1
|
Dobersch S, Yamamoto N, Schutter A, Cavender SM, Robertson TM, Kartha N, Samraj AN, Doron B, Poole LA, Wladyka CL, Zhang A, Jang GH, Mahalingam AH, Barreto G, Raghavan S, Narla G, Notta F, Eisenman RN, Hsieh AC, Kugel S. HMGA2 and protein leucine methylation drive pancreatic cancer lineage plasticity. Nat Commun 2025; 16:4866. [PMID: 40419509 DOI: 10.1038/s41467-025-60129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
Basal pancreatic ductal adenocarcinoma (PDAC) has the worst overall survival and is the only subtype that serves as an independent poor prognostic factor. We identify elevated levels of LIN28B and its downstream target, HMGA2, in basal PDAC. Notably, LIN28B significantly accelerates KRAS-driven PDAC progression in a mouse model. Here, we show that HMGA2 promotes basal PDAC pathogenesis by enhancing mRNA translation downstream of LIN28B. Mechanistically, HMGA2 suppresses leucine carboxyl methyltransferase 1 (LCMT1) at the chromatin level, reducing PP2A methylation and activity. This leads to increased phosphorylation of S6K and eIF4B, boosting mRNA translation. Additionally, HMGA2 downregulates B56α (PPP2R5A), disrupting functional PP2A holoenzyme assembly and further sustaining phosphorylated S6K levels. Impaired PP2A function mimics HMGA2's effects, reinforcing increased mRNA translation and basal lineage features. This work uncovers a critical link between the LIN28B/HMGA2 axis, protein synthesis, and PDAC lineage specificity via LCMT1-mediated PP2A methylation and B56α-PP2A disruption.
Collapse
Affiliation(s)
| | - Naomi Yamamoto
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Molecular & Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Aidan Schutter
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sarah M Cavender
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tess M Robertson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nithya Kartha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Annie N Samraj
- Division of Transfusion Medicine, Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Ben Doron
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lisa A Poole
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Amy Zhang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Srivatsan Raghavan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew C Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sita Kugel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Lawson ME, Hoffman S, Sanu M, Morris D, Merkhofer E, Toering Peters S, Tsotakos N, Rele CP, Reed LK. Gene model for the ortholog of wrd in Drosophila ananassae. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.000928. [PMID: 40235673 PMCID: PMC11997712 DOI: 10.17912/micropub.biology.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/30/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
Gene model for the ortholog of well-rounded ( wrd ) in the May 2011 (Agencourt dana_caf1/DanaCAF1) Genome Assembly (GenBank Accession: GCA_000005115.1 ) of Drosophila ananassae . This ortholog was characterized as part of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus Drosophila using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate Research Experiences.
Collapse
|
3
|
Verbinnen I, Douzgou Houge S, Hsieh TC, Lesmann H, Kirchhoff A, Geneviève D, Brimble E, Lenaerts L, Haesen D, Levy RJ, Thevenon J, Faivre L, Marco E, Chong JX, Bamshad M, Patterson K, Mirzaa GM, Foss K, Dobyns W, White SM, Pais L, O'Heir E, Itzikowitz R, Donald KA, Van der Merwe C, Mussa A, Cervini R, Giorgio E, Roscioli T, Dias KR, Evans CA, Brown NJ, Ruiz A, Trujillo Quintero JP, Rabin R, Pappas J, Yuan H, Lachlan K, Thomas S, Devlin A, Wright M, Martin R, Karwowska J, Posmyk R, Chatron N, Stark Z, Heath O, Delatycki M, Buchert R, Korenke GC, Ramsey K, Narayanan V, Grange DK, Weisenberg JL, Haack TB, Karch S, Kipkemoi P, Mangi M, Bindels de Heus KGCB, de Wit MCY, Barakat TS, Lim D, Van Winckel G, Spillmann RC, Shashi V, Jacob M, Stehr AM, Krawitz P, Douzgos Houge G, Janssens V. Pathogenic de novo variants in PPP2R5C cause a neurodevelopmental disorder within the Houge-Janssens syndrome spectrum. Am J Hum Genet 2025; 112:554-571. [PMID: 39978342 PMCID: PMC11947181 DOI: 10.1016/j.ajhg.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Pathogenic variants resulting in protein phosphatase 2A (PP2A) dysfunction result in mild to severe neurodevelopmental delay. PP2A is a trimer of a catalytic (C) subunit, scaffolding (A) subunit, and substrate binding/regulatory (B) subunit, encoded by 19 different genes. De novo missense variants in PPP2R5D (B56δ) or PPP2R1A (Aα) and de novo missense and loss-of-function variants in PPP2CA (Cα) lead to syndromes with overlapping phenotypic features, known as Houge-Janssens syndrome (HJS) types 1, 2, and 3, respectively. Here, we describe an additional condition in the HJS spectrum in 26 individuals with variants in PPP2R5C, encoding the regulatory B56γ subunit. Most changes were de novo and of the missense type. The clinical features were well within the HJS spectrum with strongest resemblance to HJS type 1, caused by B56δ variants. Common features were neurodevelopmental delay and hypotonia, with a high risk of epilepsy, behavioral problems, and mildly dysmorphic facial features. Head circumferences were above average or macrocephalic. The degree of intellectual disability was, on average, milder than in other HJS types. All variants affected either substrate binding (2/19), C-subunit binding (2/19), or both (15/19). Five variants were recurrent. Catalytic activity of the phosphatase was variably affected by the variants. Of note, PPP2R5C total loss-of-function variants could be inherited from a non-symptomatic parent. This implies that a dominant-negative mechanism on substrate dephosphorylation or general PP2A function is the most likely pathogenic mechanism.
Collapse
Affiliation(s)
- Iris Verbinnen
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium; KU Leuven Institute for Rare Diseases (Leuven.IRD), Leuven, Belgium
| | - Sofia Douzgou Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hellen Lesmann
- Institute of Human Genetics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Aron Kirchhoff
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - David Geneviève
- Montpellier University, INSERM U1183, Centre de Référence Anomalies du développement et syndromes malformatifs, ERN ITHACA, Génétique clinique, CHU Montpellier, Montpellier, France
| | | | - Lisa Lenaerts
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Dorien Haesen
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Rebecca J Levy
- Department of Neurology and Neurological Sciences, Stanford Medicine, Stanford, CA, USA
| | - Julien Thevenon
- CNRS UMR 5309, INSERM U1209, Institute of Advanced Biosciences, Université Grenoble-Alpes, Service Génomique et Procréation, Centre Hospitalo-Universitaire Grenoble Alpes, Cedex Grenoble, France
| | - Laurence Faivre
- Centre de génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'enfants, CHU Dijon Bourgogne, Dijon, France; UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | | | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Mike Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Karynne Patterson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ghayda M Mirzaa
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kimberly Foss
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Susan M White
- Victorian Clinical Genetics Services (VCGS), Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emily O'Heir
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Raphaela Itzikowitz
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, and the Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, and the Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Celia Van der Merwe
- Stanley Center for Psychiatric Research, The Broad Institute, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Regina Margherita Children's Hospital, Torino, Italy
| | - Raffaela Cervini
- Child Neuropsychiatry Department, Maria Vittoria Hospital, Torino, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Neurogenetics Research Centre, Pavia, Italy
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Kerith-Rae Dias
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2031, Australia
| | - Carey-Anne Evans
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anna Ruiz
- Genetics Laboratory, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain
| | - Juan Pablo Trujillo Quintero
- Unitat de Genètica Clínica, Servei de Medicina Pediàtrica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain
| | - Rachel Rabin
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - John Pappas
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Hai Yuan
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton, Princess Anne Hospital, Southampton SO16 5YA, UK
| | - Simon Thomas
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; Wessex Regional Genetics Laboratory, Salisbury NSF Foundation Trust, Salisbury District Hospital, Salisbury, UK
| | - Anita Devlin
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Richard Martin
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Genetic Medicine, Newcastle upon Tyne, UK
| | - Joanna Karwowska
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Nicolas Chatron
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France; Université de Lyon, University Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia; Australian Genomics Health Alliance, Melbourne, VIC, Australia; Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Oliver Heath
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia; Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia; Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Georg-Christoph Korenke
- Klinik für Neuropädiatrie und angeborene Stoffwechselerkrankungen, Klinikum Oldenburg, Oldenburg, Germany
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, One Children's Place, St. Louis, MO, USA
| | - Judith L Weisenberg
- Department of Pediatric Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Stephanie Karch
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Patricia Kipkemoi
- Neuroscience Unit, KEMRI-Wellcome Trust, Center for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Moses Mangi
- Neuroscience Unit, KEMRI-Wellcome Trust, Center for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Karen G C B Bindels de Heus
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marie-Claire Y de Wit
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Neurology and Pediatric Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Derek Lim
- Department of Clinical Genetics, Lavender House, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | | | - Rebecca C Spillmann
- Department of Pediatrics-Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Vandana Shashi
- Department of Pediatrics-Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Maureen Jacob
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Antonia M Stehr
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium; KU Leuven Institute for Rare Diseases (Leuven.IRD), Leuven, Belgium.
| |
Collapse
|
4
|
Gollowitzer A, Pein H, Rao Z, Waltl L, Bereuter L, Loeser K, Meyer T, Jafari V, Witt F, Winkler R, Su F, Große S, Thürmer M, Grander J, Hotze M, Harder S, Espada L, Magnutzki A, Gstir R, Weinigel C, Rummler S, Bonn G, Pachmayr J, Ermolaeva M, Harayama T, Schlüter H, Kosan C, Heller R, Thedieck K, Schmitt M, Shimizu T, Popp J, Shindou H, Kwiatkowski M, Koeberle A. Attenuated growth factor signaling during cell death initiation sensitizes membranes towards peroxidation. Nat Commun 2025; 16:1774. [PMID: 40000627 PMCID: PMC11861335 DOI: 10.1038/s41467-025-56711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cell death programs such as apoptosis and ferroptosis are associated with aberrant redox homeostasis linked to lipid metabolism and membrane function. Evidence for cross-talk between these programs is emerging. Here, we show that cytotoxic stress channels polyunsaturated fatty acids via lysophospholipid acyltransferase 12 into phospholipids that become susceptible to peroxidation under additional redox stress. This reprogramming is associated with altered acyl-CoA synthetase isoenzyme expression and caused by a decrease in growth factor receptor tyrosine kinase (RTK)-phosphatidylinositol-3-kinase signaling, resulting in suppressed fatty acid biosynthesis, for specific stressors via impaired Akt-SREBP1 activation. The reduced availability of de novo synthesized fatty acids favors the channeling of polyunsaturated fatty acids into phospholipids. Growth factor withdrawal by serum starvation mimics this phenotype, whereas RTK ligands counteract it. We conclude that attenuated RTK signaling during cell death initiation increases cells' susceptibility to oxidative membrane damage at the interface of apoptosis and alternative cell death programs.
Collapse
Affiliation(s)
- André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Zhigang Rao
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lorenz Waltl
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Leonhard Bereuter
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria
| | - Konstantin Loeser
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Tobias Meyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena e.V., Member of Leibniz Health Technology, 07745, Jena, Germany
| | - Vajiheh Jafari
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Finja Witt
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, 07745, Jena, Germany
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916, Badalona, Spain
| | - Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria
| | - Silke Große
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745, Jena, Germany
| | - Maria Thürmer
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Julia Grander
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Madlen Hotze
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
| | - Sönke Harder
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lilia Espada
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Alexander Magnutzki
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Ronald Gstir
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Günther Bonn
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Johanna Pachmayr
- Institute of Pharmacy, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Takeshi Harayama
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur - CNRS UMR7275 - Inserm U1323, 06560, Valbonne, France
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, 07745, Jena, Germany
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745, Jena, Germany
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
- Department Metabolism, Senescence and Autophagy, Research Center One Health Ruhr, University Alliance Ruhr & University Hospital Essen, University Duisburg-Essen, 45141, Essen, Germany
- Freiburg Materials Research Center FMF, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
- German Cancer Consortium (DKTK), partner site Essen/Duesseldorf, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147, Essen, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Institute of Microbial Chemistry, Tokyo 141-0021, Japan
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena e.V., Member of Leibniz Health Technology, 07745, Jena, Germany
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
5
|
Rodríguez-Vázquez M, Falconi J, Heron-Milhavet L, Lassus P, Géminard C, Djiane A. Fat body glycolysis defects inhibit mTOR and promote distant muscle disorganization through TNF-α/egr and ImpL2 signaling in Drosophila larvae. EMBO Rep 2024; 25:4410-4432. [PMID: 39251827 PMCID: PMC11467327 DOI: 10.1038/s44319-024-00241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
The fat body in Drosophila larvae functions as a reserve tissue and participates in the regulation of organismal growth and homeostasis through its endocrine activity. To better understand its role in growth coordination, we induced fat body atrophy by knocking down several key enzymes of the glycolytic pathway in adipose cells. Our results show that impairing the last steps of glycolysis leads to a drastic drop in adipose cell size and lipid droplet content, and downregulation of the mTOR pathway and REPTOR transcriptional activity. Strikingly, fat body atrophy results in the distant disorganization of body wall muscles and the release of muscle-specific proteins in the hemolymph. Furthermore, we showed that REPTOR activity is required for fat body atrophy downstream of glycolysis inhibition, and that the effect of fat body atrophy on muscles depends on the production of TNF-α/egr and of the insulin pathway inhibitor ImpL2.
Collapse
Affiliation(s)
| | | | | | - Patrice Lassus
- IRCM, Univ Montpellier, Inserm, ICM, CNRS, Montpellier, France
| | | | | |
Collapse
|
6
|
Lucca C, Ferrari E, Shubassi G, Ajazi A, Choudhary R, Bruhn C, Matafora V, Bachi A, Foiani M. Sch9 S6K controls DNA repair and DNA damage response efficiency in aging cells. Cell Rep 2024; 43:114281. [PMID: 38805395 DOI: 10.1016/j.celrep.2024.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1ATR DNA damage response (DDR). We study DDR and NER in aging cells and find that old cells struggle to repair DNA and activate Mec1ATR. We employ pharmacological and genetic approaches to rescue DDR and NER during aging. Conditions activating Snf1AMPK rescue DDR functionality, but not NER, while inhibition of the TORC1-Sch9S6K axis restores NER and enhances DDR by tuning PP2A activity, specifically in aging cells. Age-related repair deficiency depends on Snf1AMPK-mediated phosphorylation of Sch9S6K on Ser160 and Ser163. PP2A activity in old cells is detrimental for DDR and influences NER by modulating Snf1AMPK and Sch9S6K. Hence, the DDR and repair pathways in aging cells are influenced by the metabolic tuning of opposing AMPK and TORC1 networks and by PP2A activity. Specific Sch9S6K phospho-isoforms control DDR and NER efficiency, specifically during aging.
Collapse
Affiliation(s)
- Chiara Lucca
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Elisa Ferrari
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Ghadeer Shubassi
- AtomVie Global Radiopharma Inc., 1280 Main Street W NRB-A316, Hamilton, ON L8S-4K1, Canada
| | - Arta Ajazi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ramveer Choudhary
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Christopher Bruhn
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Vittoria Matafora
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marco Foiani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare, CNR, Pavia, Italy.
| |
Collapse
|
7
|
Zhan X, Asmara H, Pfaffinger P, Turner RW. Calcium-Dependent Regulation of Neuronal Excitability Is Rescued in Fragile X Syndrome by a Tat-Conjugated N-Terminal Fragment of FMRP. J Neurosci 2024; 44:e0136242024. [PMID: 38664011 PMCID: PMC11112635 DOI: 10.1523/jneurosci.0136-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Fragile X syndrome (FXS) arises from the loss of fragile X messenger ribonucleoprotein (FMRP) needed for normal neuronal excitability and circuit functions. Recent work revealed that FMRP contributes to mossy fiber long-term potentiation by adjusting the Kv4 A-type current availability through interactions with a Cav3-Kv4 ion channel complex, yet the mechanism has not yet been defined. In this study using wild-type and Fmr1 knock-out (KO) tsA-201 cells and cerebellar sections from male Fmr1 KO mice, we show that FMRP associates with all subunits of the Cav3.1-Kv4.3-KChIP3 complex and is critical to enabling calcium-dependent shifts in Kv4.3 inactivation to modulate the A-type current. Specifically, upon depolarization Cav3 calcium influx activates dual-specific phosphatase 1/6 (DUSP1/6) to deactivate ERK1/2 (ERK) and lower phosphorylation of Kv4.3, a signaling pathway that does not function in Fmr1 KO cells. In Fmr1 KO mouse tissue slices, cerebellar granule cells exhibit a hyperexcitable response to membrane depolarizations. Either incubating Fmr1 KO cells or in vivo administration of a tat-conjugated FMRP N-terminus fragment (FMRP-N-tat) rescued Cav3-Kv4 function and granule cell excitability, with a decrease in the level of DUSP6. Together these data reveal a Cav3-activated DUSP signaling pathway critical to the function of a FMRP-Cav3-Kv4 complex that is misregulated in Fmr1 KO conditions. Moreover, FMRP-N-tat restores function of this complex to rescue calcium-dependent control of neuronal excitability as a potential therapeutic approach to alleviating the symptoms of FXS.
Collapse
Affiliation(s)
- Xiaoqin Zhan
- Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030
- Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Hadhimulya Asmara
- Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030
- Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Paul Pfaffinger
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Ray W Turner
- Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030
- Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030
- Department Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
8
|
Luk IS, Bridgwater CM, Yu A, Boila LD, Yáñez-Bartolomé M, Lampano AE, Hulahan TS, Boukhali M, Kathiresan M, Macarulla T, Kenerson HL, Yamamoto N, Sokolov D, Engstrom IA, Sullivan LB, Lampe PD, Cooper JA, Yeung RS, Tian TV, Haas W, Saha SK, Kugel S. SRC inhibition enables formation of a growth suppressive MAGI1-PP2A complex in isocitrate dehydrogenase-mutant cholangiocarcinoma. Sci Transl Med 2024; 16:eadj7685. [PMID: 38748774 PMCID: PMC11218711 DOI: 10.1126/scitranslmed.adj7685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 04/25/2024] [Indexed: 07/04/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive bile duct malignancy that frequently exhibits isocitrate dehydrogenase (IDH1/IDH2) mutations. Mutant IDH (IDHm) ICC is dependent on SRC kinase for growth and survival and is hypersensitive to inhibition by dasatinib, but the molecular mechanism underlying this sensitivity is unclear. We found that dasatinib reduced p70 S6 kinase (S6K) and ribosomal protein S6 (S6), leading to substantial reductions in cell size and de novo protein synthesis. Using an unbiased phosphoproteomic screen, we identified membrane-associated guanylate kinase, WW, and PDZ domain containing 1 (MAGI1) as an SRC substrate in IDHm ICC. Biochemical and functional assays further showed that SRC inhibits a latent tumor-suppressing function of the MAGI1-protein phosphatase 2A (PP2A) complex to activate S6K/S6 signaling in IDHm ICC. Inhibiting SRC led to activation and increased access of PP2A to dephosphorylate S6K, resulting in cell death. Evidence from patient tissue and cell line models revealed that both intrinsic and extrinsic resistance to dasatinib is due to increased phospho-S6 (pS6). To block pS6, we paired dasatinib with the S6K/AKT inhibitor M2698, which led to a marked reduction in pS6 in IDHm ICC cell lines and patient-derived organoids in vitro and substantial growth inhibition in ICC patient-derived xenografts in vivo. Together, these results elucidated the mechanism of action of dasatinib in IDHm ICC, revealed a signaling complex regulating S6K phosphorylation independent of mTOR, suggested markers for dasatinib sensitivity, and described a combination therapy for IDHm ICC that may be actionable in the clinic.
Collapse
Affiliation(s)
- Iris S. Luk
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Angela Yu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Liberalis D. Boila
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mariana Yáñez-Bartolomé
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Aaron E. Lampano
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Taylor S. Hulahan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Meena Kathiresan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Teresa Macarulla
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Gastrointestinal and Endocrine Tumor Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Heidi L. Kenerson
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | - Naomi Yamamoto
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - David Sokolov
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ian A. Engstrom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lucas B. Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Paul D. Lampe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jonathan A. Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Raymond S. Yeung
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | - Tian V. Tian
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Supriya K. Saha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sita Kugel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
9
|
Zhao L, Wang Y, Sun X, Zhang X, Simone N, He J. ELK1/MTOR/S6K1 Pathway Contributes to Acquired Resistance to Gefitinib in Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:2382. [PMID: 38397056 PMCID: PMC10888698 DOI: 10.3390/ijms25042382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The development of acquired resistance to small molecule tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) signaling has hindered their efficacy in treating non-small cell lung cancer (NSCLC) patients. Our previous study showed that constitutive activation of the 70 kDa ribosomal protein S6 kinase 1 (S6K1) contributes to the acquired resistance to EGFR-TKIs in NSCLC cell lines and xenograft tumors in nude mice. However, the regulatory mechanisms underlying S6K1 constitutive activation in TKI-resistant cancer cells have not yet been explored. In this study, we recapitulated this finding by taking advantage of a gefitinib-resistant patient-derived xenograft (PDX) model established through a number of passages in mice treated with increasing doses of gefitinib. The dissociated primary cells from the resistant PDX tumors (PDX-R) displayed higher levels of phosphor-S6K1 expression and were resistant to gefitinib compared to cells from passage-matched parental PDX tumors (PDX-P). Both genetic and pharmacological inhibition of S6K1 increased sensitivity to gefitinib in PDX-R cells. In addition, both total and phosphorylated mechanistic target of rapamycin kinase (MTOR) levels were upregulated in PDX-R and gefitinib-resistant PC9G cells. Knockdown of MTOR by siRNA decreased the expression levels of total and phosphor-S6K1 and increased sensitivity to gefitinib in PDX-R and PC9G cells. Moreover, a transcription factor ELK1, which has multiple predicted binding sites on the MTOR promoter, was also upregulated in PDX-R and PC9G cells, while the knockdown of ELK1 led to decreased expression of MTOR and S6K1. The chromatin immunoprecipitation (ChIP)-PCR assay showed the direct binding between ELK1 and the MTOR promoter, and the luciferase reporter assay further indicated that ELK1 could upregulate MTOR expression through tuning up its transcription. Silencing ELK1 via siRNA transfection improved the efficacy of gefitinib in PDX-R and PC9G cells. These results support the notion that activation of ELK1/MTOR/S6K1 signaling contributes to acquired resistance to gefitinib in NSCLC. The findings in this study shed new light on the mechanism for acquired EGFR-TKI resistance and provide potential novel strategies by targeting the ELK1/MTOR/S6K1 pathway.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.Z.); (Y.W.); (X.S.)
| | - Yifang Wang
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.Z.); (Y.W.); (X.S.)
| | - Xin Sun
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.Z.); (Y.W.); (X.S.)
| | - Xiujuan Zhang
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Nicole Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Jun He
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.Z.); (Y.W.); (X.S.)
| |
Collapse
|
10
|
Peris I, Romero-Murillo S, Vicente C, Narla G, Odero MD. Regulation and role of the PP2A-B56 holoenzyme family in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188953. [PMID: 37437699 DOI: 10.1016/j.bbcan.2023.188953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regulatory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, the pathways they control, and the mechanisms underlying their deregulation in cancer.
Collapse
Affiliation(s)
- Irene Peris
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Silvia Romero-Murillo
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria D Odero
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Rasool RU, O'Connor CM, Das CK, Alhusayan M, Verma BK, Islam S, Frohner IE, Deng Q, Mitchell-Velasquez E, Sangodkar J, Ahmed A, Linauer S, Mudrak I, Rainey J, Zawacki KP, Suhan TK, Callahan CG, Rebernick R, Natesan R, Siddiqui J, Sauter G, Thomas D, Wang S, Taylor DJ, Simon R, Cieslik M, Chinnaiyan AM, Busino L, Ogris E, Narla G, Asangani IA. Loss of LCMT1 and biased protein phosphatase 2A heterotrimerization drive prostate cancer progression and therapy resistance. Nat Commun 2023; 14:5253. [PMID: 37644036 PMCID: PMC10465527 DOI: 10.1038/s41467-023-40760-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Loss of the tumor suppressive activity of the protein phosphatase 2A (PP2A) is associated with cancer, but the underlying molecular mechanisms are unclear. PP2A holoenzyme comprises a heterodimeric core, a scaffolding A subunit and a catalytic C subunit, and one of over 20 distinct substrate-directing regulatory B subunits. Methylation of the C subunit regulates PP2A heterotrimerization, affecting B subunit binding and substrate specificity. Here, we report that the leucine carboxy methyltransferase (LCMT1), which methylates the L309 residue of the C subunit, acts as a suppressor of androgen receptor (AR) addicted prostate cancer (PCa). Decreased methyl-PP2A-C levels in prostate tumors is associated with biochemical recurrence and metastasis. Silencing LCMT1 increases AR activity and promotes castration-resistant prostate cancer growth. LCMT1-dependent methyl-sensitive AB56αCme heterotrimers target AR and its critical coactivator MED1 for dephosphorylation, resulting in the eviction of the AR-MED1 complex from chromatin and loss of target gene expression. Mechanistically, LCMT1 is regulated by S6K1-mediated phosphorylation-induced degradation requiring the β-TRCP, leading to acquired resistance to anti-androgens. Finally, feedforward stabilization of LCMT1 by small molecule activator of phosphatase (SMAP) results in attenuation of AR-signaling and tumor growth inhibition in anti-androgen refractory PCa. These findings highlight methyl-PP2A-C as a prognostic marker and that the loss of LCMT1 is a major determinant in AR-addicted PCa, suggesting therapeutic potential for AR degraders or PP2A modulators in prostate cancer treatment.
Collapse
Affiliation(s)
- Reyaz Ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Mohammed Alhusayan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Brijesh Kumar Verma
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Sehbanul Islam
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Ingrid E Frohner
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria
| | - Qu Deng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Jaya Sangodkar
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aqila Ahmed
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah Linauer
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria
| | - Jessica Rainey
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Kaitlin P Zawacki
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tahra K Suhan
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Catherine G Callahan
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryan Rebernick
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Javed Siddiqui
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Dafydd Thomas
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Taylor
- Department of Biochemistry Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Marcin Cieslik
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria.
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Irfan A Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Saavedra P, Dumesic PA, Hu Y, Filine E, Jouandin P, Binari R, Wilensky SE, Rodiger J, Wang H, Chen W, Liu Y, Spiegelman BM, Perrimon N. REPTOR and CREBRF encode key regulators of muscle energy metabolism. Nat Commun 2023; 14:4943. [PMID: 37582831 PMCID: PMC10427696 DOI: 10.1038/s41467-023-40595-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolic flexibility of muscle tissue describes the adaptive capacity to use different energy substrates according to their availability. The disruption of this ability associates with metabolic disease. Here, using a Drosophila model of systemic metabolic dysfunction triggered by yorkie-induced gut tumors, we show that the transcription factor REPTOR is an important regulator of energy metabolism in muscles. We present evidence that REPTOR is activated in muscles of adult flies with gut yorkie-tumors, where it modulates glucose metabolism. Further, in vivo studies indicate that sustained activity of REPTOR is sufficient in wildtype muscles to repress glycolysis and increase tricarboxylic acid (TCA) cycle metabolites. Consistent with the fly studies, higher levels of CREBRF, the mammalian ortholog of REPTOR, reduce glycolysis in mouse myotubes while promoting oxidative metabolism. Altogether, our results define a conserved function for REPTOR and CREBRF as key regulators of muscle energy metabolism.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Patrick Jouandin
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Montpellier, France
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Sarah E Wilensky
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weihang Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Hsiao KC, Ruan SY, Chen SM, Lai TY, Chan RH, Zhang YM, Chu CA, Cheng HC, Tsai HW, Tu YF, Law BK, Chang TT, Chow NH, Chiang CW. The B56γ3-containing protein phosphatase 2A attenuates p70S6K-mediated negative feedback loop to enhance AKT-facilitated epithelial-mesenchymal transition in colorectal cancer. Cell Commun Signal 2023; 21:172. [PMID: 37430297 DOI: 10.1186/s12964-023-01182-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Protein phosphatase 2A (PP2A) is one of the major protein phosphatases in eukaryotic cells and is essential for cellular homeostasis. PP2A is a heterotrimer comprising the dimeric AC core enzyme and a highly variable regulatory B subunit. Distinct B subunits help the core enzyme gain full activity toward specific substrates and contribute to diverse cellular roles of PP2A. PP2A has been thought to play a tumor suppressor and the B56γ3 regulatory subunit was shown to play a key tumor suppressor regulatory subunit of PP2A. Nevertheless, we uncovered a molecular mechanism of how B56γ3 may act as an oncogene in colorectal cancer (CRC). METHODS Polyclonal pools of CRC cells with stable B56γ3 overexpression or knockdown were generated by retroviral or lentiviral infection and subsequent drug selection. Co-immunoprecipitation(co-IP) and in vitro pull-down analysis were applied to analyze the protein-protein interaction. Transwell migration and invasion assays were applied to investigate the role of B56γ3 in affecting motility and invasive capability of CRC cells. The sensitivity of CRC cells to 5-fluorouracil (5-FU) was analyzed using the PrestoBlue reagent assay for cell viability. Immunohistochemistry (IHC) was applied to investigate the expression levels of phospho-AKT and B56γ3 in paired tumor and normal tissue specimens of CRC. DataSets of TCGA and GEO were analyzed to investigate the correlation of B56γ3 expression with overall survival rates of CRC patients. RESULTS We showed that B56γ3 promoted epithelial-mesenchymal transition (EMT) and reduced the sensitivity of CRC cells to 5-FU through upregulating AKT activity. Mechanistically, B56γ3 upregulates AKT activity by targeting PP2A to attenuate the p70S6K-mediated negative feedback loop regulation on PI3K/AKT activation. B56γ3 was highly expressed and positively correlated with the level of phospho-AKT in tumor tissues of CRC. Moreover, high B56γ3 expression is associated with poor prognosis of a subset of patients with CRC. CONCLUSIONS Our finding reveals that the B56γ3 regulatory subunit-containing PP2A plays an oncogenic role in CRC cells by sustaining AKT activation through suppressing p70S6K activity and suggests that the interaction between B56γ3 and p70S6K may serve as a therapeutic target for CRC. Video Abstract.
Collapse
Affiliation(s)
- Kai-Ching Hsiao
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Siou-Ying Ruan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shih-Min Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Tai-Yu Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Ren-Hao Chan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yan-Ming Zhang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chien-An Chu
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hung-Wen Tsai
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yi-Fang Tu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Brian K Law
- Department of Pharmacology and Therapeutics and the UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Nan-Haw Chow
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
14
|
Zhao M, Yang Y, Shi Y, Chen X, Yang Y, Pan L, Du Z, Sun H, Yao C, Ma G, Du A. PP2Acα-B'/PR61 Holoenzyme of Toxoplasma gondii Is Required for the Amylopectin Metabolism and Proliferation of Tachyzoites. Microbiol Spectr 2023; 11:e0010423. [PMID: 37199633 PMCID: PMC10269777 DOI: 10.1128/spectrum.00104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Here, we report that the inhibition of the PP2A subfamily by okadaic acid results in an accumulation of polysaccharides in the acute infection stage (tachyzoites) of Toxoplasma gondii, which is a protozoan of global zoonotic importance and a model for the apicomplexan parasites. The loss of the catalytic subunit α of PP2A (ΔPP2Acα) in RHΔku80 leads to the polysaccharide accumulation phenotype in the base of tachyzoites as well as residual bodies and significantly compromises the intracellular growth in vitro and the virulence in vivo. A metabolomic analysis revealed that the accumulated polysaccharides in ΔPP2Acα are derived from interrupted glucose metabolism, which affects the production of ATP and energy homeostasis in the T. gondii knockout. The assembly of the PP2Acα holoenzyme complex involved in the amylopectin metabolism in tachyzoites is possibly not regulated by LCMT1 or PME1, and this finding contributes to the identification of the regulatory B subunit (B'/PR61). The loss of B'/PR61 results in the accumulation of polysaccharide granules in the tachyzoites as well as reduced plaque formation ability, exactly the same as ΔPP2Acα. Taken together, we have identified a PP2Acα-B'/PR61 holoenzyme complex that plays a crucial role in the carbohydrate metabolism and viability in T. gondii, and its deficiency in function remarkably suppresses the growth and virulence of this important zoonotic parasite both in vitro and in vivo. Hence, rendering the PP2Acα-B'/PR61 holoenzyme functionless should be a promising strategy for the intervention of Toxoplasma acute infection and toxoplasmosis. IMPORTANCE Toxoplasma gondii switches back and forth between acute and chronic infections, mainly in response to host immunologic status, which is characterized by flexible but specific energy metabolism. Polysaccharide granules are accumulated in the acute infection stage of T. gondii that have been exposed to a chemical inhibitor of the PP2A subfamily. The genetic depletion of the catalytic subunit α of PP2A leads to this phenotype and significantly affects the cell metabolism, energy production, and viability. Further, a regulatory B subunit PR61 is necessary for the PP2A holoenzyme to function in glucose metabolism and in the intracellular growth of T. gondii tachyzoites. A deficiency of this PP2A holoenzyme complex (PP2Acα-B'/PR61) in T. gondii knockouts results in the abnormal accumulation of polysaccharides and the disruption of energy metabolism, suppressing their growth and virulence. These findings provide novel insights into cell metabolism and identify a potential target for an intervention against a T. gondii acute infection.
Collapse
Affiliation(s)
- Mingxiu Zhao
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yue Shi
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yimin Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lingtao Pan
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhendong Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hongchao Sun
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang Province, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Zonari A, Brace LE, Al-Katib K, Porto WF, Foyt D, Guiang M, Cruz EAO, Marshall B, Gentz M, Guimarães GR, Franco OL, Oliveira CR, Boroni M, Carvalho JL. Senotherapeutic peptide treatment reduces biological age and senescence burden in human skin models. NPJ AGING 2023; 9:10. [PMID: 37217561 PMCID: PMC10203313 DOI: 10.1038/s41514-023-00109-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Cellular senescence is known to play a role in age-related skin function deterioration which potentially influences longevity. Here, a two-step phenotypic screening was performed to identify senotherapeutic peptides, leading to the identification of Peptide (Pep) 14. Pep 14 effectively decreased human dermal fibroblast senescence burden induced by Hutchinson-Gilford Progeria Syndrome (HGPS), chronological aging, ultraviolet-B radiation (UVB), and etoposide treatment, without inducing significant toxicity. Pep 14 functions via modulation of PP2A, an understudied holoenzyme that promotes genomic stability and is involved in DNA repair and senescence pathways. At the single-cell level, Pep 14 modulates genes that prevent senescence progression by arresting the cell cycle and enhancing DNA repair, which consequently reduce the number of cells progressing to late senescence. When applied on aged ex vivo skin, Pep 14 promoted a healthy skin phenotype with structural and molecular resemblance to young ex vivo skin, decreased the expression of senescence markers, including SASP, and reduced the DNA methylation age. In summary, this work shows the safe reduction of the biological age of ex vivo human skins by a senomorphic peptide.
Collapse
Affiliation(s)
| | | | | | - William F Porto
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
- Porto Reports, Brasília, 72236-011, DF, Brazil
| | | | | | | | | | | | - Gabriela Rapozo Guimarães
- Bioinformatics and Computational Biology Lab, Brazilian National Cancer Institute (INCA), Rio de Janeiro, 20231-050, RJ, Brazil
| | - Octavio L Franco
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
- Centre of Proteomic Analyses and Biochemistry, Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasilia, 70790-160, DF, Brazil
- S-Inova Biotech, Biotechnology Program, Catholic University Dom Bosco, Campo Grande, 79117-010, MS, Brazil
- Molecular Pathology Program, University of Brasilia, Brasilia, 70.910-900, DF, Brazil
| | | | - Mariana Boroni
- OneSkin, Inc., San Francisco, CA, USA
- Bioinformatics and Computational Biology Lab, Brazilian National Cancer Institute (INCA), Rio de Janeiro, 20231-050, RJ, Brazil
| | - Juliana L Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
- Interdisciplinary Biosciences Laboratory, Faculty of Medicine, University of Brasília, Brasília, 70.910-900, DF, Brazil
| |
Collapse
|
16
|
Roy S, Batra L. Protein Phosphatase 2A: Role in T Cells and Diseases. J Immunol Res 2023; 2023:4522053. [PMID: 37234102 PMCID: PMC10208765 DOI: 10.1155/2023/4522053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine-threonine phosphatase that plays an important role in the regulation of cell proliferation and signal transduction. The catalytic activity of PP2A is integral in the maintenance of physiological functions which gets severely impaired in its absence. PP2A plays an essential role in the activation, differentiation, and functions of T cells. PP2A suppresses Th1 cell differentiation while promoting Th2 cell differentiation. PP2A fosters Th17 cell differentiation which contributes to the pathogenesis of systemic lupus erythematosus (SLE) by enhancing the transactivation of the Il17 gene. Genetic deletion of PP2A in Tregs disrupts Foxp3 expression due to hyperactivation of mTORC1 signaling which impairs the development and immunosuppressive functions of Tregs. PP2A is important in the induction of Th9 cells and promotes their antitumor functions. PP2A activation has shown to reduce neuroinflammation in a mouse model of experimental autoimmune encephalomyelitis (EAE) and is now used to treat multiple sclerosis (MS) clinically. In this review, we will discuss the structure and functions of PP2A in T cell differentiation and diseases and therapeutic applications of PP2A-mediated immunotherapy.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lalit Batra
- Regional Biocontainment Laboratory, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
17
|
Frappaolo A, Karimpour-Ghahnavieh A, Cesare G, Sechi S, Fraschini R, Vaccari T, Giansanti MG. GOLPH3 protein controls organ growth by interacting with TOR signaling proteins in Drosophila. Cell Death Dis 2022; 13:1003. [PMID: 36435842 PMCID: PMC9701223 DOI: 10.1038/s41419-022-05438-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
The oncoprotein GOLPH3 (Golgi phosphoprotein 3) is an evolutionarily conserved phosphatidylinositol 4-phosphate effector, mainly localized to the Golgi apparatus, where it supports organelle architecture and vesicular trafficking. Overexpression of human GOLPH3 correlates with poor prognosis in several cancer types and is associated with enhanced signaling downstream of mTOR (mechanistic target of rapamycin). However, the molecular link between GOLPH3 and mTOR remains elusive. Studies in Drosophila melanogaster have shown that Translationally controlled tumor protein (Tctp) and 14-3-3 proteins are required for organ growth by supporting the function of the small GTPase Ras homolog enriched in the brain (Rheb) during mTORC1 (mTOR complex 1) signaling. Here we demonstrate that Drosophila GOLPH3 (dGOLPH3) physically interacts with Tctp and 14-3-3ζ. RNAi-mediated knockdown of dGOLPH3 reduces wing and eye size and enhances the phenotypes of Tctp RNAi. This phenotype is partially rescued by overexpression of Tctp, 14-3-3ζ, or Rheb. We also show that the Golgi localization of Rheb in Drosophila cells depends on dGOLPH3. Consistent with dGOLPH3 involvement in Rheb-mediated mTORC1 activation, depletion of dGOLPH3 also reduces levels of phosphorylated ribosomal S6 kinase, a downstream target of mTORC1. Finally, the autophagy flux and the expression of autophagic transcription factors of the TFEB family, which anti correlates with mTOR signaling, are compromised upon reduction of dGOLPH3. Overall, our data provide the first in vivo demonstration that GOLPH3 regulates organ growth by directly associating with mTOR signaling proteins.
Collapse
Affiliation(s)
- Anna Frappaolo
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Angela Karimpour-Ghahnavieh
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Giuliana Cesare
- grid.4708.b0000 0004 1757 2822Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano Sechi
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Roberta Fraschini
- grid.7563.70000 0001 2174 1754Dipartimento di Biotecnologie e Bioscienze, Università degli studi di Milano Bicocca, 20126 Milano, Italy
| | - Thomas Vaccari
- grid.4708.b0000 0004 1757 2822Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Maria Grazia Giansanti
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
18
|
Neal SJ, Zhou Q, Pignoni F. Protein Phosphatase 2A with B' specificity subunits regulates the Hippo-Yorkie signaling axis in the Drosophila eye disc. J Cell Sci 2022; 135:jcs259558. [PMID: 36205125 PMCID: PMC10614058 DOI: 10.1242/jcs.259558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/22/2022] [Indexed: 11/20/2022] Open
Abstract
Hippo-Yorkie (Hpo-Yki) signaling is central to diverse developmental processes. Although its redeployment has been amply demonstrated, its context-specific regulation remains poorly understood. The Drosophila eye disc is a continuous epithelium folded into two layers, the peripodial epithelium (PE) and the retinal progenitor epithelium. Here, Yki acts in the PE, first to promote PE identity by suppressing retina fate, and subsequently to maintain proper disc morphology. In the latter process, loss of Yki results in the displacement of a portion of the differentiating retinal epithelium onto the PE side. We show that Protein Phosphatase 2A (PP2A) complexes comprising different substrate-specificity B-type subunits govern the Hpo-Yki axis in this context. These include holoenzymes containing the B‴ subunit Cka and those containing the B' subunits Wdb or Wrd. Whereas PP2A(Cka), as part of the STRIPAK complex, is known to regulate Hpo directly, PP2A(Wdb) acts genetically upstream of the antagonistic activities of the Hpo regulators Sav and Rassf. These in vivo data provide the first evidence of PP2A(B') heterotrimer function in Hpo pathway regulation and reveal pathway diversification at distinct developmental times in the same tissue.
Collapse
Affiliation(s)
- Scott J. Neal
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| | - Qingxiang Zhou
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| | - Francesca Pignoni
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Department of Cell and Developmental Biology, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| |
Collapse
|
19
|
Jäger K, Mensch J, Grimmig ME, Neuner B, Gorzelniak K, Türkmen S, Demuth I, Hartmann A, Hartmann C, Wittig F, Sporbert A, Hermann A, Fuellen G, Möller S, Walter M. A conserved long-distance telomeric silencing mechanism suppresses mTOR signaling in aging human fibroblasts. SCIENCE ADVANCES 2022; 8:eabk2814. [PMID: 35977016 PMCID: PMC9385144 DOI: 10.1126/sciadv.abk2814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Telomeres are repetitive nucleotide sequences at the ends of each chromosome. It has been hypothesized that telomere attrition evolved as a tumor suppressor mechanism in large long-lived species. Long telomeres can silence genes millions of bases away through a looping mechanism called telomere position effect over long distances (TPE-OLD). The function of this silencing mechanism is unknown. We determined a set of 2322 genes with high positional conservation across replicatively aging species that includes known and candidate TPE-OLD genes that may mitigate potentially harmful effects of replicative aging. Notably, we identified PPP2R2C as a tumor suppressor gene, whose up-regulation by TPE-OLD in aged human fibroblasts leads to dephosphorylation of p70S6 kinase and mammalian target of rapamycin suppression. A mechanistic link between telomeres and a tumor suppressor mechanism supports the hypothesis that replicative aging fulfills a tumor suppressor function and motivates previously unknown antitumor and antiaging strategies.
Collapse
Affiliation(s)
- Kathrin Jäger
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Juliane Mensch
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Maria Elisabeth Grimmig
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Bruno Neuner
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Intensive Care Medicine, Berlin, Germany
| | - Kerstin Gorzelniak
- Unfallkrankenhaus Berlin, Institute of Laboratory Medicine, Berlin, Germany
| | - Seval Türkmen
- LNS Hematooncogenetics, National Center of Genetics Luxembourg, Dudelange, Luxemburg
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Genetics and Human Genetics, Berlin, Germany
| | - Ilja Demuth
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Alexander Hartmann
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Christiane Hartmann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Anje Sporbert
- Advanced Light Microscopy, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Steffen Möller
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
- Corresponding author.
| |
Collapse
|
20
|
Beyond controlling cell size: functional analyses of S6K in tumorigenesis. Cell Death Dis 2022; 13:646. [PMID: 35879299 PMCID: PMC9314331 DOI: 10.1038/s41419-022-05081-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
As a substrate and major effector of the mammalian target of rapamycin complex 1 (mTORC1), the biological functions of ribosomal protein S6 kinase (S6K) have been canonically assigned for cell size control by facilitating mRNA transcription, splicing, and protein synthesis. However, accumulating evidence implies that diverse stimuli and upstream regulators modulate S6K kinase activity, leading to the activation of a plethora of downstream substrates for distinct pathobiological functions. Beyond controlling cell size, S6K simultaneously plays crucial roles in directing cell apoptosis, metabolism, and feedback regulation of its upstream signals. Thus, we comprehensively summarize the emerging upstream regulators, downstream substrates, mouse models, clinical relevance, and candidate inhibitors for S6K and shed light on S6K as a potential therapeutic target for cancers.
Collapse
|
21
|
Zhao Q, Liu Y, Zhang S, Zhao Y, Wang C, Li K, Jin Z, Qiao J, Liu M. Studies on the Regulation and Molecular Mechanism of Panax Ginseng Saponins on Senescence and Related Behaviors of Drosophila melanogaster. Front Aging Neurosci 2022; 14:870326. [PMID: 35795238 PMCID: PMC9252430 DOI: 10.3389/fnagi.2022.870326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/30/2022] [Indexed: 12/31/2022] Open
Abstract
In an increasingly aged global population, achieving healthy life expectancy through natural and safe drug interventions is highly desirable. Here we show that total ginsenosides (TGGR), the main active components in the traditional Chinese medicine, ginseng, promote longevity across species. In Drosophila, an intriguing effect of TGGR on lifespan was the relatively narrow treatment window to elicit long-term benefits. TGGR administration during early adulthood, and especially during midlife, was sufficient to extend lifespan in both sexes. TGGR did not increase lifespan by reducing food intake or reproductive capacity; rather, TGGR increased the fertility of male Drosophila. TGGR augmented healthspan readouts associated with youth and with healthy aging, such as motility, intestinal barrier integrity, and biorhythm homeostasis. TGGR treatment also improved some types of stress resistance in both sexes, including increased tolerance to starvation and oxidation, and shifting “aged” gene expression patterns toward “healthy” patterns seen in the young. Gene expression, pharmacological and genetic epistatic analyses demonstrated that TGGR effects require normal expression of genes involved in insulin, TOR and MAPK signaling. The positive effects of TGGR on both healthspan and lifespan, coupled with its mechanism of action via evolutionarily conserved signaling pathways, demonstrate it to be a promising anti-aging drug.
Collapse
Affiliation(s)
- Qiushi Zhao
- School of Life Sciences, Jilin University, Changchun, China
| | - Ying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuchu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Keqiang Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zecheng Jin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Juhui Qiao,
| | - Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- Meichen Liu,
| |
Collapse
|
22
|
He B, Wang Z, Moreau R. Chylomicron production is repressed by RPTOR knockdown, R-α-lipoic acid and 4-phenylbutyric acid in human enterocyte-like Caco-2 cells. J Nutr Biochem 2022; 108:109087. [PMID: 35691593 DOI: 10.1016/j.jnutbio.2022.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/28/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Although the role of mechanistic target of rapamycin complex 1 (mTORC1) in lipid metabolism has been the subject of previous research, its function in chylomicron production is not known. In this study, we created three stable human colorectal adenocarcinoma Caco-2 cell lines exhibiting normal, low or high mTORC1 kinase activity, and used these cells to investigate the consequences of manipulating mTORC1 activity on enterocyte differentiation and chylomicron-like particle production. Constitutively active mTORC1 induced Caco-2 cell proliferation and differentiation (as judged by alkaline phosphatase activity) but weakened transepithelial electrical resistance (TEER). Repressed mTORC1 activity due to the knockdown of RPTOR significantly decreased the expression of lipogenic genes FASN, DGAT1 and DGAT2, lipoprotein assembly genes APOB and MTTP, reduced protein expression of APOB, MTTP and FASN, downregulated the gene expression of very long-chain fatty acyl-CoA ligase (FATP2), acyl-CoA binding protein (DBI), and prechylomicron transport vesicle-associated proteins VAMP7 (vesicle-associated membrane protein 7) and SAR1B (secretion associated Ras related GTPase 1B) resulting in the repression of apoB-containing triacylglycerol-rich lipoprotein secretion. Exposure of Caco-2 cells harboring a constitutively active mTORC1 to short-chain fatty acid derivatives, R-α-lipoic acid and 4-phenylbutyric acid, downregulated chylomicron-like particle secretion by interfering with the lipidation and assembly of the particles, and concomitantly repressed mTORC1 activity with no change to Raptor abundance or PRAS40 (Thr246) phosphorylation. R-α-lipoic acid and 4-phenylbutyric acid may be useful to mitigate intestinal lipoprotein overproduction and associated postprandial inflammation.
Collapse
Affiliation(s)
- Bo He
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Zhigang Wang
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
23
|
Palu RAS, Owings KG, Garces JG, Nicol A. A natural genetic variation screen identifies insulin signaling, neuronal communication, and innate immunity as modifiers of hyperglycemia in the absence of Sirt1. G3 (BETHESDA, MD.) 2022; 12:jkac090. [PMID: 35435227 PMCID: PMC9157059 DOI: 10.1093/g3journal/jkac090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022]
Abstract
Variation in the onset, progression, and severity of symptoms associated with metabolic disorders such as diabetes impairs the diagnosis and treatment of at-risk patients. Diabetes symptoms, and patient variation in these symptoms, are attributed to a combination of genetic and environmental factors, but identifying the genes and pathways that modify diabetes in humans has proven difficult. A greater understanding of genetic modifiers and the ways in which they interact with metabolic pathways could improve the ability to predict a patient's risk for severe symptoms, as well as enhance the development of individualized therapeutic approaches. In this study, we use the Drosophila Genetic Reference Panel to identify genetic variation influencing hyperglycemia associated with loss of Sirt1 function. Through analysis of individual candidate functions, physical interaction networks, and gene set enrichment analysis, we identify not only modifiers involved in canonical glucose metabolism and insulin signaling, but also genes important for neuronal signaling and the innate immune response. Furthermore, reducing the expression of several of these candidates suppressed hyperglycemia, making them potential candidate therapeutic targets. These analyses showcase the diverse processes contributing to glucose homeostasis and open up several avenues of future investigation.
Collapse
Affiliation(s)
- Rebecca A S Palu
- Department of Biological Sciences, Purdue University-Fort Wayne, Fort Wayne, IN 46818, USA
| | - Katie G Owings
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John G Garces
- Department of Biological Sciences, Purdue University-Fort Wayne, Fort Wayne, IN 46818, USA
| | - Audrey Nicol
- Department of Biological Sciences, Purdue University-Fort Wayne, Fort Wayne, IN 46818, USA
| |
Collapse
|
24
|
Jouandin P, Marelja Z, Shih YH, Parkhitko AA, Dambowsky M, Asara JM, Nemazanyy I, Dibble CC, Simons M, Perrimon N. Lysosomal cystine mobilization shapes the response of TORC1 and tissue growth to fasting. Science 2022; 375:eabc4203. [PMID: 35175796 PMCID: PMC8926155 DOI: 10.1126/science.abc4203] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adaptation to nutrient scarcity involves an orchestrated response of metabolic and signaling pathways to maintain homeostasis. We find that in the fat body of fasting Drosophila, lysosomal export of cystine coordinates remobilization of internal nutrient stores with reactivation of the growth regulator target of rapamycin complex 1 (TORC1). Mechanistically, cystine was reduced to cysteine and metabolized to acetyl-coenzyme A (acetyl-CoA) by promoting CoA metabolism. In turn, acetyl-CoA retained carbons from alternative amino acids in the form of tricarboxylic acid cycle intermediates and restricted the availability of building blocks required for growth. This process limited TORC1 reactivation to maintain autophagy and allowed animals to cope with starvation periods. We propose that cysteine metabolism mediates a communication between lysosomes and mitochondria, highlighting how changes in diet divert the fate of an amino acid into a growth suppressive program.
Collapse
Affiliation(s)
- Patrick Jouandin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Zvonimir Marelja
- Université de Paris, INSERM, IHU Imagine – Institut des maladies génétiques, Laboratory of Epithelial Biology and Disease, 75015 Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Yung-Hsin Shih
- Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Andrey A Parkhitko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Miriam Dambowsky
- Université de Paris, INSERM, IHU Imagine – Institut des maladies génétiques, Laboratory of Epithelial Biology and Disease, 75015 Paris, France
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02175, USA
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris 75015, France
| | - Christian C. Dibble
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Matias Simons
- Université de Paris, INSERM, IHU Imagine – Institut des maladies génétiques, Laboratory of Epithelial Biology and Disease, 75015 Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
25
|
Chen S, Chen L, Ye L, Jiang Y, Li Q, Zhang H, Zhang R, Li H, Yu D, Zhang R, Niu Y, Zhao Q, Liu J, Ouyang G, Aschner M, Zheng Y, Zhang L, Chen W, Li D. PP2A-mTOR-p70S6K/4E-BP1 axis regulates M1 polarization of pulmonary macrophages and promotes ambient particulate matter induced mouse lung injury. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127624. [PMID: 34740159 DOI: 10.1016/j.jhazmat.2021.127624] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
To identify key signaling pathways involved in ambient particulate matter (PM)-induced pulmonary injury, we generated a mouse model with myeloid-specific deletion of Ppp2r1a gene (encoding protein phosphatase 2 A (PP2A) A subunit), and conducted experiments in a real-ambient PM exposure system. PP2A Aα-/- homozygote (Aα HO) mice and matched wild-type (WT) littermates were exposed to PM over 3-week and 6-week. The effects of PM exposure on pulmonary inflammation, oxidative stress, and apoptosis were significantly enhanced in Aα HO compared to WT mice. The number of pulmonary macrophages increased by 74.8~88.0% and enhanced M1 polarization appeared in Aα HO mice upon PM exposure. Secretion of M1 macrophage-related inflammatory cytokines was significantly increased in Aα HO vs. WT mice following PM exposure. Moreover, we demonstrated that PP2A-B56α holoenzyme regulated M1 polarization and that the mTOR signaling pathway mediated the persistent M1 polarization upon PM2.5 exposure. Importantly, PP2A-B56α holoenzyme was shown to complex with mTOR/p70S6K/4E-BP1, and suppression of B56α led to enhanced phosphorylation of mTOR, p70S6K, and 4E-BP1. These observations demonstrate that the PP2A-mTOR-p70S6K/4E-BP1 signaling is a critical pathway in mediating macrophage M1 polarization, which contributes to PM-induced pulmonary injury.
Collapse
Affiliation(s)
- Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiyan Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huiyao Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Qun Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Jianhui Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
26
|
Kim B, Kim HY, Yoon BR, Yeo J, In Jung J, Yu KS, Kim HC, Yoo SJ, Park JK, Kang SW, Lee WW. Cytoplasmic zinc promotes IL-1β production by monocytes and macrophages through mTORC1-induced glycolysis in rheumatoid arthritis. Sci Signal 2022; 15:eabi7400. [PMID: 35015571 DOI: 10.1126/scisignal.abi7400] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Bonah Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hee Young Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Bo Ruem Yoon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jina Yeo
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ji In Jung
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| | - Hyeon Chang Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Su-Jin Yoo
- Department of Internal Medicine, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Jin Kyun Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seong Wook Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Cancer Research Institute, Ischemic/Hypoxic Disease Institute, and Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Republic of Korea
| |
Collapse
|
27
|
Maternal starvation primes progeny response to nutritional stress. PLoS Genet 2021; 17:e1009932. [PMID: 34843464 PMCID: PMC8659306 DOI: 10.1371/journal.pgen.1009932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/09/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022] Open
Abstract
Organisms adapt to environmental changes in order to survive. Mothers exposed to nutritional stresses can induce an adaptive response in their offspring. However, the molecular mechanisms behind such inheritable links are not clear. Here we report that in Drosophila, starvation of mothers primes the progeny against subsequent nutritional stress. We found that RpL10Ab represses TOR pathway activity by genetically interacting with TOR pathway components TSC2 and Rheb. In addition, starved mothers produce offspring with lower levels of RpL10Ab in the germline, which results in higher TOR pathway activity, conferring greater resistance to starvation-induced oocyte loss. The RpL10Ab locus encodes for the RpL10Ab mRNA and a stable intronic sequence RNA (sisR-8), which collectively repress RpL10Ab pre-mRNA splicing in a negative feedback mechanism. During starvation, an increase in maternally deposited RpL10Ab and sisR-8 transcripts leads to the reduction of RpL10Ab expression in the offspring. Our study suggests that the maternally deposited RpL10Ab and sisR-8 transcripts trigger a negative feedback loop that mediates intergenerational adaptation to nutritional stress as a starvation response. In the wild, animals need to adapt to frequent changes in the environment. Mothers who are exposed to nutritional stresses are known to produce offspring which are preconditioned to adapt to the mothers’ environment. However, it is unclear how such maternal “memory” is being passed on to the offspring. Here we show that Drosophila mothers exposed to starvation produce offspring which are more resistant to starvation during oogenesis. This process is mediated by maternally inherited RpL10Ab mRNA and a stable intronic sequence RNA (sisR-8), which collectively repress the splicing of RpL10Ab pre-mRNA, leading to lower RpL10Ab expression in the offspring ovaries. As a consequence, lower RpL10Ab expression results in higher TOR pathway activity, conferring greater resistance to starvation during oogenesis. Hence, maternally inherited transcripts may play a role as mediators in conferring intergenerational adaption to starvation.
Collapse
|
28
|
Strassburger K, Lutz M, Müller S, Teleman AA. Ecdysone regulates Drosophila wing disc size via a TORC1 dependent mechanism. Nat Commun 2021; 12:6684. [PMID: 34795214 PMCID: PMC8602387 DOI: 10.1038/s41467-021-26780-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
Most cells in a developing organ stop proliferating when the organ reaches a correct, final size. The underlying molecular mechanisms are not understood. We find that in Drosophila the hormone ecdysone controls wing disc size. To study how ecdysone affects wing size, we inhibit endogenous ecdysone synthesis and feed larvae exogenous ecdysone in a dose-controlled manner. For any given ecdysone dose, discs stop proliferating at a particular size, with higher doses enabling discs to reach larger sizes. Termination of proliferation coincides with a drop in TORC1, but not Dpp or Yki signaling. Reactivating TORC1 bypasses the termination of proliferation, indicating that TORC1 is a main downstream effector causing proliferation termination at the maximal ecdysone-dependent size. Experimental manipulation of Dpp or Yki signaling can bypass proliferation termination in hinge and notum regions, but not the pouch, suggesting that the mechanisms regulating proliferation termination may be distinct in different disc regions.
Collapse
Affiliation(s)
- Katrin Strassburger
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Heidelberg University, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373CellNetworks - Cluster of Excellence, Heidelberg University, Heidelberg, Germany ,grid.4488.00000 0001 2111 7257Present Address: Technische Universität Dresden, 01217 Dresden, Germany
| | - Marilena Lutz
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Heidelberg University, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373CellNetworks - Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| | - Sandra Müller
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Heidelberg University, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373CellNetworks - Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| | - Aurelio A. Teleman
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Heidelberg University, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373CellNetworks - Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
29
|
Jang JK, Gladstein AC, Das A, Shapiro JG, Sisco ZL, McKim KS. Multiple pools of PP2A regulate spindle assembly, kinetochore attachments and cohesion in Drosophila oocytes. J Cell Sci 2021; 134:jcs254037. [PMID: 34297127 PMCID: PMC8325958 DOI: 10.1242/jcs.254037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/14/2021] [Indexed: 01/06/2023] Open
Abstract
Meiosis in female oocytes lacks centrosomes, the microtubule-organizing centers. In Drosophila oocytes, meiotic spindle assembly depends on the chromosomal passenger complex (CPC). To investigate the mechanisms that regulate Aurora B activity, we examined the role of protein phosphatase 2A (PP2A) in Drosophila oocyte meiosis. We found that both forms of PP2A, B55 and B56, antagonize the Aurora B spindle assembly function, suggesting that a balance between Aurora B and PP2A activity maintains the oocyte spindle during meiosis I. PP2A-B56, which has a B subunit encoded by two partially redundant paralogs, wdb and wrd, is also required for maintenance of sister chromatid cohesion, establishment of end-on microtubule attachments, and metaphase I arrest in oocytes. WDB recruitment to the centromeres depends on BUBR1, MEI-S332 and kinetochore protein SPC105R. Although BUBR1 stabilizes microtubule attachments in Drosophila oocytes, it is not required for cohesion maintenance during meiosis I. We propose at least three populations of PP2A-B56 regulate meiosis, two of which depend on SPC105R and a third that is associated with the spindle.
Collapse
Affiliation(s)
| | | | | | | | | | - Kim S. McKim
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
30
|
Finding new edges: systems approaches to MTOR signaling. Biochem Soc Trans 2021; 49:41-54. [PMID: 33544134 PMCID: PMC7924996 DOI: 10.1042/bst20190730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022]
Abstract
Cells have evolved highly intertwined kinase networks to finely tune cellular homeostasis to the environment. The network converging on the mechanistic target of rapamycin (MTOR) kinase constitutes a central hub that integrates metabolic signals and adapts cellular metabolism and functions to nutritional changes and stress. Feedforward and feedback loops, crosstalks and a plethora of modulators finely balance MTOR-driven anabolic and catabolic processes. This complexity renders it difficult — if not impossible — to intuitively decipher signaling dynamics and network topology. Over the last two decades, systems approaches have emerged as powerful tools to simulate signaling network dynamics and responses. In this review, we discuss the contribution of systems studies to the discovery of novel edges and modulators in the MTOR network in healthy cells and in disease.
Collapse
|
31
|
Salamango DJ, Harris RS. Dual Functionality of HIV-1 Vif in APOBEC3 Counteraction and Cell Cycle Arrest. Front Microbiol 2021; 11:622012. [PMID: 33510734 PMCID: PMC7835321 DOI: 10.3389/fmicb.2020.622012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023] Open
Abstract
Accessory proteins are a key feature that distinguishes primate immunodeficiency viruses such as human immunodeficiency virus type I (HIV-1) from other retroviruses. A prime example is the virion infectivity factor, Vif, which hijacks a cellular co-transcription factor (CBF-β) to recruit a ubiquitin ligase complex (CRL5) to bind and degrade antiviral APOBEC3 enzymes including APOBEC3D (A3D), APOBEC3F (A3F), APOBEC3G (A3G), and APOBEC3H (A3H). Although APOBEC3 antagonism is essential for viral pathogenesis, and a more than sufficient functional justification for Vif’s evolution, most viral proteins have evolved multiple functions. Indeed, Vif has long been known to trigger cell cycle arrest and recent studies have shed light on the underlying molecular mechanism. Vif accomplishes this function using the same CBF-β/CRL5 ubiquitin ligase complex to degrade a family of PPP2R5 phospho-regulatory proteins. These advances have helped usher in a new era of accessory protein research and fresh opportunities for drug development.
Collapse
Affiliation(s)
- Daniel J Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
32
|
Nada S, Okada M. Genetic dissection of Ragulator structure and function in amino acid-dependent regulation of mTORC1. J Biochem 2020; 168:621-632. [PMID: 32653916 DOI: 10.1093/jb/mvaa076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/30/2020] [Indexed: 11/12/2022] Open
Abstract
Ragulator is a heteropentameric protein complex consisting of two roadblock heterodimers wrapped by the membrane anchor p18/Lamtor1. The Ragulator complex functions as a lysosomal membrane scaffold for Rag GTPases to recruit and activate mechanistic target of rapamycin complex 1 (mTORC1). However, the roles of Ragulator structure in the regulation of mTORC1 function remain elusive. In this study, we disrupted Ragulator structure by directly anchoring RagC to lysosomes and monitored the effect on amino acid-dependent mTORC1 activation. Expression of lysosome-anchored RagC in p18-deficient cells resulted in constitutive lysosomal localization and amino acid-independent activation of mTORC1. Co-expression of Ragulator in this system restored the amino acid dependency of mTORC1 activation. Furthermore, ablation of Gator1, a suppressor of Rag GTPases, induced amino acid-independent activation of mTORC1 even in the presence of Ragulator. These results demonstrate that Ragulator structure is essential for amino acid-dependent regulation of Rag GTPases via Gator1. In addition, our genetic analyses revealed new roles of amino acids in the regulation of mTORC1 as follows: amino acids could activate a fraction of mTORC1 in a Rheb-independent manner, and could also drive negative-feedback regulation of mTORC1 signalling via protein phosphatases. These intriguing findings contribute to our overall understanding of the regulatory mechanisms of mTORC1 signalling.
Collapse
Affiliation(s)
- Shigeyuki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565, Japan
| |
Collapse
|
33
|
Bao Y, Oguz G, Lee WC, Lee PL, Ghosh K, Li J, Wang P, Lobie PE, Ehmsen S, Ditzel HJ, Wong A, Tan EY, Lee SC, Yu Q. EZH2-mediated PP2A inactivation confers resistance to HER2-targeted breast cancer therapy. Nat Commun 2020; 11:5878. [PMID: 33208750 PMCID: PMC7674491 DOI: 10.1038/s41467-020-19704-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
HER2-targeted therapy has yielded a significant clinical benefit in patients with HER2+ breast cancer, yet disease relapse due to intrinsic or acquired resistance remains a significant challenge in the clinic. Here, we show that the protein phosphatase 2A (PP2A) regulatory subunit PPP2R2B is a crucial determinant of anti-HER2 response. PPP2R2B is downregulated in a substantial subset of HER2+ breast cancers, which correlates with poor clinical outcome and resistance to HER2-targeted therapies. EZH2-mediated histone modification accounts for the PPP2R2B downregulation, resulting in sustained phosphorylation of PP2A targets p70S6K and 4EBP1 which leads to resistance to inhibition by anti-HER2 treatments. Genetic depletion or inhibition of EZH2 by a clinically-available EZH2 inhibitor restores PPP2R2B expression, abolishes the residual phosphorylation of p70S6K and 4EBP1, and resensitizes HER2+ breast cancer cells to anti-HER2 treatments both in vitro and in vivo. Furthermore, the same epigenetic mechanism also contributes to the development of acquired resistance through clonal selection. These findings identify EZH2-dependent PPP2R2B suppression as an epigenetic control of anti-HER2 resistance, potentially providing an opportunity to mitigate anti-HER2 resistance with EZH2 inhibitors.
Collapse
Affiliation(s)
- Yi Bao
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore
| | - Gokce Oguz
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore
| | - Wee Chyan Lee
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore
| | - Puay Leng Lee
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore
| | - Kakaly Ghosh
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore
| | - Jiayao Li
- Cancer Research Institute, Jinan University, Guangzhou, China
| | - Panpan Wang
- Cancer Research Institute, Jinan University, Guangzhou, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Tsinghua-Berkeley Shenzhen Institute, Guangdong Province and Shenzhen Bay Laboratory, Tsinghua University, Shenzhen, Guangdong Province, China
| | - Sidse Ehmsen
- Department of Oncology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, 5230, Odense, Denmark
| | - Henrik J Ditzel
- Department of Oncology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, 5230, Odense, Denmark.,Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
| | - Andrea Wong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, 119047, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, 119047, Singapore.
| | - Qiang Yu
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore, 169857, Singapore.
| |
Collapse
|
34
|
Cheng Y, Cai J, Fu Y, Feng C, Hao Y, Wei Y. Royal jelly attenuates metabolic defects in a Drosophila mutant with elevated TORC1 activity. Biol Open 2020; 9:bio054999. [PMID: 33037015 PMCID: PMC7657477 DOI: 10.1242/bio.054999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a master regulator of cell metabolism, and its dysregulation has been linked to an array of pathologies, including cancer and age-related diseases. Nprl3, a component of GTPase-activating protein towards Rags complex 1 (GATOR1), inhibits TORC1 activity under nutrient scarcity status. The nprl3 mutant exhibits some metabolic defects due to hyper TORC1 activity in Drosophila Royal jelly (RJ) is a honeybee-secreted product and plays an essential role in caste differentiation that requires TORC1 activity. RJ is also used as a health-benefit food for its potential roles on antioxidant and anti-aging. In this study, nprl3-mutant flies were used to measure the effect of RJ on metabolic modulation. Interestingly, RJ feeding significantly increased survival and decreased TORC1 activity in the nprl3 mutant. RJ feeding also ameliorated the abnormal reactive oxygen species (ROS) levels and energy status in the nprl3 mutant. The proteins in RJ were characterized to be the essential components in increasing nprl3 mutant viability. These findings suggest that RJ modulates some metabolic defects associated with elevated TORC1 activity and that the nprl3-mutant fly might be a useful tool for investigating the bioactive components of RJ in vivo.
Collapse
Affiliation(s)
- Yang Cheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Metabolism and Reproduction, Yangzhou University, Yangzhou 225009, China
| | - Jiadong Cai
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yuanyuan Fu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Congjing Feng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yue Hao
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Youheng Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Metabolism and Reproduction, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
35
|
Roy S, Goel R, Aggarwal S, Asthana S, Yadav AK, Awasthi A. Proteome analysis revealed the essential functions of protein phosphatase PP2A in the induction of Th9 cells. Sci Rep 2020; 10:10992. [PMID: 32620893 PMCID: PMC7335106 DOI: 10.1038/s41598-020-67845-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
Proteomic analysis identifies post-translational functions of proteins, which remains obscure in transcriptomics. Given the important functions of Th9 cells in anti-tumor immunity, we performed proteome analysis of Th9 cells to understand the involvement of proteins that might be crucial for the anti-tumor functions of Th9 cells. Here we performed a comprehensive proteomic analysis of murine Th0 and Th9 cells, and identified proteins that are enriched in Th9 cells. Pathway analysis identified an abundance of phosphoproteins in the proteome of Th9 cells as compared to Th0 cells. Among upregulated phosphoproteins, Ppp2ca (catalytic subunit of protein phosphatase, PP2A) was found to be highly enriched in Th9 cells. Although the role of PP2A has been shown to regulate the differentiation and functions of Th1, Th2, Th17 and Tregs, its role in the differentiation and functions of Th9 cells is not identified yet. Here we found that PP2A is required for the induction of Th9 cells, as PP2A inhibition leads to the suppression of IL-9 and expression of key transcription factors of Th9 cells. PP2A inhibition abrogates Th9 cell-mediated anti-tumor immune response in B16-OVA melanoma tumor model. Thus, we report that PP2A is essential for the differentiation and anti-tumor functions of Th9 cells.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Laboratory, Translational Health Science and Technology Institute (THSTI), 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121 001, India
| | - Renu Goel
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Suruchi Aggarwal
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shailendra Asthana
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Kumar Yadav
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Immuno-Biology Laboratory, Translational Health Science and Technology Institute (THSTI), 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121 001, India.
| |
Collapse
|
36
|
Vea IM, Shingleton AW. Network-regulated organ allometry: The developmental regulation of morphological scaling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e391. [PMID: 32567243 DOI: 10.1002/wdev.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022]
Abstract
Morphological scaling relationships, or allometries, describe how traits grow coordinately and covary among individuals in a population. The developmental regulation of scaling is essential to generate correctly proportioned adults across a range of body sizes, while the mis-regulation of scaling may result in congenital birth defects. Research over several decades has identified the developmental mechanisms that regulate the size of individual traits. Nevertheless, we still have poor understanding of how these mechanisms work together to generate correlated size variation among traits in response to environmental and genetic variation. Conceptually, morphological scaling can be generated by size-regulatory factors that act directly on multiple growing traits (trait-autonomous scaling), or indirectly via hormones produced by central endocrine organs (systemically regulated scaling), and there are a number of well-established examples of such mechanisms. There is much less evidence, however, that genetic and environmental variation actually acts on these mechanisms to generate morphological scaling in natural populations. More recent studies indicate that growing organs can themselves regulate the growth of other organs in the body. This suggests that covariation in trait size can be generated by network-regulated scaling mechanisms that respond to changes in the growth of individual traits. Testing this hypothesis, and one of the main challenges of understanding morphological scaling, requires connecting mechanisms elucidated in the laboratory with patterns of scaling observed in the natural world. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Isabelle M Vea
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
37
|
Venugopal P, Veyssière H, Couderc JL, Richard G, Vachias C, Mirouse V. Multiple functions of the scaffold protein Discs large 5 in the control of growth, cell polarity and cell adhesion in Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2020; 20:10. [PMID: 32552730 PMCID: PMC7301484 DOI: 10.1186/s12861-020-00218-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Abstract
Background Scaffold proteins support a variety of key processes during animal development. Mutant mouse for the MAGUK protein Discs large 5 (Dlg5) presents a general growth impairment and moderate morphogenetic defects. Results Here, we generated null mutants for Drosophila Dlg5 and show that it owns similar functions in growth and epithelial architecture. Dlg5 is required for growth at a cell autonomous level in several tissues and at the organism level, affecting cell size and proliferation. Our results are consistent with Dlg5 modulating hippo pathway in the wing disc, including the impact on cell size, a defect that is reproduced by the loss of yorkie. However, other observations indicate that Dlg5 regulates growth by at least another way that may involve Myc protein but nor PI3K neither TOR pathways. Moreover, epithelia cells mutant for Dlg5 also show a reduction of apical domain determinants, though not sufficient to induce a complete loss of cell polarity. Dlg5 is also essential, in the same cells, for the presence at Adherens junctions of N-Cadherin, but not E-Cadherin. Genetic analyses indicate that junction and polarity defects are independent. Conclusions Together our data show that Dlg5 own several conserved functions that are independent of each other in regulating growth, cell polarity and cell adhesion. Moreover, they reveal a differential regulation of E-cadherin and N-cadherin apical localization.
Collapse
Affiliation(s)
- Parvathy Venugopal
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France.,present address : School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Hugo Veyssière
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France.,present address : University Clermont Auvergne, INSERM U1240, Centre de Lutte Contre le Cancer Jean PERRIN, 58 rue Montalembert, 63011, Clermont-Ferrand, France
| | - Jean-Louis Couderc
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Graziella Richard
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Caroline Vachias
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Vincent Mirouse
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France.
| |
Collapse
|
38
|
Ma T, Cao N, Chen K, Wang H, Xu L, Xu C, Huang P. Microcystin-LR exposure disrupts the insulin signaling pathway in C2C12 mice muscle cell line. ENVIRONMENTAL TOXICOLOGY 2020; 35:194-202. [PMID: 31714646 DOI: 10.1002/tox.22856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MC-LR) is a widely produced monocyclic heptapeptides in eutrophication waterbodies. MC-LR can induce various toxic effects in different cells. Our previous studies have found that MC-LR exposure can disrupt insulin signaling pathway in human liver cells (HL 7702). Skeletal muscle is one of the major organs for glucose disposal and responsive to insulin. However, the effects of MC-LR on insulin signaling pathway in muscle cells have not been fully explored. By using C2C12 mice muscle cells, this study aims to investigate the toxic effects of MC-LR in muscle cells with a focus on its effects on insulin signaling pathways. It was found that MC-LR entered into cells and inhibited protein phosphatase 2A (PP2A) significantly. Furthermore, MC-LR increased phosphorylation of Ser302, Ser307, Ser612 of insulin receptor substrate 1, AKT-Ser473, GSK3α-Ser21, and S6K1-Thr389 by inhibiting the activity of PP2A. The results in this study demonstrate that exposure of MCLR can disrupt the insulin pathway in muscle cells.
Collapse
Affiliation(s)
- Tianfeng Ma
- Department I of Clinical Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Naifang Cao
- Department I of Clinical Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kele Chen
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Lihong Xu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chun Xu
- Department of Endocrinology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pu Huang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Identification of PP2A and S6 Kinase as Modifiers of Leucine-Rich Repeat Kinase-Induced Neurotoxicity. Neuromolecular Med 2019; 22:218-226. [PMID: 31664682 PMCID: PMC7230064 DOI: 10.1007/s12017-019-08577-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/13/2019] [Indexed: 12/03/2022]
Abstract
Mutations in LRRK2 are currently recognized as the most common monogenetic cause of Parkinsonism. The elevation of kinase activity of LRRK2 that frequently accompanies its mutations is widely thought to contribute to its toxicity. Accordingly, many groups have developed LRRK2-specific kinase inhibitors as a potential therapeutic strategy. Given that protein phosphorylation is a reversible event, we sought to elucidate the phosphatase(s) that can reverse LRRK2-mediated phosphorylation, with the view that targeting this phosphatase(s) may similarly be beneficial. Using an unbiased RNAi phosphatase screen conducted in a Drosophila LRRK2 model, we identified PP2A as a genetic modulator of LRRK2-induced neurotoxicity. Further, we also identified ribosomal S6 kinase (S6K), a target of PP2A, as a novel regulator of LRRK2 function. Finally, we showed that modulation of PP2A or S6K activities ameliorates LRRK2-associated disease phenotype in Drosophila.
Collapse
|
40
|
Wei Y, Bettedi L, Ting CY, Kim K, Zhang Y, Cai J, Lilly MA. The GATOR complex regulates an essential response to meiotic double-stranded breaks in Drosophila. eLife 2019; 8:e42149. [PMID: 31650955 PMCID: PMC6834368 DOI: 10.7554/elife.42149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/13/2019] [Indexed: 01/18/2023] Open
Abstract
The TORC1 regulator GATOR1/SEACIT controls meiotic entry and early meiotic events in yeast. However, how metabolic pathways influence meiotic progression in metazoans remains poorly understood. Here we examine the role of the TORC1 regulators GATOR1 and GATOR2 in the response to meiotic double-stranded breaks (DSB) during Drosophila oogenesis. We find that in mutants of the GATOR2 component mio, meiotic DSBs trigger the constitutive downregulation of TORC1 activity and a permanent arrest in oocyte growth. Conversely, in GATOR1 mutants, high TORC1 activity results in the delayed repair of meiotic DSBs and the hyperactivation of p53. Unexpectedly, we found that GATOR1 inhibits retrotransposon expression in the presence of meiotic DSBs in a pathway that functions in parallel to p53. Thus, our studies have revealed a link between oocyte metabolism, the repair of meiotic DSBs and retrotransposon expression.
Collapse
Affiliation(s)
- Youheng Wei
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Lucia Bettedi
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Chun-Yuan Ting
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Kuikwon Kim
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Yingbiao Zhang
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jiadong Cai
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Mary A Lilly
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
41
|
Jeong EB, Jeong SS, Cho E, Kim EY. Makorin 1 is required for Drosophila oogenesis by regulating insulin/Tor signaling. PLoS One 2019; 14:e0215688. [PMID: 31009498 PMCID: PMC6476528 DOI: 10.1371/journal.pone.0215688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/05/2019] [Indexed: 01/02/2023] Open
Abstract
Reproduction is a process that is extremely sensitive to changes in nutritional status. The nutritional control of oogenesis via insulin signaling has been reported; however, the mechanism underlying its sensitivity and tissue specificity has not been elucidated. Here, we determined that Drosophila Makorin RING finger protein 1 gene (Mkrn1) functions in the metabolic regulation of oogenesis. Mkrn1 was endogenously expressed at high levels in ovaries and Mkrn1 knockout resulted in female sterility. Mkrn1-null egg chambers were previtellogenic without egg production. FLP-FRT mosaic analysis revealed that Mkrn1 is essential in germline cells, but not follicle cells, for ovarian function. As well, AKT phosphorylation via insulin signaling was greatly reduced in the germline cells, but not the follicle cells, of the mutant clones in the ovaries. Furthermore, protein-rich diet elevated Mkrn1 protein levels, without increased mRNA levels. The p-AKT and p-S6K levels, downstream targets of insulin/Tor signaling, were significantly increased by a nutrient-rich diet in wild-type ovaries whereas those were low in Mkrn1exS compared to wild-type ovaries. Taken together, our results suggest that nutrient availability upregulates the Mkrn1 protein, which acts as a positive regulator of insulin signaling to confer sensitivity and tissue specificity in the ovaries for proper oogenesis based on nutritional status.
Collapse
Affiliation(s)
- Eui Beom Jeong
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, Republic of Korea
| | - Seong Su Jeong
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, Republic of Korea
| | - Eunjoo Cho
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- * E-mail: (EYK); (EC)
| | - Eun Young Kim
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- * E-mail: (EYK); (EC)
| |
Collapse
|
42
|
Fowle H, Zhao Z, Graña X. PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer. Adv Cancer Res 2019; 144:55-93. [PMID: 31349904 PMCID: PMC9994639 DOI: 10.1016/bs.acr.2019.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PP2A is a highly conserved eukaryotic serine/threonine protein phosphatase of the PPP family of phosphatases with fundamental cellular functions. In cells, PP2A targets specific subcellular locations and substrates by forming heterotrimeric holoenzymes, where a core dimer consisting of scaffold (A) and catalytic (C) subunits complexes with one of many B regulatory subunits. PP2A plays a key role in positively and negatively regulating a myriad of cellular processes, as it targets a very sizable fraction of the cellular substrates phosphorylated on Ser/Thr residues. This review focuses on insights made toward the understanding on how the subunit composition and structure of PP2A holoenzymes mediates substrate specificity, the role of substrate modulation in the signaling of cellular division, growth, and differentiation, and its deregulation in cancer.
Collapse
Affiliation(s)
- Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
43
|
Kolupaeva V. Serine-threonine protein phosphatases: Lost in translation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:83-89. [PMID: 30401537 DOI: 10.1016/j.bbamcr.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/26/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
Protein synthesis is one of the most complex and energy-consuming processes in eukaryotic cells and therefore is tightly regulated. One of the main mechanisms of translational control is post-translational modifications of the components of translational apparatus. Phosphorylation status of translation factors depends on the balanced action of kinases and phosphatases. While many kinase-dependent events are well defined, phosphatases that counteract phosphorylation are rarely determined. This mini-review focuses on the regulation of activity of translational initiation factors by serine/threonine phosphatases.
Collapse
Affiliation(s)
- Victoria Kolupaeva
- NYU College of Dentistry, Department of Basic Science and Craniofacial Biology, 345 E 24th St, New York, NY 10010, United States of America.
| |
Collapse
|
44
|
Phenotypic characterization of SETD3 knockout Drosophila. PLoS One 2018; 13:e0201609. [PMID: 30067821 PMCID: PMC6070285 DOI: 10.1371/journal.pone.0201609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/18/2018] [Indexed: 01/14/2023] Open
Abstract
Lysine methylation is a reversible post-translational modification that affects protein function. Lysine methylation is involved in regulating the function of both histone and non-histone proteins, thereby influencing both cellular transcription and the activation of signaling pathways. To date, only a few lysine methyltransferases have been studied in depth. Here, we study the Drosophila homolog of the human lysine methyltransferase SETD3, CG32732/dSETD3. Since mammalian SETD3 is involved in cell proliferation, we tested the effect of dSETD3 on proliferation and growth of Drosophila S2 cells and whole flies. Knockdown of dSETD3 did not alter mTORC1 activity nor proliferation rate of S2 cells. Complete knock-out of dSETD3 in Drosophila flies did not affect their weight, growth rate or fertility. dSETD3 KO flies showed normal responses to starvation and hypoxia. In sum, we could not identify any clear phenotypes for SETD3 knockout animals, indicating that additional work will be required to elucidate the molecular and physiological function of this highly conserved enzyme.
Collapse
|
45
|
Akaike K, Suehara Y, Kohsaka S, Hayashi T, Tanabe Y, Kazuno S, Mukaihara K, Toda-Ishii M, Kurihara T, Kim Y, Okubo T, Hayashi Y, Takamochi K, Takahashi F, Kaneko K, Ladanyi M, Saito T. PPP2R1A regulated by PAX3/FOXO1 fusion contributes to the acquisition of aggressive behavior in PAX3/FOXO1-positive alveolar rhabdomyosarcoma. Oncotarget 2018; 9:25206-25215. [PMID: 29861864 PMCID: PMC5982774 DOI: 10.18632/oncotarget.25392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/28/2018] [Indexed: 12/18/2022] Open
Abstract
To better characterize the oncogenic role of the PAX3-FOXO1 fusion protein in the acquisition of aggressive behavior in ARMS, we employed a proteomic approach using a PAX3-FOXO1 knockdown system in ARMS cell lines. This approach revealed a protein list consisting of 107 consistently upregulated and 114 consistently downregulated proteins that were expected to be regulated by PAX3-FOXO1 fusion protein. Furthermore, we identified 16 upregulated and 17 downregulated critical proteins based on a data-mining analysis. We also evaluated the function of PPP2R1A in ARMS cells. The PPP2R1A expression was upregulated at both the mRNA and protein levels by PAX3-FOXO1 silencing. The silencing of PPP2R1A significantly increased the cell growth of all four ARMS cells, suggesting that PPP2R1A still has a tumor suppressive function in ARMS cells; however, the native expression of PPP2R1A was low in the presence of PAX3-FOXO1. In addition, the activation of PP2A-part of which was encoded by PPP2R1A-by FTY720 treatment in ARMS cell lines inhibited cell growth. On the human phospho-kinase array analysis of 46 specific Ser/Thr or Tyr phosphorylation sites on 39 selected proteins, eNOS, AKT1/2/3, RSK1/2/3 and STAT3 phosphorylation were decreased by FTY-720 treatment. These findings suggest that PPP2R1A is a negatively regulated by PAX3-FOXO1 in ARMS. The activation of PP2A-probably in combination with kinase inhibitors-may represent a therapeutic target in ARMS. We believe that the protein expression profile associated with PAX3-FOXO1 would be valuable for discovering new therapeutic targets in ARMS.
Collapse
Affiliation(s)
- Keisuke Akaike
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan.,Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yu Tanabe
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Mukaihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Midori Toda-Ishii
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Taisei Kurihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Youngji Kim
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Taketo Okubo
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Gunma, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuo Kaneko
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
46
|
Nam RK, Benatar T, Amemiya Y, Wallis CJ, Romero JM, Tsagaris M, Sherman C, Sugar L, Seth A. MicroRNA-652 induces NED in LNCaP and EMT in PC3 prostate cancer cells. Oncotarget 2018; 9:19159-19176. [PMID: 29721191 PMCID: PMC5922385 DOI: 10.18632/oncotarget.24937] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 03/06/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that post-transcriptionally regulate gene expression. Dysregulation of miRNAs is frequently associated with disease and, in particular, is involved in prostate cancer progression. Next generation miRNA sequencing identified a panel of five miRNAs associated with prostate cancer recurrence and metastasis. High expression of one of these five miRNAs, miR-652, correlated significantly with an increased rate of prostate cancer biochemical recurrence. Overexpression of miR-652 in prostate cancer cells, PC3 and LNCaP, resulted in increased growth, migration and invasion. Prostate cancer cell xenografts overexpressing miR-652 showed increased tumorigenicity and metastases. We found that miR-652 directly targets the B" regulatory subunit, PPP2R3A, of the tumor suppressor PP2A, inducing epithelial-mesenchymal transition (EMT) in PC3 cells and neuroendocrine-like differentiation (NED) in LNCaP cells. The mesenchymal marker N-cadherin increased and epithelial marker E-cadherin decreased in PC3 cells overexpressing miR-652. In LNCaP cells and xenografted tumors, overexpression of miR-652 increased markers of NED, including chromogranin A, neuron specific enolase, and synaptophysin. MiR-652 may contribute to prostate tumor progression by promoting NED through decreased PP2A function. MiR-652 expression could serve as a biomarker for aggressive prostate cancer, as well as provide an opportunity for novel therapy in prostate cancer.
Collapse
Affiliation(s)
- Robert K. Nam
- 1 Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Tania Benatar
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Yutaka Amemiya
- 3 Genomics Facility, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher J.D. Wallis
- 1 Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Joan Miguel Romero
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Melina Tsagaris
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher Sherman
- 4 Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- 5 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Linda Sugar
- 4 Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- 5 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Arun Seth
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- 3 Genomics Facility, Sunnybrook Research Institute, Toronto, ON, Canada
- 4 Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- 5 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Moraru A, Wiederstein J, Pfaff D, Fleming T, Miller AK, Nawroth P, Teleman AA. Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes. Cell Metab 2018; 27:926-934.e8. [PMID: 29551588 DOI: 10.1016/j.cmet.2018.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 07/27/2017] [Accepted: 02/06/2018] [Indexed: 10/17/2022]
Abstract
The molecular causes of type 2 diabetes (T2D) are not well understood. Both type 1 diabetes (T1D) and T2D are characterized by impaired insulin signaling and hyperglycemia. From analogy to T1D, insulin resistance and hyperglycemia are thought to also play causal roles in T2D. Recent clinical studies, however, found that T2D patients treated to maintain glycemia below the diabetes definition threshold (HbA1c < 6.5%) still develop diabetic complications. This suggests additional insulin- and glucose-independent mechanisms could be involved in T2D progression and/or initiation. T2D patients have elevated levels of the metabolite methylglyoxal (MG). We show here, using Drosophila glyoxalase 1 knockouts, that animals with elevated methylglyoxal recapitulate several core aspects of T2D: insulin resistance, obesity, and hyperglycemia. Thus elevated MG could constitute one root cause of T2D, suggesting that the molecular causes of elevated MG warrant further study.
Collapse
Affiliation(s)
- Alexandra Moraru
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Janica Wiederstein
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Daniel Pfaff
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany; Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, 85764 Munich, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, 85764 Munich, Germany
| | - Aubry K Miller
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, 85764 Munich, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Tréfier A, Musnier A, Landomiel F, Bourquard T, Boulo T, Ayoub MA, León K, Bruneau G, Chevalier M, Durand G, Blache MC, Inoue A, Fontaine J, Gauthier C, Tesseraud S, Reiter E, Poupon A, Crépieux P. G protein-dependent signaling triggers a β-arrestin-scaffolded p70S6K/ rpS6 module that controls 5'TOP mRNA translation. FASEB J 2018; 32:1154-1169. [PMID: 29084767 DOI: 10.1096/fj.201700763r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many interaction partners of β-arrestins intervene in the control of mRNA translation. However, how β-arrestins regulate this cellular process has been poorly explored. In this study, we show that β-arrestins constitutively assemble a p70S6K/ribosomal protein S6 (rpS6) complex in HEK293 cells and in primary Sertoli cells of the testis. We demonstrate that this interaction is direct, and experimentally validate the interaction interface between β-arrestin 1 and p70S6K predicted by our docking algorithm. Like most GPCRs, the biological function of follicle-stimulating hormone receptor (FSHR) is transduced by G proteins and β-arrestins. Upon follicle-stimulating hormone (FSH) stimulation, activation of G protein-dependent signaling enhances p70S6K activity within the β-arrestin/p70S6K/rpS6 preassembled complex, which is not recruited to the FSHR. In agreement, FSH-induced rpS6 phosphorylation within the β-arrestin scaffold was decreased in cells depleted of Gαs. Integration of the cooperative action of β-arrestin and G proteins led to the translation of 5' oligopyrimidine track mRNA with high efficacy within minutes of FSH input. Hence, this work highlights new relationships between G proteins and β-arrestins when acting cooperatively on a common signaling pathway, contrasting with their previously shown parallel action on the ERK MAP kinase pathway. In addition, this study provides insights into how GPCR can exert trophic effects in the cell.-Tréfier, A., Musnier, A., Landomiel, F., Bourquard, T., Boulo, T., Ayoub, M. A., León, K., Bruneau, G., Chevalier, M., Durand, G., Blache, M.-C., Inoue, A., Fontaine, J., Gauthier, C., Tesseraud, S., Reiter, E., Poupon, A., Crépieux, P. G protein-dependent signaling triggers a β-arrestin-scaffolded p70S6K/ rpS6 module that controls 5'TOP mRNA translation.
Collapse
Affiliation(s)
- Aurélie Tréfier
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Astrid Musnier
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Flavie Landomiel
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Thomas Bourquard
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Thomas Boulo
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Mohammed Akli Ayoub
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France.,Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kelly León
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Gilles Bruneau
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Manon Chevalier
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Guillaume Durand
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Marie-Claire Blache
- Plateau d'Imagerie Cellulaire (PIC), Unité Mixte de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; and
| | - Joël Fontaine
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Christophe Gauthier
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Sophie Tesseraud
- Metabolism of Birds, Quality and Adaptation (MOQA) Group, Unité de Recherches 83, Unité de Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), Nouzilly, France
| | - Eric Reiter
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Anne Poupon
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Pascale Crépieux
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| |
Collapse
|
49
|
Filer D, Thompson MA, Takhaveev V, Dobson AJ, Kotronaki I, Green JWM, Heinemann M, Tullet JMA, Alic N. RNA polymerase III limits longevity downstream of TORC1. Nature 2017; 552:263-267. [PMID: 29186112 PMCID: PMC5732570 DOI: 10.1038/nature25007] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/07/2017] [Indexed: 11/09/2022]
Abstract
Three distinct RNA polymerases (Pols) transcribe different classes of
genes in the eukaryotic nucleus1. Pol III
is the essential, evolutionarily conserved enzyme that generates short,
non-coding RNAs, including transfer RNAs (tRNAs) and 5S
ribosomal RNA (rRNA)2. Historical focus on
transcription of protein-coding genes has left the roles of Pol III in
organismal physiology relatively unexplored. The prominent regulator of Pol III
activity, Target of Rapamycin kinase Complex 1 (TORC1), is an important
longevity determinant3, raising the
question of Pol III’s involvement in ageing. Here we show that Pol III
limits lifespan downstream of TORC1. We find that a reduction in Pol III extends
chronological lifespan in yeast and organismal lifespan in worms and flies.
Inhibiting Pol III activity in the adult worm or fly gut is sufficient to extend
lifespan, and in flies, longevity can be achieved by Pol III inhibition
specifically in the intestinal stem cells (ISCs). The longevity phenotype is
associated with amelioration of age-related gut pathology and functional
decline, dampened protein synthesis and increased tolerance of proteostatic
stress. Importantly, Pol III acts downstream of TORC1 for lifespan and limiting
Pol III activity in the adult gut achieves the full longevity benefit of
systemic TORC1 inhibition. Hence, Pol III is a pivotal output of this key
nutrient signalling network for longevity; Pol III’s growth-promoting,
anabolic activity mediates the acceleration of ageing by TORC1. The evolutionary
conservation of Pol III affirms its potential as a therapeutic target.
Collapse
Affiliation(s)
- Danny Filer
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Vakil Takhaveev
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Adam J Dobson
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ilektra Kotronaki
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - James W M Green
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | | | - Nazif Alic
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
50
|
An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling. Cell Rep 2017; 16:3062-3074. [PMID: 27626673 DOI: 10.1016/j.celrep.2016.08.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/21/2016] [Accepted: 08/09/2016] [Indexed: 11/20/2022] Open
Abstract
Insulin regulates an essential conserved signaling pathway affecting growth, proliferation, and metabolism. To expand our understanding of the insulin pathway, we combine biochemical, genetic, and computational approaches to build a comprehensive Drosophila InR/PI3K/Akt network. First, we map the dynamic protein-protein interaction network surrounding the insulin core pathway using bait-prey interactions connecting 566 proteins. Combining RNAi screening and phospho-specific antibodies, we find that 47% of interacting proteins affect pathway activity, and, using quantitative phosphoproteomics, we demonstrate that ∼10% of interacting proteins are regulated by insulin stimulation at the level of phosphorylation. Next, we integrate these orthogonal datasets to characterize the structure and dynamics of the insulin network at the level of protein complexes and validate our method by identifying regulatory roles for the Protein Phosphatase 2A (PP2A) and Reptin-Pontin chromatin-remodeling complexes as negative and positive regulators of ribosome biogenesis, respectively. Altogether, our study represents a comprehensive resource for the study of the evolutionary conserved insulin network.
Collapse
|