1
|
Zhang C, Yang D, Suzuki H, Chen J, Wang J, Ye M, Zhou J, Zeng Q, Bai M, Lin MJ, Lee J, Zhu H, Hoshida Y, Zeng X. Hepatocyte-specific CLSTN3B ablation impairs lipid droplet maturation and alleviates diet-induced steatohepatitis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.20.655199. [PMID: 40475430 PMCID: PMC12139921 DOI: 10.1101/2025.05.20.655199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Excessive lipid accumulation in hepatocytes, a hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD), can lead to progressive liver damage. Understanding the molecular mechanisms governing lipid storage in hepatocytes is essential for identifying therapeutic targets to halt MASLD progression. Here, we show a pivotal role for the protein calsyntenin 3β (CLSTN3B) in promoting lipid droplet (LD) maturation and lipid storage in hepatocytes. Previously characterized as an endoplasmic reticulum (ER)-LD contact protein that facilitates LD maturation in adipocytes, we now show that CLSTN3B expression is strongly induced in mouse hepatocytes by peroxisome proliferator-activated receptor gamma (PPARγ) in response to dietary caloric excess. Hepatocyte-specific deletion of CLSTN3B in mice significantly increases energy expenditure, reduces metabolic efficiency, and protects against diet-induced hepatic steatosis and fibrosis. Mechanistically, CLSTN3B deficiency causes reduced LD phospholipid coverage and increased lipase recruitment. This results in enhanced fatty acid oxidation driven by a futile cycle of lipolysis and re-esterification. Notably, human clinical data reveal a positive correlation between hepatic CLSTN3B expression and MASLD severity and progression, emphasizing its relevance to human disease. Together, our findings establish CLSTN3B as a key regulator of hepatocyte lipid storage and metabolic efficiency and highlight its potential as a therapeutic target in MASLD.
Collapse
Affiliation(s)
- Chuanhai Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dengbao Yang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hiroyuki Suzuki
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jingxuan Chen
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center
| | - Jingjing Wang
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children’s Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mengchen Ye
- Xaira Therapeutics, Brisbane, CA, 94005, USA
| | - Jin Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiyu Zeng
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children’s Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meijuan Bai
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mei-Jung Lin
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center
| | - Hao Zhu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children’s Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xing Zeng
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
2
|
Choe M, Ekvik AE, Stalnaker G, Shin HR, Titov DV. Genetically encoded tool for manipulation of ΔΨm identifies its role as the driver of ISR induced by ATP synthase dysfunction. Cell Chem Biol 2025; 32:620-630.e6. [PMID: 40250406 PMCID: PMC12011318 DOI: 10.1016/j.chembiol.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/19/2024] [Accepted: 03/18/2025] [Indexed: 04/20/2025]
Abstract
Mitochondrial membrane potential (ΔΨm) is one of the key parameters controlling cellular bioenergetics. Investigation of the role of ΔΨm in live cells is complicated by a lack of tools for its direct manipulation without off-target effects. Here, we adopted the uncoupling protein UCP1 from brown adipocytes as a genetically encoded tool for direct manipulation of ΔΨm. We validated the ability of exogenously expressed UCP1 to induce uncoupled respiration and lower ΔΨm in mammalian cells. UCP1 expression lowered ΔΨm to the same extent as chemical uncouplers but did not inhibit cell proliferation, suggesting that it manipulates ΔΨm without the off-target effects of chemical uncouplers. Using UCP1, we revealed that elevated ΔΨm is the driver of the integrated stress response induced by ATP synthase inhibition in mammalian cells.
Collapse
Affiliation(s)
- Mangyu Choe
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alex E Ekvik
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gretchen Stalnaker
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hijai R Shin
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Denis V Titov
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Ng MY, Hagen T. A strategy for liver selective NRF2 induction via cytochrome P450-activated prodrugs with low activity in hypoxia. J Biol Chem 2025; 301:108487. [PMID: 40209947 PMCID: PMC12145549 DOI: 10.1016/j.jbc.2025.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Activation of the transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2) has been shown to be a promising therapeutic approach in the treatment of hepatosteatosis. NRF2 is believed to exert beneficial effects by upregulating cellular oxidative defense mechanisms and inhibiting inflammation. However, a major concern associated with long-term treatment with NRF2 activators are drug side effects, including the promotion of tumorigenesis. Many NRF2 activators function by forming cysteine adducts with KEAP1, which normally mediates the ubiquitination and degradation of NRF2. In this study, we identified NRF2 activator prodrugs of 4-methylcatechol and tert-butylhydroquinone. These prodrugs are converted into their active metabolites in a liver selective, cytochrome P450-dependent manner and function by inhibiting KEAP1, resulting in NRF2 activation. Unexpectedly, we also found that a number of NRF2-activating compounds, including 4-methylcatechol and tert-butylhydroquinone, show a markedly lower activity under hypoxic conditions than normoxia. Our findings suggest that the lower activity of these NRF2 inducers is a consequence of less potent cysteine adduct formation with KEAP1. The lower activity of NRF2 inducing compounds in hypoxia may limit tumor promoting effects of NRF2 induction. Our study provides an important proof of concept that it is possible to selectively activate NRF2 in the liver for the treatment of hepatosteatosis while avoiding tumorigenic effects as well as side effects of NRF2 activation in other tissues.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
4
|
Steinberg GR, Valvano CM, De Nardo W, Watt MJ. Integrative metabolism in MASLD and MASH: Pathophysiology and emerging mechanisms. J Hepatol 2025:S0168-8278(25)00142-4. [PMID: 40032040 DOI: 10.1016/j.jhep.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
The liver acts as a central metabolic hub, integrating signals from the gastrointestinal tract and adipose tissue to regulate carbohydrate, lipid, and amino acid metabolism. Gut-derived metabolites, such as acetate and ethanol and non-esterified fatty acids from white adipose tissue, influence hepatic processes, which rely on mitochondrial function to maintain systemic energy balance. Metabolic dysregulation caused by obesity, insulin resistance, and type 2 diabetes disrupts these pathways, leading to metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH). In this review, we explore the metabolic fluxes within the gut-adipose tissue-liver axis, focusing on the pivotal role of de novo lipogenesis, dietary substrates like glucose and fructose, and changes in mitochondrial function during MASLD progression. We also highlight the contributions of white adipose tissue insulin resistance and impaired mitochondrial dynamics to hepatic lipid accumulation. Further understanding how the interplay between substrate flux from the gastro-intestinal tract integrates with adipose tissue and intersects with structural and functional alterations to liver mitochondria will be important to identify novel therapeutic targets and advance the treatment of MASLD and MASH.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - Celina M Valvano
- Centre for Metabolism, Obesity and Diabetes Research, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - William De Nardo
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Bekheit M, Kamera B, Colacino L, Dropmann A, Delibegovic M, Almadhoob F, Hanafy N, Bermano G, Hammad S. Mechanisms underpinning the effect of exercise on the non-alcoholic fatty liver disease: review. EXCLI JOURNAL 2025; 24:238-266. [PMID: 40071029 PMCID: PMC11895063 DOI: 10.17179/excli2024-7718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025]
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) - whose terminology was recently replaced by metabolic liver disease (MAFLD) - is an accumulation of triglycerides in the liver of >5 % of its weight. Epidemiological studies indicated an association between NAFLD and reduced physical activity. In addition, exercise has been shown to improve NAFLD independently of weight loss. In this paper, we aim to systematically review molecular changes in sedentary experimental NAFLD models vs. those subjected to exercise. We utilized the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist and standard review techniques. Studies were considered for inclusion if they addressed the primary question: the mechanisms by which exercise influenced NAFLD. This review summarized experimental evidence of improvements in NAFLD with exercise in the absence of weight loss. The pathways involved appeared to have AMPK as a common denominator. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohamed Bekheit
- Department of Surgery, NHS Grampian, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
- Institute of Medical Sciences, Medical School, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
| | - Blessed Kamera
- Department of Surgery, NHS Grampian, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
- Institute of Medical Sciences, Medical School, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
| | - Laura Colacino
- Department of Surgery, NHS Grampian, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
- Institute of Medical Sciences, Medical School, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
| | - Anne Dropmann
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Mirela Delibegovic
- Department of Surgery, NHS Grampian, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
- Institute of Medical Sciences, Medical School, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
| | - Fatema Almadhoob
- St. Helens and Knowsley Teaching Hospitals NHS Trust, Prescot, Prescot, UK
| | - Nemany Hanafy
- Group of Bionanotechnology and Molecular Cell Biology, Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Garthdee Road, Aberdeen AB10 7GJ, UK
| | - Seddik Hammad
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| |
Collapse
|
6
|
Foutz MA, Krinos EL, Beretta M, Hargett SR, Shrestha R, Murray JH, Duerre E, Salamoun JM, McCarter K, Shah DP, Hoehn KL, Santos WL. Design, Synthesis, and Biological Evaluation of [1,2,5]Oxadiazolo[3,4- b]pyridin-7-ol as Mitochondrial Uncouplers for the Treatment of Obesity and Metabolic Dysfunction-Associated Steatohepatitis. J Med Chem 2024; 67:21486-21504. [PMID: 39614818 DOI: 10.1021/acs.jmedchem.4c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Mitochondrial uncouplers are small molecule protonophores that act to dissipate the proton motive force independent of adenosine triphosphate (ATP) synthase. Mitochondrial uncouplers such as BAM15 increase respiration and energy expenditure and have potential in treating a variety of metabolic diseases. In this study, we disclose the structure-activity relationship profile of 6-substituted [1,2,5]oxadiazolo[3,4-b]pyridin-7-ol derivatives of BAM15. Utilizing an oxygen consumption rate assay as a measure of increased cellular respiration, SHO1122147 (7m) displayed an EC50 of 3.6 μM in L6 myoblasts. Pharmacokinetic studies indicated a half-life of 2 h, Cmax of 35 μM, and no observed adverse effects at 1,000 mg kg-1 dose in mice. In a Gubra-Amylin (GAN) mouse model of MASH, SHO1122147 was efficacious in decreasing body weight and liver triglyceride levels at 200 mg kg-1 day-1 without changes in body temperature. These findings indicate the potential of utilizing novel [1,2,5]oxadiazolo[3,4-b]pyridin-7-ol mitochondrial uncouplers for treatment of fatty liver disease and obesity.
Collapse
Affiliation(s)
- Mary A Foutz
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Emily L Krinos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Stefan R Hargett
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Riya Shrestha
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Jacob H Murray
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ethan Duerre
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph M Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Katrina McCarter
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Divya P Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Dos Santos BG, Brisnovali NF, Goedeke L. Biochemical basis and therapeutic potential of mitochondrial uncoupling in cardiometabolic syndrome. Biochem J 2024; 481:1831-1854. [PMID: 39630236 DOI: 10.1042/bcj20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria, allowing for adjustments in cellular energy metabolism to maintain metabolic homeostasis. Small molecule uncouplers have been extensively studied for their potential to increase metabolic rate, and recent research has focused on developing safe and effective mitochondrial uncoupling agents for the treatment of obesity and cardiometabolic syndrome (CMS). Here, we provide a brief overview of CMS and cover the recent mechanisms by which chemical uncouplers regulate CMS-associated risk-factors and comorbidities, including dyslipidemia, insulin resistance, steatotic liver disease, type 2 diabetes, and atherosclerosis. Additionally, we review the current landscape of uncoupling agents, focusing on repurposed FDA-approved drugs and compounds in advanced preclinical or early-stage clinical development. Lastly, we discuss recent molecular insights by which chemical uncouplers enhance cellular energy expenditure, highlighting their potential as a new addition to the current CMS drug landscape, and outline several limitations that need to be addressed before these agents can successfully be introduced into clinical practice.
Collapse
Affiliation(s)
- Bernardo Gindri Dos Santos
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Niki F Brisnovali
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Leigh Goedeke
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
- Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| |
Collapse
|
8
|
Petersen KF, Dufour S, Mehal WZ, Shulman GI. Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease. Cell Metab 2024; 36:2359-2366.e3. [PMID: 39197461 PMCID: PMC11612994 DOI: 10.1016/j.cmet.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/23/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
We assessed in vivo rates of hepatic mitochondrial oxidation, gluconeogenesis, and β-hydroxybutyrate (β-OHB) turnover by positional isotopomer NMR tracer analysis (PINTA) in individuals with metabolic-dysfunction-associated steatotic liver (MASL) (fatty liver) and MASL disease (MASLD) (steatohepatitis) compared with BMI-matched control participants with no hepatic steatosis. Hepatic fat content was quantified by localized 1H magnetic resonance spectroscopy (MRS). We found that in vivo rates of hepatic mitochondrial oxidation were unaltered in the MASL and MASLD groups compared with the control group. A physiological increase in plasma glucagon concentrations increased in vivo rates of hepatic mitochondrial oxidation by 50%-75% in individuals with and without MASL and increased rates of glucose production by ∼50% in the MASL group, which could be attributed in part to an ∼30% increase in rates of mitochondrial pyruvate carboxylase flux. These results demonstrate that (1) rates of hepatic mitochondrial oxidation are not substantially altered in individuals with MASL and MASLD and (2) glucagon increases rates of hepatic mitochondrial oxidation.
Collapse
Affiliation(s)
- Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - Sylvie Dufour
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wajahat Z Mehal
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; West Haven Medical Center, West Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
9
|
Xu W, Zhang D, Ma Y, Gaspar RC, Kahn M, Nasiri A, Murray S, Samuel VT, Shulman GI. Ceramide synthesis inhibitors prevent lipid-induced insulin resistance through the DAG-PKCε-insulin receptor T1150 phosphorylation pathway. Cell Rep 2024; 43:114746. [PMID: 39302831 DOI: 10.1016/j.celrep.2024.114746] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Inhibition of the ceramide synthetic pathway with myriocin or an antisense oligonucleotide (ASO) targeting dihydroceramide desaturase (DES1) both improved hepatic insulin sensitivity in rats fed either a saturated or unsaturated fat diet and was associated with reductions in both hepatic ceramide and plasma membrane (PM)-sn-1,2-diacylglycerol (DAG) content. The insulin sensitizing effects of myriocin and Des1 ASO were abrogated by acute treatment with an ASO against DGAT2, which increased hepatic PM-sn-1,2-DAG but not hepatic C16 ceramide content. Increased PM-sn-1,2-DAG content was associated with protein kinase C (PKC)ε activation, increased insulin receptor (INSR)T1150 phosphorylation leading to reduced insulin-stimulated INSRY1152/AktS473 phosphorylation, and impaired insulin-mediated suppression of endogenous glucose production. These results demonstrate that inhibition of de novo ceramide synthesis by either myriocin treatment or DES1 knockdown protects against lipid-induced hepatic insulin resistance through a C16 ceramide-independent mechanism and that they mediate their effects to protect from lipid-induced hepatic insulin resistance via the PM-sn-1,2-DAG-PKCε-INSRT1150 phosphorylation pathway.
Collapse
Affiliation(s)
- Weiwei Xu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yumin Ma
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Endocrinology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sue Murray
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Varman T Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
10
|
Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H, Li J. Potential therapeutic strategies for MASH: from preclinical to clinical development. LIFE METABOLISM 2024; 3:loae029. [PMID: 39872142 PMCID: PMC11749562 DOI: 10.1093/lifemeta/loae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 01/03/2025]
Abstract
Current treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglin Rao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Honglu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
11
|
Sadler DG, Landes RD, Treas L, Sikes J, Porter C. Protonophore treatment augments energy expenditure in mice housed at thermoneutrality. Front Physiol 2024; 15:1452986. [PMID: 39381330 PMCID: PMC11458463 DOI: 10.3389/fphys.2024.1452986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
Background Sub-thermoneutral housing increases facultative thermogenesis in mice, which may mask the pre-clinical efficacy of anti-obesity strategies that target energy expenditure (EE). Here, we quantified the impact of protonophore treatment on whole-body energetics in mice housed at 30°C. Methods C57BL/6J mice (n = 48, 24M/24F) were housed at 24°C for 2 weeks; 32 (16M/16F) were then transitioned to 30°C for a further 4 weeks. Following 2 weeks acclimation at 30°C, mice (n = 16 per group, 8M/8F) received either normal (0 mg/L; Control) or supplemented (400 mg/L; 2,4-Dinitrophenol [DNP]) drinking water. Mice were singly housed in metabolic cages to determine total EE (TEE) and its components via respiratory gas exchange. Mitochondrial respiratory function of permeabilized liver tissue was determined by high-resolution respirometry. Results Transitioning mice from 24°C to 30°C reduced TEE and basal EE (BEE) by 16% and 41%, respectively (both P < 0.001). Compared to 30°C controls, TEE was 2.6 kcal/day greater in DNP-treated mice (95% CI: 1.6-3.6 kcal/day, P < 0.001), which was partly due to a 1.2 kcal/day higher BEE in DNP-treated mice (95% CI: 0.6-1.7 kcal/day, P < 0.001). The absolute TEE of 30°C DNP-treated mice was lower than that of mice housed at 24°C in the absence of DNP (DNP: 9.4 ± 0.7 kcal/day vs. 24°C control: 10.4 ± 1.5 kcal/day). DNP treatment reduced overall body fat of females by 2.9 percentage points versus sex-matched controls (95% CI: 1.3%-4.5%, P < 0.001), which was at least partly due to a reduction in inguinal white fat mass. Conclusion Protonophore treatment markedly increases EE in mice housed at 30°C. The magnitude of change in TEE of mice receiving protonophore treatment at 30°C was smaller than that brought about by transitioning mice from 24°C to 30°C, emphasizing that housing temperature must be considered when assessing anti-obesity strategies that target EE in mice.
Collapse
Affiliation(s)
- Daniel G. Sadler
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, Univesrity of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Reid D. Landes
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Departments of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lillie Treas
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - James Sikes
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Craig Porter
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, Univesrity of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
12
|
Henin G, Loumaye A, Deldicque L, Leclercq IA, Lanthier N. Unlocking liver health: Can tackling myosteatosis spark remission in metabolic dysfunction-associated steatotic liver disease? Liver Int 2024; 44:1781-1796. [PMID: 38623714 DOI: 10.1111/liv.15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Myosteatosis is highly prevalent in metabolic dysfunction-associated steatotic liver disease (MASLD) and could reciprocally impact liver function. Decreasing muscle fat could be indirectly hepatoprotective in MASLD. We conducted a review to identify interventions reducing myosteatosis and their impact on liver function. Non-pharmacological interventions included diet (caloric restriction or lipid enrichment), bariatric surgery and physical activity. Caloric restriction in humans achieving a mean weight loss of 3% only reduces muscle fat. Lipid-enriched diet increases liver fat in human with no impact on muscle fat, except sphingomyelin-enriched diet which reduces both lipid contents exclusively in pre-clinical studies. Bariatric surgery, hybrid training (resistance exercise and electric stimulation) or whole-body vibration in human decrease both liver and muscle fat. Physical activity impacts both phenotypes by reducing local and systemic inflammation, enhancing insulin sensitivity and modulating the expression of key mediators of the muscle-liver-adipose tissue axis. The combination of diet and physical activity acts synergistically in liver, muscle and white adipose tissue, and further decrease muscle and liver fat. Several pharmacological interventions (patchouli alcohol, KBP-089, 2,4-dinitrophenol methyl ether, adipoRon and atglistatin) and food supplementation (vitamin D or resveratrol) improve liver and muscle phenotypes in pre-clinical studies by increasing fatty acid oxidation and anti-inflammatory properties. These interventions are effective in reducing myosteatosis in MASLD while addressing the liver disease itself. This review supports that disturbances in inter-organ crosstalk are key pathophysiological mechanisms involved in MASLD and myosteatosis pathogenesis. Focusing on the skeletal muscle might offer new therapeutic strategies to treat MASLD by modulating the interactions between liver and muscles.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d'Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | | | - Isabelle A Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
13
|
Cardoso S, Carvalho C, Correia SC, Moreira PI. Protective effects of 2,4-dinitrophenol in okadaic acid-induced cellular model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167222. [PMID: 38729530 DOI: 10.1016/j.bbadis.2024.167222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) research started several decades ago and despite the many efforts employed to develop new treatments or approaches to slow and/or revert disease progression, AD treatment remains an unsolved issue. Knowing that mitochondria loss of function is a central hub for many AD-associated pathophysiological processes, there has been renewed interest in exploring mitochondria as targets for intervention. In this perspective, the present study was aimed to investigate the possible beneficial effects of 2,4 dinitrophenol (DNP), a mitochondrial uncoupler agent, in an in vitro model of AD. Retinoic acid-induced differentiated SH-SY5Y cells were incubated with okadaic acid (OA), a neurotoxin often used as an AD experimental model, and/or with DNP. OA caused a decrease in neuronal cells viability, induced multiple mitochondrial anomalies including increased levels of reactive oxygen species, decreased bioenergetics and mitochondria content markers, and an altered mitochondria morphology. OA-treated cells also presented increased lipid peroxidation levels, and overactivation of tau related kinases (GSK3β, ERK1/2 and AMPK) alongside with a significant augment in tau protein phosphorylation levels. Interestingly, DNP co-treatment ameliorated and rescued OA-induced detrimental effects not only on mitochondria but also but also reinstated signaling pathways homeostasis and ameliorated tau pathology. Overall, our results show for the first time that DNP has the potential to preserve mitochondria homeostasis under a toxic insult, like OA exposure, as well as to reestablish cellular signaling homeostasis. These observations foster the idea that DNP, as a mitochondrial modulator, might represent a new avenue for treatment of AD.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| | - Cristina Carvalho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Sónia C Correia
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paula I Moreira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
14
|
Ng MY, Song ZJ, Tan CH, Bassetto M, Hagen T. Structural investigations on the mitochondrial uncouplers niclosamide and FCCP. FEBS Open Bio 2024; 14:1057-1071. [PMID: 38750619 PMCID: PMC11216929 DOI: 10.1002/2211-5463.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 07/03/2024] Open
Abstract
There has been renewed interest in using mitochondrial uncoupler compounds such as niclosamide and carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) for the treatment of obesity, hepatosteatosis and diseases where oxidative stress plays a role. However, both FCCP and niclosamide have undesirable effects that are not due to mitochondrial uncoupling, such as inhibition of mitochondrial oxygen consumption by FCCP and induction of DNA damage by niclosamide. Through structure-activity analysis, we identified FCCP analogues that do not inhibit mitochondrial oxygen consumption but still provided good, although less potent, uncoupling activity. We also characterized the functional role of the niclosamide 4'-nitro group, the phenolic hydroxy group and the anilide amino group in mediating uncoupling activity. Our structural investigations provide important information that will aid further drug development.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Present address:
Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
| | - Zhi Jian Song
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore
| | - Choon Hong Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life SciencesCardiff UniversityUK
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
15
|
Shao H, Zhang H, Jia D. The Role of Exerkines in Obesity-Induced Disruption of Mitochondrial Homeostasis in Thermogenic Fat. Metabolites 2024; 14:287. [PMID: 38786764 PMCID: PMC11122964 DOI: 10.3390/metabo14050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
There is a notable correlation between mitochondrial homeostasis and metabolic disruption. In this review, we report that obesity-induced disruption of mitochondrial homeostasis adversely affects lipid metabolism, adipocyte differentiation, oxidative capacity, inflammation, insulin sensitivity, and thermogenesis in thermogenic fat. Elevating mitochondrial homeostasis in thermogenic fat emerges as a promising avenue for developing treatments for metabolic diseases, including enhanced mitochondrial function, mitophagy, mitochondrial uncoupling, and mitochondrial biogenesis. The exerkines (e.g., myokines, adipokines, batokines) released during exercise have the potential to ameliorate mitochondrial homeostasis, improve glucose and lipid metabolism, and stimulate fat browning and thermogenesis as a defense against obesity-associated metabolic diseases. This comprehensive review focuses on the manifold benefits of exercise-induced exerkines, particularly emphasizing their influence on mitochondrial homeostasis and fat thermogenesis in the context of metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Hui Shao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
- Graduate School of Harbin Sport University, Harbin Sport University, Harbin 150006, China
| | - Huijie Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| |
Collapse
|
16
|
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:124. [PMID: 38744846 PMCID: PMC11094169 DOI: 10.1038/s41392-024-01839-8] [Citation(s) in RCA: 224] [Impact Index Per Article: 224.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/05/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
Collapse
Affiliation(s)
- Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yao Pan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongqiang Zheng
- Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
17
|
Jokinen MJ, Luukkonen PK. Hepatic mitochondrial reductive stress in the pathogenesis and treatment of steatotic liver disease. Trends Pharmacol Sci 2024; 45:319-334. [PMID: 38471991 DOI: 10.1016/j.tips.2024.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Steatotic liver diseases (SLDs) affect one-third of the population, but the pathogenesis underlying these diseases is not well understood, limiting the available treatments. A common factor in SLDs is increased hepatic mitochondrial reductive stress, which occurs as a result of excessive lipid and alcohol metabolism. Recent research has also shown that genetic risk factors contribute to this stress. This review aims to explore how these risk factors increase hepatic mitochondrial reductive stress and how it disrupts hepatic metabolism, leading to SLDs. Additionally, the review will discuss the latest clinical studies on pharmaceutical treatments for SLDs, specifically peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, thyroid hormone receptor (THR) agonists, acetyl-CoA carboxylase (ACC) inhibitors, and mitochondrial uncouplers. These treatments have a common effect of decreasing hepatic mitochondrial reductive stress, which has been largely overlooked.
Collapse
Affiliation(s)
- Mari J Jokinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, University of Helsinki, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Panu K Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, University of Helsinki, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
18
|
Mahler CA, Snoke DB, Cole RM, Angelotti A, Sparagna GC, Baskin KK, Ni A, Belury MA. Consuming a Linoleate-Rich Diet Increases Concentrations of Tetralinoleoyl Cardiolipin in Mouse Liver and Alters Hepatic Mitochondrial Respiration. J Nutr 2024; 154:856-865. [PMID: 38160803 DOI: 10.1016/j.tjnut.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Hepatic mitochondrial dysfunction is a major cause of fat accumulation in the liver. Individuals with fatty liver conditions have hepatic mitochondrial structural abnormalities and a switch in the side chain composition of the mitochondrial phospholipid, cardiolipin, from poly- to monounsaturated fatty acids. Linoleic acid (LA), an essential dietary fatty acid, is required to remodel nascent cardiolipin (CL) to its tetralinoleoyl cardiolipin (L4CL, CL with 4 LA side chains) form, which is integral for mitochondrial membrane structure and function to promote fatty acid oxidation. It is unknown, however, whether increasing LA in the diet can increase hepatic L4CL concentrations and improve mitochondrial respiration in the liver compared with a diet rich in monounsaturated and saturated fatty acids. OBJECTIVES The main aim of this study was to test the ability of a diet fortified with LA-rich safflower oil (SO), compared with the one fortified with lard (LD), to increase concentrations of L4CL and improve mitochondrial respiration in the livers of mice. METHODS Twenty-four (9-wk-old) C57 BL/J6 male mice were fed either the SO or LD diets for ∼100 d, whereas food intake and body weight, fasting glucose, and glucose tolerance tests were performed to determine any changes in glycemic control. RESULTS Livers from mice fed SO diet had higher relative concentrations of hepatic L4CL species compared with LD diet-fed mice (P value = 0.004). Uncoupled mitochondria of mice fed the SO diet, compared with LD diet, had an increased baseline oxygen consumption rate (OCR) and succinate-driven respiration (P values = 0.03 and 0.01). SO diet-fed mice had increased LA content in all phospholipid classes compared with LD-fed mice (P < 0.05). CONCLUSIONS Our findings reveal that maintaining or increasing hepatic L4CL may result in increased OCR in uncoupled hepatic mitochondria in healthy mice whereas higher oleate content of CL reduced mitochondrial function shown by lower OCR in uncoupled mitochondria.
Collapse
Affiliation(s)
- Connor A Mahler
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Deena B Snoke
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, United States; Interdisciplinary PhD Program in Nutrition, The Ohio State University, Columbus, OH, United States
| | - Rachel M Cole
- Interdisciplinary PhD Program in Nutrition, The Ohio State University, Columbus, OH, United States; Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Austin Angelotti
- Interdisciplinary PhD Program in Nutrition, The Ohio State University, Columbus, OH, United States; Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Genevieve C Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kedryn K Baskin
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Diabetes and Metabolism Research Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ai Ni
- Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Martha A Belury
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
19
|
Ng MY, Song ZJ, Venkatesan G, Rodriguez-Cuenca S, West JA, Yang S, Tan CH, Ho PCL, Griffin JL, Vidal-Puig A, Bassetto M, Hagen T. Conjugating uncoupler compounds with hydrophobic hydrocarbon chains to achieve adipose tissue selective drug accumulation. Sci Rep 2024; 14:4932. [PMID: 38418847 PMCID: PMC10901892 DOI: 10.1038/s41598-024-54466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
One potential approach for treating obesity is to increase energy expenditure in brown and white adipose tissue. Here we aimed to achieve this outcome by targeting mitochondrial uncoupler compounds selectively to adipose tissue, thus avoiding side effects from uncoupling in other tissues. Selective drug accumulation in adipose tissue has been observed with many lipophilic compounds and dyes. Hence, we explored the feasibility of conjugating uncoupler compounds with a lipophilic C8-hydrocarbon chain via an ether bond. We found that substituting the trifluoromethoxy group in the uncoupler FCCP with a C8-hydrocarbon chain resulted in potent uncoupling activity. Nonetheless, the compound did not elicit therapeutic effects in mice, likely as a consequence of metabolic instability resulting from rapid ether bond cleavage. A lipophilic analog of the uncoupler compound 2,6-dinitrophenol, in which a C8-hydrocarbon chain was conjugated via an ether bond in the para-position (2,6-dinitro-4-(octyloxy)phenol), exhibited increased uncoupling activity compared to the parent compound. However, in vivo pharmacokinetics studies suggested that 2,6-dinitro-4-(octyloxy)phenol was also metabolically unstable. In conclusion, conjugation of a hydrophobic hydrocarbon chain to uncoupler compounds resulted in sustained or improved uncoupling activity. However, an ether bond linkage led to metabolic instability, indicating the need to conjugate lipophilic groups via other chemical bonds.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zhi Jian Song
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, Singapore
| | | | - Sergio Rodriguez-Cuenca
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, The University of Cambridge, Cambridge, UK
| | - James A West
- Department of Biochemistry, The University of Cambridge, Cambridge, UK
| | - Shili Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Choon Hong Tan
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, Singapore
| | - Paul Chi-Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
- School of Pharmacy, Monash University Malaysia, 47500, Subang Jaya, Malaysia
| | - Julian L Griffin
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Aberdeen, UK
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, The University of Cambridge, Cambridge, UK
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
20
|
Chen SY, Telfser AJ, Olzomer EM, Vancuylenberg CS, Zhou M, Beretta M, Li C, Alexopoulos SJ, Turner N, Byrne FL, Santos W, Hoehn KL. Beneficial effects of simultaneously targeting calorie intake and calorie efficiency in diet-induced obese mice. Clin Sci (Lond) 2024; 138:173-187. [PMID: 38315575 PMCID: PMC10876416 DOI: 10.1042/cs20231016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Semaglutide is an anti-diabetes and weight loss drug that decreases food intake, slows gastric emptying, and increases insulin secretion. Patients begin treatment with low-dose semaglutide and increase dosage over time as efficacy plateaus. With increasing dosage, there is also greater incidence of gastrointestinal side effects. One reason for the plateau in semaglutide efficacy despite continued low food intake is due to compensatory actions whereby the body becomes more metabolically efficient to defend against further weight loss. Mitochondrial uncoupler drugs decrease metabolic efficiency, therefore we sought to investigate the combination therapy of semaglutide with the mitochondrial uncoupler BAM15 in diet-induced obese mice. Mice were fed high-fat western diet (WD) and stratified into six treatment groups including WD control, BAM15, low-dose semaglutide without or with BAM15, and high-dose semaglutide without or with BAM15. Combining BAM15 with either semaglutide dose decreased body fat and liver triglycerides, which was not achieved by any monotherapy, while high-dose semaglutide with BAM15 had the greatest effect on glucose homeostasis. This study demonstrates a novel approach to improve weight loss without loss of lean mass and improve glucose control by simultaneously targeting energy intake and energy efficiency. Such a combination may decrease the need for semaglutide dose escalation and hence minimize potential gastrointestinal side effects.
Collapse
Affiliation(s)
- Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Aiden J. Telfser
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ellen M. Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Calum S. Vancuylenberg
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mingyan Zhou
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Catherine Li
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Stephanie J. Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nigel Turner
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Frances L. Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Webster L. Santos
- Department of Chemistry and Virginia Tech Centre for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Kyle L. Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
21
|
Maseko TE, Elkalaf M, Peterová E, Lotková H, Staňková P, Melek J, Dušek J, Žádníková P, Čížková D, Bezrouk A, Pávek P, Červinková Z, Kučera O. Comparison of HepaRG and HepG2 cell lines to model mitochondrial respiratory adaptations in non‑alcoholic fatty liver disease. Int J Mol Med 2024; 53:18. [PMID: 38186319 PMCID: PMC10781417 DOI: 10.3892/ijmm.2023.5342] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Although some clinical studies have reported increased mitochondrial respiration in patients with fatty liver and early non‑alcoholic steatohepatitis (NASH), there is a lack of in vitro models of non‑alcoholic fatty liver disease (NAFLD) with similar findings. Despite being the most commonly used immortalized cell line for in vitro models of NAFLD, HepG2 cells exposed to free fatty acids (FFAs) exhibit a decreased mitochondrial respiration. On the other hand, the use of HepaRG cells to study mitochondrial respiratory changes following exposure to FFAs has not yet been fully explored. Therefore, the present study aimed to assess cellular energy metabolism, particularly mitochondrial respiration, and lipotoxicity in FFA‑treated HepaRG and HepG2 cells. HepaRG and HepG2 cells were exposed to FFAs, followed by comparative analyses that examained cellular metabolism, mitochondrial respiratory enzyme activities, mitochondrial morphology, lipotoxicity, the mRNA expression of selected genes and triacylglycerol (TAG) accumulation. FFAs stimulated mitochondrial respiration and glycolysis in HepaRG cells, but not in HepG2 cells. Stimulated complex I, II‑driven respiration and β‑oxidation were linked to increased complex I and II activities in FFA‑treated HepaRG cells, but not in FFA‑treated HepG2 cells. Exposure to FFAs disrupted mitochondrial morphology in both HepaRG and HepG2 cells. Lipotoxicity was induced to a greater extent in FFA‑treated HepaRG cells than in FFA‑treated HepG2 cells. TAG accumulation was less prominent in HepaRG cells than in HepG2 cells. On the whole, the present study demonstrates that stimulated mitochondrial respiration is associated with lipotoxicity in FFA‑treated HepaRG cells, but not in FFA‑treated HepG2 cells. These findings suggest that HepaRG cells are more suitable for assessing mitochondrial respiratory adaptations in the developed in vitro model of early‑stage NASH.
Collapse
Affiliation(s)
- Tumisang Edward Maseko
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Moustafa Elkalaf
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Eva Peterová
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Halka Lotková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Pavla Staňková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Jan Melek
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Jan Dušek
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Petra Žádníková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Dana Čížková
- Department of Histology and Embryology Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Aleš Bezrouk
- Department of Medical Biophysics, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Zuzana Červinková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Otto Kučera
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
22
|
Chen SY, Beretta M, Olzomer EM, Alexopoulos SJ, Shah DP, Byrne FL, Salamoun JM, Garcia CJ, Smith GC, Larance M, Philp A, Turner N, Santos WL, Cantley J, Hoehn KL. Head-to-head comparison of BAM15, semaglutide, rosiglitazone, NEN, and calorie restriction on metabolic physiology in female db/db mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166908. [PMID: 37793464 PMCID: PMC10908303 DOI: 10.1016/j.bbadis.2023.166908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Metabolic disorders such as type 2 diabetes, fatty liver disease, hyperlipidemia, and obesity commonly co-occur but clinical treatment options do not effectively target all disorders. Calorie restriction, semaglutide, rosiglitazone, and mitochondrial uncouplers have all demonstrated efficacy against one or more obesity-related metabolic disorders, but it currently remains unclear which therapeutic strategy best targets the combination of hyperglycaemia, liver fat, hypertriglyceridemia, and adiposity. Herein we performed a head-to-head comparison of 5 treatment interventions in the female db/db mouse model of severe metabolic disease. Treatments included ∼60 % calorie restriction (CR), semaglutide, rosiglitazone, BAM15, and niclosamide ethanolamine (NEN). Results showed that BAM15 and CR improved body weight and liver steatosis to levels superior to semaglutide, NEN, and rosiglitazone, while BAM15, semaglutide, and rosiglitazone improved glucose tolerance better than CR and NEN. BAM15, CR, semaglutide, and rosiglitazone all had efficacy against hypertriglyceridaemia. These data provide a comprehensive head-to-head comparison of several key treatment strategies for metabolic disease and highlight the efficacy of mitochondrial uncoupling to correct multiple facets of the metabolic disease milieu in female db/db mice.
Collapse
Affiliation(s)
- Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Divya P Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joseph M Salamoun
- Department of Chemistry and Virginia Tech Centre for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - Christopher J Garcia
- Department of Chemistry and Virginia Tech Centre for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - Greg C Smith
- School of Medical Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew Philp
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Centre for Healthy Ageing, Centenary Institute, Camperdown, NSW 2050, Australia; School of Sport, Exercise and Rehabilitation Sciences, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nigel Turner
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Centre for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - James Cantley
- School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
23
|
Choe M, Titov DV. Genetically encoded tool for manipulation of ΔΨm identifies the latter as the driver of integrative stress response induced by ATP Synthase dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573435. [PMID: 38234735 PMCID: PMC10793441 DOI: 10.1101/2023.12.27.573435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Mitochondrial membrane potential (ΔΨm) is one of the key parameters controlling cellular bioenergetics. Investigation of the role of ΔΨm in live cells is complicated by a lack of tools for its direct manipulation without off-target effects. Here, we adopted the uncoupling protein UCP1 from brown adipocytes as a genetically encoded tool for direct manipulation of ΔΨm. We validated the ability of exogenously expressed UCP1 to induce uncoupled respiration and lower ΔΨm in mammalian cells. UCP1 expression lowered ΔΨm to the same extent as chemical uncouplers but did not inhibit cell proliferation, suggesting that it manipulates ΔΨm without the off-target effects of chemical uncouplers. Using UCP1, we revealed that elevated ΔΨm is the driver of the Integrated Stress Response induced by ATP synthase inhibition in mammalian cells.
Collapse
Affiliation(s)
- Mangyu Choe
- Department of Nutritional Sciences and Toxicology, University of California; Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California; Berkeley, CA 94720, USA
| | - Denis V Titov
- Department of Nutritional Sciences and Toxicology, University of California; Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California; Berkeley, CA 94720, USA
- Center for Computational Biology, University of California; Berkeley, CA 94720, USA
| |
Collapse
|
24
|
Greatorex S, Kaur S, Xirouchaki CE, Goh PK, Wiede F, Genders AJ, Tran M, Jia Y, Raajendiran A, Brown WA, McLean CA, Sadoshima J, Watt MJ, Tiganis T. Mitochondria- and NOX4-dependent antioxidant defense mitigates progression to nonalcoholic steatohepatitis in obesity. J Clin Invest 2023; 134:e162533. [PMID: 38060313 PMCID: PMC10849767 DOI: 10.1172/jci162533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/21/2023] [Indexed: 02/02/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is prevalent in the majority of individuals with obesity, but in a subset of these individuals, it progresses to nonalcoholic steatohepatitis (0NASH) and fibrosis. The mechanisms that prevent NASH and fibrosis in the majority of patients with NAFLD remain unclear. Here, we report that NAD(P)H oxidase 4 (NOX4) and nuclear factor erythroid 2-related factor 2 (NFE2L2) were elevated in hepatocytes early in disease progression to prevent NASH and fibrosis. Mitochondria-derived ROS activated NFE2L2 to induce the expression of NOX4, which in turn generated H2O2 to exacerbate the NFE2L2 antioxidant defense response. The deletion or inhibition of NOX4 in hepatocytes decreased ROS and attenuated antioxidant defense to promote mitochondrial oxidative stress, damage proteins and lipids, diminish insulin signaling, and promote cell death upon oxidant challenge. Hepatocyte NOX4 deletion in high-fat diet-fed obese mice, which otherwise develop steatosis, but not NASH, resulted in hepatic oxidative damage, inflammation, and T cell recruitment to drive NASH and fibrosis, whereas NOX4 overexpression tempered the development of NASH and fibrosis in mice fed a NASH-promoting diet. Thus, mitochondria- and NOX4-derived ROS function in concert to drive a NFE2L2 antioxidant defense response to attenuate oxidative liver damage and progression to NASH and fibrosis in obesity.
Collapse
Affiliation(s)
- Spencer Greatorex
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Supreet Kaur
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | | | - Pei K. Goh
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Florian Wiede
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Amanda J. Genders
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Melanie Tran
- Department of Biochemistry and Molecular Biology
| | - YaoYao Jia
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Arthe Raajendiran
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Wendy A. Brown
- Department of Surgery, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | | | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Matthew J. Watt
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
25
|
Gureev AP, Alimova AA, Silachev DN, Plotnikov EY. Noncoupled Mitochondrial Respiration as Therapeutic Approach for the Treatment of Metabolic Diseases: Focus on Transgenic Animal Models. Int J Mol Sci 2023; 24:16491. [PMID: 38003681 PMCID: PMC10671337 DOI: 10.3390/ijms242216491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction contributes to numerous chronic diseases, and mitochondria are targets for various toxins and xenobiotics. Therefore, the development of drugs or therapeutic strategies targeting mitochondria is an important task in modern medicine. It is well known that the primary, although not the sole, function of mitochondria is ATP generation, which is achieved by coupled respiration. However, a high membrane potential can lead to uncontrolled reactive oxygen species (ROS) production and associated dysfunction. For over 50 years, scientists have been studying various synthetic uncouplers, and for more than 30 years, uncoupling proteins that are responsible for uncoupled respiration in mitochondria. Additionally, the proteins of the mitochondrial alternative respiratory pathway exist in plant mitochondria, allowing noncoupled respiration, in which electron flow is not associated with membrane potential formation. Over the past two decades, advances in genetic engineering have facilitated the creation of various cellular and animal models that simulate the effects of uncoupled and noncoupled respiration in different tissues under various disease conditions. In this review, we summarize and discuss the findings obtained from these transgenic models. We focus on the advantages and limitations of transgenic organisms, the observed physiological and biochemical changes, and the therapeutic potential of uncoupled and noncoupled respiration.
Collapse
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.); (A.A.A.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Alina A. Alimova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.); (A.A.A.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
26
|
Inoue Y, Wada Y, Sato M, Sato S, Okamoto T, Kanemoto N. Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone-induced toxicities in rats: comparative study with other mitochondrial uncouplers (2,4-dinitrophenol, OPC-163493 and tolcapone). Toxicol Res 2023; 39:611-623. [PMID: 37779591 PMCID: PMC10541353 DOI: 10.1007/s43188-023-00189-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/28/2023] [Accepted: 05/04/2023] [Indexed: 10/03/2023] Open
Abstract
FCCP (carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone) is known to inhibit oxidative phosphorylation as a protonophore, dissipating the proton gradient across the inner mitochondrial membrane. To understand the toxicity of FCCP, 3-day, 2- and 4-week repeated oral dose studies were performed in male rats. In the 3-day and 2-week repeated dose toxicity studies, observations included salivation, increased body temperature, and dead and moribund animals. Increased liver weight was observed in conjunction with hydropic degeneration and centrilobular necrosis of hepatocytes. In addition, pathological changes were observed in the pancreas, testis, epididymal duct, stomach and parotid gland. Electron microscopic examination revealed mitochondrial pleomorphism in the hepatocytes. Swelling of mitochondria was observed in the alpha cells and beta cells of the pancreas. Dilatation of rough endoplasmic reticulum, Golgi bodies and loss of secretory granules were also noted in the beta cells of the pancreas. FCCP was also compared with three other mUncouplers (DNP, OPC-163493 and tolcapone) with regard to in vitro mitochondrial uncoupling (mUncoupling) activities. FCCP produced the peak ΔOCR (oxygen consumption rate) at the lowest concentration (0.4 μM), followed by OPC-163493, tolcapone, and DNP, based on peak values in ascending order of concentration (2.5, 10, and 50 μM, respectively). Considering the relationship between the mUncoupling activity and toxicity profile of the four mUncouplers, there is no parallel relationship between the in vitro mUncoupling activity and the degree of in vivo toxicity. These findings may contribute to the efficient development of new mitochondrial uncoupler candidates. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00189-x.
Collapse
Affiliation(s)
- Yuki Inoue
- Department of Drug Safety Research, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192 Japan
| | - Yuko Wada
- PV Operation, Pharmacovigilance Department, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan
| | - Makoto Sato
- Department of Drug Safety Research, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192 Japan
| | - Seiji Sato
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Takashi Okamoto
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Naohide Kanemoto
- Department of Drug Discovery Strategy, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan
| |
Collapse
|
27
|
Prag HA, Murphy MP, Krieg T. Preventing mitochondrial reverse electron transport as a strategy for cardioprotection. Basic Res Cardiol 2023; 118:34. [PMID: 37639068 PMCID: PMC10462584 DOI: 10.1007/s00395-023-01002-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023]
Abstract
In the context of myocardial infarction, the burst of superoxide generated by reverse electron transport (RET) at complex I in mitochondria is a crucial trigger for damage during ischaemia/reperfusion (I/R) injury. Here we outline the necessary conditions for superoxide production by RET at complex I and how it can occur during reperfusion. In addition, we explore various pathways that are implicated in generating the conditions for RET to occur and suggest potential therapeutic strategies to target RET, aiming to achieve cardioprotection.
Collapse
Affiliation(s)
- Hiran A Prag
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Michael P Murphy
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
28
|
Sohn JH, Mutlu B, Latorre-Muro P, Liang J, Bennett CF, Sharabi K, Kantorovich N, Jedrychowski M, Gygi SP, Banks AS, Puigserver P. Liver mitochondrial cristae organizing protein MIC19 promotes energy expenditure and pedestrian locomotion by altering nucleotide metabolism. Cell Metab 2023; 35:1356-1372.e5. [PMID: 37473754 PMCID: PMC10528355 DOI: 10.1016/j.cmet.2023.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
Liver mitochondria undergo architectural remodeling that maintains energy homeostasis in response to feeding and fasting. However, the specific components and molecular mechanisms driving these changes and their impact on energy metabolism remain unclear. Through comparative mouse proteomics, we found that fasting induces strain-specific mitochondrial cristae formation in the liver by upregulating MIC19, a subunit of the MICOS complex. Enforced MIC19 expression in the liver promotes cristae formation, mitochondrial respiration, and fatty acid oxidation while suppressing gluconeogenesis. Mice overexpressing hepatic MIC19 show resistance to diet-induced obesity and improved glucose homeostasis. Interestingly, MIC19 overexpressing mice exhibit elevated energy expenditure and increased pedestrian locomotion. Metabolite profiling revealed that uracil accumulates in the livers of these mice due to increased uridine phosphorylase UPP2 activity. Furthermore, uracil-supplemented diet increases locomotion in wild-type mice. Thus, MIC19-induced mitochondrial cristae formation in the liver increases uracil as a signal to promote locomotion, with protective effects against diet-induced obesity.
Collapse
Affiliation(s)
- Jee Hyung Sohn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Beste Mutlu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jiaxin Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Noa Kantorovich
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mark Jedrychowski
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Zhang J, Ji K, Ning Y, Sun L, Fan M, Shu C, Zhang Z, Tu T, Cao J, Gao F, Chen Y. Biological Hyperthermia-Inducing Nanoparticles for Specific Remodeling of the Extracellular Matrix Microenvironment Enhance Pro-Apoptotic Therapy in Fibrosis. ACS NANO 2023. [PMID: 37229569 DOI: 10.1021/acsnano.2c12831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The extracellular matrix (ECM) is a major driver of fibrotic diseases and forms a dense fibrous barrier that impedes nanodrug delivery. Because hyperthermia causes destruction of ECM components, we developed a nanoparticle preparation to induce fibrosis-specific biological hyperthermia (designated as GPQ-EL-DNP) to improve pro-apoptotic therapy against fibrotic diseases based on remodeling of the ECM microenvironment. GPQ-EL-DNP is a matrix metalloproteinase (MMP)-9-responsive peptide, (GPQ)-modified hybrid nanoparticle containing fibroblast-derived exosomes and liposomes (GPQ-EL) and is loaded with a mitochondrial uncoupling agent, 2,4-dinitrophenol (DNP). GPQ-EL-DNP can specifically accumulate and release DNP in the fibrotic focus, inducing collagen denaturation through biological hyperthermia. The preparation was able to remodel the ECM microenvironment, decrease stiffness, and suppress fibroblast activation, which further enhanced GPQ-EL-DNP delivery to fibroblasts and sensitized fibroblasts to simvastatin-induced apoptosis. Therefore, simvastatin-loaded GPQ-EL-DNP achieved an improved therapeutic effect on multiple types of murine fibrosis. Importantly, GPQ-EL-DNP did not induce systemic toxicity to the host. Therefore, the nanoparticle GPQ-EL-DNP for fibrosis-specific hyperthermia can be used as a potential strategy to enhance pro-apoptotic therapy in fibrotic diseases.
Collapse
Affiliation(s)
- Jinru Zhang
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Keqin Ji
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanmeng Ning
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lingna Sun
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mingrui Fan
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chunjie Shu
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ziqi Zhang
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyu Tu
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyun Cao
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Gao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanzuo Chen
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
30
|
Zhang Z, Zhou D, Luan X, Wang X, Zhu Z, Luo W, Yang J, Tang S, Song Y. Biodegradable Hollow Nanoscavengers Restore Liver Functions to Reverse Insulin Resistance in Type 2 Diabetes. ACS NANO 2023; 17:9313-9325. [PMID: 37155357 DOI: 10.1021/acsnano.3c00875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Type 2 diabetes (T2D) results from the cells' insulin resistance, and to date, insulin therapy and diabetes medications targeting glycemic management have failed to reverse the increase in T2D prevalence. Restoring liver functions to improve hepatic insulin resistance by reducing oxidative stress is a potential strategy for T2D treatment. Herein, the liver-targeted biodegradable silica nanoshells embedded with platinum nanoparticles (Pt-SiO2) are designed as reactive oxygen species (ROS) nanoscavengers and functional hollow nanocarriers. Then, 2,4-dinitrophenol-methyl ether (DNPME, mitochondrial uncoupler) is loaded inside Pt-SiO2, followed by coating a lipid bilayer (D@Pt-SiO2@L) for long-term effective ROS removal (platinum nanoparticles scavenge overproduced ROS, while DNPME inhibits ROS production) in the liver tissue of T2D models. It is found that D@Pt-SiO2@L reverses elevated oxidative stress, insulin resistance, and impaired glucose consumption in vitro, and significantly improves hepatic steatosis and antioxidant capacity in diabetic mice models induced by a high-fat diet and streptozotocin. Moreover, intravenous administration of D@Pt-SiO2@L indicates therapeutic effects on hyperlipidemia, insulin resistance, hyperglycemia, and diabetic nephropathy, which provides a promising approach for T2D treatment by reversing hepatic insulin resistance through long-term ROS scavenging.
Collapse
Affiliation(s)
- Zhibin Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xuyuan Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhenxing Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Wen Luo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jingjing Yang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shaochun Tang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
31
|
Yook JS, Taxin ZH, Yuan B, Oikawa S, Auger C, Mutlu B, Puigserver P, Hui S, Kajimura S. The SLC25A47 locus controls gluconeogenesis and energy expenditure. Proc Natl Acad Sci U S A 2023; 120:e2216810120. [PMID: 36812201 PMCID: PMC9992842 DOI: 10.1073/pnas.2216810120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 02/24/2023] Open
Abstract
Mitochondria provide essential metabolites and adenosine triphosphate (ATP) for the regulation of energy homeostasis. For instance, liver mitochondria are a vital source of gluconeogenic precursors under a fasted state. However, the regulatory mechanisms at the level of mitochondrial membrane transport are not fully understood. Here, we report that a liver-specific mitochondrial inner-membrane carrier SLC25A47 is required for hepatic gluconeogenesis and energy homeostasis. Genome-wide association studies found significant associations between SLC25A47 and fasting glucose, HbA1c, and cholesterol levels in humans. In mice, we demonstrated that liver-specific depletion of SLC25A47 impaired hepatic gluconeogenesis selectively from lactate, while significantly enhancing whole-body energy expenditure and the hepatic expression of FGF21. These metabolic changes were not a consequence of general liver dysfunction because acute SLC25A47 depletion in adult mice was sufficient to enhance hepatic FGF21 production, pyruvate tolerance, and insulin tolerance independent of liver damage and mitochondrial dysfunction. Mechanistically, SLC25A47 depletion leads to impaired hepatic pyruvate flux and malate accumulation in the mitochondria, thereby restricting hepatic gluconeogenesis. Together, the present study identified a crucial node in the liver mitochondria that regulates fasting-induced gluconeogenesis and energy homeostasis.
Collapse
Affiliation(s)
- Jin-Seon Yook
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Zachary H. Taxin
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Bo Yuan
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Satoshi Oikawa
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Beste Mutlu
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
32
|
Yan H, Meng Y, Li X, Xiang R, Hou S, Wang J, Wang L, Yu X, Xu M, Chi Y, Yang J. FAM3A maintains metabolic homeostasis by interacting with F1-ATP synthase to regulate the activity and assembly of ATP synthase. Metabolism 2023; 139:155372. [PMID: 36470472 DOI: 10.1016/j.metabol.2022.155372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Reduced mitochondrial ATP synthase (ATPS) capacity plays crucial roles in the pathogenesis of metabolic disorders. However, there is currently no effective strategy for synchronously stimulating the expressions of ATPS key subunits to restore its assembly. This study determined the roles of mitochondrial protein FAM3A in regulating the activity and assembly of ATPS in hepatocytes. FAM3A is localized in mitochondrial matrix, where it interacts with F1-ATPS to initially activate ATP synthesis and release, and released ATP further activates P2 receptor-Akt-CREB pathway to induce FOXD3 expression. FOXD3 synchronously stimulates the transcriptions of ATPS key subunits and assembly genes to increase its assembly and capacity, augmenting ATP synthesis and inhibiting ROS production. FAM3A, FOXD3 and ATPS expressions were reduced in livers of diabetic mice and NAFLD patients. FOXD3 expression, ATPS capacity and ATP content were reduced in various tissues of FAM3A-deficient mice with dysregulated glucose and lipid metabolism. Hepatic FOXD3 activation increased ATPS assembly to ameliorate dysregulated glucose and lipid metabolism in obese mice. Hepatic FOXD3 inhibition or knockout reduced ATPS capacity to aggravate HFD-induced hyperglycemia and steatosis. In conclusion, FAM3A is an active ATPS component, and regulates its activity and assembly by activating FOXD3. Activating FAM3A-FOXD3 axis represents a viable strategy for restoring ATPS assembly to treat metabolic disorders.
Collapse
Affiliation(s)
- Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoxing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Beijing 100191, China
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
33
|
Hou T, Tian Y, Cao Z, Zhang J, Feng T, Tao W, Sun H, Wen H, Lu X, Zhu Q, Li M, Lu X, Liu B, Zhao Y, Yang Y, Zhu WG. Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation. Mol Cell 2022; 82:4099-4115.e9. [PMID: 36208627 DOI: 10.1016/j.molcel.2022.09.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
|
34
|
Tingle SJ, Thompson ER, Bates L, Ibrahim IK, Govaere O, Shuttleworth V, Wang L, Figueiredo R, Palmer J, Bury Y, Anstee QM, Wilson C. Pharmacological testing of therapeutics using normothermic machine perfusion: A pilot study of 2,4-dinitrophenol delivery to steatotic human livers. Artif Organs 2022; 46:2201-2214. [PMID: 35546070 DOI: 10.1111/aor.14309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Normothermic machine perfusion (NMP) provides a platform for drug-delivery. However, pharmacological considerations for therapeutics delivered during NMP are scarcely reported. We aimed to demonstrate the ability of NMP as a platform for pharmacological testing, using a drug which increases metabolism (2,4-dinitrophenol; DNP) as an example therapeutic. METHODS We performed 25 h of NMP on human livers which had been declined for transplant due to steatosis (n = 7). Three livers received a DNP bolus, three were controls, and one received a DNP infusion. RESULTS Toxicity studies revealed DNP delivery was safe, without hepatotoxic effects. The liver surface temperature was increased in the DNP group (p = 0.046), but no livers suffered hyperthermia-the mechanism of DNP toxicity in vivo. Pharmacokinetic studies revealed DNP elimination with first-order kinetics and 7.7 h half-life (95% CI = 5.1-15.9 hrs). The clearance of DNP in bile was negligible. As expected, DNP significantly increased oxygen consumption (p = 0.023); this increase was closely correlated with perfusate DNP concentration (r2 = 0.975; p = 0.002) and the effect was lost as DNP was eliminated by the liver. A DNP infusion rate, calculated using our pharmacokinetic data, successfully maintained perfusate DNP concentration. DISCUSSION Detailed pharmacological testing can be performed during NMP. Our therapeutic (DNP) is rapidly eliminated by the ex vivo liver, meaning the drug effect of increased metabolism is only transient. This demonstrates the importance of assessing pharmacokinetics when delivering therapeutics during NMP, especially for prolonged perfusion of organs with established roles in drug elimination. Rigorous pharmacological testing is needed to unlock the potential of NMP as a clinical drug-delivery platform.
Collapse
Affiliation(s)
- Samuel J Tingle
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle upon Tyne, UK
- Blood and Transplant Research Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Emily R Thompson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle upon Tyne, UK
- Blood and Transplant Research Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Lucy Bates
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Blood and Transplant Research Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Ibrahim K Ibrahim
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle upon Tyne, UK
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Victoria Shuttleworth
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lu Wang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Blood and Transplant Research Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Rodrigo Figueiredo
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle upon Tyne, UK
| | - Jeremy Palmer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yvonne Bury
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Cellular Pathology, Victoria Infirmary, Newcastle upon Tyne, UK
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Colin Wilson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Gong Q, Zhang X, Sun Y, Shen J, Li X, Xue C, Liu Z. Transcription factor EB inhibits non-alcoholic fatty liver disease through fibroblast growth factor 21. J Mol Med (Berl) 2022; 100:1587-1597. [PMID: 36102936 DOI: 10.1007/s00109-022-02256-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
We sought to explore the potential role of transcription factor EB (TFEB) in the pathogenesis of the non-alcoholic fatty liver disease (NAFLD). An NAFLD mouse model was established by high-fat diet induction, and then "gain of function" and "loss of function" experiments were performed to determine the potential protective effects of TFEB on NAFLD using TFEB knockdown and TFEB-overexpressed mice. The mediating effect of FGF21 was verified by injection of recombinant mouse fibroblast growth factor 21 (rmFGF21) and knockout of FGF21, and the regulatory effect of TFEB on FGF21 was examined. Mechanistic target of rapamycin (mTOR), ribosomal S6 kinase, TFEB, and FGF21 are involved in the NAFLD process. Overexpression of TFEB in NAFLD mice could reverse lipid deposition and metabolic changes in NAFLD mice. RmFGF21 can reverse the aggravation of NAFLD by TFEB knockdown. Increased expression of TFEB alleviates NAFLD, possibly through upregulation of FGF21 expression by targeting the FGF21 promoter. This study may lay a basis for identifying new drug targets for NAFLD treatment. KEY MESSAGES: Transcription factor EB (TFEB) is involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), and fibroblast growth factor 21 (FGF21) exerts a significantly positive effect on NAFLD. In the current study, we found that starvation led to an increase in liver lipids, which was reversed by re-feeding. Phosphorylated mTOR, ribosomal S6 kinase, TFEB, and FGF21 are involved in the above process. The increased expression of TFEB in NAFLD mice by tail vein injection of Ad-TFEB could reverse lipid deposition and metabolic changes in NAFLD mice. TFEB upregulated FGF21 expression by targeting the promoter of FGF21. This study adds to our understanding of the potential role of TFEB on the progression of NAFLD. This study may lay a basis for identifying new drug target of NAFLD treatment.
Collapse
Affiliation(s)
- Qi Gong
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, 315040, Zhejiang, China
| | - Yixuan Sun
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jixiang Shen
- Shanghai Anduo Biotechnology Company, Shanghai, 201611, China
| | - Xiuping Li
- Shanghai Anduo Biotechnology Company, Shanghai, 201611, China
| | - Chao Xue
- Shanghai Anduo Biotechnology Company, Shanghai, 201611, China
| | - Zhihua Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China. .,Department of AnoRectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China. .,Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Guangwan Road, Guangzhou, 510700, Guangdong, China.
| |
Collapse
|
36
|
Liao FH, Yao CN, Chen SP, Wu TH, Lin SY. Transdermal Delivery of Succinate Accelerates Energy Dissipation of Brown Adipocytes to Reduce Remote Fat Accumulation. Mol Pharm 2022; 19:4299-4310. [DOI: 10.1021/acs.molpharmaceut.2c00628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fang-Hsuean Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Chun-Nien Yao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Shu-Ping Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Te-Haw Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| |
Collapse
|
37
|
Huang Z, Lin HW(K, Zhang Q, Zong X. Targeting Alzheimer's Disease: The Critical Crosstalk between the Liver and Brain. Nutrients 2022; 14:nu14204298. [PMID: 36296980 PMCID: PMC9609624 DOI: 10.3390/nu14204298] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disorder, is currently incurable. Imbalanced amyloid-beta (Aβ) generation and clearance are thought to play a pivotal role in the pathogenesis of AD. Historically, strategies targeting Aβ clearance have typically focused on central clearance, but with limited clinical success. Recently, the contribution of peripheral systems, particularly the liver, to Aβ clearance has sparked an increased interest. In addition, AD presents pathological features similar to those of metabolic syndrome, and the critical involvement of brain energy metabolic disturbances in this disease has been recognized. More importantly, the liver may be a key regulator in these abnormalities, far beyond our past understanding. Here, we review recent animal and clinical findings indicating that liver dysfunction represents an early event in AD pathophysiology. We further propose that compromised peripheral Aβ clearance by the liver and aberrant hepatic physiological processes may contribute to AD neurodegeneration. The role of a hepatic synthesis product, fibroblast growth factor 21 (FGF21), in the management of AD is also discussed. A deeper understanding of the communication between the liver and brain may lead to new opportunities for the early diagnosis and treatment of AD.
Collapse
|
38
|
Perry RJ. Regulation of Hepatic Lipid and Glucose Metabolism by INSP3R1. Diabetes 2022; 71:1834-1841. [PMID: 35657697 PMCID: PMC9450566 DOI: 10.2337/dbi22-0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022]
Abstract
With the rising epidemics of obesity and nonalcoholic fatty liver disease (NAFLD) and its downstream consequences including steatohepatitis, cirrhosis, and type 2 diabetes in the U.S. and worldwide, new therapeutic approaches are urgently needed to treat these devastating conditions. Glucagon, known for a century to be a glucose-raising hormone and clearly demonstrated to contribute to fasting and postprandial hyperglycemia in both type 1 and type 2 diabetes, represents an unlikely target to improve health in those with metabolic syndrome. However, recent work from our group and others' identifies an unexpected role for glucagon as a potential means of treating NAFLD, improving insulin sensitivity, and improving the lipid profile. We propose a unifying, calcium-dependent mechanism for glucagon's effects both to stimulate hepatic gluconeogenesis and to enhance hepatic mitochondrial oxidation: signaling through the inositol 1,4,5-trisphosphate receptor type 1 (INSP3R1), glucagon activates phospholipase C (PKC)/protein kinase A (PKA) signaling to enhance adipose triglyceride lipase (ATGL)-dependent intrahepatic lipolysis and, in turn, increase cytosolic gluconeogenesis by allosteric activation of pyruvate carboxylase. Simultaneously in the mitochondria, calcium transferred through mitochondria-associated membranes activates several dehydrogenases in the tricarboxylic acid cycle, correlated with an increase in mitochondrial energy expenditure and reduction in ectopic lipid. This model suggests that short-term, cyclic treatment with glucagon or other INSP3R1 antagonists could hold promise as a means to reset lipid homeostasis in patients with NAFLD.
Collapse
Affiliation(s)
- Rachel J. Perry
- Section of Endocrinology & Metabolism, Department of Internal Medicine, and Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
39
|
Vlasova KY, Ostroverkhov P, Vedenyapina D, Yakimova T, Trusova A, Lomakina GY, Vodopyanov SS, Grin M, Klyachko N, Chekhonin V, Abakumov M. Liposomal Form of 2,4-Dinitrophenol Lipophilic Derivatives as a Promising Therapeutic Agent for ATP Synthesis Inhibition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2162. [PMID: 35808003 PMCID: PMC9268429 DOI: 10.3390/nano12132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022]
Abstract
Mitochondrial uncoupler 2,4-dinitrophenol (2,4-DNP) is a promising antidiabetic and antiobesity agent. Its clinical use is limited by a narrow dynamic range and accumulation in non-target sensitive organs, which results in whole-body toxicity. A liposomal formulation could enable the mentioned drawbacks to be overcome and simplify the liver-targeted delivery and sustained release of 2,4-DNP. We synthesized 2,4-DNP esters with carboxylic acids of various lipophilic degrees using carboxylic acid chloride and then loaded them into liposomes. We demonstrated the effective increase in the entrapment of 2,4-DNP into liposomes when esters were used. Here, we examined the dependence of the sustained release of 2,4-DNP from liposomes on the lipid composition and LogPoct of the ester. We posit that the optimal chain length of the ester should be close to the palmitic acid and the lipid membrane should be composed of phospholipids with a certain phase transition point depending on the desired release rate. The increased effect of the ATP synthesis inhibition of the liposomal forms of caproic and palmitic acid esters compared to free molecules in liver hepatocytes was demonstrated. The liposomes' stability could well be responsible for this result. This work demonstrates promising possibilities for the liver-targeted delivery of the 2,4-DNP esters with carboxylic acids loaded into liposomes for ATP synthesis inhibition.
Collapse
Affiliation(s)
- Kseniya Yu. Vlasova
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (K.Y.V.); (V.C.)
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Y.L.); (N.K.)
| | - Petr Ostroverkhov
- Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, Lomonosov Institute of Fine Chemical Technologies MIREA-Russian Technological University (RTU MIREA), 119571 Moscow, Russia; (P.O.); (D.V.); (M.G.)
| | - Daria Vedenyapina
- Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, Lomonosov Institute of Fine Chemical Technologies MIREA-Russian Technological University (RTU MIREA), 119571 Moscow, Russia; (P.O.); (D.V.); (M.G.)
| | - Tamara Yakimova
- Faculty of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.Y.); (A.T.)
| | - Alla Trusova
- Faculty of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.Y.); (A.T.)
| | | | - Stepan Sergeevich Vodopyanov
- College of New Materials and Nanotechnologies, National University of Science and Technology (MISIS), 119049 Moscow, Russia;
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, Lomonosov Institute of Fine Chemical Technologies MIREA-Russian Technological University (RTU MIREA), 119571 Moscow, Russia; (P.O.); (D.V.); (M.G.)
| | - Natalia Klyachko
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Y.L.); (N.K.)
| | - Vladimir Chekhonin
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (K.Y.V.); (V.C.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia
| | - Maxim Abakumov
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (K.Y.V.); (V.C.)
- College of New Materials and Nanotechnologies, National University of Science and Technology (MISIS), 119049 Moscow, Russia;
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia
| |
Collapse
|
40
|
Bertholet AM, Natale AM, Bisignano P, Suzuki J, Fedorenko A, Hamilton J, Brustovetsky T, Kazak L, Garrity R, Chouchani ET, Brustovetsky N, Grabe M, Kirichok Y. Mitochondrial uncouplers induce proton leak by activating AAC and UCP1. Nature 2022; 606:180-187. [PMID: 35614225 PMCID: PMC9646675 DOI: 10.1038/s41586-022-04747-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Mitochondria generate heat due to H+ leak (IH) across their inner membrane1. IH results from the action of long-chain fatty acids on uncoupling protein 1 (UCP1) in brown fat2-6 and ADP/ATP carrier (AAC) in other tissues1,7-9, but the underlying mechanism is poorly understood. As evidence of pharmacological activators of IH through UCP1 and AAC is lacking, IH is induced by protonophores such as 2,4-dinitrophenol (DNP) and cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP)10,11. Although protonophores show potential in combating obesity, diabetes and fatty liver in animal models12-14, their clinical potential for treating human disease is limited due to indiscriminately increasing H+ conductance across all biological membranes10,11 and adverse side effects15. Here we report the direct measurement of IH induced by DNP, FCCP and other common protonophores and find that it is dependent on AAC and UCP1. Using molecular structures of AAC, we perform a computational analysis to determine the binding sites for protonophores and long-chain fatty acids, and find that they overlap with the putative ADP/ATP-binding site. We also develop a mathematical model that proposes a mechanism of uncoupler-dependent IH through AAC. Thus, common protonophoric uncouplers are synthetic activators of IH through AAC and UCP1, paving the way for the development of new and more specific activators of these two central mediators of mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Ambre M Bertholet
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrew M Natale
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Paola Bisignano
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Junji Suzuki
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Andriy Fedorenko
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - James Hamilton
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Lawrence Kazak
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ryan Garrity
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - Yuriy Kirichok
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
41
|
Beier UH, Baker DJ, Baur JA. Thermogenic T cells: a cell therapy for obesity? Am J Physiol Cell Physiol 2022; 322:C1085-C1094. [PMID: 35476503 PMCID: PMC9169824 DOI: 10.1152/ajpcell.00034.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Obesity is a widespread public health problem with profound medical consequences and its burden is increasing worldwide. Obesity causes significant morbidity and mortality and is associated with conditions including cardiovascular disease and diabetes mellitus. Conventional treatment options are insufficient, or in the case of bariatric surgery, quite invasive. The etiology of obesity is complex, but at its core is often a caloric imbalance with an inability to burn off enough calories to exceed caloric intake, resulting in storage. Interventions such as dieting often lead to decreased resting energy expenditure (REE), with a rebound in weight ("yo-yo effect" or weight cycling). Strategies that increase REE are attractive treatment options. Brown fat tissue engages in nonshivering thermogenesis whereby mitochondrial respiration is uncoupled from ATP production, increasing REE. Medications that replicate brown fat metabolism by mitochondrial uncoupling (e.g., 2,4-dinitrophenol) effectively promote weight loss but are limited by toxicity to a narrow therapeutic range. This review explores the possibility of a new therapeutic approach to engineer autologous T cells into acquiring a thermogenic phenotype like brown fat. Engineered autologous T cells have been used successfully for years in the treatment of cancers (chimeric antigen receptor T cells), and the principle of engineering T cells ex vivo and transferring them back to the patient is established. Engineering T cells to acquire a brown fat-like metabolism could increase REE without the risks of pharmacological mitochondrial uncoupling. These thermogenic T cells may increase basal metabolic rate and are therefore a potentially novel therapeutic strategy for obesity.
Collapse
Affiliation(s)
- Ulf H Beier
- Janssen Research and Development, Spring House, Pennsylvania
| | - Daniel J Baker
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph A Baur
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Liver-specific overexpression of SIRT3 enhances oxidative metabolism, but does not impact metabolic defects induced by high fat feeding in mice. Biochem Biophys Res Commun 2022; 607:131-137. [DOI: 10.1016/j.bbrc.2022.03.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
|
43
|
Angelidi AM, Belanger MJ, Kokkinos A, Koliaki CC, Mantzoros CS. Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocr Rev 2022; 43:507-557. [PMID: 35552683 PMCID: PMC9113190 DOI: 10.1210/endrev/bnab034] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
Recent insights into the pathophysiologic underlying mechanisms of obesity have led to the discovery of several promising drug targets and novel therapeutic strategies to address the global obesity epidemic and its comorbidities. Current pharmacologic options for obesity management are largely limited in number and of modest efficacy/safety profile. Therefore, the need for safe and more efficacious new agents is urgent. Drugs that are currently under investigation modulate targets across a broad range of systems and tissues, including the central nervous system, gastrointestinal hormones, adipose tissue, kidney, liver, and skeletal muscle. Beyond pharmacotherapeutics, other potential antiobesity strategies are being explored, including novel drug delivery systems, vaccines, modulation of the gut microbiome, and gene therapy. The present review summarizes the pathophysiology of energy homeostasis and highlights pathways being explored in the effort to develop novel antiobesity medications and interventions but does not cover devices and bariatric methods. Emerging pharmacologic agents and alternative approaches targeting these pathways and relevant research in both animals and humans are presented in detail. Special emphasis is given to treatment options at the end of the development pipeline and closer to the clinic (ie, compounds that have a higher chance to be added to our therapeutic armamentarium in the near future). Ultimately, advancements in our understanding of the pathophysiology and interindividual variation of obesity may lead to multimodal and personalized approaches to obesity treatment that will result in safe, effective, and sustainable weight loss until the root causes of the problem are identified and addressed.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew J Belanger
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Chrysi C Koliaki
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Christos S Mantzoros
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Mitochondria homeostasis: Biology and involvement in hepatic steatosis to NASH. Acta Pharmacol Sin 2022; 43:1141-1155. [PMID: 35105958 PMCID: PMC9061859 DOI: 10.1038/s41401-022-00864-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial biology and behavior are central to the physiology of liver. Multiple mitochondrial quality control mechanisms remodel mitochondrial homeostasis under physiological and pathological conditions. Mitochondrial dysfunction and damage induced by overnutrition lead to oxidative stress, inflammation, liver cell death, and collagen production, which advance hepatic steatosis to nonalcoholic steatohepatitis (NASH). Accumulating evidence suggests that specific interventions that target mitochondrial homeostasis, including energy metabolism, antioxidant effects, and mitochondrial quality control, have emerged as promising strategies for NASH treatment. However, clinical translation of these findings is challenging due to the complex and unclear mechanisms of mitochondrial homeostasis in the pathophysiology of NASH.
Collapse
|
45
|
Wang DS, Wang JM, Zhang FR, Lei FJ, Wen X, Song J, Sun GZ, Liu Z. Ameliorative Effects of Malonyl Ginsenoside from Panax ginseng on Glucose-Lipid Metabolism and Insulin Resistance via IRS1/PI3K/Akt and AMPK Signaling Pathways in Type 2 Diabetic Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:863-882. [PMID: 35282802 DOI: 10.1142/s0192415x22500367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our previous study has revealed that malonyl-ginsenosides from Panax ginseng (PG-MGR) play a crucial role in the treatment of T2DM. However, its potential mechanism was still unclear. In this study, we investigated the anti-diabetic mechanisms of action of PG-MGR in high fat diet-fed (HFD) and streptozotocin-induced diabetic mice and determined the main constituents of PG-MGR responsible for its anti-diabetic effects. Our results showed that 16 malonyl ginsenosides were identified in PG-MGR by HPLC-ESI-MS/MS. PG-MGR treatment significantly reduced fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels and improved insulin resistance and glucose tolerance. Simultaneously, PG-MGR treatment improved liver injury by decreasing aspartate aminotransferase (AST) and alanine aminotransferase (ALT) expression. Furthermore, Western blot analysis demonstrated that the protein expression levels of p-PI3K/PI3K, p-AKT/AKT, p-AMPK/AMPK, p-ACC/ACC and GLUT4 in liver and skeletal muscle were significantly up-regulated after PG-MGR treatment, and the protein expression levels of p-IRS-1/IRS-1, Fas and SREBP-1c were significantly reduced. These findings revealed that PG-MGR has the potential to improve glucose and lipid metabolism and insulin resistance by activating the IRS-1/PI3K/AKT and AMPK signal pathways.
Collapse
Affiliation(s)
- Dong-Sheng Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jia-Mei Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Fu-Rui Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Feng-Jie Lei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xin Wen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jia Song
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Guang-Zhi Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| |
Collapse
|
46
|
Gancheva S, Kahl S, Pesta D, Mastrototaro L, Dewidar B, Strassburger K, Sabah E, Esposito I, Weiß J, Sarabhai T, Wolkersdorfer M, Fleming T, Nawroth P, Zimmermann M, Reichert AS, Schlensak M, Roden M. Impaired Hepatic Mitochondrial Capacity in Nonalcoholic Steatohepatitis Associated With Type 2 Diabetes. Diabetes Care 2022; 45:928-937. [PMID: 35113139 DOI: 10.2337/dc21-1758] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/13/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Individuals with type 2 diabetes are at higher risk of progression of nonalcoholic fatty liver (steatosis) to steatohepatitis (NASH), fibrosis, and cirrhosis. The hepatic metabolism of obese individuals adapts by upregulation of mitochondrial capacity, which may be lost during the progression of steatosis. However, the role of type 2 diabetes with regard to hepatic mitochondrial function in NASH remains unclear. RESEARCH DESIGN AND METHODS We therefore examined obese individuals with histologically proven NASH without (OBE) (n = 30; BMI 52 ± 9 kg/m2) or with type 2 diabetes (T2D) (n = 15; 51 ± 7 kg/m2) as well as healthy individuals without liver disease (CON) (n = 14; 25 ± 2 kg/m2). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamps with d-[6,6-2H2]glucose. Liver biopsies were used for assessing mitochondrial capacity by high-resolution respirometry and protein expression. RESULTS T2D and OBE had comparable hepatic fat content, lobular inflammation, and fibrosis. Oxidative capacity in liver tissue normalized for citrate synthase activity was 59% greater in OBE than in CON, whereas T2D presented with 33% lower complex II-linked oxidative capacity than OBE and higher H2O2 production than CON. Interestingly, those with NASH and hepatic fibrosis score ≥1 had lower oxidative capacity and antioxidant defense than those without fibrosis. CONCLUSIONS Loss of hepatic mitochondrial adaptation characterizes NASH and type 2 diabetes or hepatic fibrosis and may thereby favor accelerated disease progression.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sabine Kahl
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Klaus Strassburger
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Ehsan Sabah
- Obesity and Reflux Center, Neuwerk Hospital, Mönchengladbach, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Weiß
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Theresia Sarabhai
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | | | - Thomas Fleming
- Department of Internal Medicine I, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Nawroth
- Department of Internal Medicine I, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcel Zimmermann
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | | | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
47
|
Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol 2022; 18:243-258. [PMID: 35145250 PMCID: PMC9059418 DOI: 10.1038/s41574-021-00626-7] [Citation(s) in RCA: 455] [Impact Index Per Article: 151.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
Organismal ageing is accompanied by progressive loss of cellular function and systemic deterioration of multiple tissues, leading to impaired function and increased vulnerability to death. Mitochondria have become recognized not merely as being energy suppliers but also as having an essential role in the development of diseases associated with ageing, such as neurodegenerative and cardiovascular diseases. A growing body of evidence suggests that ageing and age-related diseases are tightly related to an energy supply and demand imbalance, which might be alleviated by a variety of interventions, including physical activity and calorie restriction, as well as naturally occurring molecules targeting conserved longevity pathways. Here, we review key historical advances and progress from the past few years in our understanding of the role of mitochondria in ageing and age-related metabolic diseases. We also highlight emerging scientific innovations using mitochondria-targeted therapeutic approaches.
Collapse
Affiliation(s)
- João A Amorim
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- IIIUC, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Giuseppe Coppotelli
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- George and Anne Ryan Institute for Neuroscience, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Anabela P Rolo
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Jaime M Ross
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- George and Anne Ryan Institute for Neuroscience, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Li F, Jiang M, Ma M, Chen X, Zhang Y, Zhang Y, Yu Y, Cui Y, Chen J, Zhao H, Sun Z, Dong D. Anthelmintics nitazoxanide protects against experimental hyperlipidemia and hepatic steatosis in hamsters and mice. Acta Pharm Sin B 2022; 12:1322-1338. [PMID: 35530137 PMCID: PMC9069401 DOI: 10.1016/j.apsb.2021.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/16/2021] [Accepted: 08/27/2021] [Indexed: 01/16/2023] Open
Abstract
Lipid metabolism disorders contribute to hyperlipidemia and hepatic steatosis. It is ideal to develop drugs simultaneous improving both hyperlipidemia and hepatic steatosis. Nitazoxanide is an FDA-approved oral antiprotozoal drug with excellent pharmacokinetic and safety profile. We found that nitazoxanide and its metabolite tizoxanide induced mild mitochondrial uncoupling and subsequently activated AMPK in HepG2 cells. Gavage administration of nitazoxanide inhibited high-fat diet (HFD)-induced increases of liver weight, blood and liver lipids, and ameliorated HFD-induced renal lipid accumulation in hamsters. Nitazoxanide significantly improved HFD-induced histopathologic changes of hamster livers. In the hamsters with pre-existing hyperlipidemia and hepatic steatosis, nitazoxanide also showed therapeutic effect. Gavage administration of nitazoxanide improved HFD-induced hepatic steatosis in C57BL/6J mice and western diet (WD)-induced hepatic steatosis in Apoe -/- mice. The present study suggests that repurposing nitazoxanide as a drug for hyperlipidemia and hepatic steatosis treatment is promising.
Collapse
Affiliation(s)
- Fengfeng Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Man Jiang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Minghui Ma
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Xuyang Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Yidan Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Yixin Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Yuanyuan Yu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Yunfeng Cui
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Jiahui Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Hui Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Zhijie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Deli Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
49
|
Cao X, Cui Z, Ding Z, Chen Y, Wu S, Wang X, Huang J. An osteoarthritis subtype characterized by synovial lipid metabolism disorder and fibroblast-like synoviocyte dysfunction. J Orthop Translat 2022; 33:142-152. [PMID: 35330945 PMCID: PMC8919236 DOI: 10.1016/j.jot.2022.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background The heterogeneity of osteoarthritis (OA) significantly limits the effectiveness of pharmacological treatments in an unselected patient population. In this context, the identification of OA subtypes is meaningful for the development of therapies that target specific types of OA pathogenesis. Methods Expression array profiles of 70 OA and 36 control synovial samples were extracted from the GEO database. Unsupervised consensus clustering was performed based on the most variable genes to identify OA subclusters. Next, Joint samples from OA patients were obtained. We divided the OA patient into two subpopulations according to synovial ADCY7 levels. Synovium and cartilage samples from different OA subpopulations were evaluated. In addition, we established a high-fat diet (HFD)-induced rat OA model. We evaluated OA progression, lipid metabolism, synovitis and fibroblast-like synoviocytes (FLS) function in this HFD-induced OA model. Results 70 OA patients were categorized into three distinct subclusters. We noted that one subcluster was characterized by synovial lipid metabolism disorder GO terms. We further identified the most noticeable KEGG pathway “Regulation of lipolysis in adipocytes” in this subcluster as well as the most significantly differentially expressed gene, ADCY7. We found that the ADCY7 high expressing group (32.6%) exhibited features of synovial inflammatory lipolysis epithelial-mesenchymal transition (EMT) tendency, as well as faster join space narrowing. The HFD induced OA-like degeneration in rat joints. We observed similar synovial inflammatory lipolysis and EMT in FLS, characterized by higher proliferative and invasive activity and elevated proinflammatory and procatabolic properties. ADCY7 was highly expressed in the synovium of the HFD-OA model rats and the inhibition of ADCY7 effectively attenuated these HFD-induced degenerative changes as well as synovial inflammatory lipolysis and FLS dysfunction. In HFD-FLSs, ADCY7 promoted the phosphorylation of PKA as well as its downstream lipid droplet-associated protein PLIN1 and hormone-sensitive lipase (HSL). The inhibition of PKA largely alleviated ADCY7-mediated HFD-FLS dysfunction. Conclusions We described a synovial EMT and lipid metabolism disorder in the pathogenesis of OA. This novel mechanism may represent a currently undefined OA subtype. ADCY7 is a potential molecular marker of this pathomechanism. The Translational potential of this article Utilizing synovial samples from OA patients, we identified a subpopulation with high ADCY7 expression. This may represent a currently undefined OA subtype and explain the clinical phenomenon of more severe synovial inflammation in obese OA patients. In addition, we established an HFD-induced OA rat model and found an upregulation of ADCY7 in the synovium. We confirmed that the inhibition of ADCY7 could effectively attenuate HFD-induced degenerative changes as well as the inflammatory lipolysis and FLS dysfunction observed in the rat model. This suggests that ADCY7 and its downstream pathways are potential pharmacological targets for treating this lipid-metabolism-disorder-related OA mechanism.
Collapse
|
50
|
Goedeke L, Murt KN, Di Francesco A, Camporez JP, Nasiri AR, Wang Y, Zhang X, Cline GW, de Cabo R, Shulman GI. Sex- and strain-specific effects of mitochondrial uncoupling on age-related metabolic diseases in high-fat diet-fed mice. Aging Cell 2022; 21:e13539. [PMID: 35088525 PMCID: PMC8844126 DOI: 10.1111/acel.13539] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria and may have evolved to protect cells against the production of damaging reactive oxygen species. Therefore, compounds that enhance mitochondrial uncoupling are potentially attractive anti‐aging therapies; however, chronic ingestion is associated with a number of unwanted side effects. We have previously developed a controlled‐release mitochondrial protonophore (CRMP) that is functionally liver‐directed and promotes oxidation of hepatic triglycerides by causing a subtle sustained increase in hepatic mitochondrial inefficiency. Here, we sought to leverage the higher therapeutic index of CRMP to test whether mild mitochondrial uncoupling in a liver‐directed fashion could reduce oxidative damage and improve age‐related metabolic disease and lifespan in diet‐induced obese mice. Oral administration of CRMP (20 mg/[kg‐day] × 4 weeks) reduced hepatic lipid content, protein kinase C epsilon activation, and hepatic insulin resistance in aged (74‐week‐old) high‐fat diet (HFD)‐fed C57BL/6J male mice, independently of changes in body weight, whole‐body energy expenditure, food intake, or markers of hepatic mitochondrial biogenesis. CRMP treatment was also associated with a significant reduction in hepatic lipid peroxidation, protein carbonylation, and inflammation. Importantly, long‐term (49 weeks) hepatic mitochondrial uncoupling initiated late in life (94–104 weeks), in conjugation with HFD feeding, protected mice against neoplastic disorders, including hepatocellular carcinoma (HCC), in a strain and sex‐specific manner. Taken together, these studies illustrate the complex variation of aging and provide important proof‐of‐concept data to support further studies investigating the use of liver‐directed mitochondrial uncouplers to promote healthy aging in humans.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
| | - Kelsey N. Murt
- Translational Gerontology Branch Intramural Research Program National Institute on Aging, NIH Baltimore Maryland USA
| | - Andrea Di Francesco
- Translational Gerontology Branch Intramural Research Program National Institute on Aging, NIH Baltimore Maryland USA
| | - João Paulo Camporez
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
- Department of Physiology Ribeirao Preto School of Medicine University of Sao Paulo São Paulo Brazil
| | - Ali R. Nasiri
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
| | - Yongliang Wang
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
| | - Xian‐Man Zhang
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
| | - Gary W. Cline
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
| | - Rafael de Cabo
- Translational Gerontology Branch Intramural Research Program National Institute on Aging, NIH Baltimore Maryland USA
| | - Gerald I. Shulman
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
- Department of Cellular and Molecular Physiology Yale School of Medicine New Haven Connecticut USA
| |
Collapse
|