1
|
John S, Bhowmick K, Park A, Huang H, Yang X, Mishra L. Recent advances in targeting obesity, with a focus on TGF-β signaling and vagus nerve innervation. Bioelectron Med 2025; 11:10. [PMID: 40301996 PMCID: PMC12042417 DOI: 10.1186/s42234-025-00172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/31/2025] [Indexed: 05/01/2025] Open
Abstract
Over a third of the global population is affected by obesity, fatty liver disease (Metabolic Dysfunction-Associated Steatotic Liver Disease, MASLD), and its severe form, MASH (Metabolic Dysfunction-Associated Steatohepatitis), which can ultimately progress to hepatocellular carcinoma (HCC). Recent advancements include therapeutics such as glucagon-like peptide 1 (GLP-1) agonists and neural/vagal modulation strategies for these disorders. Among the many pathways regulating these conditions, emerging insights into transforming growth factor-β (TGF-β) signaling highlight potential future targets through its role in pathophysiological processes such as adipogenesis, inflammation, and fibrosis. Vagus nerve innervation in the gastrointestinal tract is involved in satiety regulation and energy homeostasis, and vagus nerve stimulation has been applied in weight loss and diabetes. This review explores clinical trials in obesity, novel therapeutic targets, and the role of TGF-β signaling and vagus nerve modulation in obesity-related liver diseases and HCC.
Collapse
Affiliation(s)
- Sahara John
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Krishanu Bhowmick
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Andrew Park
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Hai Huang
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Xiaochun Yang
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| | - Lopa Mishra
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- Department of Surgery, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
2
|
Asahi R, Udagawa H, Oshiro R, Nakajima S, Kanzawa N, Sano K, Shimizu Y, Okamura T, Fujimi TJ. Histidine and soy isoflavones co-ingestion induces browning of white adipose tissue and promotes lipolysis in female rats. Exp Anim 2025; 74:239-250. [PMID: 39675964 PMCID: PMC12044354 DOI: 10.1538/expanim.24-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
Beige adipocytes arise from white adipocytes in response to cold or other stimuli, known as browning of white adipose. Beige adipocytes play a role similar to that of brown adipocytes, express high levels of uncoupling protein 1 (UCP1), and are responsible for energy consumption via heat production, thus aiding in fat loss. Although histidine (His) and soy isoflavones (Iso) co-ingestion reportedly reduces food intake, body weight, and fat accumulation in female rats, the underlying mechanism remains unclear. Therefore, this study aimed to elucidate the mechanisms whereby histidine and soy isoflavones (His-Iso) co-ingestion suppresses fat accumulation. Female rats were fed a control diet or diet containing Iso, His, or His-Iso for 2 weeks, followed by sampling of periovarian white adipose tissue (poWAT) and retroperitoneal white adipose tissue (rWAT) and adipocyte morphology analysis. Additionally, the expression of browning- and lipid metabolism-related genes was examined. Histochemical analysis revealed the presence of multilocular lipid droplets, representative of beige adipocytes, in the poWAT and rWAT of rats in the His-Iso co-ingestion group. Quantitative PCR analysis showed that His-Iso co-ingestion upregulated brown adipocyte and beige adipocyte markers, including UCP1, indicating that His-Iso intake induces beige adipocytes. Moreover, His-Iso co-ingestion upregulated genes related to fatty acid oxidation (carnitine palmitoyl transferase 1A) and lipolysis (adipose triglyceride lipase) in WATs. In conclusion, His-Iso co-ingestion increases UCP1 expression and morphological changes to beige adipocytes, and suppresses fat accumulation by promotion of lipolysis and fatty acid oxidation in WAT.
Collapse
Affiliation(s)
- Riku Asahi
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki-shi, Kanagawa 253-8550, Japan
| | - Haruhide Udagawa
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki-shi, Kanagawa 253-8550, Japan
| | - Remiko Oshiro
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki-shi, Kanagawa 253-8550, Japan
| | - Shigeru Nakajima
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki-shi, Kanagawa 253-8550, Japan
| | - Nobuyuki Kanzawa
- Department of Materials and Life Science, Faculty of Science and Technology, Sophia University, 7-1 Kioi, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, 1-1 Keyakidai Sakado-shi, Saitama 350-0295, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Takahiko J Fujimi
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki-shi, Kanagawa 253-8550, Japan
| |
Collapse
|
3
|
Yu M, Feng B, Bean JC, Zhao Q, Yang Y, Liu H, Li Y, Eappen BP, Liu H, Tu L, Conde KM, Wang M, Chen X, Yin N, Threat DA, Xu N, Han J, Gao P, Zhu Y, Hadsell DL, He Y, Xu P, He Y, Wang C. Suppression of hypothalamic oestrogenic signal sustains hyperprolactinemia and metabolic adaptation in lactating mice. Nat Metab 2025; 7:759-777. [PMID: 40211044 DOI: 10.1038/s42255-025-01268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/07/2025] [Indexed: 04/12/2025]
Abstract
17β-oestradiol (E2) inhibits overeating and promotes brown adipose tissue (BAT) thermogenesis, whereas prolactin (PRL) does the opposite. During lactation, the simultaneous decline in E2 and surge in PRL contribute to maternal metabolic adaptations, including hyperphagia and suppressed BAT thermogenesis. However, the underlying neuroendocrine mechanisms remain unclear. Here, we find that oestrogen receptor alpha (ERα)-expressing neurons in the medial basal hypothalamus (MBH), specifically the arcuate nucleus of the hypothalamus and the ventrolateral subdivision of the ventromedial hypothalamus (vlVMH), are suppressed during lactation. Deletion of ERα from MBH neurons in virgin female mice induces metabolic phenotypes characteristic of lactation, including hyperprolactinemia, hyperphagia and suppressed BAT thermogenesis. By contrast, activation of ERαvlVMH neurons in lactating mice attenuates these phenotypes. Overall, our study reveals an inhibitory effect of E2-ERαvlVMH signalling on PRL production, which is suppressed during lactation to sustain hyperprolactinemia and metabolic adaptations.
Collapse
Affiliation(s)
- Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bing Feng
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, USA
| | - Jonathan C Bean
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qianru Zhao
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongxiang Li
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin P Eappen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Longlong Tu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kristine M Conde
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mengjie Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xi Chen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Na Yin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Darah Ave Threat
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Nathan Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Peiyu Gao
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, USA
| | - Yi Zhu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Darryl L Hadsell
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, USA.
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Zhang X, Xiao J, Jiang M, Phillips CJC, Shi B. Thermogenesis and Energy Metabolism in Brown Adipose Tissue in Animals Experiencing Cold Stress. Int J Mol Sci 2025; 26:3233. [PMID: 40244078 PMCID: PMC11989373 DOI: 10.3390/ijms26073233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Cold exposure is a regulatory biological functions in animals. The interaction of thermogenesis and energy metabolism in brown adipose tissue (BAT) is important for metabolic regulation in cold stress. Brown adipocytes (BAs) produce uncoupling protein 1 (UCP1) in mitochondria, activating non-shivering thermogenesis (NST) by uncoupling fuel combustion from ATP production in response to cold stimuli. To elucidate the mechanisms underlying thermogenesis and energy metabolism in BAT under cold stress, we explored how cold exposure triggers the activation of BAT thermogenesis and regulates overall energy metabolism. First, we briefly outline the precursor composition and function of BA. Second, we explore the roles of the cAMP- protein kinase A (PKA) and adenosine monophosphate-activated protein kinase (AMPK) signaling pathways in thermogenesis and energy metabolism in BA during cold stress. Then, we analyze the mechanism by which BA regulates mitochondria homeostasis and energy balance during cold stress. This research reveals potential therapeutic targets, such as PKA, AMPK, UCP1 and PGC-1α, which can be used to develop innovative strategies for treating metabolic diseases. Furthermore, it provides theoretical support for optimizing cold stress response strategies, including the pharmacological activation of BAT and the genetic modulation of thermogenic pathways, to improve energy homeostasis in livestock.
Collapse
Affiliation(s)
- Xuekai Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| | - Jin Xiao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| | - Min Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| | - Clive J. C. Phillips
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Perth, WA 6845, Australia;
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| |
Collapse
|
5
|
Rodríguez-Díaz A, Diéguez C, López M, Freire-Agulleiro Ó. FAcTs on fire: Exploring thermogenesis. ADVANCES IN GENETICS 2025; 113:172-198. [PMID: 40409797 DOI: 10.1016/bs.adgen.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Thermoregulation is a fundamental biological process that allows birds and mammals to maintain a stable internal temperature despite environmental fluctuations, a mechanism shaped by millions of years of evolution. Non-shivering thermogenesis (NST), primarily driven by brown adipose tissue (BAT), plays a central role in thermoregulation by not only helping maintain energy homeostasis but also influencing broader metabolic and physiological processes. Recent research has revealed that BAT thermogenesis is regulated by peripheral hormones and at a central level, with key hypothalamic energy-sensing pathways-such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress-playing critical roles. Beyond its metabolic functions, BAT and NST have emerged as important contributors to tumor biology, offering novel therapeutic strategies for metabolic and oncological diseases. This review explores the intricate mechanisms underpinning NST, including UCP1-dependent thermogenesis and alternative pathways such as creatine cycling, calcium-dependent thermogenesis, and lipid cycling. Emerging evidence further highlights BAT's potential in to modulate tumor metabolism, with pharmacological and genetic approaches showing promise in reshaping the tumor microenvironment. This growing body of knowledge offers exciting prospects for targeting BAT thermogenesis in treating obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Amanda Rodríguez-Díaz
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Óscar Freire-Agulleiro
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| |
Collapse
|
6
|
Ishida Y, Nakayama K. Infrared thermography unveiled the variation of brown adipose tissue thermogenesis among East Asian adults. Physiol Rep 2025; 13:e70279. [PMID: 40110933 PMCID: PMC11923896 DOI: 10.14814/phy2.70279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
The thermogenesis of brown adipose tissue (BAT) is interesting because the contribution to human adaptation to cold and obesity resistance has been suggested. 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) is a common method for measuring BAT activity; however, it has been studied in few large cohorts due to concerns about safety and cost. Studies using alternative methods make it challenging to directly compare BAT activity among studies and interpret those results because the procedure is various. We measured the supraclavicular BAT thermogenesis of 122 healthy Japanese and Chinese adults under mild cold stress using standardized infrared thermography (IRT) and examined the effects of various factors on BAT variation. BAT thermogenesis was significantly higher in females than in males (p < 0.001) and significantly higher in Chinese than in Japanese individuals (p < 0.05). Among the 27 participants enrolled in both summer and winter experiments, BAT thermogenesis increased during winter (p < 0.05) only in Japanese participants. Additionally, individuals born at higher latitudes exhibited greater BAT thermogenesis (p < 0.05), suggesting the involvement of genetic background or cold exposure in early life stages. We obtained interesting anthropological and physiological findings with the use of non-invasive IRT.
Collapse
Affiliation(s)
- Yuka Ishida
- Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaChibaJapan
| | - Kazuhiro Nakayama
- Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaChibaJapan
| |
Collapse
|
7
|
Zhang N, Yu M, Zhao Q, Feng B, Deng Y, Bean JC, Liu Q, Eappen BP, He Y, Conde KM, Liu H, Yang Y, Tu L, Wang M, Li Y, Yin N, Liu H, Han J, Threat DA, Xu N, Smiley T, Xu P, Chen L, Zeng T, He Y, Wang C. Altered thermal preference by preoptic estrogen receptor alpha neurons in postpartum females. Mol Metab 2025; 93:102108. [PMID: 39909189 PMCID: PMC11849645 DOI: 10.1016/j.molmet.2025.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVE This study aims to investigate how reproductive experience (RE) alters thermal preference and thermoregulation in female mice, with a focus on estrogen receptor alpha (ERα)-expressing neurons in the preoptic area (POA). METHODS Thermal preference and body temperature were measured in female mice with and without RE, and virgin female mice with selective deletion of ERα from the POA (ERαPOA-KO). The number and activity of ERα-expressing POA neurons (ERαPOA) were assessed using immunohistochemistry and in vitro electrophysiology in response to temperature changes and ERα agonist. RESULTS We showed that female mice prefer a cooler environment starting from late pregnancy and persisting long term postpartum. Female mice with RE (>4 weeks post-weaning) displayed lower body temperature and a lower thermal preferred temperature, and lost preference for warm environments (30 °C) but preserved avoidance of cold environments (15 °C). This was associated with a significant decrease in the number of ERαPOA neurons. Importantly, virgin female ERαPOA-KO mice displayed lower thermal preferred temperature and impaired warm preference, mimicking RE mice. We further found that distinct ERαPOA subpopulations can be regulated by temperature changes with or without presynaptic blockers, and by ERα agonist. More importantly, RE decreased the number of warm-activated ERαPOA neurons and reduced the excitatory effects of warmth and estrogen-ERα signaling, while cold-activated ERαPOA neurons were slightly enhanced in female mice with RE. CONCLUSION Our results support that the thermosensing ability and estrogenic effects in ERαPOA neurons are regulated by reproductive experience, altering thermal preference.
Collapse
Affiliation(s)
- Nan Zhang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA; Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Qianru Zhao
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA; Department of Biological Chemistry, School of Pharmaceutical Sciences, South-central Minzu University, Wuhan, 430074, China
| | - Bing Feng
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Yue Deng
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jonathan C Bean
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Qingzhuo Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Benjamin P Eappen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kristine M Conde
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Longlong Tu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mengjie Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yongxiang Li
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Na Yin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Junying Han
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Darah Ave Threat
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Nathan Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Taylor Smiley
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China.
| | - Yanlin He
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA.
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Li Y, Mao J, Chai G, Zheng R, Liu X, Xie J. Neurobiological mechanisms of nicotine's effects on feeding and body weight. Neurosci Biobehav Rev 2025; 169:106021. [PMID: 39826824 DOI: 10.1016/j.neubiorev.2025.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Nicotine, a neuroactive substance in tobacco products, has been widely studied for its effects on feeding and body weight, mostly focusing on the involvement of nervous system, metabolism, hormones, and gut microbiota. To elucidate the action mechanism of nicotine on feeding and body weight, especially the underlying neurobiological mechanisms, we reviewed the studies on nicotine's effects on feeding and body weight by the regulation of various nerve systems, energy expenditure, peripheral hormones, gut microbiota, etc. The role of neuronal signaling molecules such as AMP-activated protein kinase (AMPK) and kappa opioid receptor (κOR) were specialized in the nicotine-regulating energy expenditure. The energy homeostasis-related neurons, pro-opiomelanocortin (POMC), agouti-related peptide (AgRP), prolactin-releasing hormone (Prlh), etc, were discussed about the responsibility for nicotine's effects on feeding. Nicotine's actions on hypothalamus and its related neural circuits were described in view of peripheral nervous system, reward system, adipose browning, hormone secretion, and gut-brain axis. Elucidation of neurobiological mechanism of nicotine's actions on feeding and body weight will be of immense value to the therapeutic strategies of smoking, and advance the medicine research for the therapy of obesity.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China
| | - Jian Mao
- Beijing Life Science Academy, Beijing, China
| | - Guobi Chai
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruimao Zheng
- Department of Anatomy Histology and Embryology School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xingyu Liu
- Beijing Life Science Academy, Beijing, China.
| | - Jianping Xie
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
9
|
Freire-Agulleiro Ó, Estévez-Salguero Á, Ferreira V, Holleman CL, García-Currás J, González-García I, Nogueiras R, Tena-Sempere M, García-Cáceres C, Diéguez C, López M. SF1-specific deletion of the energy sensor AMPKγ2 induces obesity. Mol Metab 2025; 92:102091. [PMID: 39746605 PMCID: PMC11782900 DOI: 10.1016/j.molmet.2024.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVE AMP-activated protein kinase (AMPK) is a heterotrimer complex consisting of a catalytic α subunit (α1, α2) with a serine/threonine kinase domain, and two regulatory subunits, β (β1, β2) and γ (γ1, γ2, γ3), encoded by different genes. In the hypothalamus, AMPK plays a crucial role in regulating energy balance, including feeding, energy expenditure, peripheral glucose and lipid metabolism. However, most research on hypothalamic AMPK has concentrated on the catalytic subunits AMPKα1 and AMPKα2, with little focus on the regulatory subunits. METHODS To fill this gap of knowledge, we investigated the effects of selectively deleting the regulatory isoform AMPKγ2, which is a primary "energy sensor", in steroidogenic factor 1 (SF1) neurons of the ventromedial hypothalamic nucleus (VMH). Complete metabolic phenotyping and molecular analyses in brown adipose tissue (BAT), white adipose tissue (WAT) and liver were carried out. RESULTS Our findings reveal that, in contrast to the obesity-protective effect of the genetic deletion of AMPKα subunits, the loss of AMPKγ2 in SF1 neurons leads to a sex-independent and feeding-independent obesity-prone phenotype due to decreased thermogenesis in brown adipose tissue (BAT) and reduced browning of WAT, resulting in lower energy expenditure. Additionally, SF1-Cre AMPKγ2 mice exhibit hepatic lipid accumulation, but surprisingly maintain normal glucose homeostasis. CONCLUSIONS Overall, these results highlight the distinct roles of AMPK subunits within the hypothalamus.
Collapse
Affiliation(s)
- Óscar Freire-Agulleiro
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain
| | - Ánxela Estévez-Salguero
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain
| | - Vitor Ferreira
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain
| | - Cassie Lynn Holleman
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Julia García-Currás
- Biostatech Advice, Training and Innovation in Biostatistics, S.L, Ames, 15895, Spain
| | - Ismael González-García
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba, 14004, Spain
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain.
| |
Collapse
|
10
|
Flak JN. Functionally Separate Populations of Ventromedial Hypothalamic Neurons in Obesity and Diabetes: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2025; 74:4-11. [PMID: 39418333 PMCID: PMC11664020 DOI: 10.2337/dbi24-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The ventromedial hypothalamic nucleus (VMN) maintains healthy metabolic function through several important roles. Collectively, homeostasis is maintained via intermingled cells within the VMN that raise blood glucose, lower blood glucose, and stimulate energy expenditure when needed. In this article I discuss the defining factors for the VMN cell types that govern distinct functions induced by the VMN, particularly in relation to energy balance and blood glucose levels. Special attention is given to distinct features of VMN cells responsible for these processes. Finally, these topics are reviewed in the context of research funded by the American Diabetes Association Pathway to Stop Diabetes initiative, with highlighting of key findings and current unresolved questions for future investigations.
Collapse
Affiliation(s)
- Jonathan N. Flak
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN
| |
Collapse
|
11
|
Ibayashi Y, Hasuzawa N, Nomura S, Kabashima M, Nagayama A, Iwata S, Kitamura M, Ashida K, Moriyama Y, Yamamoto K, Nomura M, Wang L. Mitochondrial fission is required for thermogenesis in brown adipose tissue. PLoS One 2024; 19:e0312352. [PMID: 39652536 PMCID: PMC11627380 DOI: 10.1371/journal.pone.0312352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/05/2024] [Indexed: 12/12/2024] Open
Abstract
Brown adipose tissue (BAT) thermogenesis is pivotal for maintaining body temperature and energy balance. Mitochondrial morphology is dynamically controlled by a balance between fusion and fission, which is crucial for cell differentiation, response to metabolic insults, and heat production. Dynamin-related protein 1 (Drp1) is a key regulator of mitochondrial fission. This study investigates the role of Drp1 in BAT development and thermogenesis by generating Drp1-deficient mice. These mice were created by crossing Drp1 floxed mice with fatty acid-binding protein 4-Cre (aP2-Cre) transgenic mice, resulting in aP2-Cre+/-Drp1flox/flox (aP2-Drp1f/f) mice. The aP2-Drp1f/f mice exhibited severe BAT and brain hypoplasia, with the majority dying within 48 hours postnatally, highlighting Drp1's crucial role in neonatal survival. Impaired thermogenic responses were observed in aP2-Drp1f/f mice, characterized by significantly decreased expression of thermogenic and lipogenic genes in BAT. Ultrastructural analysis revealed disrupted mitochondrial morphology and reduced lipid droplet content in BAT. The few surviving adult aP2-Drp1f/f mice also showed impaired BAT and brain development, along with BAT thermogenesis dysfunction during cold exposure. Our findings underscore the essential role of Drp1-mediated mitochondrial fission in BAT thermogenesis and neonatal survival, providing insights into potential therapeutic approaches for metabolic disorders.
Collapse
Affiliation(s)
- Yuta Ibayashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Nao Hasuzawa
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Seiji Nomura
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Masaharu Kabashima
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ayako Nagayama
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Shimpei Iwata
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Miyuki Kitamura
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kenji Ashida
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshinori Moriyama
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
- Division of endocrine and metabolism, Department of Internal medicine, Kurume University School of Medicine, Kurume, Japan
| | - Lixiang Wang
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
12
|
Hirschberg PR, Siegel DM, Teegala S, Rahbe M, Sarkar P, Routh VH. Reducing neuronal nitric oxide synthase (nNOS) expression in the ventromedial hypothalamus (VMH) increases body weight and blood glucose levels while decreasing physical activity in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594324. [PMID: 38798316 PMCID: PMC11118327 DOI: 10.1101/2024.05.15.594324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Glucose-inhibited (GI) neurons of the ventromedial hypothalamus (VMH) depend on neuronal nitric oxide synthase (nNOS) and AMP-activated protein kinase (AMPK) for activation in low glucose. The Lopez laboratory has shown that the effects of estrogen on brown fat thermogenesis and white fat browning require inhibition of VMH AMPK. This effect of estrogen was mediated by downstream lateral hypothalamus (LH) orexin neurons (1,2). We previously showed that estrogen inhibits activation of GI neurons in low glucose by inhibiting AMPK (3). Thus, we hypothesized that VMH AMPK- and nNOS-dependent GI neurons project to and inhibit orexin neurons. Estrogen inhibition of AMPK in GI neurons would then disinhibit orexin neurons and stimulate brown fat thermogenesis and white fat browning, leading to decreased body weight. To test this hypothesis, we reduced VMH nNOS expression using nNOS shRNA in female mice and measured body weight, adiposity, body temperature, white and brown fat uncoupling protein (UCP1; an index of thermogenesis and browning), locomotor activity, and blood glucose levels. Surprisingly, we saw no effect of reduced VMH nNOS expression on body temperature or UCP1. Instead, body weight and adiposity increased by 30% over 2 weeks post injection of nNOS shRNA. This was associated with increased blood glucose levels and decreased locomotor activity. We also found that VMH nNOS-GI neurons project to the LH. However, stimulation of VMH-LH projections increased excitatory glutamate input onto orexin neurons. Thus, our data do not support our original hypothesis. Excitation of orexin neurons has previously been shown to increase physical activity, leading to decreased blood glucose and body weight (4). We now hypothesize that VMH nNOS-GI neurons play a role in this latter function of orexin neurons.
Collapse
|
13
|
Dos Santos BG, Brisnovali NF, Goedeke L. Biochemical basis and therapeutic potential of mitochondrial uncoupling in cardiometabolic syndrome. Biochem J 2024; 481:1831-1854. [PMID: 39630236 DOI: 10.1042/bcj20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria, allowing for adjustments in cellular energy metabolism to maintain metabolic homeostasis. Small molecule uncouplers have been extensively studied for their potential to increase metabolic rate, and recent research has focused on developing safe and effective mitochondrial uncoupling agents for the treatment of obesity and cardiometabolic syndrome (CMS). Here, we provide a brief overview of CMS and cover the recent mechanisms by which chemical uncouplers regulate CMS-associated risk-factors and comorbidities, including dyslipidemia, insulin resistance, steatotic liver disease, type 2 diabetes, and atherosclerosis. Additionally, we review the current landscape of uncoupling agents, focusing on repurposed FDA-approved drugs and compounds in advanced preclinical or early-stage clinical development. Lastly, we discuss recent molecular insights by which chemical uncouplers enhance cellular energy expenditure, highlighting their potential as a new addition to the current CMS drug landscape, and outline several limitations that need to be addressed before these agents can successfully be introduced into clinical practice.
Collapse
Affiliation(s)
- Bernardo Gindri Dos Santos
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Niki F Brisnovali
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Leigh Goedeke
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
- Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| |
Collapse
|
14
|
Díaz-Castro F, Morselli E, Claret M. Interplay between the brain and adipose tissue: a metabolic conversation. EMBO Rep 2024; 25:5277-5293. [PMID: 39558137 PMCID: PMC11624209 DOI: 10.1038/s44319-024-00321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
The central nervous system and adipose tissue interact through complex communication. This bidirectional signaling regulates metabolic functions. The hypothalamus, a key homeostatic brain region, integrates exteroceptive and interoceptive signals to control appetite, energy expenditure, glucose, and lipid metabolism. This regulation is partly achieved via the nervous modulation of white (WAT) and brown (BAT) adipose tissue. In this review, we highlight the roles of sympathetic and parasympathetic innervation in regulating WAT and BAT activities, such as lipolysis and thermogenesis. Adipose tissue, in turn, plays a dual role as an energy reservoir and an endocrine organ, secreting hormones that influence brain function and metabolic health. In addition, this review focuses on recently uncovered communication pathways, including extracellular vesicles and neuro-mesenchymal units, which add new layers of regulation and complexity to the brain-adipose tissue interaction. Finally, we also examine the consequences of disrupted communication between the brain and adipose tissue in metabolic disorders like obesity and type-2 diabetes, emphasizing the potential for new therapeutic strategies targeting these pathways to improve metabolic health.
Collapse
Affiliation(s)
- Francisco Díaz-Castro
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile
- Physiology Department, Biological Science Faculty, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile.
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- IBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
15
|
Camon C, Garratt M, Correa SM. Exploring the effects of estrogen deficiency and aging on organismal homeostasis during menopause. NATURE AGING 2024; 4:1731-1744. [PMID: 39672893 PMCID: PMC11785355 DOI: 10.1038/s43587-024-00767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
Sex hormone signaling declines during aging, from early midlife through menopause, as a consequence of reduced circulating estrogens and decreased receptiveness to these hormones in target tissues. Estrogens preserve energy homeostasis and promote metabolic health via coordinated and simultaneous effects throughout the brain and body. Age-associated loss of estrogen production during menopause has been implicated in a higher risk for metabolic diseases and increased mortality. However, it remains unclear whether age-associated changes in homeostasis are dependent on reduced estrogen signaling during menopause. Although menopausal hormone therapies containing estrogens can alleviate symptoms, concerns about the risks involved have contributed to a broad decline in the use of these approaches. Non-hormonal therapies have emerged that target tissues or pathways with varying levels of selectivity, reducing risk. We summarize here the broad effects of estrogen loss on homeostasis during menopause, current and emerging therapies and opportunities for understanding homeostatic disruptions associated with menopause.
Collapse
Affiliation(s)
- Celine Camon
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Garratt
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
López M, Gualillo O. Rheumatic diseases and metabolism: where centre and periphery meet. Nat Rev Rheumatol 2024; 20:783-794. [PMID: 39478099 DOI: 10.1038/s41584-024-01178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/26/2024]
Abstract
Over the past few decades, the connection between metabolism and various inflammatory and rheumatic diseases has been an area of active investigation. Nonetheless, the precise mechanisms underlying these relationships remain a topic of ongoing debate, owing in part to conflicting data. This discrepancy can be attributed to the predominant focus on peripheral mechanisms in research into the metabolic consequences of rheumatic diseases. However, a wealth of evidence supports the notion that the central nervous system, specifically the hypothalamus, has an important influence on metabolic homeostasis. Notably, links have been established between crucial hypothalamic mechanisms responsible for regulating energy balance (including food intake, thermogenesis, and glucose and lipid metabolism), such as AMP-activated protein kinase, and the pathophysiology of rheumatoid arthritis. This Review aims to comprehensively examine the current understanding of central metabolic control in rheumatic diseases and explore potential therapeutic options that target this pathophysiological mechanism.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain.
| | - Oreste Gualillo
- Servizo Galego de Saude (SERGAS)-Instituto de Investigación Sanitaria de Santiago (IDIS), the Neuroendocrine Interactions in Rheumatology and Inflammatory Disease (NEIRID) Lab, Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
17
|
Zhang Z, He Z, Pan J, Yuan M, Lang Y, Wei X, Zhang C. The interaction of BDNF with estrogen in the development of hypertension and obesity, particularly during menopause. Front Endocrinol (Lausanne) 2024; 15:1384159. [PMID: 39655343 PMCID: PMC11625588 DOI: 10.3389/fendo.2024.1384159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
The expression of BDNF in both neuronal and non-neuronal cells is influenced by various stimuli, including prenatal developmental factors and postnatal conditions such as estrogens, dietary habits, and lifestyle factors like obesity, blood pressure, and aging. Central BDNF plays a crucial role in modulating how target tissues respond to these stimuli, influencing the pathogenesis of hypertension, mitigating obesity, and protecting neurons from aging. Thus, BDNF serves as a dynamic mediator of environmental influences, reflecting an individual's unique history of exposure. Estrogens, on the other hand, regulate various processes to maintain overall physiological well-being. Through nuclear estrogen receptors (ERα, ERβ) and the membrane estrogen receptor (GPER1), estrogens modulate transcriptional processes and signaling events that regulate the expression of target genes, such as ERα, components of the renin-angiotensin system (RAS), and hormone-sensitive lipase. Estrogens are instrumental in maintaining the set point for blood pressure and energy balance. BDNF and estrogens work cooperatively to prevent obesity by favoring lipolysis, and counteractively regulate blood pressure to adapt to the environment. Estrogen deficiency leads to menopause in women with low central BDNF level. This review delves into the complex mechanisms involving BDNF and estrogen, especially in the context of hypertension and obesity, particularly among postmenopausal women. The insights gained aim to inform the development of comprehensive therapeutic strategies for these prevalent syndromes affecting approximately 68% of adults.
Collapse
Affiliation(s)
- Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Ziyi He
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minghui Yuan
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Yini Lang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xiaomeng Wei
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Chaoyun Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
18
|
Lee TH, Nicolas JC, Quarta C. Molecular and functional mapping of the neuroendocrine hypothalamus: a new era begins. J Endocrinol Invest 2024; 47:2627-2648. [PMID: 38878127 DOI: 10.1007/s40618-024-02411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Recent advances in neuroscience tools for single-cell molecular profiling of brain neurons have revealed an enormous spectrum of neuronal subpopulations within the neuroendocrine hypothalamus, highlighting the remarkable molecular and cellular heterogeneity of this brain area. RATIONALE Neuronal diversity in the hypothalamus reflects the high functional plasticity of this brain area, where multiple neuronal populations flexibly integrate a variety of physiological outputs, including energy balance, stress and fertility, through crosstalk mechanisms with peripheral hormones. Intrinsic functional heterogeneity is also observed within classically 'defined' subpopulations of neuroendocrine neurons, including subtypes with distinct neurochemical signatures, spatial organisation and responsiveness to hormonal cues. AIM The aim of this review is to critically evaluate past and current research on the functional diversity of hypothalamic neuroendocrine neurons and their plasticity. It focuses on how this neuronal plasticity in this brain area relates to metabolic control, feeding regulation and interactions with stress and fertility-related neural circuits. CONCLUSION Our analysis provides an original framework for improving our understanding of the hypothalamic regulation of hormone function and the development of neuroendocrine diseases.
Collapse
Affiliation(s)
- T H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - J-C Nicolas
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - C Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
19
|
Zhang Y, Wang R, Liu T, Wang R. Exercise as a Therapeutic Strategy for Obesity: Central and Peripheral Mechanisms. Metabolites 2024; 14:589. [PMID: 39590824 PMCID: PMC11596326 DOI: 10.3390/metabo14110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a complex, multifactorial condition involving excessive fat accumulation due to an imbalance between energy intake and expenditure, with its global prevalence steadily rising. This condition significantly increases the risk of chronic diseases, including sarcopenia, type 2 diabetes, and cardiovascular diseases, highlighting the need for effective interventions. Exercise has emerged as a potent non-pharmacological approach to combat obesity, targeting both central and peripheral mechanisms that regulate metabolism, energy expenditure, and neurological functions. In the central nervous system, exercise influences appetite, mood, and cognitive functions by modulating the reward system and regulating appetite-controlling hormones to manage energy intake. Concurrently, exercise promotes thermogenesis in adipose tissue and regulates endocrine path-ways and key metabolic organs, such as skeletal muscle and the liver, to enhance fat oxidation and support energy balance. Despite advances in understanding exercise's role in obesity, the precise interaction between the neurobiological and peripheral metabolic pathways remains underexplored, particularly in public health strategies. A better understanding of these interactions could inform more comprehensive obesity management approaches by addressing both central nervous system influences on behavior and peripheral metabolic regulation. This review synthesizes recent insights into these roles, highlighting potential therapeutic strategies targeting both systems for more effective obesity interventions.
Collapse
Affiliation(s)
- Yiyin Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Y.Z.); (R.W.)
| | - Ruwen Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Y.Z.); (R.W.)
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Y.Z.); (R.W.)
| |
Collapse
|
20
|
Sapkota S, Roy SC, Briski KP. Dorsomedial Ventromedial Hypothalamic Nucleus Growth Hormone-Releasing Hormone Neuron Steroidogenic Factor-1 Gene Targets in Female Rat. ASN Neuro 2024; 16:2403345. [PMID: 39401164 PMCID: PMC11792125 DOI: 10.1080/17590914.2024.2403345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/07/2024] [Indexed: 10/18/2024] Open
Abstract
The prospect that the ventromedial hypothalamic nucleus (VMN) transcription factor steroidogenic factor-1/NR5A1 (SF-1) may exert sex-dimorphic control of glucose counterregulation is unresolved. Recent studies in male rats show that SF-1 regulates transcription of co-expressed hypoglycemia-sensitive neurochemicals in dorsomedial VMN growth hormone-releasing hormone (Ghrh) neurons. Gene knockdown and laser-catapult-microdissection/single-cell multiplex qPCR techniques were used here in a female rat model to determine if SF-1 control of Ghrh neuron transmitter marker, energy sensor, and estrogen receptor (ER) variant mRNAs varies according to sex. Data show that in females, hypoglycemia elicits a gain of SF-1 inhibitory control of VMNdm Ghrh neuron Ghrh and Ghrh-receptor gene profiles and loss of augmentation of glutaminase transcription; SF-1 gene silencing diminished eu- and hypoglycemic patterns of neuronal nitric oxide gene transcription. SF-1 imposes divergent control of baseline and hypoglycemic glutamate decarboxylase65 (GAD)-1 (stimulatory) versus GAD2 (inhibitory) mRNAs in that sex. SF-1 stimulates baseline VMNdm Ghrh neuron PRKAA1/AMPKα1 and PRKAA2/AMPKα2 gene expression, yet causes opposite changes in these gene profiles during hypoglycemia. SF-1 exerts glucose-dependent control of ER-alpha and G-protein-coupled ER-1 transcription, but blunts ER-beta gene profiles during eu- and hypoglycemia. In females, SF-1 knockdown did not affect hypercorticosteronemia or hyperglucagonemia, but blunted hypoglycemic suppression of growth hormone secretion. Results show that SF-1 expression is critical for female rat VMNdm Ghrh neuron counterregulatory neurochemical, AMPK catalytic subunit, and ER gene transcription responses to hypoglycemia. Sex differences in direction of SF-1 control of distinctive gene profiles may result in observed disparities in SF-1 regulation of counterregulatory hormone secretion between sexes.
Collapse
Affiliation(s)
- Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Sagor C. Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Karen P. Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
21
|
Yu M, Yin N, Feng B, Gao P, Yu K, Liu H, Liu H, Li Y, Ginnard OZ, Conde KM, Wang M, Fang X, Tu L, Bean JC, Liu Q, Deng Y, Yang Y, Han J, Jossy SV, Burt ML, Wong HZ, Yang Y, Arenkiel BR, He Y, Guo S, Gourdy P, Arnal JF, Lenfant F, Wang Z, Wang C, He Y, Xu Y. Identification of an ionic mechanism for ERα-mediated rapid excitation in neurons. SCIENCE ADVANCES 2024; 10:eadp0696. [PMID: 39356770 PMCID: PMC11446276 DOI: 10.1126/sciadv.adp0696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
The major female ovarian hormone, 17β-estradiol (E2), can alter neuronal excitability within milliseconds to regulate a variety of physiological processes. Estrogen receptor-α (ERα), classically known as a nuclear receptor, exists as a membrane-bound receptor to mediate this rapid action of E2, but the ionic mechanisms remain unclear. Here, we show that a membrane channel protein, chloride intracellular channel protein-1 (Clic1), can physically interact with ERα with a preference to the membrane-bound ERα. Clic1-mediated currents can be enhanced by E2 and reduced by its depletion. In addition, Clic1 currents are required to mediate the E2-induced rapid excitations in multiple brain ERα populations. Further, genetic disruption of Clic1 in hypothalamic ERα neurons blunts the regulations of E2 on female body weight balance. In conclusion, we identified the Clic1 chloride channel as a key mediator for E2-induced rapid neuronal excitation, which may have a broad impact on multiple neurobiological processes regulated by E2.
Collapse
Affiliation(s)
- Meng Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Na Yin
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bing Feng
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Peiyu Gao
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kaifan Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hesong Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hailan Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongxiang Li
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Olivia Z. Ginnard
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kristine M. Conde
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mengjie Wang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xing Fang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Longlong Tu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan C. Bean
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingzhuo Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yue Deng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuxue Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Junying Han
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sanika V. Jossy
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Megan L. Burt
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Huey Zhong Wong
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang He
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Pierre Gourdy
- I2MC, Inserm U1297, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Jean-Francois Arnal
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Francoise Lenfant
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Zhao Wang
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chunmei Wang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yanlin He
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Yong Xu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
Taniguchi H, Hashimoto Y, Dowaki N, Nirengi S. Association of brown adipose tissue activity with circulating sex hormones and fibroblast growth factor 21 in the follicular and luteal phases in young women. J Physiol Anthropol 2024; 43:23. [PMID: 39354624 PMCID: PMC11446134 DOI: 10.1186/s40101-024-00371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Thermogenesis is influenced by fluctuations in sex hormones during the menstrual cycle in premenopausal women. The thermogenic activity and mass of brown adipose tissue (BAT) are regulated by endocrine factors, including sex hormones and fibroblast growth factor 21 (FGF21). However, the relationship between human BAT and these endocrine fluctuations within individuals remains to be elucidated. This study aimed to assess variations in BAT activity between the luteal and follicular phases and identify correlations with circulating levels of sex hormones and FGF21. METHODS Healthy young women were enrolled in an observational study. Measurement of BAT activity and blood analyses were performed in both the follicular and luteal phases. BAT activity was analyzed using thermography with 2-h cold exposure. Plasma 17β-estradiol, progesterone, and FGF21 levels were determined by enzyme-linked immunosorbent assay. A comparative analysis within individuals was conducted in 13 women to compare the follicular and luteal phases. Furthermore, sensitivity analysis was carried out in 21 women during the follicular phase only. RESULTS Plasma 17β-estradiol and progesterone levels were significantly higher in the luteal phase, whereas plasma FGF21 level was significantly higher in the follicular phase. Comparison analysis found no significant differences in cold-induced BAT activity between the follicular and luteal phases in young women. Correlation analysis in both comparison and sensitivity analyses found that plasma 17β-estradiol and progesterone levels were not associated with BAT activity, whereas plasma FGF21 levels were significantly and positively correlated with BAT activity only in the follicular phase. In addition, plasma 17β-estradiol levels in the follicular phase were significantly and positively associated with plasma FGF21 levels in both the comparison and sensitivity analyses. CONCLUSIONS The thermogenic activity of BAT during cold exposure was comparable between the follicular and luteal phases in young women. Higher BAT activity was associated with elevated levels of plasma FGF21 only in the follicular phase, which is related to increased plasma 17β-estradiol levels.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
| | - Yuka Hashimoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Narumi Dowaki
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Shinsuke Nirengi
- Clinical Research Institute, Division of Preventive Medicine, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
23
|
Yao L, Yang C, Graff JC, Wang G, Wang G, Gu W. From Reactive to Proactive - The Future Life Design to Promote Health and Extend the Human Lifespan. Adv Biol (Weinh) 2024; 8:e2400148. [PMID: 39037380 DOI: 10.1002/adbi.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/11/2024] [Indexed: 07/23/2024]
Abstract
Disease treatment and prevention have improved the human lifespan. Current studies on aging, such as the biological clock and senolytic drugs have focused on the medical treatments of various disorders and health maintenance. However, to efficiently extend the human lifespan to its theoretical maximum, medicine can take a further proactive approach and identify the inapparent disorders that affect the gestation, body growth, and reproductive stages of the so-called "healthy" population. The goal is to upgrade the standard health status to a new level by targeting the inapparent disorders. Thus, future research can shift from reaction, response, and prevention to proactive, quality promotion and vigor prolonging; from single disease-oriented to multiple dimension protocol for a healthy body; from treatment of symptom onset to keep away from disorders; and from the healthy aging management to a healthy promotion design beginning at the birth.
Collapse
Affiliation(s)
- Lan Yao
- College of Health management, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang, 150081, China
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Chengyuan Yang
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - J Carolyn Graff
- Department of Health Promotion and Disease Prevention, College of Nursing, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Guiying Wang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150007, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150007, China
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Research Service, Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| |
Collapse
|
24
|
Mao L, Lu J, Hou Y, Nie T. Directly targeting PRDM16 in thermogenic adipose tissue to treat obesity and its related metabolic diseases. Front Endocrinol (Lausanne) 2024; 15:1458848. [PMID: 39351529 PMCID: PMC11439700 DOI: 10.3389/fendo.2024.1458848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Obesity is increasing globally and is closely associated with a range of metabolic disorders, including metabolic associated fatty liver disease, diabetes, and cardiovascular diseases. An effective strategy to combat obesity involves stimulating brown and beige adipocyte thermogenesis, which significantly enhances energy expenditure. Recent research has underscored the vital role of PRDM16 in the development and functionality of thermogenic adipocytes. Consequently, PRDM16 has been identified as a potential therapeutic target for obesity and its related metabolic disorders. This review comprehensively examines various studies that focus on combating obesity by directly targeting PRDM16 in adipose tissue.
Collapse
Affiliation(s)
- Liufeng Mao
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinli Lu
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunliang Hou
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tao Nie
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
25
|
Viana FS, Pereira JA, Crespo TS, Reis Amaro LB, Rocha EF, Fereira AC, Lelis DDF, Baldo TDOF, Baldo MP, Santos SHS, Andrade JMO. Oral supplementation with resveratrol improves hormonal profile and increases expression of genes associated with thermogenesis in oophorectomy mice. Mol Cell Endocrinol 2024; 591:112268. [PMID: 38735622 DOI: 10.1016/j.mce.2024.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Menopause causes important bodily and metabolic changes, which favor the increased occurrence of cardiovascular diseases, obesity, diabetes, and osteoporosis. Resveratrol exerts proven effects on body metabolism, improving glucose and lipid homeostasis and reducing inflammation and oxidative stress in various organs and tissues. Accordingly, this study evaluates the effects of resveratrol supplementation on the expression of markers associated with thermogenesis in brown adipose tissue, and on the body, metabolic and hormonal parameters of female mice submitted to bilateral oophorectomy. Eighteen female mice were randomized into three groups: G1: control (CONTROL), G2: oophorectomy (OOF), and G3: oophorectomy + resveratrol (OOF + RSV); the animals were kept under treatment for twelve weeks, being fed a standard diet and treated with resveratrol via gavage. Body, biochemical, hormonal, and histological parameters were measured; in addition to the expression of markers associated with thermogenesis in brown adipose tissue. The results showed that animals supplemented with resveratrol showed reduced body weight and visceral adiposity, in addition to glucose, total cholesterol, and triglyceride levels; decreased serum FSH levels and increased estrogen levels were observed compared to the OOF group and mRNA expression of PRDM16, UCP1, and SIRT3 in brown adipose tissue. The findings of this study suggest the important role of resveratrol in terms of improving body, metabolic, and hormonal parameters, as well as modulating markers associated with thermogenesis in brown adipose tissue of female mice submitted to oophorectomy.
Collapse
Affiliation(s)
- Fhelício Sampaio Viana
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Juliana Andrade Pereira
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | | | - Lílian Betânia Reis Amaro
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Eliezer Francisco Rocha
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Alice Crespo Fereira
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Deborah de Farias Lelis
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil; Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil
| | | | - Marcelo Perim Baldo
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil; Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil; Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil; Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil; Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
26
|
Vázquez-Lizarraga R, Mendoza-Viveros L, Cid-Castro C, Ruiz-Montoya S, Carreño-Vázquez E, Orozco-Solis R. Hypothalamic circuits and aging: keeping the circadian clock updated. Neural Regen Res 2024; 19:1919-1928. [PMID: 38227516 PMCID: PMC11040316 DOI: 10.4103/1673-5374.389624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Over the past century, age-related diseases, such as cancer, type-2 diabetes, obesity, and mental illness, have shown a significant increase, negatively impacting overall quality of life. Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels, including transcriptional, translational, and post-translational processes, resulting from cellular stress and circadian derangements. The circadian clock emerges as a key regulator, sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes, such as stem-cell function, cellular stress responses, and inter-tissue communication, which become disrupted during aging. Given the crucial role of hypothalamic circuits in regulating organismal physiology, metabolic control, sleep homeostasis, and circadian rhythms, and their dependence on these processes, strategies aimed at enhancing hypothalamic and circadian function, including pharmacological and non-pharmacological approaches, offer systemic benefits for healthy aging. Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions, like the hypothalamus, while reducing side effects associated with systemic drug delivery, thereby presenting new therapeutic possibilities for diverse age-related conditions.
Collapse
Affiliation(s)
| | - Lucia Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | - Carolina Cid-Castro
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | | | | | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| |
Collapse
|
27
|
Cruciani-Guglielmacci C, Le Stunff H, Magnan C. Brain lipid sensing and the neural control of energy balance. Biochimie 2024; 223:159-165. [PMID: 38825062 DOI: 10.1016/j.biochi.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
The central nervous system continuously detects circulating concentrations of lipids such as fatty acids and troglycerides. Once information has been detected, the central nervous system can in turn participate in the control of energy balance and blood sugar levels and in particular regulate the secretion and action of insulin. Neurons capable of detecting circulating lipid variations are located in the hypothalamus and in other regions such as the nucleus accumbens, the striatum or the hippocampus. An excess of lipids will have deleterious effects and may induce central lipotoxicity, in particular following local production of ceramides and the appearance of neuroinflammation which may lead to metabolic diseases such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
| | - Hervé Le Stunff
- Paris-Saclay Institute of Neuroscience, CNRS UMR 9197, Université Paris-Sud, University Paris Saclay, Orsay, France
| | | |
Collapse
|
28
|
Castro G, Mendes NF, Weissmann L, Quaresma PGF, Saad MJA, Prada PO. Multiple metabolic signals in the CeA regulate feeding: The role of AMPK. Mol Cell Endocrinol 2024; 589:112232. [PMID: 38604549 DOI: 10.1016/j.mce.2024.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The central nucleus of the amygdala (CeA) is part of the dopaminergic reward system and controls energy balance. Recently, a cluster of neurons was identified as responsive to the orexigenic effect of ghrelin and fasting. However, the signaling pathway by which ghrelin and fasting induce feeding is unknown. AMP-activated protein kinase (AMPK) is a cellular energy sensor, and its Thr172 phosphorylation (AMPKThr172) in the mediobasal hypothalamus regulates food intake. However, whether the expression and activation of AMPK in CeA could be one of the intracellular signaling activated in response to ghrelin and fasting eliciting food intake is unknown. AIM To evaluate the activation of AMPK into CeA in response to ghrelin, fasting, and 2-deoxy-D-glucose (2DG) and whether feeding accompanied these changes. In addition, to investigate whether the inhibition of AMPK into CeA could decrease food intake. METHODS On a chow diet, eight-week-old Wistar male rats were stereotaxically implanted with a cannula in the CeA to inject several modulators of AMPKα1/2Thr172 phosphorylation, and we performed physiological and molecular assays. KEY FINDINGS Fasting increased, and refeeding reduced AMPKThr172 in the CeA. Intra-CeA glucose injection decreased feeding, whereas injection of 2DG, a glucoprivation inductor, in the CeA, increased food intake and blood glucose, despite faint increases in AMPKThr172. Intra-CeA ghrelin injection increased food intake and AMPKThr172. To further confirm the role of AMPK in the CeA, chronic injection of Melanotan II (MTII) in CeA reduced body mass and food intake over seven days together with a slight decrease in AMPKThr172. SIGNIFICANCE Our findings identified that AMPK might be part of the signaling machinery in the CeA, which responds to nutrients and hormones contributing to feeding control. The results can contribute to understanding the pathophysiological mechanisms of altered feeding behavior/consumption, such as binge eating of caloric-dense, palatable food.
Collapse
Affiliation(s)
- Gisele Castro
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Natália Ferreira Mendes
- Department of Translational Medicine (Section of Pharmacology), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Laís Weissmann
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil; School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, SP, Brazil; Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
29
|
Xiang X, Palasuberniam P, Pare R. The Role of Estrogen across Multiple Disease Mechanisms. Curr Issues Mol Biol 2024; 46:8170-8196. [PMID: 39194700 DOI: 10.3390/cimb46080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Estrogen is a significant hormone that is involved in a multitude of physiological and pathological processes. In addition to its pivotal role in the reproductive system, estrogen is also implicated in the pathogenesis of a multitude of diseases. Nevertheless, previous research on the role of estrogen in a multitude of diseases, including Alzheimer's disease, depression, cardiovascular disease, diabetes, osteoporosis, gastrointestinal diseases, and estrogen-dependent cancers, has concentrated on a single disease area, resulting in a lack of comprehensive understanding of cross-disease mechanisms. This has brought some challenges to the current treatment methods for these diseases, because estrogen as a potential therapeutic tool has not yet fully developed its potential. Therefore, this review aims to comprehensively explore the mechanism of estrogen in these seven types of diseases. The objective of this study is to describe the relationship between each disease and estrogen, including the ways in which estrogen participates in regulating disease mechanisms, and to outline the efficacy of estrogen in treating these diseases in clinical practice. By studying the role of estrogen in a variety of disease mechanisms, it is hoped that a more accurate theoretical basis and clinical guidance for future treatment strategies will be provided, thus promoting the effective management and treatment of these diseases.
Collapse
Affiliation(s)
- Xiuting Xiang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Praneetha Palasuberniam
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Rahmawati Pare
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
30
|
Tian J, Moon JS, Nga HT, Lee HY, Nguyen TL, Jang HJ, Setoyama D, Shong M, Lee JH, Yi HS. Brown fat-specific mitoribosomal function is crucial for preventing cold exposure-induced bone loss. Cell Mol Life Sci 2024; 81:314. [PMID: 39066814 PMCID: PMC11335241 DOI: 10.1007/s00018-024-05347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
This study examines the interplay between ambient temperature, brown adipose tissue (BAT) function, and bone metabolism, emphasizing the effects of cold exposure and BAT mitochondrial activity on bone health. Utilizing ovariectomized (OVX) mice to model primary osteoporosis and BAT-specific mitochondrial dysfunction (BKO) mice, we evaluated the impact of housing temperature on bone density, immune modulation in bone marrow, and the protective role of BAT against bone loss. Cold exposure was found to universally reduce bone mass, enhance osteoclastogenesis, and alter bone marrow T-cell populations, implicating the immune system in bone remodeling under cold stress. The thermogenic function of BAT, driven by mitochondrial oxidative phosphorylation, was crucial in protecting against bone loss. Impaired BAT function, through surgical removal or mitochondrial dysfunction, exacerbated bone loss in cold environments, highlighting BAT's metabolic role in maintaining bone health. Furthermore, cold-induced changes in BAT function led to systemic metabolic shifts, including elevated long-chain fatty acids, which influenced osteoclast differentiation and activity. These findings suggest a systemic mechanism connecting environmental temperature and BAT metabolism with bone physiology, providing new insights into the metabolic and environmental determinants of bone health. Future research could lead to novel bone disease therapies targeting these pathways.
Collapse
Affiliation(s)
- Jingwen Tian
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ho Yeop Lee
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Ju Jang
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
31
|
Prapaharan B, Lea M, Beaudry JL. Weighing in on the role of brown adipose tissue for treatment of obesity. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13157. [PMID: 39087083 PMCID: PMC11290130 DOI: 10.3389/jpps.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Brown adipose tissue (BAT) activation is an emerging target for obesity treatments due to its thermogenic properties stemming from its ability to shuttle energy through uncoupling protein 1 (Ucp1). Recent rodent studies show how BAT and white adipose tissue (WAT) activity can be modulated to increase the expression of thermogenic proteins. Consequently, these alterations enable organisms to endure cold-temperatures and elevate energy expenditure, thereby promoting weight loss. In humans, BAT is less abundant in obese subjects and impacts of thermogenesis are less pronounced, bringing into question whether energy expending properties of BAT seen in rodents can be translated to human models. Our review will discuss pharmacological, hormonal, bioactive, sex-specific and environmental activators and inhibitors of BAT to determine the potential for BAT to act as a therapeutic strategy. We aim to address the feasibility of utilizing BAT modulators for weight reduction in obese individuals, as recent studies suggest that BAT's contributions to energy expenditure along with Ucp1-dependent and -independent pathways may or may not rectify energy imbalance characteristic of obesity.
Collapse
Affiliation(s)
| | | | - Jacqueline L. Beaudry
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Xu Y, Bai L, Yang X, Huang J, Wang J, Wu X, Shi J. Recent advances in anti-inflammation via AMPK activation. Heliyon 2024; 10:e33670. [PMID: 39040381 PMCID: PMC11261115 DOI: 10.1016/j.heliyon.2024.e33670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Inflammation is a complex physiological phenomenon, which is the body's defensive response, but abnormal inflammation can have adverse effects, and many diseases are related to the inflammatory response. AMPK, as a key sensor of cellular energy status, plays a crucial role in regulating cellular energy homeostasis and glycolipid metabolism. In recent years, the anti-inflammation effect of AMPK and related signalling cascade has begun to enter everyone's field of vision - not least the impact on metabolic diseases. A great number of studies have shown that anti-inflammatory drugs work through AMPK and related pathways. Herein, this article summarises recent advances in compounds that show anti-inflammatory effects by activating AMPK and attempts to comment on them.
Collapse
Affiliation(s)
- Yihua Xu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Parkin RA, Murray AJ. The therapeutic potential of irisin to mitigate the risk of metabolic syndrome in postmenopausal women. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1355922. [PMID: 39040132 PMCID: PMC11260725 DOI: 10.3389/frph.2024.1355922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/03/2024] [Indexed: 07/24/2024] Open
Abstract
Oestradiol withdrawal at menopause predisposes women to metabolic syndrome, a cluster of interrelated conditions including obesity, insulin resistance, dyslipidaemia and hypertension that together confer an increased risk of developing type 2 diabetes mellitus and cardiovascular disease. Hormone replacement therapies are commonly used to treat acute symptoms of the perimenopausal period, and whilst they have been associated with metabolic improvements in many studies, long-term use is considered unviable. Novel approaches are required to mitigate the risk of postmenopausal metabolic syndrome. In 2012, the exercise-inducible myokine irisin was isolated from the skeletal muscle of mice and identified to have anti-obesity and antidiabetic effects in vivo. Irisin is now recognised to exert pleiotropic action on cognitive, bone and metabolic health. There is accumulating evidence from in vitro and in vivo rodent studies that irisin can mitigate each component condition of metabolic syndrome. In postmenopausal women, independent associations have been observed between (a) exercise and plasma irisin concentration and (b) plasma irisin concentration and reduced incidence of metabolic syndrome. To date, however, no study has considered the mechanistic basis by which irisin, whether exercise-induced or exogenously administered, could reduce the incidence or severity of metabolic syndrome in postmenopausal women. This review aims to analyse the literature concerning the metabolic actions of irisin, with a focus on its therapeutic potential for metabolic syndrome driven by a state of oestradiol depletion. It evaluates the practicality of exercise as a therapy and discusses other irisin-based therapeutic strategies that may alleviate postmenopausal metabolic syndrome. Finally, it highlights areas where future research is required to advance knowledge of irisin's biological action such that it could be considered a viable candidate for clinical application.
Collapse
Affiliation(s)
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Koceva A, Herman R, Janez A, Rakusa M, Jensterle M. Sex- and Gender-Related Differences in Obesity: From Pathophysiological Mechanisms to Clinical Implications. Int J Mol Sci 2024; 25:7342. [PMID: 39000449 PMCID: PMC11242171 DOI: 10.3390/ijms25137342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Obesity, primarily characterized by excessive fat accumulation, is a multifactorial chronic disease with an increasing global prevalence. Despite the well-documented epidemiology and significant advances in understanding its pathophysiology and clinical implications, the impact of sex is typically overlooked in obesity research. Worldwide, women have a higher likelihood to become obese compared to men. Although women are offered weight loss interventions more often and at earlier stages than men, they are more vulnerable to psychopathology. Men, on the other hand, are less likely to pursue weight loss intervention and are more susceptible to the metabolic implications of obesity. In this narrative review, we comprehensively explored sex- and gender-specific differences in the development of obesity, focusing on a variety of biological variables, such as body composition, fat distribution and energy partitioning, the impact of sex steroid hormones and gut microbiota diversity, chromosomal and genetic variables, and behavioural and sociocultural variables influencing obesity development in men and women. Sex differences in obesity-related comorbidities and varying effectiveness of different weight loss interventions are also extensively discussed.
Collapse
Affiliation(s)
- Andrijana Koceva
- Department of Endocrinology and Diabetology, University Medical Center Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Rok Herman
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Matej Rakusa
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Huang SY, Chung MT, Kung CW, Chen SY, Chen YW, Pan T, Cheng PY, Shen HH, Lee YM. Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro. J Obes Metab Syndr 2024; 33:177-188. [PMID: 38699871 PMCID: PMC11224925 DOI: 10.7570/jomes23048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 05/05/2024] Open
Abstract
Background AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms. Methods Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study. Results Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects. Conclusion ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.
Collapse
Affiliation(s)
- Shieh-Yang Huang
- Department of Pharmacy, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ming-Ting Chung
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ching-Wen Kung
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Shu-Ying Chen
- Department of Nursing, Hung Kuang University, Taichung, Taiwan
| | - Yi-Wen Chen
- Department of Pharmacology and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Tong Pan
- Department of Pharmacology and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Hsueh Shen
- Department of Pharmacology and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Mei Lee
- Department of Pharmacology and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
36
|
Shay D, Welly R, Mao J, Kinkade J, Brown JK, Rosenfeld CS, Vieira-Potter VJ. Knockdown of Esr1 from DRD1-Rich Brain Regions Affects Adipose Tissue Metabolism: Potential Crosstalk between Nucleus Accumbens and Adipose Tissue. Int J Mol Sci 2024; 25:6130. [PMID: 38892320 PMCID: PMC11172510 DOI: 10.3390/ijms25116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Declining estrogen (E2) leads to physical inactivity and adipose tissue (AT) dysfunction. Mechanisms are not fully understood, but E2's effects on dopamine (DA) activity in the nucleus accumbens (NAc) brain region may mediate changes in mood and voluntary physical activity (PA). Our prior work revealed that loss of E2 robustly affected NAc DA-related gene expression, and the pattern correlated with sedentary behavior and visceral fat. The current study used a new transgenic mouse model (D1ERKO) to determine whether the abolishment of E2 receptor alpha (ERα) signaling within DA-rich brain regions affects PA and AT metabolism. Adult male and female wild-type (WT) and D1ERKO (KD) mice were assessed for body composition, energy intake (EE), spontaneous PA (SPA), and energy expenditure (EE); underwent glucose tolerance testing; and were assessed for blood biochemistry. Perigonadal white AT (PGAT), brown AT (BAT), and NAc brain regions were assessed for genes and proteins associated with DA, E2 signaling, and metabolism; AT sections were also assessed for uncoupling protein (UCP1). KD mice had greater lean mass and EE (genotype effects) and a visible change in BAT phenotype characterized by increased UCP1 staining and lipid depletion, an effect seen only among females. Female KD had higher NAc Oprm1 transcript levels and greater PGAT UCP1. This group tended to have improved glucose tolerance (p = 0.07). NAc suppression of Esr1 does not appear to affect PA, yet it may directly affect metabolism. This work may lead to novel targets to improve metabolic dysfunction following E2 loss, possibly by targeting the NAc.
Collapse
Affiliation(s)
- Dusti Shay
- Department of Nutrition and Exercise Physiology, Division of Food, Nutrition and Exercise Sciences, CAFNR, University of Missouri, Columbia, MO 65211, USA; (D.S.)
| | - Rebecca Welly
- Department of Nutrition and Exercise Physiology, Division of Food, Nutrition and Exercise Sciences, CAFNR, University of Missouri, Columbia, MO 65211, USA; (D.S.)
| | - Jiude Mao
- Biomedical Sciences, University of Missouri, E102 Veterinary Medicine Building, Columbia, MO 65211, USA (C.S.R.)
| | - Jessica Kinkade
- Biomedical Sciences, University of Missouri, E102 Veterinary Medicine Building, Columbia, MO 65211, USA (C.S.R.)
| | - Joshua K. Brown
- Department of Nutrition and Exercise Physiology, Division of Food, Nutrition and Exercise Sciences, CAFNR, University of Missouri, Columbia, MO 65211, USA; (D.S.)
| | - Cheryl S. Rosenfeld
- Biomedical Sciences, University of Missouri, E102 Veterinary Medicine Building, Columbia, MO 65211, USA (C.S.R.)
- MU Institute of Data Science and Informatics, University of Missouri, E102 Veterinary Medicine Building, Columbia, MO 65211, USA
- Genetics Area Program, University of Missouri, E102 Veterinary Medicine Building, Columbia, MO 65211, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, E102 Veterinary Medicine Building, Columbia, MO 65211, USA
| | - Victoria J. Vieira-Potter
- Department of Nutrition and Exercise Physiology, Division of Food, Nutrition and Exercise Sciences, CAFNR, University of Missouri, Columbia, MO 65211, USA; (D.S.)
| |
Collapse
|
37
|
Ferreira V, Folgueira C, Montes-San Lorenzo Á, Rodríguez-López A, Gonzalez-Iglesias E, Zubiaur P, Abad-Santos F, Sabio G, Rada P, Valverde ÁM. Estrogens prevent the hypothalamus-periphery crosstalk induced by olanzapine intraperitoneal treatment in female mice: Effects on brown/beige adipose tissues and liver. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167227. [PMID: 38733774 DOI: 10.1016/j.bbadis.2024.167227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Olanzapine (OLA) is a highly obesogenic second-generation antipsychotic (SGA). Recently we demonstrated that, contrarily to OLA oral treatment, intraperitoneal (i.p.) administration resulted in weight loss and absence of hepatic steatosis in wild-type (WT) and protein tyrosine phosphatase 1B (PTP1B)-deficient (KO) male mice. This protection relied on two central-peripheral axes connecting hypothalamic AMPK with brown/inguinal white adipose tissue (BAT/iWAT) uncoupling protein-1 (UCP-1) and hypothalamic JNK with hepatic fatty acid synthase (FAS). Herein, we addressed OLA i.p. treatment effects in WT and PTP1B-KO female mice. Contrarily to our previous results in WT females receiving OLA orally, the i.p. treatment did not induce weight gain or hyperphagia. Molecularly, in females OLA failed to diminish hypothalamic phospho-AMPK or elevate BAT UCP-1 and energy expenditure (EE) despite the preservation of iWAT browning. Conversely, OLA i.p. treatment in ovariectomized mice reduced hypothalamic phospho-AMPK, increased BAT/iWAT UCP-1 and EE, and induced weight loss as occurred in males. Pretreatment of hypothalamic neurons with 17β-estradiol (E2) abolished OLA effects on AMPK. Moreover, neither hypothalamic JNK activation nor hepatic FAS upregulation were found in WT and PTP1B-KO females receiving OLA via i.p. Importantly, this axis was reestablished upon ovariectomy. In this line, E2 prevented OLA-induced phospho-JNK in hypothalamic neurons. These results support the role of estrogens in sex-related dimorphism in OLA treatment. This study evidenced the benefit of OLA i.p. administration in preventing its obesogenic effects in female mice that could offer clinical value.
Collapse
Affiliation(s)
- Vítor Ferreira
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ángela Montes-San Lorenzo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Andrea Rodríguez-López
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Eva Gonzalez-Iglesias
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| |
Collapse
|
38
|
Shin J, Lee Y, Ju SH, Jung YJ, Sim D, Lee SJ. Unveiling the Potential of Natural Compounds: A Comprehensive Review on Adipose Thermogenesis Modulation. Int J Mol Sci 2024; 25:4915. [PMID: 38732127 PMCID: PMC11084502 DOI: 10.3390/ijms25094915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The process of adipocyte browning has recently emerged as a novel therapeutic target for combating obesity and obesity-related diseases. Non-shivering thermogenesis is the process of biological heat production in mammals and is primarily mediated via brown adipose tissue (BAT). The recruitment and activation of BAT can be induced through chemical drugs and nutrients, with subsequent beneficial health effects through the utilization of carbohydrates and fats to generate heat to maintain body temperature. However, since potent drugs may show adverse side effects, nutritional or natural substances could be safe and effective as potential adipocyte browning agents. This review aims to provide an extensive overview of the natural food compounds that have been shown to activate brown adipocytes in humans, animals, and in cultured cells. In addition, some key genetic and molecular targets and the mechanisms of action of these natural compounds reported to have therapeutic potential to combat obesity are discussed.
Collapse
Affiliation(s)
- Jaeeun Shin
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Yeonho Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Seong Hun Ju
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Young Jae Jung
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Daehyeon Sim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Sung-Joon Lee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul 02846, Republic of Korea
| |
Collapse
|
39
|
Luengo-Mateos M, González-Vila A, Torres Caldas AM, Alasaoufi AM, González-Domínguez M, López M, González-García I, Barca-Mayo O. Protocol for ovariectomy and estradiol replacement in mice. STAR Protoc 2024; 5:102910. [PMID: 38416648 PMCID: PMC10907206 DOI: 10.1016/j.xpro.2024.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 03/01/2024] Open
Abstract
Ovariectomy, involving the surgical removal of ovaries, and estradiol replacement facilitate the understanding of sexual dimorphism-related physiological changes, encompassing reproductive biology, metabolism, and hormone-related diseases. In this study, we present a protocol for conducting ovariectomy and estradiol replacement in mice. We describe steps for performing sham and ovariectomy operations, outline preoperative preparations, and provide details on postoperative care, including analgesia administration and the removal of surgical clips. Additionally, we elaborate on the procedures for performing vehicle and estradiol injections. For complete details on the use and execution of this protocol, please refer to Luengo-Mateos et al.1.
Collapse
Affiliation(s)
- María Luengo-Mateos
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antía González-Vila
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana María Torres Caldas
- Center for Experimental Biomedicine (CEBEGA), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ali M Alasaoufi
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marco González-Domínguez
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ismael González-García
- Neuroendocrine Regulation of Metabolism Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706 Santiago de Compostela, Spain.
| | - Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
40
|
Min SH, Song DK, Lee CH, Roh E, Kim MS. Hypothalamic AMP-Activated Protein Kinase as a Whole-Body Energy Sensor and Regulator. Endocrinol Metab (Seoul) 2024; 39:1-11. [PMID: 38356211 PMCID: PMC10901667 DOI: 10.3803/enm.2024.1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
5´-Adenosine monophosphate (AMP)-activated protein kinase (AMPK), a cellular energy sensor, is an essential enzyme that helps cells maintain stable energy levels during metabolic stress. The hypothalamus is pivotal in regulating energy balance within the body. Certain neurons in the hypothalamus are sensitive to fluctuations in food availability and energy stores, triggering adaptive responses to preserve systemic energy equilibrium. AMPK, expressed in these hypothalamic neurons, is instrumental in these regulatory processes. Hypothalamic AMPK activity is modulated by key metabolic hormones. Anorexigenic hormones, including leptin, insulin, and glucagon-like peptide 1, suppress hypothalamic AMPK activity, whereas the hunger hormone ghrelin activates it. These hormonal influences on hypothalamic AMPK activity are central to their roles in controlling food consumption and energy expenditure. Additionally, hypothalamic AMPK activity responds to variations in glucose concentrations. It becomes active during hypoglycemia but is deactivated when glucose is introduced directly into the hypothalamus. These shifts in AMPK activity within hypothalamic neurons are critical for maintaining glucose balance. Considering the vital function of hypothalamic AMPK in the regulation of overall energy and glucose balance, developing chemical agents that target the hypothalamus to modulate AMPK activity presents a promising therapeutic approach for metabolic conditions such as obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Do Kyeong Song
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Chan Hee Lee
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Korea
| | - Eun Roh
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Xiao X, Kennelly JP, Feng AC, Cheng L, Romartinez-Alonso B, Bedard A, Gao Y, Cui L, Young SG, Schwabe JW, Tontonoz P. Aster-B-dependent estradiol synthesis protects female mice from diet-induced obesity. J Clin Invest 2024; 134:e173002. [PMID: 38175723 PMCID: PMC10866650 DOI: 10.1172/jci173002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Aster proteins mediate the nonvesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER). However, the importance of nonvesicular sterol movement for physiology and pathophysiology in various tissues is incompletely understood. Here we show that loss of Aster-B leads to diet-induced obesity in female but not in male mice, and that this sex difference is abolished by ovariectomy. We further demonstrate that Aster-B deficiency impairs nonvesicular cholesterol transport from the PM to the ER in ovaries in vivo, leading to hypogonadism and reduced estradiol synthesis. Female Aster-B-deficient mice exhibit reduced locomotor activity and energy expenditure, consistent with established effects of estrogens on systemic metabolism. Administration of exogenous estradiol ameliorates the diet-induced obesity phenotype of Aster-B-deficient female mice. These findings highlight the key role of Aster-B-dependent nonvesicular cholesterol transport in regulating estradiol production and protecting females from obesity.
Collapse
Affiliation(s)
- Xu Xiao
- Department of Pathology and Laboratory Medicine
- Department of Biological Chemistry
| | - John P. Kennelly
- Department of Pathology and Laboratory Medicine
- Department of Biological Chemistry
| | - An-Chieh Feng
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Lijing Cheng
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Beatriz Romartinez-Alonso
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Alexander Bedard
- Department of Pathology and Laboratory Medicine
- Department of Biological Chemistry
| | - Yajing Gao
- Department of Pathology and Laboratory Medicine
- Department of Biological Chemistry
| | - Liujuan Cui
- Department of Pathology and Laboratory Medicine
- Department of Biological Chemistry
| | - Stephen G. Young
- Department of Medicine and Human Genetics, UCLA, Los Angeles, California, USA
| | - John W.R. Schwabe
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine
- Department of Biological Chemistry
| |
Collapse
|
42
|
González-Vila A, Luengo-Mateos M, Silveira-Loureiro M, Garrido-Gil P, Ohinska N, González-Domínguez M, Labandeira-García JL, García-Cáceres C, López M, Barca-Mayo O. Astrocytic insulin receptor controls circadian behavior via dopamine signaling in a sexually dimorphic manner. Nat Commun 2023; 14:8175. [PMID: 38071352 PMCID: PMC10710518 DOI: 10.1038/s41467-023-44039-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Mammalian circadian clocks respond to feeding and light cues, adjusting internal rhythms with day/night cycles. Astrocytes serve as circadian timekeepers, driving daily physiological rhythms; however, it's unknown how they ensure precise cycle-to-cycle rhythmicity. This is critical for understanding why mistimed or erratic feeding, as in shift work, disrupts circadian physiology- a condition linked to type 2 diabetes and obesity. Here, we show that astrocytic insulin signaling sets the free-running period of locomotor activity in female mice and food entrainment in male mice. Additionally, ablating the insulin receptor in hypothalamic astrocytes alters cyclic energy homeostasis differently in male and female mice. Remarkably, the mutants exhibit altered dopamine metabolism, and the pharmacological modulation of dopaminergic signaling partially restores distinct circadian traits in both male and female mutant mice. Our findings highlight the role of astrocytic insulin-dopaminergic signaling in conveying time-of-feeding or lighting cues to the astrocyte clock, thus governing circadian behavior in a sex-specific manner.
Collapse
Affiliation(s)
- Antía González-Vila
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Luengo-Mateos
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Silveira-Loureiro
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Nataliia Ohinska
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Marco González-Domínguez
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Luis Labandeira-García
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich & German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
43
|
Mirmira RG, Kulkarni RN, Xu P, Drossos T, Varady K, Knutson KL, Reutrakul S, Martyn-Nemeth P, Sargis RM, Wallia A, Tuchman AM, Weissberg-Benchell J, Danielson KK, Oakes SA, Thomas CC, Layden BT, May SC, Burbea Hoffmann M, Gatta E, Solway J, Philipson LH. Stress and human health in diabetes: A report from the 19 th Chicago Biomedical Consortium symposium. J Clin Transl Sci 2023; 7:e263. [PMID: 38229904 PMCID: PMC10790105 DOI: 10.1017/cts.2023.646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/01/2023] [Indexed: 01/18/2024] Open
Abstract
Stress and diabetes coexist in a vicious cycle. Different types of stress lead to diabetes, while diabetes itself is a major life stressor. This was the focus of the Chicago Biomedical Consortium's 19th annual symposium, "Stress and Human Health: Diabetes," in November 2022. There, researchers primarily from the Chicago area met to explore how different sources of stress - from the cells to the community - impact diabetes outcomes. Presenters discussed the consequences of stress arising from mutant proteins, obesity, sleep disturbances, environmental pollutants, COVID-19, and racial and socioeconomic disparities. This symposium showcased the latest diabetes research and highlighted promising new treatment approaches for mitigating stress in diabetes.
Collapse
Affiliation(s)
- Raghavendra G. Mirmira
- Department of Medicine, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Rohit N. Kulkarni
- Department of Medicine, Islet Cell and Regenerative Biology, Joslin Diabetes Center, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Boston, MA, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Tina Drossos
- Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Kristen L. Knutson
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sirimon Reutrakul
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Pamela Martyn-Nemeth
- Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Robert M. Sargis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Amisha Wallia
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Jill Weissberg-Benchell
- Department of Psychiatry and Behavioral Sciences, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kirstie K. Danielson
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Scott A. Oakes
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Celeste C. Thomas
- Department of Medicine, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Brian T. Layden
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL, USA
| | - Sarah C. May
- Department of Medicine, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | | | | | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Louis H. Philipson
- Department of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
44
|
Massa MG, Scott RL, Cara AL, Cortes LR, Vander PB, Sandoval NP, Park JW, Ali SL, Velez LM, Wang HB, Ati SS, Tesfaye B, Reue K, van Veen JE, Seldin MM, Correa SM. Feeding neurons integrate metabolic and reproductive states in mice. iScience 2023; 26:107918. [PMID: 37817932 PMCID: PMC10561062 DOI: 10.1016/j.isci.2023.107918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Balance between metabolic and reproductive processes is important for survival, particularly in mammals that gestate their young. How the nervous system coordinates this balance is an active area of study. Herein, we demonstrate that somatostatin (SST) neurons of the tuberal hypothalamus alter feeding in a manner sensitive to metabolic and reproductive states in mice. Whereas chemogenetic activation of SST neurons increased food intake across sexes, ablation decreased food intake only in female mice during proestrus. This ablation effect was only apparent in animals with low body mass. Fat transplantation and bioinformatics analysis of SST neuronal transcriptomes revealed white adipose as a key modulator of these effects. These studies indicate that SST hypothalamic neurons integrate metabolic and reproductive cues by responding to varying levels of circulating estrogens to modulate feeding differentially based on energy stores. Thus, gonadal steroid modulation of neuronal circuits can be context dependent and gated by metabolic status.
Collapse
Affiliation(s)
- Megan G. Massa
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
- Neuroscience Interdepartmental Doctoral Program, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Rachel L. Scott
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Alexandra L. Cara
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Laura R. Cortes
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Paul B. Vander
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Norma P. Sandoval
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Jae W. Park
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Sahara L. Ali
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Leandro M. Velez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Huei-Bin Wang
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Shomik S. Ati
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Bethlehem Tesfaye
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - J. Edward van Veen
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, School of Medicine, University of California – Irvine, Irvine, CA 92697, USA
| | - Stephanie M. Correa
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Weidlinger S, Winterberger K, Pape J, Weidlinger M, Janka H, von Wolff M, Stute P. Impact of estrogens on resting energy expenditure: A systematic review. Obes Rev 2023; 24:e13605. [PMID: 37544655 DOI: 10.1111/obr.13605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
The fear of weight gain is one of the main reasons for women not to initiate or to early discontinue hormonal contraception or menopausal hormone therapy. Resting energy expenditure is by far the largest component and the most important determinant of total energy expenditure. Given that low resting energy expenditure is a confirmed predictive factor for weight gain and consecutively for the development of obesity, research into the influence of sex steroids on resting energy expenditure is a particularly exciting area. The objective of this systematic review was to evaluate the effects of medication with natural and synthetic estrogens on resting energy expenditure in healthy normal weight and overweight women. Through complex systematic literature searches, a total of 10 studies were identified that investigated the effects of medication with estrogens on resting energy expenditure. Our results demonstrate that estrogen administration increases resting energy expenditure by up to +208 kcal per day in the context of contraception and by up to +222 kcal per day in the context of menopausal hormone therapy, suggesting a preventive effect of circulating estrogen levels and estrogen administration on weight gain and obesity development.
Collapse
Affiliation(s)
- Susanna Weidlinger
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | - Katja Winterberger
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | - Janna Pape
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | | | - Heidrun Janka
- Medical Library, University Library Bern, University of Bern, Bern, Switzerland
| | - Michael von Wolff
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | - Petra Stute
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
46
|
Mahmood ASMH, Roy SC, Leprince J, Briski KP. Sex-dependent endozepinergic regulation of ventromedial hypothalamic nucleus glucose counter-regulatory neuron aromatase protein expression in the adult rat. J Chem Neuroanat 2023; 132:102323. [PMID: 37543285 PMCID: PMC10528386 DOI: 10.1016/j.jchemneu.2023.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The hypothalamic brain cell types that produce estradiol from testosterone remain unclear. Aromatase inhibition affects ventromedial hypothalamic nucleus (VMN) glucose-stimulatory nitric oxide (NO) and glucose-inhibitory γ-aminobutyric acid (GABA) transmission during insulin (INS)-induced hypoglycemia (IIH). Pure GABA and NO nerve cell samples acquired by laser-catapult-microdissection from consecutive rostro-caudal segments of the VMN were analyzed by Western blot to investigate whether regional subpopulations of each cell type contain machinery for neuro-estradiol synthesis. Astrocyte endozepinergic signaling governs brain steroidogenesis. Pharmacological tools were used here to determine if the glio-peptide octadecaneuropeptide (ODN) controls aromatase expression in GABA and NO neurons during eu- and/or hypoglycemia. Intracerebroventricular administration of the ODN G-protein coupled-receptor antagonist cyclo(1-8)[DLeu5]OP (LV-1075) decreased (male) or enhanced (female) VMN GABAergic neuron aromatase expression, but increased or reduced this profile in nitrergic neurons in a region-specific manner in each sex. IIH suppressed aromatase levels in GABA neurons located in the middle segment of the male VMN or distributed throughout this nucleus in the female. This inhibitory response was altered by the ODN isoactive surrogate octapeptide (OP) in female, but was refractory to OP in male. NO neuron aromatase protein in hypoglycemic male (middle and caudal VMN) and female (rostral and caudal VMN) rats, but was normalized in OP- plus INS-treated rats of both sexes. Results provide novel evidence that VMN glucose-regulatory neurons may produce neuro-estradiol, and that the astrocyte endozepine transmitter ODN may impose sex-specific control of baseline and/or hypoglycemic patterns of aromatase expression in distinct subsets of nitrergic and GABAergic neurons in this neural structure.
Collapse
Affiliation(s)
- A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Jérôme Leprince
- Univ Rouen Normandie, Inserm, NorDic UMR 1239, PRIMACEN, Rouen, France
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
47
|
Sasaki T, Hara K, Tanemura K. Early-life exposure to acephate inhibits sexual development and induces testicular and ovarian toxicity in mice. Reprod Toxicol 2023; 121:108472. [PMID: 37717670 DOI: 10.1016/j.reprotox.2023.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Acephate is an organophosphate insecticide that exerts its toxicity by acting on the nervous system of insects. In addition to its action on the mammalian nervous system, acephate can also induce endocrine disruption of the reproductive system in mammals. However, the effects of acephate on sexual maturation and ovary development remain unclear. This study evaluated whether early-life exposure to acephate negatively impacts the male and female sexual maturation process and mature reproductive tissues. C57BL/6N mice were exposed to acephate (0, 0.3, 300 ppm) in drinking water from embryonic day 11.5 to ablactation, when the pups were four weeks old. Both sexes in the high-dose group experienced an early postnatal growth deficit, while females in the low-dose group continued to gain weight until 10 weeks of age. Exposure to acephate altered the anogenital index in females. Furthermore, preputial separation and vaginal opening were delayed in the high-dose group. At maturity, the weight of the seminal vesicles was decreased in the high-dose group. All treated groups exhibited increased vacuolation, accumulation of residual bodies, and degeneration in the testes. Furthermore, follicle regression was observed, and the healthy follicle number at each developmental stage was decreased in all treated groups. These results are probably due to the inhibition of the regulation by the hypothalamic-pituitary-gonadal axis and direct toxicity to reproductive organs. In conclusion, our study demonstrates that early-life exposure to acephate in mice may disrupt normal postnatal development, postpone puberty onset, and adversely affect reproductive functions during the reproductive period in both sexes.
Collapse
Affiliation(s)
- Takahiro Sasaki
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
| |
Collapse
|
48
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
49
|
Bheemanapally K, Briski KP. Differential G Protein-Coupled Estrogen Receptor-1 Regulation of Counter-Regulatory Transmitter Marker and 5'-AMP-Activated Protein Kinase Expression in Ventrolateral versus Dorsomedial Ventromedial Hypothalamic Nucleus. Neuroendocrinology 2023; 114:25-41. [PMID: 37699381 PMCID: PMC10843453 DOI: 10.1159/000533627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION The ventromedial hypothalamic nucleus (VMN) is an estrogen receptor (ER)-rich structure that regulates glucostasis. The role of nuclear but not membrane G protein-coupled ER-1 (GPER) in that function has been studied. METHODS Gene silencing and laser-catapult microdissection/immunoblot tools were used to examine whether GPER regulates transmitter and energy sensor function in dorsomedial (VMNdm) and/or ventrolateral (VMNvl) VMN counter-regulatory nitrergic and γ-Aminobutyric acid (GABA) neurons. RESULTS Intra-VMN GPER siRNA administration to euglycemic animals did not affect VMNdm or -vl nitrergic neuron nitric oxide synthase (nNOS), but upregulated (VMNdm) or lacked influence on (VMNvl) GABA nerve cell glutamate decarboxylase65/67 (GAD) protein. Insulin-induced hypoglycemia (IIH) caused GPER knockdown-reversible augmentation of nNOS, 5'-AMP-activated protein kinase (AMPK), and phospho-AMPK proteins in nitrergic neurons in both divisions. IIH had dissimilar effects on VMNvl (unchanged) versus VMNdm (increased) GABAergic neuron GAD levels, yet GPER knockdown affected these profiles. GPER siRNA prevented hypoglycemic upregulation of VMNvl and -dm GABA neuron AMPK without altering pAMPK expression. CONCLUSIONS Outcomes infer that GPER exerts differential control of VMNdm versus -vl GABA transmission during glucostasis and is required for hypoglycemic upregulated nitrergic (VMNdm and -vl) and GABA (VMNdm) signaling. Glycogen metabolism is reported to regulate VMN nNOS and GAD proteins. Data show that GPER limits VMNvl glycogen phosphorylase (GP) protein expression and glycogen buildup during euglycemia but mediates hypoglycemic augmentation of VMNvl GP protein and glycogen content; VMNdm glycogen mass is refractory to GPER control. GPER regulation of VMNvl glycogen metabolism infers that this receptor may govern local counter-regulatory transmission in part by astrocyte metabolic coupling.
Collapse
Affiliation(s)
- Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
50
|
Park J, Hu R, Xiong S, Qian Y, El-Sabbagh AS, Ibrahim M, Song Q, Yan G, Song Z, Mahmoud AM, He Y, Layden BT, Chen J, Ong SG, Xu P, Jiang Y. Estrogen prevents age-dependent beige adipogenesis failure through NAMPT-controlled ER stress pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555821. [PMID: 37693431 PMCID: PMC10491185 DOI: 10.1101/2023.08.31.555821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages they offer are compromised with aging. Here, we show that treating mice with estrogen (E2), a hormone that decreases with age, to mice can counteract the aging- related decline in beige adipocyte formation when subjected to cold, while concurrently enhancing energy expenditure and improving glucose tolerance. Mechanistically, we find that nicotinamide phosphoribosyltranferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related ER stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. In conclusion, our findings shed light on the mechanisms governing the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT controlled ER stress as a key regulator of this process. Highlights Estrogen restores beige adipocyte failure along with improved energy metabolism in old mice.Estrogen enhances the thermogenic gene program by mitigating age-induced ER stress.Estrogen enhances the beige adipogenesis derived from SMA+ APCs.Inhibiting the NAMPT signaling pathway abolishes estrogen-promoted beige adipogenesis.
Collapse
|