protein abundance among the three LD fractions. Among the altered proteins, several were related to fat metabolism, including synthesis, incorporation of fatty acid, and lipolysis. Ingenuity pathway analysis revealed increased fatty acid synthesis, fatty acid incorporation, LD fusion, and reduced lipolysis in LD1 compared to LD3. Overall, the proteomic findings indicate that the increased level of protein that facilitates fusion of LDs combined with an increased association of negative regulators of lipolysis dictates the generation of large-sized LDs during the development of alcohol-associated hepatic steatosis. CONCLUSION Several significantly altered proteins were identified in different-sized LDs isolated from livers of ethanol-fed rats. Ethanol-induced increases in specific proteins that hinder LD lipid metabolism led to the accumulation and persistence of large-sized LDs in the liver.
Collapse
Affiliation(s)
- Sathish Kumar Perumal
- Research ServiceVeterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Le Z. Day
- Biological Sciences Division and Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWAUSA
| | - Madan Kumar Arumugam
- Research ServiceVeterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Centre for Molecular and Nanomedical SciencesSathyabama Institute of Science and TechnologyChennaiTamil NaduIndia
| | - Srinivas Chava
- Research ServiceVeterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Vikas Kumar
- Department of Genetics Cell Biology and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Mass Spectrometry and Proteomics Core FacilityUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Natalia A. Osna
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jon Jacobs
- Biological Sciences Division and Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWAUSA
| | - Karuna Rasineni
- Research ServiceVeterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Biochemistry & Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kusum K. Kharbanda
- Research ServiceVeterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Biochemistry & Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
11
|
Zeng G, Shen Y, Sun W, Lu H, Liang Y, Wu J, Liao G. Phenotype remodelling of HNSCC cells in the muscle invasion environment. J Transl Med 2024; 22:909. [PMID: 39375763 PMCID: PMC11457420 DOI: 10.1186/s12967-024-05607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/18/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Tumour invading muscle in head and neck squamous cell carcinoma (HNSCC) is often associated with destructive growth and poor prognosis. However, the phenotypic functions and pathological mechanisms of muscle-invasive cancer cells in tumour progress remains unknown. In this study, we aimed to investigate the phenotypic functions of muscle-invasive cancer cells of HNSCC and their potential crosstalk with tumour microenvironment. METHODS We obtained scRNA-seq data (SC) from GSE103322 (N = 18) and GSE181919 (N = 37), spatial RNA-seq data (ST) from GSE208253 and GSE181300 (N = 4), transcriptomics of human HNSCC samples from GSE42743 (N = 12) and GSE41613 (N = 97). Utilizing the TCGA-HNSC dataset, we conducted univariate and multivariate Cox analyses to investigate the prognostic impact of muscle-invasion in HNSCC, with validation in an additional cohort. Through Stutility and AUCell approaches, we identified and characterized muscle-invasive cancer cell clusters, including their functional phenotypes and gene-specific profiles. Integration of SC and ST data was achieved using Seurat analysis, multimodal intersection analysis, and spatial deconvolution. The results were further validated via in vitro and in vivo experiments. RESULTS Our analyses of the TCGA-HNSC cohort revealed the presence of muscle-invasion was associated with a poor prognosis. By combining ST and SC, we identified muscle-invasive cancer cells exhibiting epithelial-to-mesenchymal transition (EMT) and myoepithelial-like transcriptional programs, which were correlated with a poor prognosis. Furthermore, we identified G0S2 as a novel marker of muscle-invasive malignant cells that potentially promotes EMT and the acquisition of myoepithelium-like phenotypes. These findings were validated through in vitro assays and chorioallantoic membranes experiments. Additionally, we demonstrated that G0S2-overexpressing cancer cells might attract human ECs via VEGF signalling. Subsequent in vitro and in vivo experiments revealed G0S2 plays key roles in promoting the proliferation and invasion of cancer cells. CONCLUSIONS In this study, we profiled the transcriptional programs of muscle-invasive HNSCC cell populations and characterized their EMT and myoepithelial-like phenotypes. Furthermore, our findings highlight the presence of muscle-invasion as a predictive marker for HNSCC patients. G0S2 as one of the markers of muscle-invasive cancer cells is involved in HNSCC intravasation, probably via VEGF signalling.
Collapse
Affiliation(s)
- Guozhong Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yi Shen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wei Sun
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Jiashun Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
12
|
Takii R, Fujimoto M, Pandey A, Jaiswal K, Shearwin-Whyatt L, Grutzner F, Nakai A. HSF1 is required for cellular adaptation to daily temperature fluctuations. Sci Rep 2024; 14:21361. [PMID: 39266731 PMCID: PMC11393418 DOI: 10.1038/s41598-024-72415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
The heat shock response (HSR) is a universal mechanism of cellular adaptation to elevated temperatures and is regulated by heat shock transcription factor 1 (HSF1) or HSF3 in vertebrate endotherms, such as humans, mice, and chickens. We here showed that HSF1 and HSF3 from egg-laying mammals (monotremes), with a low homeothermic capacity, equally possess a potential to maximally induce the HSR, whereas either HSF1 or HSF3 from birds have this potential. Therefore, we focused on cellular adaptation to daily temperature fluctuations and found that HSF1 was required for the proliferation and survival of human cells under daily temperature fluctuations. The ectopic expression of vertebrate HSF1 proteins, but not HSF3 proteins, restored the resistance in HSF1-null cells, regardless of the induction of heat shock proteins. This function was associated with the up-regulation of specific HSF1-target genes. These results indicate the distinct role of HSF1 in adaptation to thermally fluctuating environments and suggest association of homeothermic capacity with functional diversification of vertebrate HSF genes.
Collapse
Affiliation(s)
- Ryosuke Takii
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Akanksha Pandey
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Kritika Jaiswal
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Linda Shearwin-Whyatt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Frank Grutzner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan.
| |
Collapse
|
13
|
Zheng Y, Chen J, Macwan V, Dixon CL, Li X, Liu S, Yu Y, Xu P, Sun Q, Hu Q, Liu W, Raught B, Fairn GD, Neculai D. S-acylation of ATGL is required for lipid droplet homoeostasis in hepatocytes. Nat Metab 2024; 6:1549-1565. [PMID: 39143266 DOI: 10.1038/s42255-024-01085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Lipid droplets (LDs) are organelles specialized in the storage of neutral lipids, cholesterol esters and triglycerides, thereby protecting cells from the toxicity of excess lipids while allowing for the mobilization of lipids in times of nutrient deprivation. Defects in LD function are associated with many diseases. S-acylation mediated by zDHHC acyltransferases modifies thousands of proteins, yet the physiological impact of this post-translational modification on individual proteins is poorly understood. Here, we show that zDHHC11 regulates LD catabolism by modifying adipose triacylglyceride lipase (ATGL), the rate-limiting enzyme of lipolysis, both in hepatocyte cultures and in mice. zDHHC11 S-acylates ATGL at cysteine 15. Preventing the S-acylation of ATGL renders it catalytically inactive despite proper localization. Overexpression of zDHHC11 reduces LD size, whereas its elimination enlarges LDs. Mutating ATGL cysteine 15 phenocopies zDHHC11 loss, causing LD accumulation, defective lipolysis and lipophagy. Our results reveal S-acylation as a mode of regulation of ATGL function and LD homoeostasis. Modulating this pathway may offer therapeutic potential for treating diseases linked to defective lipolysis, such as fatty liver disease.
Collapse
Affiliation(s)
- Yuping Zheng
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jishun Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Vinitha Macwan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charneal L Dixon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Xinran Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Shengjie Liu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuyun Yu
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Pinglong Xu
- Life Science Institute, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qi Hu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wei Liu
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University Health Network, Toronto, Ontario, Canada.
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Dante Neculai
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| |
Collapse
|
14
|
Zhang X, Majumdar A, Kim C, Kleiboeker B, Magee KL, Learman BS, Thomas SA, Lodhi IJ, MacDougald OA, Scheller EL. Central activation of catecholamine-independent lipolysis drives the end-stage catabolism of all adipose tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605812. [PMID: 39131323 PMCID: PMC11312544 DOI: 10.1101/2024.07.30.605812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Several adipose depots, including constitutive bone marrow adipose tissue (cBMAT), resist conventional lipolytic cues, making them metabolically non-responsive. However, under starvation, wasting, or cachexia, the body can eventually catabolize these stable adipocytes through unknown mechanisms. To study this, we developed a mouse model of brain-evoked depletion of all fat, including cBMAT, independent of food intake. Genetic, surgical, and chemical approaches demonstrated that depletion of stable fat required adipose triglyceride lipase-dependent lipolysis but was independent of local nerves, the sympathetic nervous system, and catecholamines. Instead, concurrent hypoglycemia and hypoinsulinemia activated a potent catabolic state by suppressing lipid storage and increasing catecholamine-independent lipolysis via downregulation of cell-autonomous lipolytic inhibitors Acvr1c, G0s2, and Npr3. This was also sufficient to delipidate classical adipose depots. Overall, this work defines unique adaptations of stable adipocytes to resist lipolysis in healthy states while isolating a potent in vivo neurosystemic pathway by which the body can rapidly catabolize all adipose tissues.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Clara Kim
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian Kleiboeker
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristann L Magee
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Learman
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Steven A Thomas
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
15
|
Alonso-García M, Gutiérrez-Gil B, Pelayo R, Fonseca PAS, Marina H, Arranz JJ, Suárez-Vega A. A meta-analysis approach for annotation and identification of lncRNAs controlling perirenal fat deposition in suckling lambs. Anim Biotechnol 2024; 35:2374328. [PMID: 39003576 DOI: 10.1080/10495398.2024.2374328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Long non-coding RNAs (lncRNAs) are being studied in farm animals due to their association with traits of economic interest, such as fat deposition. Based on the analysis of perirenal fat transcriptomes, this research explored the relevance of these regulatory elements to fat deposition in suckling lambs. To that end, meta-analysis techniques have been implemented to efficiently characterize and detect differentially expressed transcripts from two different RNA-seq datasets, one including samples of two sheep breeds that differ in fat deposition features, Churra and Assaf (n = 14), and one generated from Assaf suckling lambs with different fat deposition levels (n = 8). The joint analysis of the 22 perirenal fat RNA-seq samples with the FEELnc software allowed the detection of 3953 novel lncRNAs. After the meta-analysis, 251 differentially expressed genes were identified, 21 of which were novel lncRNAs. Additionally, a co-expression analysis revealed that, in suckling lambs, lncRNAs may play a role in controlling angiogenesis and thermogenesis, processes highlighted in relation to high and low fat deposition levels, respectively. Overall, while providing information that could be applied for the improvement of suckling lamb carcass traits, this study offers insights into the biology of perirenal fat deposition regulation in mammals.
Collapse
Affiliation(s)
- María Alonso-García
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rocío Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pablo A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Héctor Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Juan José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
16
|
Shantaram D, Hoyd R, Blaszczak AM, Antwi L, Jalilvand A, Wright VP, Liu J, Smith AJ, Bradley D, Lafuse W, Liu Y, Williams NF, Snyder O, Wheeler C, Needleman B, Brethauer S, Noria S, Renton D, Perry KA, Nagareddy P, Wozniak D, Mahajan S, Rana PSJB, Pietrzak M, Schlesinger LS, Spakowicz DJ, Hsueh WA. Obesity-associated microbiomes instigate visceral adipose tissue inflammation by recruitment of distinct neutrophils. Nat Commun 2024; 15:5434. [PMID: 38937454 PMCID: PMC11211470 DOI: 10.1038/s41467-024-48935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
Neutrophils are increasingly implicated in chronic inflammation and metabolic disorders. Here, we show that visceral adipose tissue (VAT) from individuals with obesity contains more neutrophils than in those without obesity and is associated with a distinct bacterial community. Exploring the mechanism, we gavaged microbiome-depleted mice with stool from patients with and without obesity during high-fat or normal diet administration. Only mice receiving high-fat diet and stool from subjects with obesity show enrichment of VAT neutrophils, suggesting donor microbiome and recipient diet determine VAT neutrophilia. A rise in pro-inflammatory CD4+ Th1 cells and a drop in immunoregulatory T cells in VAT only follows if there is a transient spike in neutrophils. Human VAT neutrophils exhibit a distinct gene expression pattern that is found in different human tissues, including tumors. VAT neutrophils and bacteria may be a novel therapeutic target for treating inflammatory-driven complications of obesity, including insulin resistance and colon cancer.
Collapse
Affiliation(s)
- Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Rebecca Hoyd
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Alecia M Blaszczak
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Linda Antwi
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Anahita Jalilvand
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Valerie P Wright
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Joey Liu
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Alan J Smith
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - William Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - YunZhou Liu
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Nyelia F Williams
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Owen Snyder
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Caroline Wheeler
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Bradley Needleman
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Stacy Brethauer
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Sabrena Noria
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - David Renton
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Kyle A Perry
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Prabha Nagareddy
- Department of Internal Medicine, Cardiovascular Section University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73117, USA
| | - Daniel Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Sahil Mahajan
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Pranav S J B Rana
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Larry S Schlesinger
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Daniel J Spakowicz
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA.
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
17
|
Johnson SM, Bao H, McMahon CE, Chen Y, Burr SD, Anderson AM, Madeyski-Bengtson K, Lindén D, Han X, Liu J. PNPLA3 is a triglyceride lipase that mobilizes polyunsaturated fatty acids to facilitate hepatic secretion of large-sized very low-density lipoprotein. Nat Commun 2024; 15:4847. [PMID: 38844467 PMCID: PMC11156938 DOI: 10.1038/s41467-024-49224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The I148M variant of PNPLA3 is closely associated with hepatic steatosis. Recent evidence indicates that the I148M mutant functions as an inhibitor of PNPLA2/ATGL-mediated lipolysis, leaving the role of wild-type PNPLA3 undefined. Despite showing a triglyceride hydrolase activity in vitro, PNPLA3 has yet to be established as a lipase in vivo. Here, we show that PNPLA3 preferentially hydrolyzes polyunsaturated triglycerides, mobilizing polyunsaturated fatty acids for phospholipid desaturation and enhancing hepatic secretion of triglyceride-rich lipoproteins. Under lipogenic conditions, mice with liver-specific knockout or acute knockdown of PNPLA3 exhibit aggravated liver steatosis and reduced plasma VLDL-triglyceride levels. Similarly, I148M-knockin mice show decreased hepatic triglyceride secretion during lipogenic stimulation. Our results highlight a specific context whereby the wild-type PNPLA3 facilitates the balance between hepatic triglyceride storage and secretion, and suggest the potential contribution of a loss-of-function by the I148M variant to the development of fatty liver disease in humans.
Collapse
Affiliation(s)
- Scott M Johnson
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Department of Cell Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Cailin E McMahon
- Molecular Biology and Genetics Department; Cornell College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Stephanie D Burr
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Aaron M Anderson
- Department of Developmental Biology; Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Katja Madeyski-Bengtson
- Translational Genomics, Discovery Sciences; BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM); BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA.
- Division of Endocrinology, Diabetes, Metabolism and Nutrition; Mayo Clinic in Rochester, Rochester, MN, 55905, USA.
| |
Collapse
|
18
|
Chang J, Wang Z, Hao Y, Song Y, Xia C. Calmodulin Contributes to Lipolysis and Inflammatory Responses in Clinical Ketosis Cows through the TLR4/IKK/NF-κB Pathway. Animals (Basel) 2024; 14:1678. [PMID: 38891725 PMCID: PMC11171032 DOI: 10.3390/ani14111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Clinical ketosis is a detrimental metabolic disease in dairy cows, often accompanied by severe lipolysis and inflammation in adipose tissue. Our previous study suggested a 2.401-fold upregulation in the calmodulin (CaM) level in the adipose tissue of cows with clinical ketosis. Therefore, we hypothesized that CaM may regulate lipolysis and inflammatory responses in cows with clinical ketosis. To verify the hypothesis, we conducted a thorough veterinary assessment of clinical symptoms and serum β-hydroxybutyrate (BHB) concentration. Subsequently, we collected subcutaneous adipose tissue samples from six healthy and six clinically ketotic Holstein cows at 17 ± 4 days postpartum. Commercial kits were used to test the abundance of BHB, non-esterified fatty acid (NEFA), the liver function index (LFI), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α). We found that cows with clinical ketosis exhibited higher levels of BHB, NEFA, LFI, IL-6, IL-1β, TNF-α, and lower glucose levels than healthy cows. Furthermore, the abundance of CaM, toll-like receptor 4 (TLR4), inhibitor of nuclear factor κB kinase subunit β (IKK), phosphorylated nuclear factor κB p65/nuclear factor κB p65 (p-NF-κB p65/NF-κB p65), adipose triacylglycerol lipase (ATGL), and phosphorylated hormone-sensitive lipase/hormone-sensitive lipase (p-HSL/HSL) was increased, while that of perilipin-1 (PLIN1) was decreased in the adipose tissue of cows with clinical ketosis. To investigate the mechanism underlying the responses, we isolated the primary bovine adipocytes from the adipose tissue of healthy cows and induced the inflammatory response mediated by TLR4/IKK/NF-κB p65 with lipopolysaccharide (LPS). Additionally, we treated the primary bovine adipocytes with CaM overexpression adenovirus and CaM small interfering RNA. In vitro, LPS upregulated the abundance of TLR4, IKK, p-NF-κB p65, ATGL, p-HSL/HSL, and CaM and downregulated PLIN1. Furthermore, CaM silencing downregulated the abundance of LPS-activated p-HSL/HSL, TLR4, IKK, and p-NF-κB p65 and upregulated PLIN1 in bovine adipocytes, except for ATGL. However, CaM overexpression upregulated the abundance of LPS-activated p-HSL/HSL, TLR4, IKK, and p-NF-κB p65 and downregulated PLIN1 expression in bovine adipocytes. These data suggest that CaM promotes lipolysis in adipocytes through HSL and PINL1 while activating the TLR4/IKK/NF-κB inflammatory pathway to stimulate an inflammatory response. There is a positive feedback loop between CaM, lipolysis, and inflammation. Inhibiting CaM may act as an adaptive mechanism to alleviate metabolic dysregulation in adipose tissue, thereby relieving lipolysis and inflammatory responses.
Collapse
Affiliation(s)
- Jinshui Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (Y.H.); (Y.S.)
| | - Zhijie Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Yu Hao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (Y.H.); (Y.S.)
| | - Yuxi Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (Y.H.); (Y.S.)
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (Y.H.); (Y.S.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| |
Collapse
|
19
|
Van Woerkom A, Harney DJ, Nagarajan SR, Hakeem-Sanni MF, Lin J, Hooke M, Pulpitel T, Cooney GJ, Larance M, Saunders DN, Brandon AE, Hoy AJ. Hepatic lipid droplet-associated proteome changes distinguish dietary-induced fatty liver from glucose tolerance in male mice. Am J Physiol Endocrinol Metab 2024; 326:E842-E855. [PMID: 38656127 PMCID: PMC11376491 DOI: 10.1152/ajpendo.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Fatty liver is characterized by the expansion of lipid droplets (LDs) and is associated with the development of many metabolic diseases. We assessed the morphology of hepatic LDs and performed quantitative proteomics in lean, glucose-tolerant mice compared with high-fat diet (HFD) fed mice that displayed hepatic steatosis and glucose intolerance as well as high-starch diet (HStD) fed mice who exhibited similar levels of hepatic steatosis but remained glucose tolerant. Both HFD- and HStD-fed mice had more and larger LDs than Chow-fed animals. We observed striking differences in liver LD proteomes of HFD- and HStD-fed mice compared with Chow-fed mice, with fewer differences between HFD and HStD. Taking advantage of our diet strategy, we identified a fatty liver LD proteome consisting of proteins common in HFD- and HStD-fed mice, as well as a proteome associated with glucose tolerance that included proteins shared in Chow and HStD but not HFD-fed mice. Notably, glucose intolerance was associated with changes in the ratio of adipose triglyceride lipase to perilipin 5 in the LD proteome, suggesting dysregulation of neutral lipid homeostasis in glucose-intolerant fatty liver. We conclude that our novel dietary approach uncouples ectopic lipid burden from insulin resistance-associated changes in the hepatic lipid droplet proteome.NEW & NOTEWORTHY This study identified a fatty liver lipid droplet proteome and one associated with glucose tolerance. Notably, glucose intolerance was linked with changes in the ratio of adipose triglyceride lipase to perilipin 5 that is indicative of dysregulation of neutral lipid homeostasis.
Collapse
Affiliation(s)
- Andries Van Woerkom
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Dylan J Harney
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Shilpa R Nagarajan
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Mariam F Hakeem-Sanni
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jinfeng Lin
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew Hooke
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Tamara Pulpitel
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Gregory J Cooney
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Mark Larance
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Darren N Saunders
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Amanda E Brandon
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J Hoy
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Tang Q, Xing X, Huang H, Yang J, Li M, Xu X, Gao X, Liang C, Tian W, Liao L. Eliminating senescent cells by white adipose tissue-targeted senotherapy alleviates age-related hepatic steatosis through decreasing lipolysis. GeroScience 2024; 46:3149-3167. [PMID: 38217637 PMCID: PMC11009221 DOI: 10.1007/s11357-024-01068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
Cellular senescence is an important risk factor in the development of hepatic steatosis. Senolytics present therapeutic effects on age-related hepatic steatosis without eliminating senescent hepatocytes directly. Therefore, it highlights the need to find senolytics' therapeutic targets. Dysfunction of adipose tissue underlies the critical pathogenesis of lipotoxicity in the liver. However, the correlation between adipose tissue and hepatic steatosis during aging and its underlying molecular mechanism remains poorly understood. We explored the correlation between white adipose tissue (WAT) and the liver during aging and evaluated the effect of lipolysis of aged WAT on hepatic steatosis and hepatocyte senescence. We screened out the ideal senolytics for WAT and developed a WAT-targeted delivery system for senotherapy. We assessed senescence and lipolysis of WAT and hepatic lipid accumulation after treatment. The results displayed that aging accelerated cellular senescence and facilitated lipolysis of WAT. Free fatty acids (FFAs) generated by WAT during aging enhanced hepatic steatosis and induced hepatocyte senescence. The combined usage of dasatinib and quercetin was screened out as the ideal senolytics to eliminate senescent cells in WAT. To minimize non-specific distribution and enhance the effectiveness of senolytics, liposomes decorated with WAT affinity peptide P3 were constructed for senotherapy in vivo. In vivo study, WAT-targeted treatment eliminated senescent cells in WAT and reduced lipolysis, resulting in the alleviation of hepatic lipid accumulation and hepatocyte senescence when compared to non-targeted treatment, providing a novel tissue-targeted, effective and safe senotherapy for age-related hepatic steatosis.
Collapse
Affiliation(s)
- Qi Tang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Xiaotao Xing
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Haisen Huang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Jian Yang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Maojiao Li
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Xun Xu
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Xin Gao
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Cheng Liang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| | - Li Liao
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
21
|
Chen L, Wang J, Ren Y, Ma Y, Liu J, Jiang H, Liu C. Artesunate improves glucose and lipid metabolism in db/db mice by regulating the metabolic profile and the MAPK/PI3K/Akt signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155382. [PMID: 38382280 DOI: 10.1016/j.phymed.2024.155382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetes is a metabolic disorder characterized by chronic hyperglycaemia. Chronic metabolic abnormalities and long-term hyperglycaemia may result in a wide range of acute and chronic consequences. Previous studies have demonstrated that artesunate(ART) has antidiabetic, anti-inflammatory, antiatherosclerotic, and other beneficial effects, but the specific regulatory mechanism is not completely clear. AIM This study investigated the effects of ART on metabolic disorders in type 2 diabetes mellitus (T2DM) model db/db mice and explored the underlying mechanisms involved. METHODS C57BL/KsJ-db/db mice were used to identify the targets and molecular mechanism of ART. Metabolomic methods were used to evaluate the efficacy of ART in improving T2DM-related metabolic disorders. Network pharmacology and transcriptomic sequencing were used to analyse the targets and pathways of ART in T2DM. Finally, molecular biology experiments were performed to verify the key targets and pathways selected by network pharmacology and transcriptomic analyses. RESULTS After a 7-week ART intervention (160 mg/kg), the glucose and lipid metabolism levels of the db/db mice improved. Additionally, the oxidative stress indices, namely, the MDA and SOD levels, significantly improved (p<0.01). Linoleic acid and glycerophospholipid metabolism, amino acid metabolism, bile acid synthesis, and purine metabolism disorders in db/db mice were partially corrected after ART treatment. Network pharmacology analysis identified important targets of ART for the treatment of metabolic disorders in T2DM . These targets are involved in key signalling pathways, including the highest scores observed for the PI3K/Akt signalling pathway. Transcriptomic analysis revealed that ART could activate the MAPK signalling pathway and two key gene targets, HGK and GADD45. Immunoblotting revealed that ART increases p-PI3K, p-AKT, Glut2, and IRS1 protein expression and suppresses the phosphorylation of p38, ERK1/2, and JNK, returning HGK and GADD45 to their preartesunate levels. CONCLUSION Treatment of db/db mice with 160 mg/kg ART for 7 weeks significantly reduced fasting blood glucose and lipid levels. It also improved metabolic imbalances in amino acids, lipids, purines, and bile acids, thereby improving metabolic disorders. These effects are achieved by activating the PI3K/AKT pathway and inhibiting the MAPK pathway, thus demonstrating the efficacy of the drug.
Collapse
Affiliation(s)
- Lulu Chen
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jialin Wang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yanshuang Ren
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yujin Ma
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jie Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Hongwei Jiang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
22
|
Kohlmayr JM, Grabner GF, Nusser A, Höll A, Manojlović V, Halwachs B, Masser S, Jany-Luig E, Engelke H, Zimmermann R, Stelzl U. Mutational scanning pinpoints distinct binding sites of key ATGL regulators in lipolysis. Nat Commun 2024; 15:2516. [PMID: 38514628 PMCID: PMC10958042 DOI: 10.1038/s41467-024-46937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
ATGL is a key enzyme in intracellular lipolysis and plays an important role in metabolic and cardiovascular diseases. ATGL is tightly regulated by a known set of protein-protein interaction partners with activating or inhibiting functions in the control of lipolysis. Here, we use deep mutational protein interaction perturbation scanning and generate comprehensive profiles of single amino acid variants that affect the interactions of ATGL with its regulatory partners: CGI-58, G0S2, PLIN1, PLIN5 and CIDEC. Twenty-three ATGL amino acid variants yield a specific interaction perturbation pattern when validated in co-immunoprecipitation experiments in mammalian cells. We identify and characterize eleven highly selective ATGL switch mutations which affect the interaction of one of the five partners without affecting the others. Switch mutations thus provide distinct interaction determinants for ATGL's key regulatory proteins at an amino acid resolution. When we test triglyceride hydrolase activity in vitro and lipolysis in cells, the activity patterns of the ATGL switch variants trace to their protein interaction profile. In the context of structural data, the integration of variant binding and activity profiles provides insights into the regulation of lipolysis and the impact of mutations in human disease.
Collapse
Affiliation(s)
- Johanna M Kohlmayr
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Gernot F Grabner
- Institute of Molecular Biosciences, Biochemistry, University of Graz, Graz, Austria
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Anna Nusser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Anna Höll
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Verina Manojlović
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Bettina Halwachs
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Sarah Masser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Evelyne Jany-Luig
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Hanna Engelke
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, Biochemistry, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria.
- Field of Excellence BioHealth - University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
23
|
Mathiowetz AJ, Olzmann JA. Lipid droplets and cellular lipid flux. Nat Cell Biol 2024; 26:331-345. [PMID: 38454048 PMCID: PMC11228001 DOI: 10.1038/s41556-024-01364-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
24
|
Sun YD, Zhang H, Li YM, Han JJ. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189086. [PMID: 38342420 DOI: 10.1016/j.bbcan.2024.189086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a significant risk factor for the development of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs), as key mediators in liver injury response, are believed to play a crucial role in the repair process of liver injury. However, in MAFLD patients, the normal metabolic and immunoregulatory mechanisms of HSCs become disrupted, leading to disturbances in the local microenvironment. Abnormally activated HSCs are heavily involved in the initiation and progression of HCC. The metabolic disorders and abnormal activation of HSCs not only initiate liver fibrosis but also contribute to carcinogenesis. In this review, we provide an overview of recent research progress on the relationship between the abnormal metabolism of HSCs and the local immune system in the liver, elucidating the mechanisms of immune imbalance caused by abnormally activated HSCs in MAFLD patients. Based on this understanding, we discuss the potential and challenges of metabolic-based and immunology-based mechanisms in the treatment of MAFLD-related HCC, with a specific focus on the role of HSCs in HCC progression and their potential as targets for anti-cancer therapy. This review aims to enhance researchers' understanding of the importance of HSCs in maintaining normal liver function and highlights the significance of HSCs in the progression of MAFLD-related HCC.
Collapse
Affiliation(s)
- Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Hao Zhang
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China.
| |
Collapse
|
25
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Wang Y, Nguyen HP, Xue P, Xie Y, Yi D, Lin F, Dinh J, Viscarra JA, Ibe NU, Duncan RE, Sul HS. ApoL6 associates with lipid droplets and disrupts Perilipin1-HSL interaction to inhibit lipolysis. Nat Commun 2024; 15:186. [PMID: 38167864 PMCID: PMC10762002 DOI: 10.1038/s41467-023-44559-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Adipose tissue stores triacylglycerol (TAG) in lipid droplets (LD) and release fatty acids upon lipolysis during energy shortage. We identify ApoL6 as a LD-associated protein mainly found in adipose tissue, specifically in adipocytes. ApoL6 expression is low during fasting but induced upon feeding. ApoL6 knockdown results in smaller LD with lower TAG content in adipocytes, while ApoL6 overexpression causes larger LD with higher TAG content. We show that the ApoL6 affects adipocytes through inhibition of lipolysis. While ApoL6, Perilipin 1 (Plin1), and HSL can form a complex on LD, C-terminal ApoL6 directly interacts with N-terminal Plin1 to prevent Plin1 binding to HSL, to inhibit lipolysis. Thus, ApoL6 ablation decreases white adipose tissue mass, protecting mice from diet-induced obesity, while ApoL6 overexpression in adipose brings obesity and insulin resistance, making ApoL6 a potential future target against obesity and diabetes.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Hai P Nguyen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Pengya Xue
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ying Xie
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Danielle Yi
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Frances Lin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jennie Dinh
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jose A Viscarra
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Nnejiuwa U Ibe
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Robin E Duncan
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, N2T 2N4, Canada
| | - Hei S Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
27
|
Li C, Kiefer MF, Dittrich S, Flores RE, Meng Y, Yang N, Wulff S, Gohlke S, Sommerfeld M, Wowro SJ, Petricek KM, Dürbeck D, Spranger L, Mai K, Scholz H, Schulz TJ, Schupp M. Adipose retinol saturase is regulated by β-adrenergic signaling and its deletion impairs lipolysis in adipocytes and acute cold tolerance in mice. Mol Metab 2024; 79:101855. [PMID: 38128827 PMCID: PMC10784691 DOI: 10.1016/j.molmet.2023.101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE Retinol saturase (RetSat) is an endoplasmic reticulum-localized oxidoreductase highly expressed in organs involved in lipid metabolism such as white (WAT) and brown adipose tissue (BAT). Cold exposure was shown to increase RETSAT protein in BAT but its relevance for non-shivering thermogenesis, a process with beneficial effects on metabolic health, is unknown. METHODS We analyzed the regulation of RetSat expression in white and brown adipocytes and different murine adipose tissue depots upon β-adrenergic stimulation and cold exposure. RetSat function during the differentiation and β-adrenergic stimulation of brown adipocytes was dissected by loss-of-function experiments. Mice with BAT-specific deletion of RetSat were generated and exposed to cold. Gene expression in human WAT was analyzed and the effect of RetSat depletion on adipocyte lipolysis investigated. RESULTS We show that cold exposure induces RetSat expression in both WAT and BAT of mice via β-adrenergic signaling. In brown adipocytes, RetSat has minor effects on differentiation but is required for maximal thermogenic gene and protein expression upon β-adrenergic stimulation and mitochondrial respiration. In mice, BAT-specific deletion of RetSat impaired acute but not long-term adaptation to cold exposure. RetSat expression in subcutaneous WAT of humans correlates with the expression of genes related to mitochondrial function. Mechanistically, we found that RetSat depletion impaired β-agonist-induced lipolysis, a major regulator of thermogenic gene expression in adipocytes. CONCLUSIONS Thus, RetSat expression is under β-adrenergic control and determines thermogenic capacity of brown adipocytes and acute cold tolerance in mice. Modulating RetSat activity may allow for therapeutic interventions towards pathologies with inadequate metabolic activity.
Collapse
Affiliation(s)
- Chen Li
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marie F Kiefer
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Dittrich
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roberto E Flores
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yueming Meng
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Na Yang
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sascha Wulff
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabrina Gohlke
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Nuthetal, Germany
| | - Manuela Sommerfeld
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sylvia J Wowro
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstantin M Petricek
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominic Dürbeck
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonard Spranger
- Department of Endocrinology and Metabolism, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Berlin, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Holger Scholz
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Michael Schupp
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Rezaei Z, Tahmasebi A, Pourabbas B. Using meta-analysis and machine learning to investigate the transcriptional response of immune cells to Leishmania infection. PLoS Negl Trop Dis 2024; 18:e0011892. [PMID: 38190401 PMCID: PMC10798641 DOI: 10.1371/journal.pntd.0011892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/19/2024] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Leishmaniasis is a parasitic disease caused by the Leishmania protozoan affecting millions of people worldwide, especially in tropical and subtropical regions. The immune response involves the activation of various cells to eliminate the infection. Understanding the complex interplay between Leishmania and the host immune system is crucial for developing effective treatments against this disease. METHODS This study collected extensive transcriptomic data from macrophages, dendritic, and NK cells exposed to Leishmania spp. Our objective was to determine the Leishmania-responsive genes in immune system cells by applying meta-analysis and feature selection algorithms, followed by co-expression analysis. RESULTS As a result of meta-analysis, we discovered 703 differentially expressed genes (DEGs), primarily associated with the immune system and cellular metabolic processes. In addition, we have substantiated the significance of transcription factor families, such as bZIP and C2H2 ZF, in response to Leishmania infection. Furthermore, the feature selection techniques revealed the potential of two genes, namely G0S2 and CXCL8, as biomarkers and therapeutic targets for Leishmania infection. Lastly, our co-expression analysis has unveiled seven hub genes, including PFKFB3, DIAPH1, BSG, BIRC3, GOT2, EIF3H, and ATF3, chiefly related to signaling pathways. CONCLUSIONS These findings provide valuable insights into the molecular mechanisms underlying the response of immune system cells to Leishmania infection and offer novel potential targets for the therapeutic goals.
Collapse
Affiliation(s)
- Zahra Rezaei
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Tahmasebi
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Pourabbas
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Engin A. Lipid Storage, Lipolysis, and Lipotoxicity in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:97-129. [PMID: 39287850 DOI: 10.1007/978-3-031-63657-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
30
|
Kulminskaya N, Rodriguez Gamez CF, Hofer P, Cerk IK, Dubey N, Viertlmayr R, Sagmeister T, Pavkov-Keller T, Zechner R, Oberer M. Unmasking crucial residues in adipose triglyceride lipase for coactivation with comparative gene identification-58. J Lipid Res 2024; 65:100491. [PMID: 38135254 PMCID: PMC10828586 DOI: 10.1016/j.jlr.2023.100491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Lipolysis is an essential metabolic process that releases unesterified fatty acids from neutral lipid stores to maintain energy homeostasis in living organisms. Adipose triglyceride lipase (ATGL) plays a key role in intracellular lipolysis and can be coactivated upon interaction with the protein comparative gene identification-58 (CGI-58). The underlying molecular mechanism of ATGL stimulation by CGI-58 is incompletely understood. Based on analysis of evolutionary conservation, we used site directed mutagenesis to study a C-terminally truncated variant and full-length mouse ATGL providing insights in the protein coactivation on a per-residue level. We identified the region from residues N209-N215 in ATGL as essential for coactivation by CGI-58. ATGL variants with amino acids exchanges in this region were still able to hydrolyze triacylglycerol at the basal level and to interact with CGI-58, yet could not be activated by CGI-58. Our studies also demonstrate that full-length mouse ATGL showed higher tolerance to specific single amino acid exchanges in the N209-N215 region upon CGI-58 coactivation compared to C-terminally truncated ATGL variants. The region is either directly involved in protein-protein interaction or essential for conformational changes required in the coactivation process. Three-dimensional models of the ATGL/CGI-58 complex with the artificial intelligence software AlphaFold demonstrated that a large surface area is involved in the protein-protein interaction. Mapping important amino acids for coactivation of both proteins, ATGL and CGI-58, onto the 3D model of the complex locates these essential amino acids at the predicted ATGL/CGI-58 interface thus strongly corroborating the significance of these residues in CGI-58-mediated coactivation of ATGL.
Collapse
Affiliation(s)
| | | | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Ines Kathrin Cerk
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Noopur Dubey
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Roland Viertlmayr
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Theo Sagmeister
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria.
| |
Collapse
|
31
|
Zelows MM, Cady C, Dharanipragada N, Mead AE, Kipp ZA, Bates EA, Varadharajan V, Banerjee R, Park SH, Shelman NR, Clarke HA, Hawkinson TR, Medina T, Sun RC, Lydic TA, Hinds TD, Brown JM, Softic S, Graf GA, Helsley RN. Loss of carnitine palmitoyltransferase 1a reduces docosahexaenoic acid-containing phospholipids and drives sexually dimorphic liver disease in mice. Mol Metab 2023; 78:101815. [PMID: 37797918 PMCID: PMC10568566 DOI: 10.1016/j.molmet.2023.101815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND AND AIMS Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the role of liver-specific CPT1a on hepatic lipid metabolism. APPROACH AND RESULTS Male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (60% kcal fat) for 15 weeks. Mice were necropsied after a 16 h fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging, kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis (Plin2, Cidec, G0S2) and in polyunsaturated fatty acid metabolism (Elovl5, Fads1, Elovl2), while only female LKO mice increased genes involved in inflammation (Ly6d, Mmp12, Cxcl2). Kinase profiling showed decreased protein kinase A activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. CONCLUSIONS Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury.
Collapse
Affiliation(s)
- Mikala M Zelows
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Corissa Cady
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nikitha Dharanipragada
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Anna E Mead
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nathan R Shelman
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Harrison A Clarke
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Tara R Hawkinson
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Terrymar Medina
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - J Mark Brown
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samir Softic
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Gregory A Graf
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Robert N Helsley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
32
|
Huang M, Zhang Y, Park J, Chowdhury K, Xu J, Lu A, Wang L, Zhang W, Ekser B, Yu L, Dong XC. ATG14 plays a critical role in hepatic lipid droplet homeostasis. Metabolism 2023; 148:155693. [PMID: 37741434 PMCID: PMC10591826 DOI: 10.1016/j.metabol.2023.155693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND & AIMS Autophagy-related 14 (ATG14) is a key regulator of autophagy. ATG14 is also localized to lipid droplet; however, the function of ATG14 on lipid droplet remains unclear. In this study, we aimed to elucidate the role of ATG14 in lipid droplet homeostasis. METHODS ATG14 loss-of-function and gain-of-function in lipid droplet metabolism were analyzed by fluorescence imaging in ATG14 knockdown or overexpression hepatocytes. Specific domains involved in the ATG14 targeting to lipid droplets were analyzed by deletion or site-specific mutagenesis. ATG14-interacting proteins were analyzed by co-immunoprecipitation. The effect of ATG14 on lipolysis was analyzed in human hepatocytes and mouse livers that were deficient in ATG14, comparative gene identification-58 (CGI-58), or both. RESULTS Our data show that ATG14 is enriched on lipid droplets in hepatocytes. Mutagenesis analysis reveals that the Barkor/ATG14 autophagosome targeting sequence (BATS) domain of ATG14 is responsible for the ATG14 localization to lipid droplets. Co-immunoprecipitation analysis illustrates that ATG14 interacts with adipose triglyceride lipase (ATGL) and CGI-58. Moreover, ATG14 also enhances the interaction between ATGL and CGI-58. In vitro lipolysis analysis demonstrates that ATG14 deficiency remarkably decreases triglyceride hydrolysis. CONCLUSIONS Our data suggest that ATG14 can directly enhance lipid droplet breakdown through interactions with ATGL and CGI-58.
Collapse
Affiliation(s)
- Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jimin Park
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kushan Chowdhury
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiazhi Xu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alex Lu
- Park Tudor School, Indianapolis, IN, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenjun Zhang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Burcin Ekser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liqing Yu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA..
| |
Collapse
|
33
|
Menon D, Bhapkar A, Manchandia B, Charak G, Rathore S, Jha RM, Nahak A, Mondal M, Omrane M, Bhaskar AK, Thukral L, Thiam AR, Gandotra S. ARL8B mediates lipid droplet contact and delivery to lysosomes for lipid remobilization. Cell Rep 2023; 42:113203. [PMID: 37777960 DOI: 10.1016/j.celrep.2023.113203] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/09/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Lipid droplets (LDs) play a crucial role in maintaining cellular lipid balance by storing and delivering lipids as needed. However, the intricate lipolytic pathways involved in LD turnover remain poorly described, hindering our comprehension of lipid catabolism and related disorders. Here, we show a function of the small GTPase ARL8B in mediating LD turnover in lysosomes. ARL8B-GDP localizes to LDs, while ARL8-GTP predominantly favors lysosomes. GDP binding induces a conformation with an exposed N-terminal amphipathic helix, enabling ARL8B to bind to LDs. By associating with LDs and lysosomes, and with its property to form a heterotypic complex, ARL8B mediates LD-lysosome contacts and efficient lipid transfer between these organelles. In human macrophages, this ARL8B-dependent LD turnover mechanism appears as the major lipolytic pathway. Our finding opens exciting possibilities for understanding the molecular mechanisms underlying LD degradation and its potential implications for inflammatory disorders.
Collapse
Affiliation(s)
- Dilip Menon
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Apoorva Bhapkar
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Bhoomika Manchandia
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India
| | - Gitanjali Charak
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India
| | - Surabhi Rathore
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Mohan Jha
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arpita Nahak
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Moumita Mondal
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohyeddine Omrane
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Akash Kumar Bhaskar
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France.
| | - Sheetal Gandotra
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
34
|
Hatano M, Akiyama Y, Shimada S, Yagi K, Akahoshi K, Itoh M, Tanabe M, Ogawa Y, Tanaka S. Loss of KDM6B epigenetically confers resistance to lipotoxicity in nonalcoholic fatty liver disease-related HCC. Hepatol Commun 2023; 7:e0277. [PMID: 37782459 PMCID: PMC10545410 DOI: 10.1097/hc9.0000000000000277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/09/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND NAFLD caused by abnormalities in hepatic lipid metabolism is associated with an increased risk of developing HCC. The molecular mechanisms underlying the progression of NAFLD-related HCC are not fully understood. We investigated the molecular mechanism and role of KDM6B downregulation in NAFLD-related HCC after the KDM6B gene was identified using microarray analysis as commonly downregulated in mouse NAFLD-related HCC and human nonhepatitis B and nonhepatitis C viral-HCC. METHODS The 5-hydroxymethylcytosine levels of KDM6B in HCC cells were determined using glycosylated hydroxymethyl-sensitive PCR. Microarray and chromatin immunoprecipitation analyses using KDM6B-knockout (KO) cells were used to identify KDM6B target genes. Lipotoxicity was assessed using a palmitate-treated cell proliferation assay. Immunohistochemistry was used to evaluate KDM6B expression in human HCC tissues. RESULTS KDM6B expression levels in HCC cells correlated with the 5-hydroxymethylcytosine levels in the KDM6B gene body region. Gene set enrichment analysis revealed that the lipid metabolism pathway was suppressed in KDM6B-KO cells. KDM6B-KO cells acquired resistance to lipotoxicity (p < 0.01) and downregulated the expression of G0S2, an adipose triglyceride lipase/patatin like phospholipase domain containing 2 (ATGL/PNPLA2) inhibitor, through increased histone H3 lysine-27 trimethylation levels. G0S2 knockdown in KDM6B-expressed HCC cells conferred lipotoxicity resistance, whereas ATGL/PNPLA2 inhibition in the KDM6B-KO cells reduced these effects. Immunohistochemistry revealed that KDM6B expression was decreased in human NAFLD-related HCC tissues (p < 0.001), which was significantly associated with decreased G0S2 expression (p = 0.032). CONCLUSIONS KDM6B-disrupted HCC acquires resistance to lipotoxicity via ATGL/PNPLA2 activation caused by epigenetic downregulation of G0S2 expression. Reduced KDM6B and G0S2 expression levels are common in NAFLD-related HCC. Targeting the KDM6B-G0S2-ATGL/PNPLA2 pathway may be a useful therapeutic strategy for NAFLD-related HCC.
Collapse
Affiliation(s)
- Megumi Hatano
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Yagi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiichi Akahoshi
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiko Itoh
- Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
35
|
Huang J, Siyar S, Sharma R, Herrig I, Wise L, Aidt S, List E, Kopchick JJ, Puri V, Lee KY. Adipocyte Subpopulations Mediate Growth Hormone-induced Lipolysis and Glucose Tolerance in Male Mice. Endocrinology 2023; 164:bqad151. [PMID: 37897489 DOI: 10.1210/endocr/bqad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
In adipose tissue, growth hormone (GH) stimulates lipolysis, leading to an increase in plasma free fatty acid levels and a reduction in insulin sensitivity. In our previous studies, we have found that GH increases lipolysis by reducing peroxisome proliferator-activated receptor γ (PPARγ) transcription activity, leading to a reduction of tat-specific protein 27 (FSP27, also known as CIDEC) expression. In previous studies, our laboratory uncovered 3 developmentally distinct subpopulations of white adipocytes. In this manuscript, we show that one of the subpopulations, termed type 2 adipocytes, has increased GH-induced signaling and lipolysis compared to other adipocyte subtypes. To assess the physiological role of GH-mediated lipolysis mediated by this adipocyte subpopulation, we specifically expressed human FSP27 (hFSP27) transgene in type 2 adipocytes (type2Ad-hFSP27tg mice). Systemically, male type2Ad-hFSP27tg mice displayed reduced serum glycerol release and nonesterified fatty acids levels after acute GH treatment, and improvement in acute, but not chronic, GH-induced glucose intolerance. Furthermore, we demonstrate that type2Ad-hFSP27tg mice displayed improved hepatic insulin signaling. Taken together, these results indicate that this adipocyte subpopulation is a critical regulator of the GH-mediated lipolytic and metabolic response. Thus, further investigation of adipocyte subpopulations may provide novel treatment strategies to regulate GH-induced glucose intolerance in patients with growth and metabolic disorders.
Collapse
Affiliation(s)
- Jun Huang
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sohana Siyar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Rita Sharma
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Isabella Herrig
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Lauren Wise
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Spencer Aidt
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Edward List
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
36
|
Dong Y, Wei Y, Wang L, Song K, Zhang C, Lu K, Rahimnejad S. Dietary n-3/n-6 polyunsaturated fatty acid ratio modulates growth performance in spotted seabass ( Lateolabrax maculatus) through regulating lipid metabolism, hepatic antioxidant capacity and intestinal health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:20-31. [PMID: 37234947 PMCID: PMC10208799 DOI: 10.1016/j.aninu.2023.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023]
Abstract
An 8-week feeding experiment was carried out to explore the effects of dietary n-3/n-6 polyunsaturated fatty acid (PUFA) ratio on growth performance, lipid metabolism, hepatic antioxidant status, and gut flora of spotted seabass (Lateolabrax maculatus). Six experimental diets were formulated to contain different levels of two purified oil sources including docosahexaenoic and eicosapentaenoic acids enriched oil (n-3) and linoleic acid-enriched oil (n-6) leading to n-3/n-6 PUFA ratios of 0.04, 0.35, 0.66, 1.35, 2.45 and 16.17. Each diet was fed to triplicate groups of juvenile L. maculatus (11.06 ± 0.20 g, 30 fish/tank). Final body weight (FBW), weight gain (WG), specific growth rates (SGR), protein efficiency ratio (PER) and feed utilization efficiency increased as n-3/n-6 PUFA ratio increased up to a certain level, and then decreased thereafter. Fish fed the diet with n-3/n-6 PUFA ratio of 0.66 exhibited the highest FBW, WG, SGR and PER and the lowest feed conversion ratio. Lower n-3/n-6 PUFA ratios induced up-regulated expression of lipid synthesis-related genes (fas, acc2 and srebp-1c) and down-regulated expression of lipolysis related genes (atgl, pparα, cpt-1 and aox). Higher expression of lipolysis-related genes (atgl, pparα and cpt-1) was recorded at moderate n-3/n-6 PUFA ratios (0.66 to 1.35). Moreover, inappropriate n-3/n-6 PUFA ratios triggered up-regulation of pro-inflammatory genes (il-6 and tnf-α) and down-regulation of anti-inflammatory genes (il-4 and il-10) in the intestine. The diet with n-3/n-6 PUFA ratio of 0.66 inhibited intestine inflammation, improved intestinal flora richness, increased the abundance of beneficial bacteria such as Lactobacillus, Alloprevotella and Ruminococcus, and reduced the abundance of harmful bacteria including Escherichia-Shigella and Enterococcus. In summary, it could be suggested that a dietary n-3/n-6 PUFA ratio of 0.66 can improve growth performance and feed utilization in L. maculatus, as is deemed to be mediated through regulation of lipid metabolism and intestinal flora.
Collapse
Affiliation(s)
- Yanzou Dong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yu Wei
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ling Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia 30100, Spain
| |
Collapse
|
37
|
Johnson S, Bao H, McMahon C, Chen Y, Burr S, Anderson A, Madeyski-Bengtson K, Lindén D, Han X, Liu J. Substrate-Specific Function of PNPLA3 Facilitates Hepatic VLDL-Triglyceride Secretion During Stimulated Lipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.553213. [PMID: 37693552 PMCID: PMC10491159 DOI: 10.1101/2023.08.30.553213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The I148M variant of PNPLA3 is strongly linked to hepatic steatosis. Evidence suggests a gain-of-function role for the I148M mutant as an ATGL inhibitor, leaving the physiological relevance of wild-type PNPLA3 undefined. Here we show that PNPLA3 selectively degrades triglycerides (TGs) enriched in polyunsaturated fatty acids (PUFAs) independently of ATGL in cultured cells and mice. Lipidomics and metabolite tracing analyses demonstrated that PNPLA3 mobilizes PUFAs from intracellular TGs for phospholipid desaturation, supporting hepatic secretion of TG-rich lipoproteins. Consequently, mice with liver-specific knockout or acute knockdown of PNPLA3 both exhibited aggravated liver steatosis and concomitant decreases in plasma VLDL-TG, phenotypes that manifest only under lipogenic conditions. I148M-knockin mice similarly displayed impaired hepatic TG secretion during lipogenic stimulation. Our results highlight a specific context whereby PNPLA3 facilitates the balance between hepatic TG storage and secretion and suggest the potential contributions of I148M variant loss-of-function to the development of hepatic steatosis in humans. Summary Statement We define the physiological role of wild type PNPLA3 in maintaining hepatic VLDL-TG secretion.
Collapse
|
38
|
Zelows MM, Cady C, Dharanipragada N, Mead AE, Kipp ZA, Bates EA, Varadharajan V, Banerjee R, Park SH, Shelman NR, Clarke HA, Hawkinson TR, Medina T, Sun RC, Lydic TA, Hinds TD, Brown JM, Softic S, Graf GA, Helsley RN. Loss of Carnitine Palmitoyltransferase 1a Reduces Docosahexaenoic Acid-Containing Phospholipids and Drives Sexually Dimorphic Liver Disease in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553705. [PMID: 37645721 PMCID: PMC10462091 DOI: 10.1101/2023.08.17.553705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background and Aims Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the impact by which liver-specific CPT1a deletion impacts hepatic lipid metabolism. Approach and Results Six-to-eight-week old male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (HFD; 60% kcal fat) for 15 weeks. Mice were necropsied after a 16 hour fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase (ALT) levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in both whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis ( Plin2 , Cidec , G0S2 ) and in polyunsaturated fatty acid (PUFA) metabolism ( Elovl5, Fads1, Elovl2 ), while only female LKO mice increased genes involved in inflammation ( Ly6d, Mmp12, Cxcl2 ). Kinase profiling showed decreased protein kinase A (PKA) activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. Conclusions Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury. Graphical Summary
Collapse
|
39
|
Cremer J, Brohée L, Dupont L, Lefevre C, Peiffer R, Saarinen AM, Peulen O, Bindels L, Liu J, Colige A, Deroanne CF. Acidosis-induced regulation of adipocyte G0S2 promotes crosstalk between adipocytes and breast cancer cells as well as tumor progression. Cancer Lett 2023:216306. [PMID: 37442366 DOI: 10.1016/j.canlet.2023.216306] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Bidirectional interactions between cancer cells and their microenvironment govern tumor progression. Among the stromal cells in this microenvironment, adipocytes have been reported to upregulate cancer cell migration and invasion by producing fatty acids. Conversely, cancer cells alter adipocyte phenotype notably via increased lipolysis. We aimed to identify the mechanisms through which cancer cells trigger adipocyte lipolysis and evaluate the functional consequences on cancer progression. Here, we show that cancer cell-induced acidification of the extracellular medium strongly promotes preadipocyte lipolysis through a mechanism that does not involve lipophagy but requires adipose triglyceride lipase (ATGL) activity. This increased lipolysis is triggered mainly by attenuation of the G0/G1 switch gene 2 (G0S2)-induced inhibition of ATGL. G0S2-mediated regulation in preadipocytes affects their communication with breast cancer cells, modifying the phenotype of the cancer cells and increasing their resistance to chemotherapeutic agents in vitro. Furthermore, we demonstrate that the adipocyte-specific overexpression of G0S2 impairs mammary tumor growth and lung metastasis formation in vivo. Our results highlight the importance of acidosis in cancer cell-adipocyte crosstalk and identify G0S2 as the main regulator of cancer-induced lipolysis, regulating tumor establishment and spreading.
Collapse
Affiliation(s)
- Julie Cremer
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium
| | - Laura Brohée
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium
| | - Laura Dupont
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium
| | - Camille Lefevre
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.11, 1200, Brussels, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium
| | - Alicia M Saarinen
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona Scottsdale, AZ, USA
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium
| | - Laure Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.11, 1200, Brussels, Belgium
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium
| | - Christophe F Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium.
| |
Collapse
|
40
|
Dalen KT, Li Y. Regulation of lipid droplets and cholesterol metabolism in adrenal cortical cells. VITAMINS AND HORMONES 2023; 124:79-136. [PMID: 38408810 DOI: 10.1016/bs.vh.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal gland is composed of two distinctly different endocrine moieties. The interior medulla consists of neuroendocrine chromaffin cells that secrete catecholamines like adrenaline and noradrenaline, while the exterior cortex consists of steroidogenic cortical cells that produce steroid hormones, such as mineralocorticoids (aldosterone), glucocorticoids (cortisone and cortisol) and androgens. Synthesis of steroid hormones in cortical cells requires substantial amounts of cholesterol, which is the common precursor for steroidogenesis. Cortical cells may acquire cholesterol from de novo synthesis and uptake from circulating low- and high-density lipoprotein particles (LDL and HDL). As cholesterol is part of the plasma membrane in all mammalian cells and an important regulator of membrane fluidity, cellular levels of free cholesterol are tightly regulated. To ensure a robust supply of cholesterol for steroidogenesis and to avoid cholesterol toxicity, cortical cells store large amounts of cholesterol as cholesteryl esters in intracellular lipid droplets. Cortical steroidogenesis relies on both mobilization of cholesterol from lipid droplets and constant uptake of circulating cholesterol to replenish lipid droplet stores. This chapter will describe mechanisms involved in cholesterol uptake, cholesteryl ester synthesis, lipid droplet formation, hydrolysis of stored cholesteryl esters, as well as their impact on steroidogenesis. Additionally, animal models and human diseases characterized by altered cortical cholesteryl ester storage, with or without abnormal steroidogenesis, will be discussed.
Collapse
Affiliation(s)
- Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; The Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | - Yuchuan Li
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
41
|
Yue M, Hu B, Li J, Chen R, Yuan Z, Xiao H, Chang H, Jiu Y, Cai K, Ding B. Coronaviral ORF6 protein mediates inter-organelle contacts and modulates host cell lipid flux for virus production. EMBO J 2023; 42:e112542. [PMID: 37218505 PMCID: PMC10308351 DOI: 10.15252/embj.2022112542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Lipid droplets (LDs) form inter-organelle contacts with the endoplasmic reticulum (ER) that promote their biogenesis, while LD contacts with mitochondria enhance β-oxidation of contained fatty acids. Viruses have been shown to take advantage of lipid droplets to promote viral production, but it remains unclear whether they also modulate the interactions between LDs and other organelles. Here, we showed that coronavirus ORF6 protein targets LDs and is localized to the mitochondria-LD and ER-LD contact sites, where it regulates LD biogenesis and lipolysis. At the molecular level, we find that ORF6 inserts into the LD lipid monolayer via its two amphipathic helices. ORF6 further interacts with ER membrane proteins BAP31 and USE1 to mediate ER-LDs contact formation. Additionally, ORF6 interacts with the SAM complex in the mitochondrial outer membrane to link mitochondria to LDs. In doing so, ORF6 promotes cellular lipolysis and LD biogenesis to reprogram host cell lipid flux and facilitate viral production.
Collapse
Affiliation(s)
- Mengzhen Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bing Hu
- Institute of Health Inspection and TestingHubei Provincial Center for Disease Control and PreventionWuhanChina
| | - Jiajia Li
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ruifeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hurong Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Haishuang Chang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of ShanghaiChinese Academy of SciencesShanghaiChina
| | - Kun Cai
- Institute of Health Inspection and TestingHubei Provincial Center for Disease Control and PreventionWuhanChina
| | - Binbin Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Cell Architecture Research InstituteHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
42
|
Li J, Jin C, Gustafsson S, Rao A, Wabitsch M, Park CY, Quertermous T, Knowles JW, Bielczyk-Maczynska E. Single-cell transcriptome dataset of human and mouse in vitro adipogenesis models. Sci Data 2023; 10:387. [PMID: 37328521 PMCID: PMC10275883 DOI: 10.1038/s41597-023-02293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Adipogenesis is a process in which fat-specific progenitor cells (preadipocytes) differentiate into adipocytes that carry out the key metabolic functions of the adipose tissue, including glucose uptake, energy storage, and adipokine secretion. Several cell lines are routinely used to study the molecular regulation of adipogenesis, in particular the immortalized mouse 3T3-L1 line and the primary human Simpson-Golabi-Behmel syndrome (SGBS) line. However, the cell-to-cell variability of transcriptional changes prior to and during adipogenesis in these models is not well understood. Here, we present a single-cell RNA-Sequencing (scRNA-Seq) dataset collected before and during adipogenic differentiation of 3T3-L1 and SGBS cells. To minimize the effects of experimental variation, we mixed 3T3-L1 and SGBS cells and used computational analysis to demultiplex transcriptomes of mouse and human cells. In both models, adipogenesis results in the appearance of three cell clusters, corresponding to preadipocytes, early and mature adipocytes. These data provide a groundwork for comparative studies on these widely used in vitro models of human and mouse adipogenesis, and on cell-to-cell variability during this process.
Collapse
Affiliation(s)
- Jiehan Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christopher Jin
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Stefan Gustafsson
- Clinical Epidemiology Unit, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Abhiram Rao
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Center for Rare Endocrine Diseases, Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Centre, Ulm, 89075, Germany
| | - Chong Y Park
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joshua W Knowles
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Ewa Bielczyk-Maczynska
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
43
|
Guerrero-Santoro J, Morizane M, Oh SY, Mishima T, Goff JP, Bildirici I, Sadovsky E, Ouyang Y, Tyurin VA, Tyurina YY, Kagan VE, Sadovsky Y. The lipase cofactor CGI58 controls placental lipolysis. JCI Insight 2023; 8:168717. [PMID: 37212279 DOI: 10.1172/jci.insight.168717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
In eutherians, the placenta plays a critical role in the uptake, storage, and metabolism of lipids. These processes govern the availability of fatty acids to the developing fetus, where inadequate supply has been associated with substandard fetal growth. Whereas lipid droplets are essential for the storage of neutral lipids in the placenta and many other tissues, the processes that regulate placental lipid droplet lipolysis remain largely unknown. To assess the role of triglyceride lipases and their cofactors in determining placental lipid droplet and lipid accumulation, we assessed the role of patatin like phospholipase domain containing 2 (PNPLA2) and comparative gene identification-58 (CGI58) in lipid droplet dynamics in the human and mouse placenta. While both proteins are expressed in the placenta, the absence of CGI58, not PNPLA2, markedly increased placental lipid and lipid droplet accumulation. These changes were reversed upon restoration of CGI58 levels selectively in the CGI58-deficient mouse placenta. Using co-immunoprecipitation, we found that, in addition to PNPLA2, PNPLA9 interacts with CGI58. PNPLA9 was dispensable for lipolysis in the mouse placenta yet contributed to lipolysis in human placental trophoblasts. Our findings establish a crucial role for CGI58 in placental lipid droplet dynamics and, by extension, in nutrient supply to the developing fetus.
Collapse
Affiliation(s)
- Jennifer Guerrero-Santoro
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mayumi Morizane
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Soo-Young Oh
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Takuya Mishima
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julie P Goff
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ibrahim Bildirici
- Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Elena Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health
- Department of Chemistry
- Department of Pharmacology and Chemical Biology
- Department of Radiation Oncology; and
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
44
|
Corbet AK, Bikorimana E, Boyd RI, Shokry D, Kries K, Gupta A, Paton A, Sun Z, Fazal Z, Freemantle SJ, Nelson ER, Spinella MJ, Singh R. G0S2 promotes antiestrogenic and pro-migratory responses in ER+ and ER- breast cancer cells. Transl Oncol 2023; 33:101676. [PMID: 37086619 DOI: 10.1016/j.tranon.2023.101676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
G0/G1 switch gene 2 (G0S2) is known to inhibit lipolysis by inhibiting adipose triglyceride lipase (ATGL). In this report, we dissect the role of G0S2 in ER+ versus ER- breast cancer. Overexpression of G0S2 in ER- cells increased cell proliferation, while G0S2 overexpression in ER+ cells decreased cell proliferation. Transcriptome analysis revealed that G0S2 mediated distinct but overlapping transcriptional responses in ER- and ER+ cells. G0S2 reduced genes associated with an epithelial phenotype, especially in ER- cells, including CDH1, ELF3, STEAP4 and TACSTD2, suggesting promotion of the epithelial-mesenchymal transition (EMT). G0S2 also repressed estrogen signaling and estrogen receptor target gene signatures, especially in ER+ cells, including TFF1 and TFF3. In addition, G0S2 overexpression increased cell migration in ER- cells and increased estrogen deprivation sensitivity in ER+ cells. Interestingly, two genes downstream of ATGL in fat utilization and very important in steroid hormone biosynthesis, HMGCS1 and HMGCS2, were downregulated in G0S2 overexpressing ER+ cells. In addition, HSD17B11, a gene that converts estradiol to its less estrogenic derivative, estrone, was highly upregulated in G0S2 overexpressing ER+ cells, suggesting G0S2 overexpression has a negative effect on estradiol production and maintenance. High expression of G0S2 and HSD17B11 was associated with improved relapse-free survival in breast cancer patients while high expression of HMGSC1 was associated with poor survival. Finally, we deleted G0S2 in breast cancer-prone MMTV-PyMT mice. Our data indicates a complex role for G0S2 in breast cancer, dependent on ER status, that may be partially mediated by suppression of the estrogen signaling pathway.
Collapse
Affiliation(s)
- Andrea K Corbet
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Emmanuel Bikorimana
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Raya I Boyd
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Doha Shokry
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kelly Kries
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ayush Gupta
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anneliese Paton
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhengyang Sun
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sarah J Freemantle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana IL 61801, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Carle Illinois College of Medicine University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana IL 61801, USA.
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
45
|
Maurya SK, Carley AN, Maurya CK, Lewandowski ED. Western Diet Causes Heart Failure With Reduced Ejection Fraction and Metabolic Shifts After Diastolic Dysfunction and Novel Cardiac Lipid Derangements. JACC Basic Transl Sci 2023; 8:422-435. [PMID: 37138801 PMCID: PMC10149654 DOI: 10.1016/j.jacbts.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 01/27/2023]
Abstract
Western diet (WD) impairs glucose tolerance and cardiac lipid dynamics, preceding heart failure with reduced ejection fraction (HFrEF) in mice. Unlike diabetic db/db mice with high cardiac triglyceride (TG) and rapid TG turnover, WD mice had high TG but slowed turnover, reducing lipolytic PPAR⍺ activation. WD deranged cardiac TG dynamics by imbalancing synthesis and lipolysis, with low cardiac TG lipase (ATGL), low ATGL co-activator, and high ATGL inhibitory peptide. By 24 weeks of WD, hearts shifted from diastolic dysfunction to diastolic dysfunction with HFrEF with decreases in GLUT4 and exogenous glucose oxidation and elevated β-hydroxybutyrate dehydrogenase 1 without increasing ketone oxidation.
Collapse
Affiliation(s)
- Santosh K. Maurya
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Andrew N. Carley
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Chandan K. Maurya
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - E. Douglas Lewandowski
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
46
|
Li J, Jin C, Gustafsson S, Rao A, Wabitsch M, Park CY, Quertermous T, Bielczyk-Maczynska E, Knowles JW. Single-cell transcriptome dataset of human and mouse in vitro adipogenesis models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534456. [PMID: 37034809 PMCID: PMC10081256 DOI: 10.1101/2023.03.27.534456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Adipogenesis is a process in which fat-specific progenitor cells (preadipocytes) differentiate into adipocytes that carry out the key metabolic functions of the adipose tissue, including glucose uptake, energy storage, and adipokine secretion. Several cell lines are routinely used to study the molecular regulation of adipogenesis, in particular the immortalized mouse 3T3-L1 line and the primary human Simpson-Golabi-Behmel syndrome (SGBS) line. However, the cell-to-cell variability of transcriptional changes prior to and during adipogenesis in these models is not well understood. Here, we present a single-cell RNA-Sequencing (scRNA-Seq) dataset collected before and during adipogenic differentiation of 3T3-L1 and SGBS cells. To minimize the effects of experimental variation, we mixed 3T3-L1 and SGBS cells and used computational analysis to demultiplex transcriptomes of mouse and human cells. In both models, adipogenesis results in the appearance of three cell clusters, corresponding to preadipocytes, early and mature adipocytes. These data provide a groundwork for comparative studies on human and mouse adipogenesis, as well as on cell-to-cell variability in gene expression during this process.
Collapse
Affiliation(s)
- Jiehan Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, 94305, USA
- These authors contributed equally: Jiehan Li, Christopher Jin
| | - Christopher Jin
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- These authors contributed equally: Jiehan Li, Christopher Jin
| | - Stefan Gustafsson
- Clinical Epidemiology Unit, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Abhiram Rao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Center for Rare Endocrine Diseases, Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Centre, Ulm, 89075, Germany
| | - Chong Y. Park
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, 94305, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, 94305, USA
| | - Ewa Bielczyk-Maczynska
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, 94305, USA
- These authors contributed equally: Jiehan Li, Christopher Jin
| | - Joshua W. Knowles
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, 94305, USA
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
47
|
Lim TY, Wilde BR, Thomas ML, Murphy KE, Vahrenkamp JM, Conway ME, Varley KE, Gertz J, Ayer DE. TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding. PLoS Biol 2023; 21:e3001778. [PMID: 36930677 PMCID: PMC10058090 DOI: 10.1371/journal.pbio.3001778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/29/2023] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
The c-Myc protooncogene places a demand on glucose uptake to drive glucose-dependent biosynthetic pathways. To meet this demand, c-Myc protein (Myc henceforth) drives the expression of glucose transporters, glycolytic enzymes, and represses the expression of thioredoxin interacting protein (TXNIP), which is a potent negative regulator of glucose uptake. A Mychigh/TXNIPlow gene signature is clinically significant as it correlates with poor clinical prognosis in triple-negative breast cancer (TNBC) but not in other subtypes of breast cancer, suggesting a functional relationship between Myc and TXNIP. To better understand how TXNIP contributes to the aggressive behavior of TNBC, we generated TXNIP null MDA-MB-231 (231:TKO) cells for our study. We show that TXNIP loss drives a transcriptional program that resembles those driven by Myc and increases global Myc genome occupancy. TXNIP loss allows Myc to invade the promoters and enhancers of target genes that are potentially relevant to cell transformation. Together, these findings suggest that TXNIP is a broad repressor of Myc genomic binding. The increase in Myc genomic binding in the 231:TKO cells expands the Myc-dependent transcriptome we identified in parental MDA-MB-231 cells. This expansion of Myc-dependent transcription following TXNIP loss occurs without an apparent increase in Myc's intrinsic capacity to activate transcription and without increasing Myc levels. Together, our findings suggest that TXNIP loss mimics Myc overexpression, connecting Myc genomic binding and transcriptional programs to the nutrient and progrowth signals that control TXNIP expression.
Collapse
Affiliation(s)
- Tian-Yeh Lim
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Blake R Wilde
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Mallory L Thomas
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Kristin E Murphy
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Megan E Conway
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Katherine E Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Donald E Ayer
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| |
Collapse
|
48
|
Kersten S. The impact of fasting on adipose tissue metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159262. [PMID: 36521736 DOI: 10.1016/j.bbalip.2022.159262] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/20/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Fasting and starvation were common occurrences during human evolution and accordingly have been an important environmental factor shaping human energy metabolism. Humans can tolerate fasting reasonably well through adaptative and well-orchestrated time-dependent changes in energy metabolism. Key features of the adaptive response to fasting are the breakdown of liver glycogen and muscle protein to produce glucose for the brain, as well as the gradual depletion of the fat stores, resulting in the release of glycerol and fatty acids into the bloodstream and the production of ketone bodies in the liver. In this paper, an overview is presented of our current understanding of the effects of fasting on adipose tissue metabolism. Fasting leads to reduced uptake of circulating triacylglycerols by adipocytes through inhibition of the activity of the rate-limiting enzyme lipoprotein lipase. In addition, fasting stimulates the degradation of stored triacylglycerols by activating the key enzyme adipose triglyceride lipase. The mechanisms underlying these events are discussed, with a special interest in insights gained from studies on humans. Furthermore, an overview is presented of the effects of fasting on other metabolic pathways in the adipose tissue, including fatty acid synthesis, glucose uptake, glyceroneogenesis, autophagy, and the endocrine function of adipose tissue.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands.
| |
Collapse
|
49
|
Høgild ML, Hjelholt AJ, Hansen J, Pedersen SB, Møller N, Wojtaszewski JFP, Johannsen M, Jessen N, Jørgensen JOL. Ketone Body Infusion Abrogates Growth Hormone-Induced Lipolysis and Insulin Resistance. J Clin Endocrinol Metab 2023; 108:653-664. [PMID: 36240323 DOI: 10.1210/clinem/dgac595] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/10/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Exogenous ketone body administration lowers circulating glucose levels but the underlying mechanisms are uncertain. OBJECTIVE We tested the hypothesis that administration of the ketone body β-hydroxybutyrate (βOHB) acutely increases insulin sensitivity via feedback suppression of circulating free fatty acid (FFA) levels. METHODS In a randomized, single-blinded crossover design, 8 healthy men were studied twice with a growth hormone (GH) infusion to induce lipolysis in combination with infusion of either βOHB or saline. Each study day comprised a basal period and a hyperinsulinemic-euglycemic clamp combined with a glucose tracer and adipose tissue and skeletal muscle biopsies. RESULTS βOHB administration profoundly suppressed FFA levels concomitantly with a significant increase in glucose disposal and energy expenditure. This was accompanied by a many-fold increase in skeletal muscle content of both βOHB and its derivative acetoacetate. CONCLUSION Our data unravel an insulin-sensitizing effect of βOHB, which we suggest is mediated by concomitant suppression of lipolysis.
Collapse
Affiliation(s)
- Morten Lyng Høgild
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Region Midtjylland 8200, Denmark
| | - Astrid Johannesson Hjelholt
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Region Midtjylland 8200, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus N, Region Midtjylland 8200, Denmark
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus N 8200, Denmark
| | - Steen Bønløkke Pedersen
- Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus N, Region Midtjylland 8200, Denmark
| | - Niels Møller
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Region Midtjylland 8200, Denmark
- Department of Forensic Medicine, Aarhus University, Aarhus N 8200, Denmark
| | - Jørgen F P Wojtaszewski
- August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus N 8200, Denmark
| | - Niels Jessen
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus N, Region Midtjylland 8200, Denmark
- Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus N, Region Midtjylland 8200, Denmark
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Jens Otto Lunde Jørgensen
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Region Midtjylland 8200, Denmark
| |
Collapse
|
50
|
Honeder SE, Tomin T, Schinagl M, Pfleger R, Hoehlschen J, Darnhofer B, Schittmayer M, Birner‐Gruenberger R. Research Advances Through Activity‐Based Lipid Hydrolase Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sophie Elisabeth Honeder
- Research and Diagnostic Institute of Pathology Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Maximilian Schinagl
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Raphael Pfleger
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Julia Hoehlschen
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Barbara Darnhofer
- Core Facility Mass Spectrometry Center for Medical Research Medical University of Graz Neue Stiftingtalstraße 24 8036 Graz Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Ruth Birner‐Gruenberger
- Research and Diagnostic Institute of Pathology Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| |
Collapse
|