1
|
Begeman A, Smolka JA, Shami A, Waingankar TP, Lewis SC. Spatial analysis of mitochondrial gene expression reveals dynamic translation hubs and remodeling in stress. SCIENCE ADVANCES 2025; 11:eads6830. [PMID: 40249810 PMCID: PMC12007585 DOI: 10.1126/sciadv.ads6830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Protein- and RNA-rich bodies contribute to the spatial organization of gene expression in the cell and are also sites of quality control critical to cell fitness. In most eukaryotes, mitochondria harbor their own genome, and all steps of mitochondrial gene expression co-occur within a single compartment-the matrix. Here, we report that processed mitochondrial RNAs are consolidated into micrometer-scale translation hubs distal to mitochondrial DNA transcription and RNA processing sites in human cells. We find that, during stress, mitochondrial messenger and ribosomal RNA are sequestered in mesoscale bodies containing mitoribosome components, concurrent with suppression of active translation. Stress bodies are triggered by proteotoxic stress downstream of double-stranded RNA accumulation in cells lacking unwinding activity of the highly conserved helicase SUPV3L1/SUV3. We propose that the spatial organization of nascent polypeptide synthesis into discrete domains serves to throttle the flow of genetic information to support recovery of mitochondrial quality control.
Collapse
Affiliation(s)
- Adam Begeman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - John A. Smolka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ahmad Shami
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Samantha C. Lewis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| |
Collapse
|
2
|
Duan T, Sun L, Ding K, Zhao Q, Xu L, Liu C, Sun L. Mitochondrial RNA metabolism, a potential therapeutic target for mitochondria-related diseases. Chin Med J (Engl) 2025; 138:808-818. [PMID: 40008813 PMCID: PMC11970820 DOI: 10.1097/cm9.0000000000003516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Indexed: 02/27/2025] Open
Abstract
ABSTRACT In recent years, the roles of mitochondrial RNA and its associated human diseases have been reported to increase significantly. Treatments based on mtRNA metabolic processes and nuclear gene mutations are thus discussed. The mitochondrial oxidative phosphorylation process is affected by mtRNA metabolism, including mtRNA production, maturation, stabilization, and degradation, which leads to a variety of inherited human mitochondrial diseases. Moreover, mitochondrial diseases are caused by mitochondrial messenger RNA, mitochondrial transfer RNA, and mitochondrial ribosomal RNA gene mutations. This review presents the molecular mechanisms of human mtRNA metabolism and pathological mutations in mtRNA metabolism-related nuclear-encoded/nonencoded genes and mitochondrial DNA mutations to highlight the importance of mitochondrial RNA-related diseases and treatments.
Collapse
Affiliation(s)
- Tongyue Duan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Liya Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Kaiyue Ding
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Qing Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Lujun Xu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| |
Collapse
|
3
|
Tang GX, Zeng ST, Wang J, Yan JT, Chen SB, Huang ZS, Chen XC, Tan JH. Deciphering Phase-Separated Mitochondrial RNA Granules under Stress Conditions with the Mitoribosome-Targeting Small Molecule. Anal Chem 2025; 97:4387-4396. [PMID: 39968811 DOI: 10.1021/acs.analchem.4c05506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
RNA granules are liquid-liquid-phase-separated condensates comprising RNA and proteins. Despite growing insights into their biological functions, studies have predominantly relied on biological methodologies lacking adequate chemical tools. Here, we introduce ICP-CHARGINGS, a concept for efficiently identifying chemical probes to characterize RNA granules of interest among nucleic acid-targeting agents. Focusing on mitochondrial RNA granules (MRGs), whose functions remain elusive, we developed a methodology within this framework and identified NATA, a new fluorescent molecule that, following mechanistic studies, was found to bind to the mitoribosome, enabling MRG labeling and recognition. Using NATA to reveal the potential buffering roles of MRGs, we demonstrated a close correlation between MRG maintenance and assembly and cellular survival and proliferation under cold shock and hypoxic stress. Overall, the introduction and implementation of the ICP-CHARGINGS strategy provide a specialized chemical tool for advancing our comprehension of MRG biology and establish a paradigm for elucidating RNA structures within RNA granules that can be targeted by small molecules, paving the way for developing tailored chemical probes for diverse RNA granules in future research.
Collapse
Affiliation(s)
- Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shu-Tang Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Tong Yan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiu-Cai Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Fahim LE, Marcus JM, Powell ND, Ralston ZA, Walgamotte K, Perego E, Vicidomini G, Rossetta A, Lee JE. Fluorescence lifetime sorting reveals tunable enzyme interactions within cytoplasmic condensates. J Cell Biol 2025; 224:e202311105. [PMID: 39400294 PMCID: PMC11472878 DOI: 10.1083/jcb.202311105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/12/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Ribonucleoprotein (RNP) condensates partition RNA and protein into multiple liquid phases. The multiphasic feature of condensate-enriched components creates experimental challenges for distinguishing membraneless condensate functions from the surrounding dilute phase. We combined fluorescence lifetime imaging microscopy (FLIM) with phasor plot filtering and segmentation to resolve condensates from the dilute phase. Condensate-specific lifetimes were used to track protein-protein interactions by measuring FLIM-Förster resonance energy transfer (FRET). We used condensate FLIM-FRET to evaluate whether mRNA decapping complex subunits can form decapping-competent interactions within P-bodies. Condensate FLIM-FRET revealed the presence of core subunit interactions within P-bodies under basal conditions and the disruption of interactions between the decapping enzyme (Dcp2) and a critical cofactor (Dcp1A) during oxidative stress. Our results show a context-dependent plasticity of the P-body interaction network, which can be rewired within minutes in response to stimuli. Together, our FLIM-based approaches provide investigators with an automated and rigorous method to uncover and track essential protein-protein interaction dynamics within RNP condensates in live cells.
Collapse
Affiliation(s)
- Leyla E. Fahim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Joshua M. Marcus
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Noah D. Powell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zachary A. Ralston
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Walgamotte
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Eleonora Perego
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Jason E. Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Foged MM, Recazens E, Chollet S, Lisci M, Allen GE, Zinshteyn B, Boutguetait D, Münch C, Mootha VK, Jourdain AA. Cytosolic N6AMT1-dependent translation supports mitochondrial RNA processing. Proc Natl Acad Sci U S A 2024; 121:e2414187121. [PMID: 39503847 PMCID: PMC11588129 DOI: 10.1073/pnas.2414187121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/03/2024] [Indexed: 11/27/2024] Open
Abstract
Mitochondrial biogenesis relies on both the nuclear and mitochondrial genomes, and imbalance in their expression can lead to inborn errors of metabolism, inflammation, and aging. Here, we investigate N6AMT1, a nucleo-cytosolic methyltransferase that exhibits genetic codependency with mitochondria. We determine transcriptional and translational profiles of N6AMT1 and report that it is required for the cytosolic translation of TRMT10C (MRPP1) and PRORP (MRPP3), two subunits of the mitochondrial RNAse P enzyme. In the absence of N6AMT1, or when its catalytic activity is abolished, RNA processing within mitochondria is impaired, leading to the accumulation of unprocessed and double-stranded RNA, thus preventing mitochondrial protein synthesis and oxidative phosphorylation, and leading to an immune response. Our work sheds light on the function of N6AMT1 in protein synthesis and highlights a cytosolic program required for proper mitochondrial biogenesis.
Collapse
Affiliation(s)
- Mads M. Foged
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Emeline Recazens
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Sylvain Chollet
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Miriam Lisci
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - George E. Allen
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva 41211, Switzerland
| | - Boris Zinshteyn
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Doha Boutguetait
- Institute of Molecular Systems Medicine, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main60590, Germany
| | - Christian Münch
- Institute of Molecular Systems Medicine, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main60590, Germany
| | - Vamsi K. Mootha
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- HHMI, Massachusetts General Hospital Boston, MA02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Systems Biology, Harvard Medical School, Boston, MA02115
| | - Alexis A. Jourdain
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| |
Collapse
|
6
|
Xavier V, Martinelli S, Corbyn R, Pennie R, Rakovic K, Powley IR, Officer-Jones L, Ruscica V, Galloway A, Carlin LM, Cowling VH, Le Quesne J, Martinou JC, MacVicar T. Mitochondrial double-stranded RNA homeostasis depends on cell-cycle progression. Life Sci Alliance 2024; 7:e202402764. [PMID: 39209534 PMCID: PMC11361371 DOI: 10.26508/lsa.202402764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Mitochondrial gene expression is a compartmentalised process essential for metabolic function. The replication and transcription of mitochondrial DNA (mtDNA) take place at nucleoids, whereas the subsequent processing and maturation of mitochondrial RNA (mtRNA) and mitoribosome assembly are localised to mitochondrial RNA granules. The bidirectional transcription of circular mtDNA can lead to the hybridisation of polycistronic transcripts and the formation of immunogenic mitochondrial double-stranded RNA (mt-dsRNA). However, the mechanisms that regulate mt-dsRNA localisation and homeostasis are largely unknown. With super-resolution microscopy, we show that mt-dsRNA overlaps with the RNA core and associated proteins of mitochondrial RNA granules but not nucleoids. Mt-dsRNA foci accumulate upon the stimulation of cell proliferation and their abundance depends on mitochondrial ribonucleotide supply by the nucleoside diphosphate kinase, NME6. Consequently, mt-dsRNA foci are profuse in cultured cancer cells and malignant cells of human tumour biopsies. Our results establish a new link between cell proliferation and mitochondrial nucleic acid homeostasis.
Collapse
Affiliation(s)
- Vanessa Xavier
- The CRUK Scotland Institute, Glasgow, UK
- Department of Molecular and Cellular Biology, University of Geneva, Genève, Switzerland
| | - Silvia Martinelli
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Rachel Pennie
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kai Rakovic
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ian R Powley
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Leah Officer-Jones
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Vincenzo Ruscica
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Leo M Carlin
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Victoria H Cowling
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - John Le Quesne
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jean-Claude Martinou
- Department of Molecular and Cellular Biology, University of Geneva, Genève, Switzerland
| | - Thomas MacVicar
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Landoni JC, Kleele T, Winter J, Stepp W, Manley S. Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network. Annu Rev Cell Dev Biol 2024; 40:219-240. [PMID: 38976811 DOI: 10.1146/annurev-cellbio-111822-114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.
Collapse
Affiliation(s)
- Juan C Landoni
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Tatjana Kleele
- Institute of Biochemistry, Swiss Federal Institute of Technology Zürich (ETH), Zürich, Switzerland;
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Julius Winter
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Willi Stepp
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Suliana Manley
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| |
Collapse
|
8
|
Li D, Xie X, Zhan Z, Li N, Yin N, Yang S, Liu J, Wang J, Li Z, Yi B, Zhang H, Zhang W. HIF-1 induced tiRNA-Lys-CTT-003 is protective against cisplatin induced ferroptosis of renal tubular cells in mouse AKI model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167277. [PMID: 38871033 DOI: 10.1016/j.bbadis.2024.167277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
HIF-1 activation is protective in acute kidney injury (AKI), but its underlying mechanism is not fully understood. Stress-induced tRNA derived small RNAs play an emerging role in cellular processes. This study investigated the role of HIF-1 associated tiRNA-Lys-CTT-003 (tiR-Lys) in an AKI mouse model. Our sequencing results showed that ischemia can promote the production of renal tiR-Lys by activating HIF-1α. FG-4592, a HIF-1 inducer, can also upregulate the expression of tiR-Lys in renal tubular cells. Both overexpression of tiR-Lys and FG-4592 pre-treatment could improve mitochondrial damage and lipid peroxidation with alleviated renal function and morphological damage in cisplatin-induced AKI mice. While the anti-ferroptosis effect of FG-4592 were largely eliminated by tiR-Lys inhibitor. Notably, tiR-Lys directly alleviated cell death and MDA accumulation induced by the ferroptosis inducer Erastin, accompanied with restored expression of GPX4. RNA-Pulldown and RIP-qPCR results revealed that tiR-Lys can interact with the RNA-binding protein GRSF1.tiR-lys overexpression can preserve protein expression of GRSF1 decreased by cisplatin. Inhibiting Grsf1 via shRNA eliminated the upregulation of GPX4 by tiR-Lys. In conclusion, our study demonstrates that HIF-1α-induced tiR-Lys is protective in cisplatin-induced AKI, primarily by upregulating the level of GPX4 through interaction with GRSF1, thereby inhibiting ferroptosis in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Xian Xie
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Zishun Zhan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Nannan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Ni Yin
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Jishi Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Jianwen Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Zhi Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China.
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China.
| |
Collapse
|
9
|
Brischigliaro M, Sierra‐Magro A, Ahn A, Barrientos A. Mitochondrial ribosome biogenesis and redox sensing. FEBS Open Bio 2024; 14:1640-1655. [PMID: 38849194 PMCID: PMC11452305 DOI: 10.1002/2211-5463.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Mitoribosome biogenesis is a complex process involving RNA elements encoded in the mitochondrial genome and mitoribosomal proteins typically encoded in the nuclear genome. This process is orchestrated by extra-ribosomal proteins, nucleus-encoded assembly factors, which play roles across all assembly stages to coordinate ribosomal RNA processing and maturation with the sequential association of ribosomal proteins. Both biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided insights into their assembly process. In this article, we will briefly outline the current understanding of mammalian mitoribosome biogenesis pathways and the factors involved. Special attention is devoted to the recent identification of iron-sulfur clusters as structural components of the mitoribosome and a small subunit assembly factor, the existence of redox-sensitive cysteines in mitoribosome proteins and assembly factors, and the role they may play as redox sensor units to regulate mitochondrial translation under stress.
Collapse
Affiliation(s)
| | - Ana Sierra‐Magro
- Department of NeurologyUniversity of Miami Miller School of MedicineFLUSA
| | - Ahram Ahn
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineFLUSA
| | - Antoni Barrientos
- Department of NeurologyUniversity of Miami Miller School of MedicineFLUSA
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineFLUSA
- Bruce W. Carter Department of Veterans Affairs VA Medical CenterMiamiFLUSA
| |
Collapse
|
10
|
Gao G, Sun X, Xu J, Yu J, Wang Y. miR-19-3p/GRSF1/COX1 axis attenuates early brain injury via maintaining mitochondrial function after subarachnoid haemorrhage. Stroke Vasc Neurol 2024:svn-2024-003099. [PMID: 39266212 DOI: 10.1136/svn-2024-003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/30/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein, which is eventually localised to mitochondria and promotes the translation of cytochrome C oxidase 1 (COX1) mRNA. However, the role of the miR-19-3p/GRSF1/COX1 axis has not been investigated in an experimental subarachnoid haemorrhage (SAH) model. Thus, we investigated the role of the miR-19-3p/GRSF1/COX1 axis in a SAH-induced early brain injury (EBI) course. METHODS Primary neurons were treated with oxyhaemoglobin (OxyHb) to simulate in vitro SAH. The rat SAH model was established by injecting autologous arterial blood into the optic chiasma cisterna. The GRSF1 level was downregulated or upregulated by treating the rats and neurons with lentivirus-GRSF1 shRNA (Lenti-GRSF1 shRNA) or lentivirus-GRSF1 (Lenti-GRSF1). RESULTS The miR-19-3p level was upregulated and the protein levels of GRSF1 and COX1 were both downregulated in SAH brain tissue. GRSF1 silence decreased and GRSF1 overexpression increased the protein levels of GRSF1 and COX1 in primary neurons and brain tissue, respectively. Lenti-GRSF1 shRNA aggravated, but Lenti-GRSF1 alleviated, the indicators of neuronal injury and neurological impairment in both in vitro and in vivo SAH conditions. In addition, miR-19-3p mimic reduced the protein levels of GRSF1 and COX1 in cultured neurons while miR-19-3p inhibitor increased them. More importantly, Lenti-GRSF1 significantly relieved mitochondrial damage of neurons exposed to OxyHb or induced by SAH and was beneficial to maintaining mitochondrial integrity. Lenti-GRSF1 shRNA treatment, conversely, aggravated mitochondrial damage in neurons. CONCLUSION The miR-19-3p/GRSF1/COX1 axis may serve as an underlying target for inhibiting SAH-induced EBI by maintaining mitochondrial integrity.
Collapse
Affiliation(s)
- Ge Gao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoyu Sun
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiajia Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Yu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
11
|
Teng X, Wang Y, Liu L, Yang H, Wu M, Chen X, Ren Y, Wang Y, Duan E, Dong H, Jiang L, Zhang Y, Zhang W, Chen R, Liu S, Liu X, Tian Y, Chen L, Wang Y, Wan J. Rice floury endosperm26 encoding a mitochondrial single-stranded DNA-binding protein is essential for RNA-splicing of mitochondrial genes and endosperm development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112151. [PMID: 38848768 DOI: 10.1016/j.plantsci.2024.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Endosperm, the major storage organ in cereal grains, determines the grain yield and quality. Mitochondria provide the energy for dry matter accumulation, in the endosperm development. Although mitochondrial single-stranded DNA-binding proteins (mtSSBs) play a canonical role in the maintenance of single-stranded mitochondrial DNA, their molecular functions in RNA processing and endosperm development remain obscure. Here, we report a defective rice endosperm mutant, floury endosperm26 (flo26), which develops abnormal starch grains in the endosperm. Map-based cloning and complementation experiments showed that FLO26 allele encodes a mitochondrial single-stranded DNA-binding protein, named as mtSSB1.1. Loss of function of mtSSB1.1 affects the transcriptional level of many mitochondrially-encoded genes and RNA splicing of nad1, a core component of respiratory chain complex I in mitochondria. As a result, dysfunctional mature nad1 led to dramatically decreased complex I activity, thereby reducing ATP production. Our results reveal that mtSSB1.1 plays an important role in the maintenance of mitochondrial function and endosperm development by stabilizing the splicing of mitochondrial RNA in rice.
Collapse
Affiliation(s)
- Xuan Teng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yongfei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Linglong Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Hang Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Erchao Duan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Hui Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Rongbo Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Xi Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Liangming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
12
|
Krieger MR, Abrahamian M, He KL, Atamdede S, Hakimjavadi H, Momcilovic M, Ostrow D, Maggo SD, Tsang YP, Gai X, Chanfreau GF, Shackelford DB, Teitell MA, Koehler CM. Trafficking of mitochondrial double-stranded RNA from mitochondria to the cytosol. Life Sci Alliance 2024; 7:e202302396. [PMID: 38955468 PMCID: PMC11220484 DOI: 10.26508/lsa.202302396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.
Collapse
Affiliation(s)
- Matthew R Krieger
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Kevin L He
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Sean Atamdede
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Milica Momcilovic
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Dejerianne Ostrow
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Simran Ds Maggo
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yik Pui Tsang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Xiaowu Gai
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - David B Shackelford
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Michael A Teitell
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
13
|
Ruan K, Bai G, Fang Y, Li D, Li T, Liu X, Lu B, Lu Q, Songyang Z, Sun S, Wang Z, Zhang X, Zhou W, Zhang H. Biomolecular condensates and disease pathogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1792-1832. [PMID: 39037698 DOI: 10.1007/s11427-024-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.
Collapse
Affiliation(s)
- Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ge Bai
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Wang
- The Second Affiliated Hospital, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xin Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Begeman A, Smolka JA, Shami A, Waingankar TP, Lewis SC. A spatial atlas of mitochondrial gene expression reveals dynamic translation hubs and remodeling in stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.604215. [PMID: 39149346 PMCID: PMC11326164 DOI: 10.1101/2024.08.05.604215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Mitochondrial genome expression is important for cellular bioenergetics. How mitochondrial RNA processing and translation are spatially organized across dynamic mitochondrial networks is not well understood. Here, we report that processed mitochondrial RNAs are consolidated with mitoribosome components into translation hubs distal to either nucleoids or processing granules in human cells. During stress, these hubs are remodeled into translationally repressed mesoscale bodies containing messenger, ribosomal, and double-stranded RNA. We show that the highly conserved helicase SUV3 contributes to the distribution of processed RNA within mitochondrial networks, and that stress bodies form downstream of proteostatic stress in cells lacking SUV3 unwinding activity. We propose that the spatial organization of nascent chain synthesis into discrete domains serves to throttle the flow of genetic information in stress to ensure mitochondrial quality control.
Collapse
Affiliation(s)
- Adam Begeman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | - John A. Smolka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | - Ahmad Shami
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | | | - Samantha C. Lewis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
- Innovative Genomics Institute, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, Berkeley, CA USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA USA
| |
Collapse
|
15
|
Schmierer J, Takimoto T. Functional Analysis of GRSF1 in the Nuclear Export and Translation of Influenza A Virus mRNAs. Viruses 2024; 16:1136. [PMID: 39066299 PMCID: PMC11281704 DOI: 10.3390/v16071136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza A viruses (IAV) utilize host proteins throughout their life cycle to infect and replicate in their hosts. We previously showed that host adaptive mutations in avian IAV PA help recruit host protein G-Rich RNA Sequence Binding Factor 1 (GRSF1) to the nucleoprotein (NP) 5' untranslated region (UTR), leading to the enhanced nuclear export and translation of NP mRNA. In this study, we evaluated the impact of GRSF1 in the viral life cycle. We rescued and characterized a 2009 pH1N1 virus with a mutated GRSF1 binding site in the 5' UTR of NP mRNA. Mutant viral growth was attenuated relative to pH1N1 wild-type (WT) in mammalian cells. We observed a specific reduction in the NP protein production and cytosolic accumulation of NP mRNAs, indicating a critical role of GRSF1 in the nuclear export of IAV NP mRNAs. Further, in vitro-transcribed mutated NP mRNA was translated less efficiently than WT NP mRNA in transfected cells. Together, these findings show that GRSF1 binding is important for both mRNA nuclear export and translation and affects overall IAV growth. Enhanced association of GRSF1 to NP mRNA by PA mutations leads to rapid virus growth, which could be a key process of mammalian host adaptation of IAV.
Collapse
MESH Headings
- Humans
- Active Transport, Cell Nucleus
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Protein Biosynthesis
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Animals
- Influenza A virus/genetics
- Influenza A virus/physiology
- Influenza A virus/metabolism
- Virus Replication
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H1N1 Subtype/physiology
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- 5' Untranslated Regions/genetics
- Nucleocapsid Proteins/metabolism
- Nucleocapsid Proteins/genetics
- Madin Darby Canine Kidney Cells
- HEK293 Cells
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Dogs
- Influenza, Human/virology
- Influenza, Human/metabolism
- Influenza, Human/genetics
- Mutation
- Host-Pathogen Interactions/genetics
- Viral Core Proteins/metabolism
- Viral Core Proteins/genetics
Collapse
Affiliation(s)
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| |
Collapse
|
16
|
Huang J, Liu J, Lan J, Sun J, Zhou K, Deng Y, Liang L, Liu L, Liu X. Guanine-Rich RNA Sequence Binding Factor 1 Deficiency Promotes Colorectal Cancer Progression by Regulating PI3K/AKT Signaling Pathway. Cancer Manag Res 2024; 16:629-638. [PMID: 38881789 PMCID: PMC11179673 DOI: 10.2147/cmar.s451066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Background Guanine-rich RNA sequence binding factor 1 (GRSF1), part of the RNA-binding protein family, is now attracting interest due to its potential association with the progression of a variety of human cancers. The precise contribution and molecular mechanism of GRSF1 to colorectal cancer (CRC) progression, however, have yet to be clarified. Methods Immunohistochemistry and Western Blot analysis was carried out to detect the expression of GRSF1 in CRC at both mRNA and protein levels and its subsequent effects on prognosis. A series of functional tests were performed to understand its influence on proliferation, migration, and invasion of CRC cells. Results The universal downregulation of GRSF1 in CRC was identified, indicating a correlation with poor prognosis. Our functional studies unveiled that the elimination of GRSF1 enhances tumour activities such as proliferation, migration, and invasion of CRC cells, while GRSF1 overexpression curtailed these abilities. Conclusion Notably, we uncovered that GRSF1 insufficiency modulates the PI3K/Akt signaling pathway and Ras activation in CRC. Therefore, our data suggest GRSF1 operates as a tumor suppressor gene in CRC and may offer promise as a potential biomarker and novel therapeutic target in CRC management.
Collapse
Affiliation(s)
- Jingzhan Huang
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jialong Liu
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jin Lan
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jingbo Sun
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Kun Zhou
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunyao Deng
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Li Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
17
|
Meynier V, Hardwick SW, Catala M, Roske JJ, Oerum S, Chirgadze DY, Barraud P, Yue WW, Luisi BF, Tisné C. Structural basis for human mitochondrial tRNA maturation. Nat Commun 2024; 15:4683. [PMID: 38824131 PMCID: PMC11144196 DOI: 10.1038/s41467-024-49132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.
Collapse
Affiliation(s)
- Vincent Meynier
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Steven W Hardwick
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Marjorie Catala
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Johann J Roske
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Stephanie Oerum
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Pierre Barraud
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Wyatt W Yue
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Carine Tisné
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France.
| |
Collapse
|
18
|
Key J, Gispert S, Auburger G. Knockout Mouse Studies Show That Mitochondrial CLPP Peptidase and CLPX Unfoldase Act in Matrix Condensates near IMM, as Fast Stress Response in Protein Assemblies for Transcript Processing, Translation, and Heme Production. Genes (Basel) 2024; 15:694. [PMID: 38927630 PMCID: PMC11202940 DOI: 10.3390/genes15060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
LONP1 is the principal AAA+ unfoldase and bulk protease in the mitochondrial matrix, so its deletion causes embryonic lethality. The AAA+ unfoldase CLPX and the peptidase CLPP also act in the matrix, especially during stress periods, but their substrates are poorly defined. Mammalian CLPP deletion triggers infertility, deafness, growth retardation, and cGAS-STING-activated cytosolic innate immunity. CLPX mutations impair heme biosynthesis and heavy metal homeostasis. CLPP and CLPX are conserved from bacteria to humans, despite their secondary role in proteolysis. Based on recent proteomic-metabolomic evidence from knockout mice and patient cells, we propose that CLPP acts on phase-separated ribonucleoprotein granules and CLPX on multi-enzyme condensates as first-aid systems near the inner mitochondrial membrane. Trimming within assemblies, CLPP rescues stalled processes in mitoribosomes, mitochondrial RNA granules and nucleoids, and the D-foci-mediated degradation of toxic double-stranded mtRNA/mtDNA. Unfolding multi-enzyme condensates, CLPX maximizes PLP-dependent delta-transamination and rescues malformed nascent peptides. Overall, their actions occur in granules with multivalent or hydrophobic interactions, separated from the aqueous phase. Thus, the role of CLPXP in the matrix is compartment-selective, as other mitochondrial peptidases: MPPs at precursor import pores, m-AAA and i-AAA at either IMM face, PARL within the IMM, and OMA1/HTRA2 in the intermembrane space.
Collapse
Affiliation(s)
| | | | - Georg Auburger
- Experimental Neurology, Clinic of Neurology, University Hospital, Goethe University Frankfurt, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.)
| |
Collapse
|
19
|
McShane E, Churchman LS. Central dogma rates in human mitochondria. Hum Mol Genet 2024; 33:R34-R41. [PMID: 38779776 PMCID: PMC11112385 DOI: 10.1093/hmg/ddae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/28/2023] [Accepted: 02/29/2024] [Indexed: 05/25/2024] Open
Abstract
In human cells, the nuclear and mitochondrial genomes engage in a complex interplay to produce dual-encoded oxidative phosphorylation (OXPHOS) complexes. The coordination of these dynamic gene expression processes is essential for producing matched amounts of OXPHOS protein subunits. This review focuses on our current understanding of the mitochondrial central dogma rates, highlighting the striking differences in gene expression rates between mitochondrial and nuclear genes. We synthesize a coherent model of mitochondrial gene expression kinetics, highlighting the emerging principles and emphasizing where more precise measurements would be beneficial. Such an understanding is pivotal for grasping the unique aspects of mitochondrial function and its role in cellular energetics, and it has profound implications for aging, metabolic disorders, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Erik McShane
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States
| |
Collapse
|
20
|
Santonoceto G, Jurkiewicz A, Szczesny RJ. RNA degradation in human mitochondria: the journey is not finished. Hum Mol Genet 2024; 33:R26-R33. [PMID: 38779774 PMCID: PMC11497605 DOI: 10.1093/hmg/ddae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are vital organelles present in almost all eukaryotic cells. Although most of the mitochondrial proteins are nuclear-encoded, mitochondria contain their own genome, whose proper expression is necessary for mitochondrial function. Transcription of the human mitochondrial genome results in the synthesis of long polycistronic transcripts that are subsequently processed by endonucleases to release individual RNA molecules, including precursors of sense protein-encoding mRNA (mt-mRNA) and a vast amount of antisense noncoding RNAs. Because of mitochondrial DNA (mtDNA) organization, the regulation of individual gene expression at the transcriptional level is limited. Although transcription of most protein-coding mitochondrial genes occurs with the same frequency, steady-state levels of mature transcripts are different. Therefore, post-transcriptional processes are important for regulating mt-mRNA levels. The mitochondrial degradosome is a complex composed of the RNA helicase SUV3 (also known as SUPV3L1) and polynucleotide phosphorylase (PNPase, PNPT1). It is the best-characterized RNA-degrading machinery in human mitochondria, which is primarily responsible for the decay of mitochondrial antisense RNA. The mechanism of mitochondrial sense RNA decay is less understood. This review aims to provide a general picture of mitochondrial genome expression, with a particular focus on mitochondrial RNA (mtRNA) degradation.
Collapse
Affiliation(s)
- Giulia Santonoceto
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland
| | - Aneta Jurkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland
| |
Collapse
|
21
|
Jourdain AA, Wang F. Career pathways, part 13. Nat Metab 2024; 6:2-5. [PMID: 38233680 DOI: 10.1038/s42255-023-00954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Affiliation(s)
- Alexis A Jourdain
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Feilong Wang
- Shanghai East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
22
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
23
|
Yoon J, Kim S, Lee M, Kim Y. Mitochondrial nucleic acids in innate immunity and beyond. Exp Mol Med 2023; 55:2508-2518. [PMID: 38036728 PMCID: PMC10766607 DOI: 10.1038/s12276-023-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 12/02/2023] Open
Abstract
Mitochondria participate in a wide range of cellular processes. One essential function of mitochondria is to be a platform for antiviral signaling proteins during the innate immune response to viral infection. Recently, studies have revealed that mitochondrion-derived DNAs and RNAs are recognized as non-self molecules and act as immunogenic ligands. More importantly, the cytosolic release of these mitochondrial nucleic acids (mt-NAs) is closely associated with the pathogenesis of human diseases accompanying aberrant immune activation. The release of mitochondrial DNAs (mtDNAs) via BAX/BAK activation and/or VDAC1 oligomerization activates the innate immune response and inflammasome assembly. In addition, mitochondrial double-stranded RNAs (mt-dsRNAs) are sensed by pattern recognition receptors in the cytosol to induce type I interferon expression and initiate apoptotic programs. Notably, these cytosolic mt-NAs also mediate adipocyte differentiation and contribute to mitogenesis and mitochondrial thermogenesis. In this review, we summarize recent studies of innate immune signaling pathways regulated by mt-NAs, human diseases associated with mt-NAs, and the emerging physiological roles of mt-NAs.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for BioCentury (KIB), KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
24
|
Rey T, Tábara LC, Prudent J, Minczuk M. mtFociCounter for automated single-cell mitochondrial nucleoid quantification and reproducible foci analysis. Nucleic Acids Res 2023; 51:e107. [PMID: 37850644 PMCID: PMC10681798 DOI: 10.1093/nar/gkad864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023] Open
Abstract
Mitochondrial DNA (mtDNA) encodes the core subunits for OXPHOS, essential in near-all eukaryotes. Packed into distinct foci (nucleoids) inside mitochondria, the number of mtDNA copies differs between cell-types and is affected in several human diseases. Currently, common protocols estimate per-cell mtDNA-molecule numbers by sequencing or qPCR from bulk samples. However, this does not allow insight into cell-to-cell heterogeneity and can mask phenotypical sub-populations. Here, we present mtFociCounter, a single-cell image analysis tool for reproducible quantification of nucleoids and other foci. mtFociCounter is a light-weight, open-source freeware and overcomes current limitations to reproducible single-cell analysis of mitochondrial foci. We demonstrate its use by analysing 2165 single fibroblasts, and observe a large cell-to-cell heterogeneity in nucleoid numbers. In addition, mtFociCounter quantifies mitochondrial content and our results show good correlation (R = 0.90) between nucleoid number and mitochondrial area, and we find nucleoid density is less variable than nucleoid numbers in wild-type cells. Finally, we demonstrate mtFociCounter readily detects differences in foci-numbers upon sample treatment, and applies to Mitochondrial RNA Granules and superresolution microscopy. mtFociCounter provides a versatile solution to reproducibly quantify cellular foci in single cells and our results highlight the importance of accounting for cell-to-cell variance and mitochondrial context in mitochondrial foci analysis.
Collapse
Affiliation(s)
- Timo Rey
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Luis Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
25
|
Kohler A, Barrientos A, Fontanesi F, Ott M. The functional significance of mitochondrial respiratory chain supercomplexes. EMBO Rep 2023; 24:e57092. [PMID: 37828827 PMCID: PMC10626428 DOI: 10.15252/embr.202357092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
The mitochondrial respiratory chain (MRC) is a key energy transducer in eukaryotic cells. Four respiratory chain complexes cooperate in the transfer of electrons derived from various metabolic pathways to molecular oxygen, thereby establishing an electrochemical gradient over the inner mitochondrial membrane that powers ATP synthesis. This electron transport relies on mobile electron carries that functionally connect the complexes. While the individual complexes can operate independently, they are in situ organized into large assemblies termed respiratory supercomplexes. Recent structural and functional studies have provided some answers to the question of whether the supercomplex organization confers an advantage for cellular energy conversion. However, the jury is still out, regarding the universality of these claims. In this review, we discuss the current knowledge on the functional significance of MRC supercomplexes, highlight experimental limitations, and suggest potential new strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Andreas Kohler
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Antoni Barrientos
- Department of Neurology, Miller School of MedicineUniversity of MiamiMiamiFLUSA
- Department of Biochemistry and Molecular Biology, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Martin Ott
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
26
|
Liu D, Xu C, Gong Z, Zhao Y, Fang Z, Rao X, Chen Q, Li G, Kong W, Chen J. GRSF1 antagonizes age-associated hypercoagulability via modulation of fibrinogen mRNA stability. Cell Death Dis 2023; 14:717. [PMID: 37923734 PMCID: PMC10624831 DOI: 10.1038/s41419-023-06242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023]
Abstract
Age-associated hypercoagulability is accompanied by the increase of plasma levels of some coagulation factors including fibrinogen which may contribute to the increased risk of cardiovascular, cerebrovascular, and thrombotic diseases in elderly people. However, the underlying mechanism of increased plasma fibrinogen concentration during aging is still elusive. GRSF1 belongs to the heterogeneous nuclear ribonucleoproteins F/H (hnRNP F/H) subfamily. Here, we report that GRSF1 attenuates hypercoagulability via negative modulation of fibrinogen expression. We demonstrated that GRSF1 negatively regulated fibrinogen expression at both mRNA and protein levels. GRSF1 directly interacted with the coding region (CDS) of FGA, FGB, and FGG mRNAs, and decreased their stability thus mitigating fibrinogen expression. We further identified that only a few G-tracts within the Fib C domain of FGA, FGB, and FGG CDS and the qRRM2 domain of GRSF1 were required for their interaction. Moreover, we confirmed hypercoagulability and the decrease of GRSF1 expression level during mice aging. Functionally, GRSF1 overexpression in old mice liver decreased fibrinogen plasma level, reduced hypercoagulability, and mitigated blood coagulation activity, whereas GRSF1 knockdown in young mice liver increased fibrinogen plasma level and promoted blood coagulation activity. Collectively, our findings unveil a novel posttranscriptional regulation of fibrinogen by GRSF1 and uncover a critical role of GRSF1 in regulating blood coagulation activity.
Collapse
Affiliation(s)
- Doudou Liu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, 100191, Beijing, China
| | - Chenzhong Xu
- School of Basic Medical Sciences, Shenzhen University, 518055, Shenzhen, China
| | - Ze Gong
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
- Hwamei College of Life and Health Sciences, Zhejiang Wanli University, 315100, Ningbo, China
| | - Yijie Zhao
- Department of Laboratory Animal Science, Peking University Health Science Center, 100191, Beijing, China
| | - Zhiqiang Fang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, 100191, Beijing, China
| | - Xiaoli Rao
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, 100191, Beijing, China
| | - Qingyu Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, 100191, Beijing, China
| | - Guodong Li
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, 100191, Beijing, China
| | - Wei Kong
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, 100191, Beijing, China.
| |
Collapse
|
27
|
Loguercio Polosa P, Capriglia F, Bruni F. Molecular Investigation of Mitochondrial RNA19 Role in the Pathogenesis of MELAS Disease. Life (Basel) 2023; 13:1863. [PMID: 37763267 PMCID: PMC10532844 DOI: 10.3390/life13091863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
In mammalian mitochondria, the processing of primary RNA transcripts involves a coordinated series of cleavage and modification events, leading to the formation of processing intermediates and mature mt-RNAs. RNA19 is an unusually stable unprocessed precursor, physiologically polyadenylated, which includes the 16S mt-rRNA, the mt-tRNALeuUUR and the mt-ND1 mRNA. These peculiarities, together with the alteration of its steady-state levels in cellular models with defects in mitochondrial function, make RNA19 a potentially important molecule for the physiological regulation of mitochondrial molecular processes as well as for the pathogenesis of mitochondrial diseases. In this work, we quantitatively and qualitatively examined RNA19 in MELAS trans-mitochondrial cybrids carrying the mtDNA 3243A>G transition and displaying a profound mitochondrial translation defect. Through a combination of isokinetic sucrose gradient and RT-qPCR experiments, we found that RNA19 accumulated and co-sedimented with the mitoribosomal large subunit (mt-LSU) in mutant cells. Intriguingly, exogenous expression of the isolated LARS2 C-terminal domain (Cterm), which was shown to rescue defective translation in MELAS cybrids, decreased the levels of mt-LSU-associated RNA19 by relegating it to the pool of free unbound RNAs. Overall, the data reported here support a regulatory role for RNA19 in mitochondrial physiopathological processes, designating this RNA precursor as a possible molecular target in view of therapeutic strategy development.
Collapse
Affiliation(s)
| | | | - Francesco Bruni
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, 70125 Bari, Italy; (P.L.P.); (F.C.)
| |
Collapse
|
28
|
Brownmiller T, Caplen NJ. The HNRNPF/H RNA binding proteins and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1788. [PMID: 37042074 PMCID: PMC10523889 DOI: 10.1002/wrna.1788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Sun Q, Shi L, Li S, Li J, Zhang R, Huang X, Shao Y, Feng Z, Peng Y, Yang Z, Liu J, Liu H, Long J. PET117 assembly factor stabilizes translation activator TACO1 thereby upregulates mitochondria-encoded cytochrome C oxidase 1 synthesis. Free Radic Biol Med 2023; 205:13-24. [PMID: 37247699 DOI: 10.1016/j.freeradbiomed.2023.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
Cytochrome c oxidase, also known as complex IV, facilitates the transfer of electrons from cytochrome c to molecular oxygen, resulting in the production of ATP. The assembly of complex IV is a tightly regulated and intricate process that entails the coordinated synthesis and integration of subunits encoded by the mitochondria and nucleus into a functional complex. Accurate regulation of translation is crucial for maintaining proper mitochondrial function, and defects in this process can lead to a wide range of mitochondrial disorders and diseases. However, the mechanisms governing mRNA translation by mitoribosomes in mammals remain largely unknown. In this study, we elucidate the critical role of PET117, a chaperone protein involved in complex IV assembly, in the regulation of mitochondria-encoded cytochrome c oxidase 1 (COX1) protein synthesis in human cells. Depletion of PET117 reduced mitochondrial oxygen consumption rate and impaired mitochondrial function. PET117 was found to interact with and stabilize translational activator of COX1 (TACO1) and prevent its ubiquitination. TACO1 overexpression rescued the inhibitory effects on mitochondria caused by PET117 deficiency. These findings provide evidence for a novel PET117-TACO1 axis in the regulation of mitochondrial protein expression, and revealed a previously unknown role of PET117 in human cells.
Collapse
Affiliation(s)
- Qiong Sun
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Shuaijun Li
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jialu Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ruifen Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xinghuai Huang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Huadong Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
30
|
Potter A, Hangas A, Goffart S, Huynen MA, Cabrera-Orefice A, Spelbrink JN. Uncharacterized protein C17orf80 - a novel interactor of human mitochondrial nucleoids. J Cell Sci 2023; 136:jcs260822. [PMID: 37401363 PMCID: PMC10445727 DOI: 10.1242/jcs.260822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Molecular functions of many human proteins remain unstudied, despite the demonstrated association with diseases or pivotal molecular structures, such as mitochondrial DNA (mtDNA). This small genome is crucial for the proper functioning of mitochondria, the energy-converting organelles. In mammals, mtDNA is arranged into macromolecular complexes called nucleoids that serve as functional stations for its maintenance and expression. Here, we aimed to explore an uncharacterized protein C17orf80, which was previously detected close to the nucleoid components by proximity labelling mass spectrometry. To investigate the subcellular localization and function of C17orf80, we took advantage of immunofluorescence microscopy, interaction proteomics and several biochemical assays. We demonstrate that C17orf80 is a mitochondrial membrane-associated protein that interacts with nucleoids even when mtDNA replication is inhibited. In addition, we show that C17orf80 is not essential for mtDNA maintenance and mitochondrial gene expression in cultured human cells. These results provide a basis for uncovering the molecular function of C17orf80 and the nature of its association with nucleoids, possibly leading to new insights about mtDNA and its expression.
Collapse
Affiliation(s)
- Alisa Potter
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Anu Hangas
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, 80101, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, 80101, Finland
| | - Martijn A. Huynen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Johannes N. Spelbrink
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| |
Collapse
|
31
|
Ma J, Sun L, Gao W, Li Y, Dong D. RNA binding protein: coordinated expression between the nuclear and mitochondrial genomes in tumors. J Transl Med 2023; 21:512. [PMID: 37507746 PMCID: PMC10386658 DOI: 10.1186/s12967-023-04373-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Mitochondria are the only organelles regulated by two genomes. The coordinated translation of nuclear DNA (nDNA) and mitochondrial DNA (mtDNA), which together co-encode the subunits of the oxidative phosphorylation (OXPHOS) complex, is critical for determining the metabolic plasticity of tumor cells. RNA-binding protein (RBP) is a post-transcriptional regulatory factor that plays a pivotal role in determining the fate of mRNA. RBP rapidly and effectively reshapes the mitochondrial proteome in response to intracellular and extracellular stressors, mediating the cytoplasmic and mitochondrial translation balance to adjust mitochondrial respiratory capacity and provide energy for tumor cells to adapt to different environmental pressures and growth needs. This review highlights the ability of RBPs to use liquid-liquid phase separation (LLPS) as a platform for translation regulation, integrating nuclear-mitochondrial positive and retrograde signals to coordinate cross-department translation, reshape mitochondrial energy metabolism, and promote the development and survival of tumor cells.
Collapse
Affiliation(s)
- Jiaoyan Ma
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Weinan Gao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Delu Dong
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
32
|
Long Q, Zhou Y, Guo J, Wu H, Liu X. Multi-phase separation in mitochondrial nucleoids and eukaryotic nuclei. BIOPHYSICS REPORTS 2023; 9:113-119. [PMID: 38028151 PMCID: PMC10648231 DOI: 10.52601/bpr.2023.220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/10/2023] [Indexed: 03/28/2023] Open
Abstract
In mammalian cells, besides nuclei, mitochondria are the only semi-autonomous organelles possessing own DNA organized in the form of nucleoids. While eukaryotic nuclear DNA compaction, chromatin compartmentalization and transcription are regulated by phase separation, our recent work proposed a model of mitochondrial nucleoid self-assembly and transcriptional regulation by multi-phase separation. Herein, we summarized the phase separation both in the nucleus and mitochondrial nucleoids, and did a comparison of the organization and activity regulating, which would provide new insight into the understanding of both architecture and genetics of nucleus and mitochondrial nucleoids.
Collapse
Affiliation(s)
- Qi Long
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanshuang Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jingyi Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hao Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
33
|
Chen PL. SUV3 Helicase and Mitochondrial Homeostasis. Int J Mol Sci 2023; 24:9233. [PMID: 37298184 PMCID: PMC10253155 DOI: 10.3390/ijms24119233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
SUV3 is a nuclear-encoded helicase that is highly conserved and localizes to the mitochondrial matrix. In yeast, loss of SUV3 function leads to the accumulation of group 1 intron transcripts, ultimately resulting in the loss of mitochondrial DNA, causing a petite phenotype. However, the mechanism leading to the loss of mitochondrial DNA remains unknown. SUV3 is essential for survival in higher eukaryotes, and its knockout in mice results in early embryonic lethality. Heterozygous mice exhibit a range of phenotypes, including premature aging and an increased cancer incidence. Furthermore, cells derived from SUV3 heterozygotes or knockdown cultural cells show a reduction in mtDNA. Transient downregulation of SUV3 leads to the formation of R-loops and the accumulation of double-stranded RNA in mitochondria. This review aims to provide an overview of the current knowledge regarding the SUV3-containing complex and discuss its potential mechanism for tumor suppression activity.
Collapse
Affiliation(s)
- Phang-Lang Chen
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
34
|
Wu GH, Smith-Geater C, Galaz-Montoya JG, Gu Y, Gupte SR, Aviner R, Mitchell PG, Hsu J, Miramontes R, Wang KQ, Geller NR, Hou C, Danita C, Joubert LM, Schmid MF, Yeung S, Frydman J, Mobley W, Wu C, Thompson LM, Chiu W. CryoET reveals organelle phenotypes in huntington disease patient iPSC-derived and mouse primary neurons. Nat Commun 2023; 14:692. [PMID: 36754966 PMCID: PMC9908936 DOI: 10.1038/s41467-023-36096-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Huntington's disease (HD) is caused by an expanded CAG repeat in the huntingtin gene, yielding a Huntingtin protein with an expanded polyglutamine tract. While experiments with patient-derived induced pluripotent stem cells (iPSCs) can help understand disease, defining pathological biomarkers remains challenging. Here, we used cryogenic electron tomography to visualize neurites in HD patient iPSC-derived neurons with varying CAG repeats, and primary cortical neurons from BACHD, deltaN17-BACHD, and wild-type mice. In HD models, we discovered sheet aggregates in double membrane-bound organelles, and mitochondria with distorted cristae and enlarged granules, likely mitochondrial RNA granules. We used artificial intelligence to quantify mitochondrial granules, and proteomics experiments reveal differential protein content in isolated HD mitochondria. Knockdown of Protein Inhibitor of Activated STAT1 ameliorated aberrant phenotypes in iPSC- and BACHD neurons. We show that integrated ultrastructural and proteomic approaches may uncover early HD phenotypes to accelerate diagnostics and the development of targeted therapeutics for HD.
Collapse
Affiliation(s)
- Gong-Her Wu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Charlene Smith-Geater
- Department of Psychiatry & Human Behavior University of California Irvine, Irvine, CA, 92697, USA
| | - Jesús G Galaz-Montoya
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Yingli Gu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037-0662, USA
| | - Sanket R Gupte
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Ranen Aviner
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Patrick G Mitchell
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Joy Hsu
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Ricardo Miramontes
- Department of Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA
| | - Keona Q Wang
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 96267, USA
| | - Nicolette R Geller
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 96267, USA
| | - Cathy Hou
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Cristina Danita
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Lydia-Marie Joubert
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Serena Yeung
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - William Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037-0662, USA
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037-0662, USA
| | - Leslie M Thompson
- Department of Psychiatry & Human Behavior University of California Irvine, Irvine, CA, 92697, USA.
- Department of Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 96267, USA.
- Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 96267, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92617, USA.
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
35
|
Abstract
Mitoribosome biogenesis is a complex and energetically costly process that involves RNA elements encoded in the mitochondrial genome and mitoribosomal proteins most frequently encoded in the nuclear genome. The process is catalyzed by extra-ribosomal proteins, nucleus-encoded assembly factors that act in all stages of the assembly process to coordinate the processing and maturation of ribosomal RNAs with the hierarchical association of ribosomal proteins. Biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided hints regarding their assembly. In this general concept chapter, we will briefly describe the current knowledge, mainly regarding the mammalian mitoribosome biogenesis pathway and factors involved, and will emphasize the biological sources and approaches that have been applied to advance the field.
Collapse
Affiliation(s)
- J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Austin Choi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Hui Zhong
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
36
|
Chrzanowska-Lightowlers ZM, Lightowlers RN. Translation in Mitochondrial Ribosomes. Methods Mol Biol 2023; 2661:53-72. [PMID: 37166631 DOI: 10.1007/978-1-0716-3171-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitochondrial protein synthesis is essential for the life of aerobic eukaryotes. Without it, oxidative phosphorylation cannot be coupled. Evolution has shaped a battery of factors and machinery that are key to production of just a handful of critical proteins. In this general concept chapter, we attempt to briefly summarize our current knowledge of the overall process in mitochondria from a variety of species, breaking this down to the four parts of translation: initiation, elongation, termination, and recycling. Where appropriate, we highlight differences between species and emphasize gaps in our understanding. Excitingly, with the current revolution in cryoelectron microscopy and mitochondrial genome editing, it is highly likely that many of these gaps will be resolved in the near future. However, the absence of a faithful in vitro reconstituted system to study mitochondrial translation is still problematic.
Collapse
Affiliation(s)
- Zofia M Chrzanowska-Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK.
| | - Robert N Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
Del'Olio S, Barrientos A. Systematic Analysis of Assembly Intermediates in Yeast to Decipher the Mitoribosome Assembly Pathway. Methods Mol Biol 2023; 2661:163-191. [PMID: 37166638 PMCID: PMC10654547 DOI: 10.1007/978-1-0716-3171-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Studies of yeast mitoribosome assembly have been historically hampered by the difficulty of generating mitoribosome protein-coding gene deletion strains with a stable mitochondrial genome. The identification of mitochondrial DNA-stabilizing approaches allows for the generation of a complete set of yeast deletion strains covering all mitoribosome proteins and known assembly factors. These strains can be used to analyze the integrity and assembly state of mitoribosomes by determining the sedimentation profile of these structures by sucrose gradient centrifugation of mitochondrial extracts, coupled to mass spectrometry analysis of mitoribosome composition. Subsequent hierarchical cluster analysis of mitoribosome subassemblies accumulated in mutant strains reveals details regarding the order of protein association during the mitoribosome biogenetic process. These strains also allow the expression of truncated protein variants to probe the role of mitochondrion-specific protein extensions, the relevance of protein cofactors, or the importance of RNA-protein interactions in functional sites of the mitoribosome. In this chapter, we will detail the methodology involved in these studies.
Collapse
Affiliation(s)
- Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
38
|
Jeandard D, Smirnova A, Fasemore AM, Coudray L, Entelis N, Förstner K, Tarassov I, Smirnov A. CoLoC-seq probes the global topology of organelle transcriptomes. Nucleic Acids Res 2022; 51:e16. [PMID: 36537202 PMCID: PMC9943681 DOI: 10.1093/nar/gkac1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Proper RNA localisation is essential for physiological gene expression. Various kinds of genome-wide approaches permit to comprehensively profile subcellular transcriptomes. Among them, cell fractionation methods, that couple RNase treatment of isolated organelles to the sequencing of protected transcripts, remain most widely used, mainly because they do not require genetic modification of the studied system and can be easily implemented in any cells or tissues, including in non-model species. However, they suffer from numerous false-positives since incompletely digested contaminant RNAs can still be captured and erroneously identified as resident transcripts. Here we introduce Controlled Level of Contamination coupled to deep sequencing (CoLoC-seq) as a new subcellular transcriptomics approach that efficiently bypasses this caveat. CoLoC-seq leverages classical enzymatic kinetics and tracks the depletion dynamics of transcripts in a gradient of an exogenously added RNase, with or without organellar membranes. By means of straightforward mathematical modelling, CoLoC-seq infers the localisation topology of RNAs and robustly distinguishes between genuinely resident, luminal transcripts and merely abundant surface-attached contaminants. Our generic approach performed well on human mitochondria and is in principle applicable to other membrane-bounded organelles, including plastids, compartments of the vacuolar system, extracellular vesicles, and viral particles.
Collapse
Affiliation(s)
| | | | | | - Léna Coudray
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | - Nina Entelis
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | - Konrad U Förstner
- ZB MED – Information Centre for Life Sciences, Cologne, D-50931, Germany,TH Köln – University of Applied Sciences, Faculty of Information Science and Communication Studies, Institute of Information Science, Cologne, D-50678, Germany
| | - Ivan Tarassov
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | | |
Collapse
|
39
|
Peng GX, Mao XL, Cao Y, Yao SY, Li QR, Chen X, Wang ED, Zhou XL. RNA granule-clustered mitochondrial aminoacyl-tRNA synthetases form multiple complexes with the potential to fine-tune tRNA aminoacylation. Nucleic Acids Res 2022; 50:12951-12968. [PMID: 36503967 PMCID: PMC9825176 DOI: 10.1093/nar/gkac1141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/23/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial RNA metabolism is suggested to occur in identified compartmentalized foci, i.e. mitochondrial RNA granules (MRGs). Mitochondrial aminoacyl-tRNA synthetases (mito aaRSs) catalyze tRNA charging and are key components in mitochondrial gene expression. Mutations of mito aaRSs are associated with various human disorders. However, the suborganelle distribution, interaction network and regulatory mechanism of mito aaRSs remain largely unknown. Here, we found that all mito aaRSs partly colocalize with MRG, and this colocalization is likely facilitated by tRNA-binding capacity. A fraction of human mitochondrial AlaRS (hmtAlaRS) and hmtSerRS formed a direct complex via interaction between catalytic domains in vivo. Aminoacylation activities of both hmtAlaRS and hmtSerRS were fine-tuned upon complex formation in vitro. We further established a full spectrum of interaction networks via immunoprecipitation and mass spectrometry for all mito aaRSs and discovered interactions between hmtSerRS and hmtAsnRS, between hmtSerRS and hmtTyrRS and between hmtThrRS and hmtArgRS. The activity of hmtTyrRS was also influenced by the presence of hmtSerRS. Notably, hmtSerRS utilized the same catalytic domain in mediating several interactions. Altogether, our results systematically analyzed the suborganelle localization and interaction network of mito aaRSs and discovered several mito aaRS-containing complexes, deepening our understanding of the functional and regulatory mechanisms of mito aaRSs.
Collapse
Affiliation(s)
| | | | - Yating Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shi-Ying Yao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qing-Run Li
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - En-Duo Wang
- Correspondence may also be addressed to En-Duo Wang. Tel: +86 21 5492 1241; Fax: +86 21 5492 1011;
| | - Xiao-Long Zhou
- To whom correspondence should be addressed. Tel: +86 21 5492 1247; Fax: +86 21 5492 1011;
| |
Collapse
|
40
|
Dumoulin B, Heydeck D, Jähn D, Lassé M, Sofi S, Ufer C, Kuhn H. Male guanine-rich RNA sequence binding factor 1 knockout mice (Grsf1 -/-) gain less body weight during adolescence and adulthood. Cell Biosci 2022; 12:199. [PMID: 36494688 PMCID: PMC9733283 DOI: 10.1186/s13578-022-00922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
The guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein of the heterogenous nuclear ribonucleoprotein H/F (hnRNP H/F) family that binds to guanine-rich RNA sequences forming G-quadruplex structures. In mice and humans there are single copy GRSF1 genes, but multiple transcripts have been reported. GRSF1 has been implicated in a number of physiological processes (e.g. embryogenesis, erythropoiesis, redox homeostasis, RNA metabolism) but also in the pathogenesis of viral infections and hyperproliferative diseases. These postulated biological functions of GRSF1 originate from in vitro studies rather than complex in vivo systems. To assess the in vivo relevance of these findings, we created systemic Grsf1-/- knockout mice lacking exons 4 and 5 of the Grsf1 gene and compared the basic functional characteristics of these animals with those of wildtype controls. We found that Grsf1-deficient mice are viable, reproduce normally and have fully functional hematopoietic systems. Up to an age of 15 weeks they develop normally but when male individuals grow older, they gain significantly less body weight than wildtype controls in a gender-specific manner. Profiling Grsf1 mRNA expression in different mouse tissues we observed high concentrations in testis. Comparison of the testicular transcriptomes of Grsf1-/- mice and wildtype controls confirmed near complete knock-out of Grsf1 but otherwise subtle differences in transcript regulations. Comparative testicular proteome analyses suggested perturbed mitochondrial respiration in Grsf1-/- mice which may be related to compromised expression of complex I proteins. Here we present, for the first time, an in vivo complete Grsf1 knock-out mouse with comprehensive physiological, transcriptomic and proteomic characterization to improve our understanding of the GRSF1 beyond in vitro cell culture models.
Collapse
Affiliation(s)
- Bernhard Dumoulin
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany ,grid.13648.380000 0001 2180 3484Present Address: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dagmar Heydeck
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Desiree Jähn
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Moritz Lassé
- grid.13648.380000 0001 2180 3484Present Address: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sajad Sofi
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany ,grid.5685.e0000 0004 1936 9668Present Address: Department of Biology, University of York, York, YO10 5DD UK
| | - Christoph Ufer
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Hartmut Kuhn
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
41
|
Lutz M, Schmierer J, Takimoto T. Host adaptive mutations in the 2009 H1N1 pandemic influenza A virus PA gene regulate translation efficiency of viral mRNAs via GRSF1. Commun Biol 2022; 5:1102. [PMID: 36253464 PMCID: PMC9576711 DOI: 10.1038/s42003-022-04082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022] Open
Abstract
Avian species are the major natural reservoir from which pandemic influenza A viruses can be introduced to humans. Avian influenza A virus genes, including the three viral polymerase genes, PA, PB1 and PB2, require host-adaptive mutations to allow for viral replication and transmission in humans. Previously, PA from the 2009 pH1N1 viral polymerase was found to harbor host-adaptive mutations leading to enhanced viral polymerase activity. By quantifying translation and mRNA transcription, we found that the 2009 pH1N1 PA, and the associated host-adaptive mutations, led to greater translation efficiency. This was due to enhanced cytosolic accumulation of viral mRNA, which was dependent on the host RNA binding protein GRSF1. Mutations to the GRSF1 binding site in viral mRNA, as well as GRSF1 knockdown, reduced cytosolic accumulation and translation efficiency of viral mRNAs. This study identifies a previously unrecognized mechanism by which host-adaptive mutations in PA regulate viral replication and host adaptation. Importantly, these results provide greater insight into the host adaptation process of IAVs and reveal the importance of GRSF1 in the lifecycle of IAV.
Collapse
Affiliation(s)
- Michael Lutz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jordana Schmierer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
42
|
Hikiami R, Morimura T, Ayaki T, Tsukiyama T, Morimura N, Kusui M, Wada H, Minamiyama S, Shodai A, Asada-Utsugi M, Muramatsu SI, Ueki T, Takahashi R, Urushitani M. Conformational change of RNA-helicase DHX30 by ALS/FTD-linked FUS induces mitochondrial dysfunction and cytosolic aggregates. Sci Rep 2022; 12:16030. [PMID: 36163369 PMCID: PMC9512926 DOI: 10.1038/s41598-022-20405-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic mutations in fused in sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS). Although mitochondrial dysfunction and stress granule have been crucially implicated in FUS proteinopathy, the molecular basis remains unclear. Here, we show that DHX30, a component of mitochondrial RNA granules required for mitochondrial ribosome assembly, interacts with FUS, and plays a crucial role in ALS-FUS. WT FUS did not affect mitochondrial localization of DHX30, but the mutant FUS lowered the signal of mitochondrial DHX30 and promoted the colocalization of cytosolic FUS aggregates and stress granule markers. The immunohistochemistry of the spinal cord from an ALS-FUS patient also confirmed the colocalization, and the immunoelectron microscope demonstrated decreased mitochondrial DHX30 signal in the spinal motor neurons. Subcellular fractionation by the detergent-solubility and density-gradient ultracentrifugation revealed that mutant FUS also promoted cytosolic mislocalization of DHX30 and aggregate formation. Interestingly, the mutant FUS disrupted the DHX30 conformation with aberrant disulfide formation, leading to impaired mitochondrial translation. Moreover, blue-native gel electrophoresis revealed an OXPHOS assembly defect caused by the FUS mutant, which was similar to that caused by DHX30 knockdown. Collectively, our study proposes DHX30 as a pivotal molecule in which disulfide-mediated conformational change mediates mitochondrial dysfunction and cytosolic aggregate formation in ALS-FUS.
Collapse
Affiliation(s)
- Ryota Hikiami
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.,Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Toshifumi Morimura
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Takashi Ayaki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Tomoyuki Tsukiyama
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Naoko Morimura
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Makiko Kusui
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Hideki Wada
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Sumio Minamiyama
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.,Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Akemi Shodai
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Megumi Asada-Utsugi
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Center for Open Innovation, Jichi Medical University, Tochigi, 320-0498, Japan.,Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-0071, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan. .,Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
43
|
Bai Z, Tao W, Zhou Y, Cao Y, Yu S, Shi Z. Xiao-Yao-San protects against anti-tuberculosis drug-induced liver injury by regulating Grsf1 in the mitochondrial oxidative stress pathway. Front Pharmacol 2022; 13:948128. [PMID: 36120303 PMCID: PMC9475289 DOI: 10.3389/fphar.2022.948128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Xiao-Yao-San (XYS) is a traditional Chinese prescription that regulates gastrointestinal function, improves mental and psychological abnormalities, and enhances liver function. However, the underlying mechanism of XYS for relieving anti-tuberculosis (AT) drug-induced liver injury is not clear. Objective: The current study examined whether XYS alleviated the symptoms of AT drug-induced liver injury in mice via the mitochondrial oxidative stress pathway. Methods: BALB/c male mice were randomly divided into four groups of 12 animals, including a control group, a model group, a 0.32 g/kg XYS group, and a 0.64 g/kg XYS group. The effect of XYS on the degree of liver injury was observed using haematoxylin and eosin staining (HE) and oil red O staining of pathological sections, biochemical parameters, and reactive oxygen species (ROS) levels. The protein expression of mitochondrial synthesis-related proteins and ferroptosis-related proteins was examined using Western blotting. Results: XYS improved the pathological changes in liver tissue and reduced the level of oxidative stress in liver-injured mice. XYS increased the expression of mitochondrial synthesis-related proteins and reversed the expression of ferroptosis-related proteins. Knockdown of G-rich RNA sequence binding factor 1 (Grsf1) expression with Grsf1 shRNA blocked the protective effects of XYS in liver injury. Conclusion: Our findings suggest that XYS alleviates AT drug-induced liver injury by mediating Grsf1 in the mitochondrial oxidative stress pathway.
Collapse
Affiliation(s)
- Zijun Bai
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yiqun Zhou
- Department of Infectious Disease, Suzhou Integrated Chinese and Western Medicine Hospital, Suzhou, Jiangsu, China
| | - Yi Cao
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shun Yu
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Shun Yu, ; Zheng Shi,
| | - Zheng Shi
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Shun Yu, ; Zheng Shi,
| |
Collapse
|
44
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
45
|
lncRNA GHET1 Promotes the Progression of Triple-Negative Breast Cancer via Regulation of miR-377-3p/GRSF1 Signaling Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8366569. [PMID: 35509860 PMCID: PMC9060992 DOI: 10.1155/2022/8366569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
Objective This study is aimed at investigating the role of lncRNA GHET1 in the progression of triple-negative breast cancer (TNBC). Methods Tumor tissues and paracancerous tissues (normal) of TNBC patients were collected. Human normal breast cells (MCF10A) and TNBC cells (MDA-MB-468 and HCC1937) were employed for in vitro analysis. The expression of lncRNA GHET1, miR-377-3p, and GRSF1 was detected by qRT-PCR. The lncRNA GHET1 and miR-377-3p were overexpressed or knocked down in the TNBC cells, respectively. To determine the specific biological activities of the TNBC cells, MTT, flow cytometry, and wound healing assay were adopted to evaluate the cellular proliferation, apoptosis, and migration abilities, respectively. MMP-9 and MMP-2 protein expression levels were detected as well by Western blot in the cells. The relationship between miR-377-3p and lncRNA GHET1, miR-377-3p, and GRSF1 was validated using dual-luciferase reporter assay. Results lncRNA GHET1 was significantly upregulated in the TNBC patients' tissues and the TNBC cell lines. Overexpression of lncRNA GHET1 significantly increased the proliferation and migration ability, but decreased apoptosis in the TNBC cells. Additionally, overexpression of lncRNA GHET1 upregulated both MMP-9 and MMP-2 protein expression levels. Correlation analysis found that miR-377-3p had a positive relationship with GRSF1, but had a negative relationship with lncRNA GHET1. miR-377-3p mimic attenuated the effects of lncRNA GHET1 on cellular proliferation, apoptosis, and migration of the TNBC cells. Conclusion lncRNA GHET1 promotes TNBC progression through the miR-377-3p/GRSF1 signaling axis.
Collapse
|
46
|
Gindlhuber J, Schinagl M, Liesinger L, Darnhofer B, Tomin T, Schittmayer M, Birner-Gruenberger R. Hepatocyte Proteome Alterations Induced by Individual and Combinations of Common Free Fatty Acids. Int J Mol Sci 2022; 23:3356. [PMID: 35328776 PMCID: PMC8951603 DOI: 10.3390/ijms23063356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease is a pathology with a hard-to-detect onset and is estimated to be present in a quarter of the adult human population. To improve our understanding of the development of non-alcoholic fatty liver disease, we treated a human hepatoma cell line model, HepG2, with increasing concentrations of common fatty acids, namely myristic, palmitic and oleic acid. To reproduce more physiologically representative conditions, we also included combinations of these fatty acids and monitored the cellular response with an in-depth proteomics approach and imaging techniques. The two saturated fatty acids initially presented a similar phenotype of a dose-dependent decrease in growth rates and impaired lipid droplet formation. Detailed analysis revealed that the drop in the growth rates was due to delayed cell-cycle progression following myristic acid treatment, whereas palmitic acid led to cellular apoptosis. In contrast, oleic acid, as well as saturated fatty acid mixtures with oleic acid, led to a dose-dependent increase in lipid droplet volume without adverse impacts on cell growth. Comparing the effects of harmful single-fatty-acid treatments and the well-tolerated fatty acid mixes on the cellular proteome, we were able to differentiate between fatty-acid-specific cellular responses and likely common lipotoxic denominators.
Collapse
Affiliation(s)
- Juergen Gindlhuber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (M.S.); (L.L.); (B.D.)
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| | - Maximilian Schinagl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (M.S.); (L.L.); (B.D.)
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| | - Laura Liesinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (M.S.); (L.L.); (B.D.)
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (M.S.); (L.L.); (B.D.)
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (M.S.); (L.L.); (B.D.)
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| |
Collapse
|
47
|
Zhang X, Yuan S, Liu J, Tang Y, Wang Y, Zhan J, Fan J, Nie X, Zhao Y, Wen Z, Li H, Chen C, Wang DW. Overexpression of cytosolic long noncoding RNA cytb protects against pressure-overload-induced heart failure via sponging microRNA-103-3p. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1127-1145. [PMID: 35251768 PMCID: PMC8881631 DOI: 10.1016/j.omtn.2022.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 02/06/2022] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in cardiovascular diseases. To date, only limited studies have reported the role of mitochondria-derived lncRNAs in heart failure (HF). In the current study, recombinant adeno-associated virus 9 was used to manipulate lncRNA cytb (lnccytb) expression in vivo. Fluorescence in situ hybridization (FISH) assay was used to determine the location of lnccytb, while microRNA (miRNA) sequencing and bioinformatics analyses were applied to identify the downstream targets. The competitive endogenous RNA (ceRNA) function of lnccytb was evaluated by biotin-coupled miRNA pull-down assays and luciferase reporter assays. Results showed that lnccytb expression was decreased in the heart of mice with transverse aortic constriction (TAC), as well as in the heart and plasma of patients with HF. FISH assay and absolute RNA quantification via real-time reverse transcription PCR suggested that the reduction of the lnccytb transcripts mainly occurred in the cytosol. Upregulation of cytosolic lnccytb attenuated cardiac dysfunction in TAC mice. Moreover, overexpression of cytosolic lnccytb in cardiomyocytes alleviated isoprenaline-induced reactive oxidative species (ROS) production and hypertrophy. Mechanistically, lnccytb acted as a ceRNA via sponging miR-103-3p, ultimately mitigating the suppression of PTEN by miR-103-3p. In summary, we demonstrated that the overexpression of cytosolic lnccytb could ameliorate HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Shuai Yuan
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Jingbo Liu
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Yuyan Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Xiang Nie
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Yanru Zhao
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
- Corresponding author Chen Chen, Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
- Corresponding author Dao Wen Wang, Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
48
|
Abstract
R-loops forming inadvertently during transcription can threaten genome stability, but R-loops are also formed intentionally, as a means of regulating transcription and other aspects of DNA metabolism. The study of R-loops in mitochondria is in its infancy, and yet there is already clear evidence that they are predominantly located in the major regulatory region of the mammalian mitochondrial genome. Here, we describe how mitochondrial R-loops have been characterized to date, with the emphasis on the problems of their being extremely labile, and how to minimize their loss during extraction. The oft-overlooked issues of RNA-DNA hybrids not being synonymous with R-loops, and adventitious RNA hybridization to DNA, are tackled head on; and possible new approaches are described and placed in the context of future research lines that could reveal the detailed roles of R-loops in the metabolism of mitochondrial DNA.
Collapse
Affiliation(s)
- Ian J Holt
- Biodonostia Health Research Institute, San Sebastián, Spain.
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Universidad de País Vasco, Bilbao, Spain.
| |
Collapse
|
49
|
Inactivity of Peptidase ClpP Causes Primary Accumulation of Mitochondrial Disaggregase ClpX with Its Interacting Nucleoid Proteins, and of mtDNA. Cells 2021; 10:cells10123354. [PMID: 34943861 PMCID: PMC8699119 DOI: 10.3390/cells10123354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Biallelic pathogenic variants in CLPP, encoding mitochondrial matrix peptidase ClpP, cause a rare autosomal recessive condition, Perrault syndrome type 3 (PRLTS3). It is characterized by primary ovarian insufficiency and early sensorineural hearing loss, often associated with progressive neurological deficits. Mouse models showed that accumulations of (i) its main protein interactor, the substrate-selecting AAA+ ATPase ClpX, (ii) mitoribosomes, and (iii) mtDNA nucleoids are the main cellular consequences of ClpP absence. However, the sequence of these events and their validity in human remain unclear. Here, we studied global proteome profiles to define ClpP substrates among mitochondrial ClpX interactors, which accumulated consistently in ClpP-null mouse embryonal fibroblasts and brains. Validation work included novel ClpP-mutant patient fibroblast proteomics. ClpX co-accumulated in mitochondria with the nucleoid component POLDIP2, the mitochondrial poly(A) mRNA granule element LRPPRC, and tRNA processing factor GFM1 (in mouse, also GRSF1). Only in mouse did accumulated ClpX, GFM1, and GRSF1 appear in nuclear fractions. Mitoribosomal accumulation was minor. Consistent accumulations in murine and human fibroblasts also affected multimerizing factors not known as ClpX interactors, namely, OAT, ASS1, ACADVL, STOM, PRDX3, PC, MUT, ALDH2, PMPCB, UQCRC2, and ACADSB, but the impact on downstream metabolites was marginal. Our data demonstrate the primary impact of ClpXP on the assembly of proteins with nucleic acids and show nucleoid enlargement in human as a key consequence.
Collapse
|
50
|
Ohkubo A, Van Haute L, Rudler DL, Stentenbach M, Steiner FA, Rackham O, Minczuk M, Filipovska A, Martinou JC. The FASTK family proteins fine-tune mitochondrial RNA processing. PLoS Genet 2021; 17:e1009873. [PMID: 34748562 PMCID: PMC8601606 DOI: 10.1371/journal.pgen.1009873] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/18/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Transcription of the human mitochondrial genome and correct processing of the two long polycistronic transcripts are crucial for oxidative phosphorylation. According to the tRNA punctuation model, nucleolytic processing of these large precursor transcripts occurs mainly through the excision of the tRNAs that flank most rRNAs and mRNAs. However, some mRNAs are not punctuated by tRNAs, and it remains largely unknown how these non-canonical junctions are resolved. The FASTK family proteins are emerging as key players in non-canonical RNA processing. Here, we have generated human cell lines carrying single or combined knockouts of several FASTK family members to investigate their roles in non-canonical RNA processing. The most striking phenotypes were obtained with loss of FASTKD4 and FASTKD5 and with their combined double knockout. Comprehensive mitochondrial transcriptome analyses of these cell lines revealed a defect in processing at several canonical and non-canonical RNA junctions, accompanied by an increase in specific antisense transcripts. Loss of FASTKD5 led to the most severe phenotype with marked defects in mitochondrial translation of key components of the electron transport chain complexes and in oxidative phosphorylation. We reveal that the FASTK protein family members are crucial regulators of non-canonical junction and non-coding mitochondrial RNA processing. As a legacy of their bacterial origin, mitochondria have retained their own genome with a unique gene expression system. All mitochondrially encoded proteins are essential components of the respiratory chain. Therefore, the mitochondrial gene expression is crucial for their iconic role as the ‘powerhouse of the cell’–ATP synthesis through oxidative phosphorylation. Consistently, defects in enzymes involved in this gene expression system are a common source of incurable inherited metabolic disorders, called mitochondrial diseases. The human mitochondrial transcription generates long polycistronic transcripts that carry information for multiple genes, so that the expression level of each gene is mainly regulated through post-transcriptional events. The polycistronic transcript first undergoes RNA processing, where individual mRNA, rRNA, and tRNA are cleaved off. However, its entire molecular mechanism remains unclear, and in particular, ‘non-canonical’ RNA processing has been poorly understood. To address this question, we studied the FASTK family proteins, emerging key mitochondrial post-transcriptional regulators. We generated different human cell lines carrying single or combined disruption of FASTKD3, FASTKD4, and FASTKD5 genes, and analyzed them using biochemical and genetic approaches. We show that the FASTK family members fine-tune the processing of both ‘canonical’ and ‘non-canonical’ mitochondrial RNA junctions.
Collapse
Affiliation(s)
- Akira Ohkubo
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Lindsey Van Haute
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Danielle L. Rudler
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- Centre for Medical Research, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia
| | - Maike Stentenbach
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- Centre for Medical Research, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia
| | - Florian A. Steiner
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- Centre for Medical Research, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- * E-mail: (AF); (J-CM)
| | - Jean-Claude Martinou
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (AF); (J-CM)
| |
Collapse
|