1
|
Yan Y, Chu X, Wang J, Kang X, Shan X, Yu H, Zhang X, Sun X. Alterations in Thyroid Hormones in Obese Patients Are Associated With Body Composition Changes After Bariatric Surgery. J Clin Endocrinol Metab 2025; 110:e2008-e2017. [PMID: 39222412 DOI: 10.1210/clinem/dgae605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
CONTEXT This article mainly explored the relationship between body composition and thyroid function in euthyroid obesity through correlation analysis, which showed the significant changes of thyroid function after bariatric surgery notably correlated with changes in body composition. OBJECTIVE This study investigates how metabolic/bariatric surgery (MBS) affects thyroid hormone (TH) levels and TH resistance in obese euthyroid individuals, focusing on their correlation with changes in body composition. METHODS We included 470 obese individuals and 118 controls for baseline assessment, and 125 obese patients receiving MBS for longitudinal study. Data on body composition and thyroid function were collected. Correlations between baseline and changes in thyroid function and body composition were assessed. RESULTS In the obese group, thyrotropin (TSH), free triiodothyronine (fT3) levels, and thyroid feedback quantile-based index (TFQI) were elevated and significantly decreased post MBS, along with visceral fat area (VFA) and body fat percentages, whereas skeletal muscle mass (SMM) percentage increased. Preoperative partial correlation analysis adjusted for age and sex revealed that TSH positively correlated with VFA (r = 0.109; P = .019), body fat percentage (r = 0.114; P = .013), and negatively correlated with SMM percentage (r = -0.104; P = .024). Similar correlations were observed between central TH resistance indices and body composition, but no statistically significant correlations were found in the control group. Post MBS, decreased TSH positively correlated with decreased VFA (r = 0.251; P = .006) and increased SMM percentage (r = 0.233; P = .011). While reductions in VFA and body fat percentage were linked to improved central TH resistance, a decrease in peripheral TH conversion was noted. CONCLUSION MBS significantly affects thyroid function and TH resistance, with notable correlations to changes in body composition.
Collapse
Affiliation(s)
- Yu Yan
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210009, China
| | - Xuehui Chu
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Jing Wang
- Department of Health Management Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Xing Kang
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Xiaodong Shan
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Hang Yu
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Xiaowen Zhang
- Department of Endocrinology and Metabolism, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, Jiangsu 210008, China
| | - Xitai Sun
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210009, China
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| |
Collapse
|
2
|
Luongo C, Di Girolamo D, Ambrosio R, Di Cintio S, De Stefano MA, Porcelli T, Salvatore D. Type 2 Deiodinase Promotes Fatty Adipogenesis in Muscle Fibroadipogenic Progenitors From Adult Male Mice. Endocrinology 2025; 166:bqaf050. [PMID: 40059408 PMCID: PMC11933820 DOI: 10.1210/endocr/bqaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 03/26/2025]
Abstract
Fibro-adipogenic progenitor cells (FAPs) are a heterogeneous population of multipotent mesenchymal cells that give rise to fibroblasts and adipocytes. In response to muscle injury, FAPs are activated and cooperate with inflammatory and muscle stem cells to promote muscle regeneration. In pathological conditions, such as muscular dystrophies, this coordinated response is partially lost and an accumulation of FAPs is observed that is responsible for maladaptive fibrosis, ectopic fat deposition, and impaired muscle regeneration. The role of intracellular thyroid hormone (TH) signaling in this cellular context is largely unknown. Here we show that intracellular 3,5,3'-triiodothyronine (T3) concentration in FAPs is increased in vitro during adipogenic differentiation via the increase of the T3-producing type 2 deiodinase (D2). The adipogenic potential is reduced in FAPs cultured in the presence of 3,3,5'-triiodothyronine (rT3), a specific D2 inhibitor, while exogenous administration of THs is able to induce the expression of relevant adipogenic genes. Accordingly, on genetic D2 depletion in vivo, adipogenesis was significantly reduced in D2KO compared to control mice. These data were confirmed using a FAP-inducible specific D2-KO mouse model, suggesting that a cell-specific D2-depletion in FAPs is sufficient to decrease fatty muscle infiltration and to improve muscle regeneration. Taken together, these data show that TH signaling is dynamically modulated in FAPs wherein D2-produced T3 is required to promote maturation of FAPs into adipocytes.
Collapse
Affiliation(s)
- Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples 80131, Italy
| | - Daniela Di Girolamo
- Department of Biology, University of Naples Federico II, Naples 80131, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples 80131, Italy
| | - Raffaele Ambrosio
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | - Sara Di Cintio
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | | | - Tommaso Porcelli
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | - Domenico Salvatore
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples 80131, Italy
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| |
Collapse
|
3
|
Wang G, Gao T, Liu Y, Duan J, Lu H, Jiang A, Xu Y, Lu X, Li X, Wang Y, Yu W. Type 3 deiodinase activation mediated by the Shh/Gli1 axis promotes sepsis-induced metabolic dysregulation in skeletal muscles. BURNS & TRAUMA 2025; 13:tkae066. [PMID: 39877839 PMCID: PMC11773416 DOI: 10.1093/burnst/tkae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/23/2024] [Accepted: 10/18/2024] [Indexed: 01/31/2025]
Abstract
Background Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation. Methods A retrospective clinical study was conducted to investigate the attributes of rT3. The expression of Dio3 was detected by immunoblotting, immunofluorescence, and immunohistochemical staining in tissues extracted from CLP-induced septic rats and human biopsy samples. In addition, the effect of Dio3 inhibition on skeletal muscle metabolism was observed in rats with targeted Dio3 knockdown using an adeno-associated virus. The effectiveness of Sonic hedgehog (Shh) signaling inhibition on systemic TH levels was observed in CLP-induced septic rats receiving cyclopamine. The mechanisms underlying such inhibition were explored using immunoblotting, RNA-seq, and chromatin immunoprecipitation-qPCR assays. Results The main product of Dio3, rT3, is strongly associated with organ function. Early sepsis leads to significant upregulation of Dio3 in the skeletal muscles and lung tissues of septic rats. The targeted inhibition of Dio3 in skeletal muscle restores TH responsiveness, prevents fast-to-slow fiber conversion, preserves glucose transporter type 4 functionality, and maintains metabolic balance between protein synthesis and proteolysis, which leads to preserved muscle mass. The reactivation of Dio3 is transcriptionally regulated by the Shh pathway induced by the signal transducer and activator of transcription 3. Conclusions The suppression of Dio3 restores tissue TH actions, attenuates proteolysis, and ameliorates anabolic resistance in the skeletal muscles of septic rats, thereby improving local metabolic homeostasis. Our results provide insights into the mechanisms of Dio3 reactivation and its critical role in local metabolic alterations induced by sepsis, while also suggesting novel targets aimed at ameliorating tissue-specific metabolic disorders.
Collapse
Affiliation(s)
- Gang Wang
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Tao Gao
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Yijiang Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
- Department of Critical Care Medicine, The Drum Tower Clinical Collage of Nanjing Medical University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
| | - Jianfeng Duan
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Huimin Lu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Anqi Jiang
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Yun Xu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Xiaolan Lu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Xiaoyao Li
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Yong Wang
- The State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
- Department of Critical Care Medicine, The Drum Tower Clinical Collage of Nanjing Medical University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
| |
Collapse
|
4
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Zhu Z, Qian Y, Ding P, Jin K, Chen J, Fu J, Zhao H, Chen C, Chen J. Exploring the association between muscle mass and thyroid function in Chinese community subjects over 45 years old with normal thyroid function: a cross-sectional analysis. Front Endocrinol (Lausanne) 2024; 15:1411805. [PMID: 39649225 PMCID: PMC11620894 DOI: 10.3389/fendo.2024.1411805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/30/2024] [Indexed: 12/10/2024] Open
Abstract
Background Currently, nothing is known about the connection between muscle mass and thyroid hormone levels in middle-aged and elderly Chinese with normal thyroid function. The purpose of this study was to determine the potential association between muscle mass and thyroid function status in middle-aged and elderly Chinese subjects with normal thyroid function. Methods A cohort of 1868 participants in China were included in this retrospective study; their mean age was 53.97 years, and their skeletal muscle mass index was 7.44 kg/m2. Of them, 60.97% were men. Thyroid hormone concentrations, standard biochemical indices, and the frequency of chronic illnesses were among the many factors that were evaluated. Bioelectrical impedance analysis (BIA) was used to assess the patients' body composition. The skeletal muscle index (SMI) was calculated using the following formula: SMI = ASM (kg)/height 2 (m2), where ASM stands for appendicular skeletal muscle mass. To identify the correlations between the variables, the Spearman correlation coefficient was used. Binary logistic regression analysis was conducted to investigate the potential linkages between thyroid hormone levels and diminished muscle mass. Results In this investigation, a significant correlation was observed between low muscle mass and FT3/FT4 (OR=0.044, 95% CI: 0.004-0.440, P=0.008), as well as FT3 (OR=0.697, 95% CI: 0.508-0.957, P=0.025). Conversely, no discernible correlation trend was detected with TSH (OR=0.972, 95% CI: 0.814-1.160, P=0.753) and FT4 (OR=1.97, 95% CI=0.983-1.224, P=0.1). Following adjustment for various confounding factors, including age, vitamin D levels, triglycerides, HDL-C, LDL-C, total protein, hypertension, diabetes, hyperuricemia, and overweight/obesity, across the entire study population, a positive correlation between SMI and FT3/FT4 was identified. Subsequent gender, age, and weight-stratified analyses revealed consistent correlation trends between SMI and FT3/FT4, with all interactions yielding P-values > 0.05. Conclusion Our study has revealed that among middle-aged and elderly Chinese individuals exhibiting normal thyroid function, a reduction in the free T3 to free T4 ratio is associated with a decline in muscle mass.
Collapse
Affiliation(s)
- Zaisheng Zhu
- Department of Medical Care Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yidan Qian
- Department of Medical Care Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pan Ding
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Kejia Jin
- Department of Medical Care Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junpeng Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jiayue Fu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Hongjun Zhao
- Department of Pulmonary and Critical Care Medicine, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pulmonary and Critical Care Medicine, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Junjie Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Sagliocchi S, Restolfer F, Cossidente A, Dentice M. The key roles of thyroid hormone in mitochondrial regulation, at interface of human health and disease. J Basic Clin Physiol Pharmacol 2024; 35:231-240. [PMID: 39023546 PMCID: PMC11522957 DOI: 10.1515/jbcpp-2024-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Mitochondria are highly plastic and dynamic organelles long known as the powerhouse of cellular bioenergetics, but also endowed with a critical role in stress responses and homeostasis maintenance, supporting and integrating activities across multifaced cellular processes. As a such, mitochondria dysfunctions are leading causes of a wide range of diseases and pathologies. Thyroid hormones (THs) are endocrine regulators of cellular metabolism, regulating intracellular nutrients fueling of sugars, amino acids and fatty acids. For instance, THs regulate the balance between the anabolism and catabolism of all the macro-molecules, influencing energy homeostasis during different nutritional conditions. Noteworthy, not only most of the TH-dependent metabolic modulations act via the mitochondria, but also THs have been proved to regulate the mitochondrial biosynthesis, dynamics and function. The significance of such an interplay is different in the context of specific tissues and strongly impacts on cellular homeostasis. Thus, a comprehensive understanding of THs-dependent mitochondrial functions and dynamics is required to develop more precise strategies for targeting mitochondrial function. Herein, we describe the mechanisms of TH-dependent metabolic regulation with a focus on mitochondrial action, in different tissue contexts, thus providing new insights for targeted modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Federica Restolfer
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Alessandro Cossidente
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
7
|
Nappi A, Moriello C, Morgante M, Fusco F, Crocetto F, Miro C. Effects of thyroid hormones in skeletal muscle protein turnover. J Basic Clin Physiol Pharmacol 2024; 35:253-264. [PMID: 39297559 DOI: 10.1515/jbcpp-2024-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 11/01/2024]
Abstract
Thyroid hormones (THs) are critical regulators of muscle metabolism in both healthy and unhealthy conditions. Acting concurrently as powerful anabolic and catabolic factors, THs are endowed with a vital role in muscle mass maintenance. As a result, thyroid dysfunctions are the leading cause of a wide range of muscle pathologies, globally identified as myopathies. Whether muscle wasting is a common feature in patients with hyperthyroidism and is mainly caused by THs-dependent stimulation of muscle proteolysis, also muscle growth is often associated with hyperthyroid conditions, linked to THs-dependent stimulation of muscle protein synthesis. Noteworthy, also hypothyroid status negatively impacts on muscle physiology, causing muscle weakness and fatigue. Most of these symptoms are due to altered balance between muscle protein synthesis and breakdown. Thus, a comprehensive understanding of THs-dependent skeletal muscle protein turnover might facilitate the management of physical discomfort or weakness in conditions of thyroid disease. Herein, we describe the molecular mechanisms underlying the THs-dependent alteration of skeletal muscle structure and function associated with muscle atrophy and hypertrophy, thus providing new insights for targeted modulation of skeletal muscle dynamics.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Caterina Moriello
- Department of Advanced Medical and Surgical Sciences, University of Naples "Luigi Vanvitelli", Naples, Italy
| | | | - Ferdinando Fusco
- Department of Women, Children and General and Specialist Surgery, University of Naples "Luigi Vanvitelli", Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
8
|
Harsini AR, Mohajeri-Tehrani MR, Sajjadi-Jazi SM, Naeini F, Valisoltani N, Sadeghi E, Mohammadi H, Hosseini S. Are resting metabolic rate and clinical symptoms affected by variation of serum thyroid stimulating hormone levels within the normal range in healthy and women with hypothyroidism? A case-control study. Clin Nutr ESPEN 2024; 61:71-78. [PMID: 38777475 DOI: 10.1016/j.clnesp.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND It is unclear whether variation in thyroid stimulating hormone (TSH) levels within the reference range affect energy expenditure and clinical symptoms and even within the normal range of TSH levels, resting energy expenditure may alter. The aim of the present study was to determine whether treated hypothyroid subjects and healthy subjects with a low-normal TSH range (0.3-2.3 mIU/L) have better clinical outcomes and increased energy expenditure than those with a high-normal TSH range (2.3-4.3 mIU/L). METHODS This was a case-control study of 160 overweight/obese women with TSH levels across the reference range of 0.3-4.3 mU/l. Subjects were paired in four groups: healthy subjects with low-normal target TSH (n = 40), healthy subjects with high-normal target TSH (n = 40), subjects with treated hypothyroidism with low-normal target TSH (n = 40), and subjects with treated hypothyroidism with high-normal target TSH (n = 40). Resting energy expenditure (RMR), dietary intake, body composition, physical activity, and biochemical markers were assessed. RESULTS Subjects with low-normal (≤2.3 mU/L) and high-normal (>2.3 mU/L) TSH levels did not differ in terms of RMR, serum T3 levels, and clinical symptoms except fatigue (P = 0.013). However, serum fT4 levels were found to be significantly different between the study groups (P = 0.002). Serum fT4 concentration was the highest in subjects with treated hypothyroidism with low-normal target TSH. CONCLUSION Variation in serum TSH levels within the reference range did not significantly affect REE and clinical symptoms except fatigue in healthy and women with hypothyroidism.
Collapse
Affiliation(s)
- Asma Rajabi Harsini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Valisoltani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Sadeghi
- Research Consultation Center (RCC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hosseini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Chen JF, Wang J, Chai J, Jin W, Ren QL, Ma Q, Lu QX, Sun JJ, Mo DL, Zhang JQ, Xing BS. Transcriptome profiling of longissimus dorsi during different prenatal stages to identify genes involved in intramuscular fat deposition in lean and obese pig breeds. Mol Biol Rep 2024; 51:386. [PMID: 38441676 PMCID: PMC10914898 DOI: 10.1007/s11033-023-09088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/29/2023] [Indexed: 03/07/2024]
Abstract
BACKGROUND There was significant difference in muscle development between fat-type and lean-type pig breeds. METHODS AND RESULTS In current study, transcriptome analysis and bioinformatics analysis were used to compare the difference in longissimus dorsi (LD) muscle at three time-points (38 days post coitus (dpc), 58 dpc, and 78 dpc ) between Huainan (HN) and Large white (LW) pig breeds. A total of 24500 transcripts were obtained in 18 samples, and 2319, 2799, and 3713 differently expressed genes (DEGs) were identified between these two breeds at 38 dpc, 58 dpc, and 78 dpc, respectively. And the number and foldchange of DEGs were increased, the alternative splice also increased. The cluster analysis of DEGs indicated the embryonic development progress of LD muscle between these two breeds was different. There were 539 shared DEGs between HN and LW at three stages, and the top-shared DEGs were associated with muscle development and lipid deposition, such as KLF4, NR4A1, HSP70, ZBTB16 and so on. CONCLUSIONS The results showed DEGs between Huainan (HN) and Large white (LW) pig breeds, and contributed to the understanding the muscle development difference between HN and LW, and provided basic materials for improvement of meat quality.
Collapse
Affiliation(s)
- Jun Feng Chen
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Huayuan Road No.116, Zhengzhou, 450002, Henan, China
| | - Jing Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Huayuan Road No.116, Zhengzhou, 450002, Henan, China
| | - Jin Chai
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Jin
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Huayuan Road No.116, Zhengzhou, 450002, Henan, China
| | - Qiao Ling Ren
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Huayuan Road No.116, Zhengzhou, 450002, Henan, China
| | - Qiang Ma
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Huayuan Road No.116, Zhengzhou, 450002, Henan, China
| | - Qing Xia Lu
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Huayuan Road No.116, Zhengzhou, 450002, Henan, China
| | - Jia Jie Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - De Lin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia Qing Zhang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Huayuan Road No.116, Zhengzhou, 450002, Henan, China
| | - Bao Song Xing
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Huayuan Road No.116, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
10
|
Ma H, Yang F, York LR, Li S, Ding XQ. Excessive Thyroid Hormone Signaling Induces Photoreceptor Degeneration in Mice. eNeuro 2023; 10:ENEURO.0058-23.2023. [PMID: 37596046 PMCID: PMC10481642 DOI: 10.1523/eneuro.0058-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023] Open
Abstract
Rod and cone photoreceptors degenerate in inherited and age-related retinal degenerative diseases, ultimately leading to loss of vision. Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and metabolism. Recent studies have shown a link between TH signaling and retinal degeneration. This work investigates the effects of excessive TH signaling on photoreceptor function and survival in mice. C57BL/6, Thra1 -/-, Thrb2 -/-, Thrb -/-, and the cone dominant Nrl -/- mice received triiodothyronine (T3) treatment (5-20 μg/ml in drinking water) for 30 d, followed by evaluations of retinal function, photoreceptor survival/death, and retinal stress/damage. Treatment with T3 reduced light responses of rods and cones by 50-60%, compared with untreated controls. Outer nuclear layer thickness and cone density were reduced by ∼18% and 75%, respectively, after T3 treatment. Retinal sections prepared from T3-treated mice showed significantly increased numbers of TUNEL-positive, p-γH2AX-positive, and 8-OHdG-positive cells, and activation of Müller glial cells. Gene expression analysis revealed upregulation of the genes involved in oxidative stress, necroptosis, and inflammation after T3 treatment. Deletion of Thra1 prevented T3-induced degeneration of rods but not cones, whereas deletion of Thrb2 preserved both rods and cones. Treatment with an antioxidant partially preserved photoreceptors and reduced retinal stress responses. This study demonstrates that excessive TH signaling induces oxidative stress/damage and necroptosis, induces photoreceptor degeneration, and impairs retinal function. The findings provide insights into the role of TH signaling in retinal degeneration and support the view of targeting TH signaling for photoreceptor protection.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Lilliana R York
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Shujuan Li
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
11
|
Sutcu HH, Montagne B, Ricchetti M. DNA-PKcs regulates myogenesis in an Akt-dependent manner independent of induced DNA damage. Cell Death Differ 2023; 30:1900-1915. [PMID: 37400716 PMCID: PMC10406879 DOI: 10.1038/s41418-023-01177-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
Skeletal muscle regeneration relies on muscle stem (satellite) cells. We previously demonstrated that satellite cells efficiently and accurately repair radiation-induced DNA double-strand breaks (DSBs) via the DNA-dependent kinase DNA-PKcs. We show here that DNA-PKcs affects myogenesis independently of its role in DSB repair. Consequently, this process does not require the accumulation of DSBs and it is also independent of caspase-induced DNA damage. We report that in myogenic cells DNA-PKcs is essential for the expression of the differentiation factor Myogenin in an Akt2-dependent manner. DNA-PKcs interacts with the p300-containing complex that activates Myogenin transcription. We show also that SCID mice that are deficient in DNA-PKcs, and are used for transplantation and muscle regeneration studies, display altered myofiber composition and delayed myogenesis upon injury. These defects are exacerbated after repeated injury/regeneration events resulting in reduced muscle size. We thus identify a novel, caspase-independent, regulation of myogenic differentiation, and define a differentiation phase that does not involve the DNA damage/repair process.
Collapse
Affiliation(s)
- Haser Hasan Sutcu
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France
- Université Pierre et Marie Curie (Sorbonne Universities, ED515), Paris, France
- Institut de Radioprotection et de Sûrété Nucléaire (IRSN), Radiobiology of Accidental Exposure Laboratory (PSE-SANTE/SERAMED/LRAcc), B.P. 17, 92262 Fontenay-aux-Roses, Cedex, France
| | - Benjamin Montagne
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France
- Institut Pasteur, Molecular Mechanisms of Pathological and Physiological Ageing, Department of Developmental and Stem Cell Biology, Paris, France
| | - Miria Ricchetti
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France.
- Institut Pasteur, Molecular Mechanisms of Pathological and Physiological Ageing, Department of Developmental and Stem Cell Biology, Paris, France.
| |
Collapse
|
12
|
Hepatic Energy Metabolism under the Local Control of the Thyroid Hormone System. Int J Mol Sci 2023; 24:ijms24054861. [PMID: 36902289 PMCID: PMC10002997 DOI: 10.3390/ijms24054861] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The energy homeostasis of the organism is orchestrated by a complex interplay of energy substrate shuttling, breakdown, storage, and distribution. Many of these processes are interconnected via the liver. Thyroid hormones (TH) are well known to provide signals for the regulation of energy homeostasis through direct gene regulation via their nuclear receptors acting as transcription factors. In this comprehensive review, we summarize the effects of nutritional intervention like fasting and diets on the TH system. In parallel, we detail direct effects of TH in liver metabolic pathways with regards to glucose, lipid, and cholesterol metabolism. This overview on hepatic effects of TH provides the basis for understanding the complex regulatory network and its translational potential with regards to currently discussed treatment options of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) involving TH mimetics.
Collapse
|
13
|
Simonides W, Tijsma A, Boelen A, Jongejan R, de Rijke Y, Peeters R, Dentice M, Salvatore D, Muller A. Divergent Thyroid Hormone Levels in Plasma and Left Ventricle of the Heart in Compensated and Decompensated Cardiac Hypertrophy Induced by Chronic Adrenergic Stimulation in Mice. Metabolites 2023; 13:metabo13020308. [PMID: 36837927 PMCID: PMC9960204 DOI: 10.3390/metabo13020308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Chronic hemodynamic overload of the heart induces ventricular hypertrophy that may be either compensatory or progress to decompensation and heart failure. The gradual impairment of ventricular function is, at least in part, the result of a reduction of cardiac thyroid-hormone (TH) action. Here, we examined the proposed roles of increased cardiac expression of the TH-inactivating enzyme deiodinase type 3 (D3) and reduced plasma TH levels in diminishing cardiac TH levels. Using minipumps, mice were infused for one and two weeks with isoproterenol (ISO) alone or in combination with phenylephrine (PE). Remodeling of the heart induced by these adrenergic agonists was assessed by echocardiography. Left ventricular (LV) tissue and plasma TH levels (T4 and T3) were determined using liquid chromatography-tandem mass spectrometry. LV D3 activity was determined by conversion of radiolabeled substrate and quantification following HPLC. The results show that ISO induced compensated LV hypertrophy with maintained cardiac output. Plasma levels of T4 and T3 remained normal, but LV hormone levels were reduced by approximately 30% after two weeks, while LV D3 activity was not significantly increased. ISO + PE induced decompensated LV hypertrophy with diminished cardiac output. Plasma levels of T4 and T3 were substantially reduced after one and two weeks, together with a more than 50% reduction of hormone levels in the LV. D3 activity was increased after one week and returned to control levels after two weeks. These data show for the first time that relative to controls, decompensated LV hypertrophy with diminished cardiac output is associated with a greater reduction of cardiac TH levels than compensated hypertrophy with maintained cardiac output. LV D3 activity is unlikely to account for these reductions after two weeks in either condition. Whereas the mechanism of the mild reduction in compensated hypertrophy is unclear, changes in systemic TH homeostasis appear to determine the marked drop in LV TH levels and associated impairment of ventricular function in decompensated hypertrophy.
Collapse
Affiliation(s)
- Warner Simonides
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1081 HZ Amsterdam, The Netherlands
- Correspondence: (W.S.); (A.M.)
| | - Alice Tijsma
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1081 HZ Amsterdam, The Netherlands
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rutchanna Jongejan
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA Rotterdam, The Netherlands
| | - Yolanda de Rijke
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA Rotterdam, The Netherlands
| | - Robin Peeters
- Department of Internal Medicine, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA Rotterdam, The Netherlands
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Alice Muller
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1081 HZ Amsterdam, The Netherlands
- Correspondence: (W.S.); (A.M.)
| |
Collapse
|
14
|
Hernandez A, Martinez ME, Chaves C, Anselmo J. Epigenetic developmental programming and intergenerational effects of thyroid hormones. VITAMINS AND HORMONES 2023; 122:23-49. [PMID: 36863795 PMCID: PMC10938172 DOI: 10.1016/bs.vh.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Mounting evidence is showing that altered signaling through the nuclear hormone receptor superfamily can cause abnormal, long-term epigenetic changes which translate into pathological modifications and susceptibility to disease. These effects seem to be more prominent if the exposure occurs early in life, when transcriptomic profiles are rapidly changing. At this time, the coordination of the complex coordinated processes of cell proliferation and differentiation that characterize mammalian development. Such exposures may also alter the epigenetic information of the germ line, potentially leading to developmental changes and abnormal outcomes in subsequent generations. Thyroid hormone (TH) signaling is mediated by specific nuclear receptors, which have the ability to markedly change chromatin structure and gene transcription, and can also regulate other determinants of epigenetic marks. TH exhibits pleiotropic effects in mammals, and during development, its action is regulated in a highly dynamic manner to suit the rapidly evolving needs of multiple tissues. Their molecular mechanisms of action, timely developmental regulation and broad biological effects place THs in a central position to play a role in the developmental epigenetic programming of adult pathophysiology and, through effects on the germ line, in inter- and trans-generational epigenetic phenomena. These areas of epigenetic research are in their infancy, and studies regarding THs are limited. In the context of their characteristics as epigenetic modifiers and their finely tuned developmental action, here we review some of the observations underscoring the role that altered TH action may play in the developmental programming of adult traits and in the phenotypes of subsequent generations via germ line transmission of altered epigenetic information. Considering the relatively high prevalence of thyroid disease and the ability of some environmental chemicals to disrupt TH action, the epigenetic effects of abnormal levels of TH action may be important contributors to the non-genetic etiology of human disease.
Collapse
Affiliation(s)
- Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States; Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States; Department of Medicine, Tufts University School of Medicine, Boston, MA, United States.
| | - M Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Carolina Chaves
- Serviço de Endocrinologia e Nutrição, Hospital Divino Espírito Santo, Ponta Delgada, Açores, Portugal
| | - Joao Anselmo
- Serviço de Endocrinologia e Nutrição, Hospital Divino Espírito Santo, Ponta Delgada, Açores, Portugal
| |
Collapse
|
15
|
Murolo M, Di Vincenzo O, Cicatiello AG, Scalfi L, Dentice M. Cardiovascular and Neuronal Consequences of Thyroid Hormones Alterations in the Ischemic Stroke. Metabolites 2022; 13:metabo13010022. [PMID: 36676947 PMCID: PMC9863748 DOI: 10.3390/metabo13010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Ischemic stroke is one of the leading global causes of neurological morbidity and decease. Its etiology depends on multiple events such as cardiac embolism, brain capillaries occlusion and atherosclerosis, which ultimately culminate in blood flow interruption, incurring hypoxia and nutrient deprivation. Thyroid hormones (THs) are pleiotropic modulators of several metabolic pathways, and critically influence different aspects of tissues development. The brain is a key TH target tissue and both hypo- and hyperthyroidism, during embryonic and adult life, are associated with deranged neuronal formation and cognitive functions. Accordingly, increasing pieces of evidence are drawing attention on the consistent relationship between the THs status and the acute cerebral and cardiac diseases. However, the concrete contribution of THs systemic or local alteration to the pathology outcome still needs to be fully addressed. In this review, we aim to summarize the multiple influences that THs exert on the brain and heart patho-physiology, to deepen the reasons for the harmful effects of hypo- and hyperthyroidism on these organs and to provide insights on the intricate relationship between the THs variations and the pathological alterations that take place after the ischemic injury.
Collapse
Affiliation(s)
- Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
- Correspondence:
| | - Olivia Di Vincenzo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy
| | | | - Luca Scalfi
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80131 Naples, Italy
| |
Collapse
|
16
|
Gui T, Burgering BMT. FOXOs: masters of the equilibrium. FEBS J 2022; 289:7918-7939. [PMID: 34610198 PMCID: PMC10078705 DOI: 10.1111/febs.16221] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023]
Abstract
Forkhead box O (FOXO) transcription factors (TFs) are a subclass of the larger family of forkhead TFs. Mammalians express four members FOXO1, FOXO3, FOXO4, and FOXO6. The interest in FOXO function stems mostly from their observed role in determining lifespan, where in model organisms, increased FOXO activity results in extended lifespan. FOXOs act as downstream of several signaling pathway and are extensively regulated through post-translational modifications. The transcriptional program activated by FOXOs in various cell types, organisms, and under various conditions has been described and has shed some light on what the critical transcriptional targets are in mediating FOXO function. At the cellular level, these studies have revealed a role for FOXOs in cell metabolism, cellular redox, cell proliferation, DNA repair, autophagy, and many more. The general picture that emerges hereof is that FOXOs act to preserve equilibrium, and they are important for cellular homeostasis. Here, we will first briefly summarize the general knowledge of FOXO regulation and possible functions. We will use genomic stability to illustrate how FOXOs ensure homeostasis. Genomic stability is critical for maintaining genetic integrity, and therefore preventing disease. However, genomic mutations need to occur during lifetime to enable evolution, yet their accumulation is believed to be causative to aging. Therefore, the role of FOXO in genomic stability may underlie its role in lifespan and aging. Finally, we will come up with questions on some of the unknowns in FOXO function, the answer(s) to which we believe will further our understanding of FOXO function and ultimately may help to understand lifespan and its consequences.
Collapse
Affiliation(s)
- Tianshu Gui
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| |
Collapse
|
17
|
Wesolowski LT, Semanchik PL, White-Springer SH. Beyond antioxidants: Selenium and skeletal muscle mitochondria. Front Vet Sci 2022; 9:1011159. [PMID: 36532343 PMCID: PMC9751202 DOI: 10.3389/fvets.2022.1011159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/11/2022] [Indexed: 07/22/2023] Open
Abstract
The element, Selenium (Se), has an essential nutritive and biological role as a trace mineral known primarily for its vital antioxidant functions as a constituent of the selenoenzyme, glutathione peroxidase. However, Se also has a much more global biological impact beyond antioxidant function. The objective of this review is to present an overview of prior research on the extra-antioxidant effects of Se with a key focus on skeletal muscle mitochondrial energetics. Cognizance of these additional functions of Se is requisite when formulating and recommending dietary supplementation of Se in humans or animals. Chief amongst its myriad of biological contributions, Se influences mitochondrial capacity and function and, subsequently, muscular health. Dietary Se supplementation has been shown to increase skeletal muscle mitochondrial volume density and within some cell lines, Se treatment increases mitochondrial biogenesis and respiratory capacity. In addition, the selenoproteins H, N, W, and O and deiodinases exhibit varying effects on mitochondrial and/or skeletal muscle function. Selenoprotein H enhances mitochondrial biogenesis whereas selenoproteins N and W appear to influence muscle calcium homeostasis which impacts mitochondrial function. Moreover, selenoprotein O's intramitochondrial residence facilitates Se's redox function. Deiodinases regulate thyroid hormone activation which impacts muscle cell regeneration, metabolism, and reactive oxygen species production. Although the precise relationships between dietary Se and skeletal muscle mitochondria remain unclear, previous research constitutes a firm foundation that portends promising new discoveries by future investigations.
Collapse
|
18
|
Ogawa-Wong A, Carmody C, Le K, Marschner RA, Larsen PR, Zavacki AM, Wajner SM. Modulation of Deiodinase Types 2 and 3 during Skeletal Muscle Regeneration. Metabolites 2022; 12:metabo12070612. [PMID: 35888735 PMCID: PMC9323706 DOI: 10.3390/metabo12070612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The muscle stem-cell niche comprises numerous cell types, which coordinate the regeneration process after injury. Thyroid hormones are one of the main factors that regulate genes linked to skeletal muscle. In this way, deiodinase types 2 and 3 are responsible for the fine-tuning regulation of the local T3 amount. Although their expression and activity have already been identified during muscle regeneration, it is of utmost importance to identify the cell type and temporal pattern of expression after injury to thoroughly comprehend their therapeutic potential. Here, we confirmed the expression of Dio2 and Dio3 in the whole tibialis anterior muscle. We identified, on a single-cell basis, that Dio2 is present in paired box 7 (PAX7)-positive cells starting from day 5 after injury. Dio2 is present in platelet derived growth factor subunit A (PDGFA)-expressing fibro-adipogenic progenitor cells between days 7 and 14 after injury. Dio3 is detected in myogenic differentiation (MYOD)-positive stem cells and in macrophages immediately post injury and thereafter. Interestingly, Dio2 and Dio3 RNA do not appear to be present in the same type of cell throughout the process. These results provide further insight into previously unseen aspects of the crosstalk and synchronized regulation of T3 in injured muscle mediated by deiodinases. The set of findings described here further define the role of deiodinases in muscle repair, shedding light on potential new forms of treatment for sarcopenia and other muscular diseases.
Collapse
Affiliation(s)
- Ashley Ogawa-Wong
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Colleen Carmody
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Katherine Le
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Rafael Aguiar Marschner
- Endocrine Division, Department of Internal Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 9000335, Brazil;
| | - P. Reed Larsen
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Ann Marie Zavacki
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Simone Magagnin Wajner
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
- Endocrine Division, Department of Internal Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 9000335, Brazil;
- Correspondence:
| |
Collapse
|
19
|
de Oliveira TS, Shimabukuro MK, Monteiro VRS, Andrade CBV, Boelen A, Wajner SM, Maia AL, Ortiga-Carvalho TM, Bloise FF. Low Inflammatory Stimulus Increases D2 Activity and Modulates Thyroid Hormone Metabolism during Myogenesis In Vitro. Metabolites 2022; 12:metabo12050416. [PMID: 35629920 PMCID: PMC9144220 DOI: 10.3390/metabo12050416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Thyroid hormone (TH) signaling controls muscle progenitor cells differentiation. However, inflammation can alter muscle TH signaling by modulating the expression of TH transporters (Slc16a2), receptors (Thra1), and deiodinase enzymes (Dio2 and Dio3). Thus, a proinflammatory environment could affect myogenesis. The role of a low-grade inflammatory milieu in TH signaling during myogenesis needs further investigation. Herein, we aimed to study the impact of the bacterial lipopolysaccharide (LPS)-induced inflammatory stimulus on the TH signaling during myogenesis. C2C12 myoblasts differentiation was induced without (CTR) or with 10 ng/mL LPS presence. The myoblasts under LPS stimulus release the proinflammatory cytokines (IL-6 and IL-1β) and chemokines (CCL2 and CXCL-1). LPS decreases Myod1 expression by 28% during the initial myogenesis, thus reducing the myogenic stimulus. At the same time, LPS reduced the expression of Dio2 by 41% but doubled the D2 enzymatic activity. The late differentiation was not affected by inflammatory milieu, which only increased the Slc16a2 gene expression by 38%. LPS altered the intracellular metabolism of TH and reduced the initial myogenic stimulus. However, it did not affect late differentiation. Increased intracellular TH activation may be the compensatory pathway involved in the recovery of myogenic differentiation under a low-grade inflammatory milieu.
Collapse
Affiliation(s)
- Thamires Siqueira de Oliveira
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.S.d.O.); (M.K.S.); (V.R.S.M.); (C.B.V.A.); (T.M.O.-C.)
| | - Marilia Kimie Shimabukuro
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.S.d.O.); (M.K.S.); (V.R.S.M.); (C.B.V.A.); (T.M.O.-C.)
| | - Victoria Regina Siqueira Monteiro
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.S.d.O.); (M.K.S.); (V.R.S.M.); (C.B.V.A.); (T.M.O.-C.)
| | - Cherley Borba Vieira Andrade
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.S.d.O.); (M.K.S.); (V.R.S.M.); (C.B.V.A.); (T.M.O.-C.)
- Department of Histology and Embryology, Roberto Alcantara Gomes Institute of Biology, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands;
| | - Simone Magagnin Wajner
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Brazil; (S.M.W.); (A.L.M.)
| | - Ana Luiza Maia
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Brazil; (S.M.W.); (A.L.M.)
| | - Tania Maria Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.S.d.O.); (M.K.S.); (V.R.S.M.); (C.B.V.A.); (T.M.O.-C.)
| | - Flavia Fonseca Bloise
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.S.d.O.); (M.K.S.); (V.R.S.M.); (C.B.V.A.); (T.M.O.-C.)
- Correspondence:
| |
Collapse
|
20
|
Fonseca TL, Russo SC, Luongo C, Salvatore D, Bianco AC. Inactivation of Type 3 Deiodinase Results in Life-long Changes in the Brown Adipose Tissue Transcriptome in the Male Mouse. Endocrinology 2022; 163:bqac026. [PMID: 35238380 PMCID: PMC8988869 DOI: 10.1210/endocr/bqac026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 11/19/2022]
Abstract
Adaptive thermogenesis in small mammals and infants takes place in brown adipose tissue (BAT). Heat is produced via uncoupling protein 1 (UCP1)-mediated uncoupling between oxidation of energy substrates and adenosine 5'-triphosphate synthesis. Thyroid hormone (TH) signaling plays a role in this process. The deiodinases activate thyroxine (T4) to 3,5,3'-triiodothyronine (T3) (D2) or inactivate T4 and T3 to 3,3,5'-triiodothyronine and T2 (D3), respectively. Using a mouse model with selective inactivation of Dio3 in BAT (flox-Dio3 × UCP1-cre = BAT-D3KO), we now show that knocking out D3 resulted in premature exposure of developing brown adipocytes (embryonic days 16.5-18.5) to T3 signaling, leading to an earlier expression of key BAT genes, including Cidea, Cox8b, Dio2, Ucp1, and Pgc1α. Adult BAT-D3KO mice exhibited increased expression of 1591 genes as assessed by RNA sequencing, including 19 gene sets related to mitochondria, 8 related to fat, and 8 related to glucose homeostasis. The expression of 243 genes was changed by more than 1.5-fold, 36 of which play a role in metabolic/thermogenic processes. BAT-D3KO mice weigh less and exhibit smaller white adipocyte area, but maintain normal energy expenditure at room temperature (22 °C) and in the cold (4 °C). They also defend their core temperature more effectively and do not lose as much body weight when exposed to cold. We conclude that the coordinated actions of Dio3 in the embryonic BAT define the timing and intensity of T3 signaling during brown adipogenesis. Enhanced T3 signaling during BAT embryogenesis (Dio3 inactivation) results in selective life-long modifications in the BAT transcriptome.
Collapse
Affiliation(s)
- Tatiana L Fonseca
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637, USA
| | - Samuel C Russo
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637, USA
| | - Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples 80131, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
21
|
Thyroid Hormone Receptor Isoforms Alpha and Beta Play Convergent Roles in Muscle Physiology and Metabolic Regulation. Metabolites 2022; 12:metabo12050405. [PMID: 35629909 PMCID: PMC9145723 DOI: 10.3390/metabo12050405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
Skeletal muscle is a key energy-regulating organ, skilled in rapidly boosting the rate of energy production and substrate consumption following increased workload demand. The alteration of skeletal muscle metabolism is directly associated with numerous pathologies and disorders. Thyroid hormones (THs) and their receptors (TRs, namely, TRα and TRβ) exert pleiotropic functions in almost all cells and tissues. Skeletal muscle is a major THs-target tissue and alterations of THs levels have multiple influences on the latter. However, the biological role of THs and TRs in orchestrating metabolic pathways in skeletal muscle has only recently started to be addressed. The purpose of this paper is to investigate the muscle metabolic response to TRs abrogation, by using two different mouse models of global TRα- and TRβKO. In line with the clinical features of resistance to THs syndromes in humans, characterized by THRs gene mutations, both animal models of TRs deficiency exhibit developmental delay and mitochondrial dysfunctions. Moreover, using transcriptomic and metabolomic approaches, we found that the TRs–THs complex regulates the Fatty Acids (FAs)-binding protein GOT2, affecting FAs oxidation and transport in skeletal muscle. In conclusion, these results underline a new metabolic role of THs in governing muscle lipids distribution and metabolism.
Collapse
|
22
|
Deng C, Zhang Z, Xu F, Xu J, Ren Z, Godoy-Parejo C, Xiao X, Liu W, Zhou Z, Chen G. Thyroid hormone enhances stem cell maintenance and promotes lineage-specific differentiation in human embryonic stem cells. Stem Cell Res Ther 2022; 13:120. [PMID: 35313973 PMCID: PMC8935725 DOI: 10.1186/s13287-022-02799-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/13/2022] [Indexed: 11/11/2022] Open
Abstract
Background Thyroid hormone triiodothyronine (T3) is essential for embryogenesis and is commonly used during in vitro fertilization to ensure successful implantation. However, the regulatory mechanisms of T3 during early embryogenesis are largely unknown.
Method To study the impact of T3 on hPSCs, cell survival and growth were evaluated by measurement of cell growth curve, cloning efficiency, survival after passaging, cell apoptosis, and cell cycle status. Pluripotency was evaluated by RT-qPCR, immunostaining and FACS analysis of pluripotency markers. Metabolic status was analyzed using LC–MS/MS and Seahorse XF Cell Mito Stress Test. Global gene expression was analyzed using RNA-seq. To study the impact of T3 on lineage-specific differentiation, cells were subjected to T3 treatment during differentiation, and the outcome was evaluated using RT-qPCR, immunostaining and FACS analysis of lineage-specific markers. Results In this report, we use human pluripotent stem cells (hPSCs) to show that T3 is beneficial for stem cell maintenance and promotes trophoblast differentiation. T3 enhances culture consistency by improving cell survival and passaging efficiency. It also modulates cellular metabolism and promotes energy production through oxidative phosphorylation. T3 helps maintain pluripotency by promoting ERK and SMAD2 signaling and reduces FGF2 dependence in chemically defined culture. Under BMP4 induction, T3 significantly enhances trophoblast differentiation. Conclusion In summary, our study reveals the impact of T3 on stem cell culture through signal transduction and metabolism and highlights its potential role in improving stem cell applications. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02799-y.
Collapse
Affiliation(s)
- Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhaoying Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Faxiang Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jiaqi Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhili Ren
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xia Xiao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
23
|
Cicatiello AG, Sagliocchi S, Nappi A, Di Cicco E, Miro C, Murolo M, Stornaiuolo M, Dentice M. Thyroid hormone regulates glutamine metabolism and anaplerotic fluxes by inducing mitochondrial glutamate aminotransferase GPT2. Cell Rep 2022; 38:110409. [PMID: 35196498 PMCID: PMC8889437 DOI: 10.1016/j.celrep.2022.110409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/29/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Thyroid hormones (THs) are key metabolic regulators coordinating short- and long-term energy needs. In skeletal muscle, THs modulate energy metabolism in pathophysiological conditions. Indeed, hypo- and hyperthyroidism are leading causes of muscle weakness and strength; however, the metabolic pathways underlying these effects are still poorly understood. Using molecular, biochemical, and isotope-tracing approaches combined with mass spectrometry and denervation experiments, we find that THs regulate glutamine metabolism and anaplerotic fluxes by up-regulating the glutamate pyruvate transaminase 2 (GPT2) gene. In humans, GPT2 autosomal recessive mutations cause a neurological syndrome characterized by intellectual disability, microcephaly, and progressive motor symptoms. Here, we demonstrate a role of the TH/GPT2 axis in skeletal muscle in which it regulates muscle weight and fiber diameter in resting and atrophic conditions and results in protection from muscle loss during atrophy. These results describe an anabolic route by which THs rewire glutamine metabolism toward the maintenance of muscle mass. THs induce the expression of the mitochondrial GPT2 gene in skeletal muscle The GPT2 up-regulation by THs enhances anaplerotic cycles and α-KG production GPT2 is reduced during muscle atrophy and is reactivated by THs treatment GPT2 KO+/– mice undergo muscle loss that is partially attenuated by THs
Collapse
Affiliation(s)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, NA 80138 Italy
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, NA 80138 Italy
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, NA 80138 Italy
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, NA 80138 Italy
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, NA 80138 Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples "Federico II", Naples, NA 80138 Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, NA 80138 Italy; CEINGE-Biotecnologie Avanzate Scarl, Naples, NA 80131, Italy.
| |
Collapse
|
24
|
Setoyama D, Lee HY, Moon JS, Tian J, Kang YE, Lee JH, Shong M, Kang D, Yi H. Immunometabolic signatures predict recovery from thyrotoxic myopathy in patients with Graves' disease. J Cachexia Sarcopenia Muscle 2022; 13:355-367. [PMID: 34970859 PMCID: PMC8818593 DOI: 10.1002/jcsm.12889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/14/2021] [Accepted: 11/22/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Thyroid hormone excess induces protein energy wasting, which in turn promotes muscle weakness and bone loss in patients with Graves' disease. Although most studies have confirmed a relationship between thyrotoxicosis and muscle dysfunction, few have measured changes in plasma metabolites and immune cells during the development and recovery from thyrotoxic myopathy. The aim of this study was to identify specific plasma metabolites and T-cell subsets that predict thyrotoxic myopathy recovery in patients with Graves' disease. METHODS One hundred patients (mean age, 40.0 ± 14.2 years; 67.0% female), with newly diagnosed or relapsed Graves' disease were enrolled at the start of methimazole treatment. Handgrip strength and Five Times Sit to Stand Test performance time were measured at Weeks 0, 12, and 24. In an additional 35 patients (mean age, 38.9 ± 13.5 years; 65.7% female), plasma metabolites and immunophenotypes of peripheral blood were evaluated at Weeks 0 and 12, and the results of a short physical performance battery assessment were recorded at the same time. RESULTS In both patient groups, methimazole-induced euthyroidism was associated with improved handgrip strength and lower limb muscle function at 12 weeks. Elevated plasma metabolites including acylcarnitines were restored to normal levels at Week 12 regardless of gender, body mass index, or age (P trend <0.01). Senescent CD8+ CD28- CD57+ T-cell levels in peripheral blood were positively correlated with acylcarnitine levels (P < 0.05) and decreased during thyrotoxicosis recovery (P < 0.05). High levels of senescent CD8+ T cells at Week 0 were significantly associated with small increases in handgrip strength after 12 weeks of methimazole treatment (P < 0.05), but not statistically associated with Five Times Sit to Stand Test performance. CONCLUSIONS Restoring euthyroidism in Graves' disease patients was associated with improved skeletal muscle function and performance, while thyroid hormone-associated changes in plasma acylcarnitines levels correlated with muscle dysfunction recovery. T-cell senescence-related systemic inflammation correlated with plasma acylcarnitine levels and was also associated with small increases in handgrip strength.
Collapse
Affiliation(s)
- Daiki Setoyama
- Department of Clinical Chemistry and Laboratory MedicineKyushu University HospitalFukuokaJapan
| | - Ho Yeop Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonKorea
| | - Ji Sun Moon
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
| | - Jingwen Tian
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonKorea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonKorea
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory MedicineKyushu University HospitalFukuokaJapan
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Hyon‐Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University HospitalChungnam National University School of MedicineDaejeonKorea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonKorea
| |
Collapse
|
25
|
Wang K, Zhang D, Cao G, Wang C, Wang L, Zhao R, He Q, Hou X, Gong L, Chen L. A Low Free T3 to Free T4 Ratio Is Associated with Sarcopenia in Euthyroid Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2022; 2022:2305156. [PMID: 36034587 PMCID: PMC9402295 DOI: 10.1155/2022/2305156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This research evaluated the link between normal thyroid hormone levels and sarcopenia in patients with type 2 diabetes mellitus (T2DM). METHODS This cross-sectional study enrolled 312 euthyroid patients with T2DM from Qilu Hospital of the Shandong University, China. Body composition, grip strength, and physical performance were assessed as per the 2019 consensus guidelines of the Asian Working Group for Sarcopenia. Binary logistic regression was used to examine the correlation between thyroid hormone levels and sarcopenia and its components. RESULTS The prevalence of sarcopenia was 26.9%. Following adjustments for potential confounders, a high-normal serum free triiodothyronine (FT3) level (odds ratio (OR) = 0.522, 95% confidence interval (CI): 0.304-0.895, P = 0.018), a low-normal serum free thyroxine (FT4) level (OR = 1.126, 95% CI: 1.009-1.258, P = 0.034), and a heightened FT3/FT4 ratio (OR = 0.923, 95% CI: 0.879-0.969, P = 0.001) were linked to a low prevalence of sarcopenia. Considering the components of sarcopenia, FT3 concentration was positively associated with muscle strength (OR = 0.525, 95% CI: 0.305-0.902, P = 0.020) and physical performance (OR = 0.443, 95% CI: 0.259-0.758, P = 0.003), while FT4 concentration was negatively linked to muscle mass (OR = 1.114, 95% CI: 1.009-1.232, P = 0.036). The FT3/FT4 ratio was positively linked to muscle mass (OR = 0.943, 95% CI: 0.905-0.981, P = 0.006), muscle strength (OR = 0.945, 95% CI: 0.901-0.992, P = 0.021), and physical performance (OR = 0.934, 95% CI: 0.894-0.975, P = 0.002). Nevertheless, thyroid-stimulating hormone concentration was not associated with sarcopenia. CONCLUSION A high FT3/FT4 ratio was significantly linked to a lowered risk of sarcopenia in euthyroid patients with T2DM.
Collapse
Affiliation(s)
- Kewei Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan 250012, China
| | - Di Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan 250012, China
| | - Guanglei Cao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan 250012, China
| | - Chuan Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan 250012, China
| | - Lingshu Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan 250012, China
| | - Ruxing Zhao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan 250012, China
| | - Qin He
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan 250012, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan 250012, China
| | - Lei Gong
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan 250012, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan 250012, China
| |
Collapse
|
26
|
Girgis J, Yang D, Chakroun I, Liu Y, Blais A. Six1 promotes skeletal muscle thyroid hormone response through regulation of the MCT10 transporter. Skelet Muscle 2021; 11:26. [PMID: 34809717 PMCID: PMC8607597 DOI: 10.1186/s13395-021-00281-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Six1 transcription factor is implicated in controlling the development of several tissue types, notably skeletal muscle. Six1 also contributes to muscle metabolism and its activity is associated with the fast-twitch, glycolytic phenotype. Six1 regulates the expression of certain genes of the fast muscle program by directly stimulating their transcription or indirectly acting through a long non-coding RNA. We hypothesized that additional mechanisms of action of Six1 might be at play. METHODS A combined analysis of gene expression profiling and genome-wide location analysis data was performed. Results were validated using in vivo RNA interference loss-of-function assays followed by measurement of gene expression by RT-PCR and transcriptional reporter assays. RESULTS The Slc16a10 gene, encoding the thyroid hormone transmembrane transporter MCT10, was identified as a gene with a transcriptional enhancer directly bound by Six1 and requiring Six1 activity for full expression in adult mouse tibialis anterior, a predominantly fast-twitch muscle. Of the various thyroid hormone transporters, MCT10 mRNA was found to be the most abundant in skeletal muscle, and to have a stronger expression in fast-twitch compared to slow-twitch muscle groups. Loss-of-function of MCT10 in the tibialis anterior recapitulated the effect of Six1 on the expression of fast-twitch muscle genes and led to lower activity of a thyroid hormone receptor-dependent reporter gene. CONCLUSIONS These results shed light on the molecular mechanisms controlling the tissue expression profile of MCT10 and identify modulation of the thyroid hormone signaling pathway as an additional mechanism by which Six1 influences skeletal muscle metabolism.
Collapse
Affiliation(s)
- John Girgis
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dabo Yang
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Imane Chakroun
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Yubing Liu
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Alexandre Blais
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada. .,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada. .,University of Ottawa Centre for Inflammation, Immunity and Infection (CI3), Ottawa, Ontario, Canada.
| |
Collapse
|
27
|
De Stefano MA, Ambrosio R, Porcelli T, Orlandino G, Salvatore D, Luongo C. Thyroid Hormone Action in Muscle Atrophy. Metabolites 2021; 11:metabo11110730. [PMID: 34822388 PMCID: PMC8625289 DOI: 10.3390/metabo11110730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle atrophy is a condition associated with various physiological and pathophysiological conditions, such as denervation, cachexia, and fasting. It is characterized by an altered protein turnover in which the rate of protein degradation exceeds the rate of protein synthesis, leading to substantial muscle mass loss and weakness. Muscle protein breakdown reflects the activation of multiple proteolytic mechanisms, including lysosomal degradation, apoptosis, and ubiquitin-proteasome. Thyroid hormone (TH) plays a key role in these conditions. Indeed, skeletal muscle is among the principal TH target tissue, where TH regulates proliferation, metabolism, differentiation, homeostasis, and growth. In physiological conditions, TH stimulates both protein synthesis and degradation, and an alteration in TH levels is often responsible for a specific myopathy. Intracellular TH concentrations are modulated in skeletal muscle by a family of enzymes named deiodinases; in particular, in muscle, deiodinases type 2 (D2) and type 3 (D3) are both present. D2 activates the prohormone T4 into the active form triiodothyronine (T3), whereas D3 inactivates both T4 and T3 by the removal of an inner ring iodine. Here we will review the present knowledge of TH action in skeletal muscle atrophy, in particular, on the molecular mechanisms presiding over the control of intracellular T3 concentration in wasting muscle conditions. Finally, we will discuss the possibility of exploiting the modulation of deiodinases as a possible therapeutic approach to treat muscle atrophy.
Collapse
Affiliation(s)
- Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Raffaele Ambrosio
- Istituti di Ricovero e Cura a Carattere Scientifico, SDN, 80143 Naples, Italy;
| | - Tommaso Porcelli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy;
| | | | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence: (D.S.); (C.L.)
| | - Cristina Luongo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence: (D.S.); (C.L.)
| |
Collapse
|
28
|
Agarwal S, Koh KH, Tardi NJ, Chen C, Dande RR, WerneckdeCastro JP, Sudhini YR, Luongo C, Salvatore D, Samelko B, Altintas MM, Mangos S, Bianco A, Reiser J. Deiodinase-3 is a thyrostat to regulate podocyte homeostasis. EBioMedicine 2021; 72:103617. [PMID: 34649077 PMCID: PMC8517284 DOI: 10.1016/j.ebiom.2021.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Nephrotic syndrome (NS) is associated with kidney podocyte injury and may occur as part of thyroid autoimmunity such as Graves' disease. Therefore, the present study was designed to ascertain if and how podocytes respond to and regulate the input of biologically active thyroid hormone (TH), 3,5,3'-triiodothyronine (T3); and also to decipher the pathophysiological role of type 3 deiodinase (D3), a membrane-bound selenoenzyme that inactivates TH, in kidney disease. METHODS To study D3 function in healthy and injured (PAN, puromycin aminonucleoside and LPS, Lipopolysaccharide-mediated) podocytes, immunofluorescence, qPCR and podocyte-specific D3 knockout mouse were used. Surface plasmon resonance (SPR), co-immunoprecipitation and Proximity Ligation Assay (PLA) were used for the interaction studies. FINDINGS Healthy podocytes expressed D3 as the predominant deiodinase isoform. Upon podocyte injury, levels of Dio3 transcript and D3 protein were dramatically reduced both in vitro and in the LPS mouse model of podocyte damage. D3 was no longer directed to the cell membrane, it accumulated in the Golgi and nucleus instead. Further, depleting D3 from the mouse podocytes resulted in foot process effacement and proteinuria. Treatment of mouse podocytes with T3 phenocopied the absence of D3 and elicited activation of αvβ3 integrin signaling, which led to podocyte injury. We also confirmed presence of an active thyroid stimulating hormone receptor (TSH-R) on mouse podocytes, engagement and activation of which resulted in podocyte injury. INTERPRETATION The study provided a mechanistic insight into how D3-αvβ3 integrin interaction can minimize T3-dependent integrin activation, illustrating how D3 could act as a renoprotective thyrostat in podocytes. Further, injury caused by binding of TSH-R with TSH-R antibody, as found in patients with Graves' disease, explained a plausible link between thyroid disorder and NS. FUNDING This work was supported by American Thyroid Association (ATA-2018-050.R1).
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Internal Medicine, Rush University, Chicago, IL 60612
| | - Kwi Hye Koh
- Department of Internal Medicine, Rush University, Chicago, IL 60612
| | - Nicholas J Tardi
- Department of Internal Medicine, Rush University, Chicago, IL 60612
| | - Chuang Chen
- Department of Internal Medicine, Rush University, Chicago, IL 60612
| | | | | | | | - Cristina Luongo
- Department of Public Health, University of Naples "Federico II," Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples "Federico II," Naples, Italy
| | - Beata Samelko
- Department of Internal Medicine, Rush University, Chicago, IL 60612
| | | | - Steve Mangos
- Department of Internal Medicine, Rush University, Chicago, IL 60612
| | - Antonio Bianco
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jochen Reiser
- Department of Internal Medicine, Rush University, Chicago, IL 60612.
| |
Collapse
|
29
|
Major E, Keller I, Horváth D, Tamás I, Erdődi F, Lontay B. Smoothelin-Like Protein 1 Regulates the Thyroid Hormone-Induced Homeostasis and Remodeling of C2C12 Cells via the Modulation of Myosin Phosphatase. Int J Mol Sci 2021; 22:10293. [PMID: 34638630 PMCID: PMC8508602 DOI: 10.3390/ijms221910293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
The pathological elevation of the active thyroid hormone (T3) level results in the manifestation of hyperthyroidism, which is associated with alterations in the differentiation and contractile function of skeletal muscle (SKM). Myosin phosphatase (MP) is a major cellular regulator that hydrolyzes the phosphoserine of phosphorylated myosin II light chain. MP consists of an MYPT1/2 regulatory and a protein phosphatase 1 catalytic subunit. Smoothelin-like protein 1 (SMTNL1) is known to inhibit MP by directly binding to MP as well as by suppressing the expression of MYPT1 at the transcriptional level. Supraphysiological vs. physiological concentration of T3 were applied on C2C12 myoblasts and differentiated myotubes in combination with the overexpression of SMTNL1 to assess the role and regulation of MP under these conditions. In non-differentiated myoblasts, MP included MYPT1 in the holoenzyme complex and its expression and activity was regulated by SMTNL1, affecting the phosphorylation level of MLC20 assessed using semi-quantitative Western blot analysis. SMTNL1 negatively influenced the migration and cytoskeletal remodeling of myoblasts measured by high content screening. In contrast, in myotubes, the expression of MYPT2 but not MYPT1 increased in a T3-dependent and SMTNL1-independent manner. T3 treatment combined with SMTNL1 overexpression impeded the activity of MP. In addition, MP interacted with Na+/K+-ATPase and dephosphorylated its inhibitory phosphorylation sites, identifying this protein as a novel MP substrate. These findings may help us gain a better understanding of myopathy, muscle weakness and the disorder of muscle regeneration in hyperthyroid patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (E.M.); (I.K.); (D.H.); (I.T.); (F.E.)
| |
Collapse
|
30
|
Hernandez A, Martinez ME, Ng L, Forrest D. Thyroid Hormone Deiodinases: Dynamic Switches in Developmental Transitions. Endocrinology 2021; 162:bqab091. [PMID: 33963379 PMCID: PMC8248586 DOI: 10.1210/endocr/bqab091] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/15/2022]
Abstract
Thyroid hormones exert pleiotropic, essential actions in mammalian, including human, development. These actions depend on provision of thyroid hormones in the circulation but also to a remarkable extent on deiodinase enzymes in target tissues that amplify or deplete the local concentration of the primary active form of the hormone T3 (3,5,3'-triiodothyronine), the high affinity ligand for thyroid hormone receptors. Genetic analyses in mice have revealed key roles for activating (DIO2) and inactivating (DIO3) deiodinases in cell differentiation fates and tissue maturation, ultimately promoting neonatal viability, growth, fertility, brain development, and behavior, as well as metabolic, endocrine, and sensory functions. An emerging paradigm is how the opposing activities of DIO2 and DIO3 are coordinated, providing a dynamic switch that controls the developmental timing of a tissue response, often during neonatal and maturational transitions. A second paradigm is how cell to cell communication within a tissue determines the response to T3. Deiodinases in specific cell types, often strategically located near to blood vessels that convey thyroid hormones into the tissue, can regulate neighboring cell types, suggesting a paracrine-like layer of control of T3 action. We discuss deiodinases as switches for developmental transitions and their potential to influence tissue dysfunction in human thyroid disorders.
Collapse
Affiliation(s)
- Arturo Hernandez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, USA
| | - M Elena Martinez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
| | - Lily Ng
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Douglas Forrest
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
31
|
Mancino G, Miro C, Di Cicco E, Dentice M. Thyroid hormone action in epidermal development and homeostasis and its implications in the pathophysiology of the skin. J Endocrinol Invest 2021; 44:1571-1579. [PMID: 33683663 PMCID: PMC8285348 DOI: 10.1007/s40618-020-01492-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormones (THs) are key endocrine regulators of tissue development and homeostasis. They are constantly released into the bloodstream and help to regulate many cell functions. The principal products released by the follicular epithelial cells are T3 and T4. T4, which is the less active form of TH, is produced in greater amounts than T3, which is the most active form of TH. This mechanism highlights the importance of the peripheral regulation of TH levels that goes beyond the central axis. Skin, muscle, liver, bone and heart are finely regulated by TH. In particular, skin is among the target organs most influenced by TH, which is essential for skin homeostasis. Accordingly, skin diseases are associated with an altered thyroid status. Alopecia, dermatitis and vitiligo are associated with thyroiditis and alopecia and eczema are frequently correlated with the Graves' disease. However, only in recent decades have studies started to clarify the molecular mechanisms underlying the effects of TH in epidermal homeostasis. Herein, we summarize the most frequent clinical epidermal alterations linked to thyroid diseases and review the principal mechanisms involved in TH control of keratinocyte proliferation and functional differentiation. Our aim is to define the open questions in this field that are beginning to be elucidated thanks to the advent of mouse models of altered TH metabolism and to obtain novel insights into the physiopathological consequences of TH metabolism on the skin.
Collapse
Affiliation(s)
- G Mancino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - C Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - E Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - M Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy.
| |
Collapse
|
32
|
Abstract
Deiodinases modify the biological activity of thyroid hormone (TH) molecules, ie, they may activate thyroxine (T4) to 3,5,3'-triiodothyronine (T3), or they may inactivate T3 to 3,3'-diiodo-L-thyronine (T2) or T4 to reverse triiodothyronine (rT3). Although evidence of deiodination of T4 to T3 has been available since the 1950s, objective evidence of TH metabolism was not established until the 1970s. The modern paradigm considers that the deiodinases not only play a role in the homeostasis of circulating T3, but they also provide dynamic control of TH signaling: cells that express the activating type 2 deiodinase (D2) have enhanced TH signaling due to intracellular build-up of T3; the opposite is seen in cells that express type 3 deiodinase (D3), the inactivating deiodinase. D2 and D3 are expressed in metabolically relevant tissues such as brown adipose tissue, skeletal muscle and liver, and their roles have been investigated using cell, animal, and human models. During development, D2 and D3 expression customize for each tissue/organ the timing and intensity of TH signaling. In adult cells, D2 is induced by cyclic adenosine monophosphate (cAMP), and its expression is invariably associated with enhanced T3 signaling, expression of PGC1 and accelerated energy expenditure. In contrast, D3 expression is induced by hypoxia-inducible factor 1α (HIF-1a), dampening T3 signaling and the metabolic rate. The coordinated expression of these enzymes adjusts TH signaling in a time- and tissue-specific fashion, affecting metabolic pathways in health and disease states.
Collapse
Affiliation(s)
- Samuel C Russo
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Federico Salas-Lucia
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Antonio C Bianco
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
33
|
Nappi A, Murolo M, Sagliocchi S, Miro C, Cicatiello AG, Di Cicco E, Di Paola R, Raia M, D’Esposito L, Stornaiuolo M, Dentice M. Selective Inhibition of Genomic and Non-Genomic Effects of Thyroid Hormone Regulates Muscle Cell Differentiation and Metabolic Behavior. Int J Mol Sci 2021; 22:7175. [PMID: 34281225 PMCID: PMC8269436 DOI: 10.3390/ijms22137175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid hormones (THs) are key regulators of different biological processes. Their action involves genomic and non-genomic mechanisms, which together mediate the final effects of TH in target tissues. However, the proportion of the two processes and their contribution to the TH-mediated effects are still poorly understood. Skeletal muscle is a classical target tissue for TH, which regulates muscle strength and contraction, as well as energetic metabolism of myofibers. Here we address the different contribution of genomic and non-genomic action of TH in skeletal muscle cells by specifically silencing the deiodinase Dio2 or the β3-Integrin expression via CRISPR/Cas9 technology. We found that myoblast proliferation is inversely regulated by integrin signal and the D2-dependent TH activation. Similarly, inhibition of the nuclear receptor action reduced myoblast proliferation, confirming that genomic action of TH attenuates proliferative rates. Contrarily, genomic and non-genomic signals promote muscle differentiation and the regulation of the redox state. Taken together, our data reveal that integration of genomic and non-genomic signal pathways finely regulates skeletal muscle physiology. These findings not only contribute to the understanding of the mechanisms involved in TH modulation of muscle physiology but also add insight into the interplay between different mechanisms of action of TH in muscle cells.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (A.N.); (M.M.); (S.S.); (C.M.); (A.G.C.); (E.D.C.); (R.D.P.)
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (A.N.); (M.M.); (S.S.); (C.M.); (A.G.C.); (E.D.C.); (R.D.P.)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (A.N.); (M.M.); (S.S.); (C.M.); (A.G.C.); (E.D.C.); (R.D.P.)
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (A.N.); (M.M.); (S.S.); (C.M.); (A.G.C.); (E.D.C.); (R.D.P.)
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (A.N.); (M.M.); (S.S.); (C.M.); (A.G.C.); (E.D.C.); (R.D.P.)
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (A.N.); (M.M.); (S.S.); (C.M.); (A.G.C.); (E.D.C.); (R.D.P.)
| | - Rossella Di Paola
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (A.N.); (M.M.); (S.S.); (C.M.); (A.G.C.); (E.D.C.); (R.D.P.)
| | - Maddalena Raia
- CEINGE–Biotecnologie Avanzate Scarl, 80131 Naples, Italy;
| | - Lucia D’Esposito
- Centro Servizi Veterinari, University of Naples Federico II, 80131 Naples, Italy;
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (A.N.); (M.M.); (S.S.); (C.M.); (A.G.C.); (E.D.C.); (R.D.P.)
- CEINGE–Biotecnologie Avanzate Scarl, 80131 Naples, Italy;
| |
Collapse
|
34
|
Abstract
Hormones are key drivers of cancer development, and alteration of the intratumoral concentration of thyroid hormone (TH) is a common feature of many human neoplasias. Besides the systemic control of TH levels, the expression and activity of deiodinases constitute a major mechanism for the cell-autonomous, prereceptoral control of TH action. The action of deiodinases ensures tight control of TH availability at intracellular level in a time- and tissue-specific manner, and alterations in deiodinase expression are frequent in tumors. Research over the past decades has shown that in cancer cells, a complex and dynamic expression of deiodinases is orchestrated by a network of growth factors, oncogenic proteins, and miRNA. It has become increasingly evident that this fine regulation exposes cancer cells to a dynamic concentration of TH that is functional to stimulate or inhibit various cellular functions. This review summarizes recent advances in the identification of the complex interplay between deiodinases and cancer and how this family of enzymes is relevant in cancer progression. We also discuss whether deiodinase expression could represent a diagnostic tool with which to define tumor staging in cancer treatment or even a therapeutic tool against cancer.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples “Federico II,” Naples, Italy
- Correspondence: Domenico Salvatore, Department of Public Health, University of Naples “Federico II”, Napoli, Italy.
| |
Collapse
|
35
|
von Maltzahn J. Regulation of muscle stem cell function. VITAMINS AND HORMONES 2021; 116:295-311. [PMID: 33752822 DOI: 10.1016/bs.vh.2021.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Regeneration of skeletal muscle is a finely tuned process which is depending on muscle stem cells, a population of stem cells in skeletal muscle which is also termed satellite cells. Muscle stem cells are a prerequisite for regeneration of skeletal muscle. Of note, the muscle stem cell population is heterogeneous and subpopulations can be identified depending on gene expression or phenotypic traits. However, all muscle stem cells express the transcription factor Pax7 and their functionality is tightly controlled by intrinsic signaling pathways and extrinsic signals. The latter ones include signals form the stem cell niche as well as circulating factors such as growth factors and hormones. Among them are Wnt proteins, growth factors like IGF-1 or FGF-2 and hormones such as thyroid hormones and the anti-aging hormone Klotho. A highly orchestrated interplay between those factors and muscle stem cells is important for their full functionality and ultimately regeneration of skeletal muscle as outlined here.
Collapse
|
36
|
Zoja C, Xinaris C, Macconi D. Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Targets. Front Pharmacol 2020; 11:586892. [PMID: 33519447 PMCID: PMC7845653 DOI: 10.3389/fphar.2020.586892] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes mellitus and the leading cause of end-stage kidney disease. The standard treatments for diabetic patients are glucose and blood pressure control, lipid lowering, and renin-angiotensin system blockade; however, these therapeutic approaches can provide only partial renoprotection if started late in the course of the disease. One major limitation in developing efficient therapies for DN is the complex pathobiology of the diabetic kidney, which undergoes a set of profound structural, metabolic and functional changes. Despite these difficulties, experimental models of diabetes have revealed promising therapeutic targets by identifying pathways that modulate key functions of podocytes and glomerular endothelial cells. In this review we will describe recent advances in the field, analyze key molecular pathways that contribute to the pathogenesis of the disease, and discuss how they could be modulated to prevent or reverse DN.
Collapse
Affiliation(s)
- Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Christodoulos Xinaris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,University of Nicosia Medical School, Nicosia, Cyprus
| | - Daniela Macconi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
37
|
Chen L, Hu Y. The correlation between serum thyroid hormone levels and hand grip among elderly male Chinese inpatients. Aging Male 2020; 23:928-933. [PMID: 31268380 DOI: 10.1080/13685538.2019.1634044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Thyroid dysfunction is closely associated with skeletal muscle weakness. However, data on the optimal serum range of thyroid hormones for maintaining muscle strength in the elderly is lacking. METHODS We conducted a cross-sectional analysis in male elderly inpatients from the Geriatric Department of Zhongshan Hospital (affiliated to Fudan University, Shanghai, China). Serum biochemical parameters and thyroid hormones were detected for each participant. Hand grip (HG) was measured, with low hand grip defined as HG <26 kg according to the standard of the Asian Working Group for Sarcopenia. Logistic regression was used to evaluate the effects of different serum thyroid hormone levels on HG. RESULTS The majority of the subjects were euthyroid. The prevalence of low hand grip was 48.5%. Stratified by the free thyroxine (FT4) quartiles, the results showed HG was the highest in the third quartile. Multiple logistic regression analysis showed that compared with those in the first quartile, subjects in the third quartile of FT4 had a significantly lower risk of low hand grip (OR = 0.133, 95%CI: 0.020-0.610, p = .009), after adjusting potential confounding factors. CONCLUSION In elderly male inpatients, maintaining a narrower serum range of thyroid hormone might be needed to protect skeletal muscle strength.
Collapse
Affiliation(s)
- Lingyan Chen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Hu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Evano B, Gill D, Hernando-Herraez I, Comai G, Stubbs TM, Commere PH, Reik W, Tajbakhsh S. Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation. PLoS Genet 2020; 16:e1009022. [PMID: 33125370 PMCID: PMC7657492 DOI: 10.1371/journal.pgen.1009022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/11/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022] Open
Abstract
Adult skeletal muscles are maintained during homeostasis and regenerated upon injury by muscle stem cells (MuSCs). A heterogeneity in self-renewal, differentiation and regeneration properties has been reported for MuSCs based on their anatomical location. Although MuSCs derived from extraocular muscles (EOM) have a higher regenerative capacity than those derived from limb muscles, the molecular determinants that govern these differences remain undefined. Here we show that EOM and limb MuSCs have distinct DNA methylation signatures associated with enhancers of location-specific genes, and that the EOM transcriptome is reprogrammed following transplantation into a limb muscle environment. Notably, EOM MuSCs expressed host-site specific positional Hox codes after engraftment and self-renewal within the host muscle. However, about 10% of EOM-specific genes showed engraftment-resistant expression, pointing to cell-intrinsic molecular determinants of the higher engraftment potential of EOM MuSCs. Our results underscore the molecular diversity of distinct MuSC populations and molecularly define their plasticity in response to microenvironmental cues. These findings provide insights into strategies designed to improve the functional capacity of MuSCs in the context of regenerative medicine.
Collapse
Affiliation(s)
- Brendan Evano
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Diljeet Gill
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Glenda Comai
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Thomas M. Stubbs
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Pierre-Henri Commere
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, 28 rue du Dr. Roux, Paris, France
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Shahragim Tajbakhsh
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| |
Collapse
|
39
|
Mantzouratou P, Lavecchia AM, Novelli R, Xinaris C. Thyroid Hormone Signalling Alteration in Diabetic Nephropathy and Cardiomyopathy: a "Switch" to the Foetal Gene Programme. Curr Diab Rep 2020; 20:58. [PMID: 32984910 DOI: 10.1007/s11892-020-01344-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE OF THE REVIEW In this study, we will analyse how diabetes induces the reactivation of organs' developmental programmes and growth, discuss how thyroid hormone (TH) signalling orchestrates these processes, and suggest novel strategies for exploiting TH-mediated reparative and regenerative properties. RECENT FINDINGS Diabetes is a global pandemic that poses an enormous threat to human health. The kidney and the heart are among the organs that are the most severely damaged by diabetes over time. They undergo profound metabolic, structural, and functional changes that may be due (at least partially) to a recapitulation of their early developmental programmes. There is growing evidence to suggest that this foetal reprogramming is controlled by the TH/TH receptor alpha 1 (TRα1) axis. We introduce the hypothesis that in diabetes-and probably in other diseases-TH signalling acts in an antagonistic manner: it recapitulates a foetal profile that is necessary to coordinate metabolic and structural adaptations to sustain energy preservation and growth, but in the long term the persistent changes in these pathways are detrimental.
Collapse
Affiliation(s)
- Polyxeni Mantzouratou
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Angelo Michele Lavecchia
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Rubina Novelli
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Christodoulos Xinaris
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy.
- University of Nicosia Medical School, 93 Agiou Nikolaou Street, Engomi, 2408, Nicosia, Cyprus.
| |
Collapse
|
40
|
Sharma KD, Schaal D, Kore RA, Hamzah RN, Pandanaboina SC, Hayar A, Griffin RJ, Srivatsan M, Reyna NS, Xie JY. Glioma-derived exosomes drive the differentiation of neural stem cells to astrocytes. PLoS One 2020; 15:e0234614. [PMID: 32649728 PMCID: PMC7351166 DOI: 10.1371/journal.pone.0234614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/29/2020] [Indexed: 01/15/2023] Open
Abstract
Exosomes appear to be effective inter-cellular communicators delivering several types of molecules, such as proteins and RNAs, suggesting that they could influence neural stem cell (NSC) differentiation. Our RNA sequencing studies demonstrated that the RNAs related to cell proliferation and astrocyte differentiation were upregulated in human mesenchymal stem cells (hMSC) when co-cultured with exosomes obtained from the culture medium of human glioma cells (U87). Metallothionein 3 and elastin genes, which are related to cell proliferation, increased 10 and 7.2 fold, respectively. Expression of genes for astrocyte differentiation, such as tumor growth factor alpha, induced protein 3 of the NOTCH1 family, colony stimulating factor and interleukin 6 of the STAT3 family and Hes family bHLH transcription factor 1 also increased by 2.3, 10, 4.7 and 2.9 fold, respectively. We further examined the effects of these exosomes on rat fetal neural stem cell (rNSC) differentiation using the secreted exosomes from U87 glioma cells or exosomes from U87 cells that were stimulated with interleukin 1β (IL-1β). The rNSCs, extracted from rat brains at embryonic day 14 (E14), underwent a culture protocol that normally leads to predominant (~90%) differentiation to ODCs. However, in the presence of the exosomes from untreated or IL-1β-treated U87 cells, significantly more cells differentiated into astrocytes, especially in the presence of exosomes obtained from the IL-1β-challenged glioma cells. Moreover, glioma-derived exosomes appeared to inhibit rNSC differentiation into ODCs or astrocytes as indicated by a significantly increased population of unlabeled cells. A portion of the resulting astrocytes co-expressed both CD133 and glial fibrillary acidic protein (GFAP) suggesting that exosomes from U87 cells could promote astrocytic differentiation of NSCs with features expected from a transformed cell. Our data clearly demonstrated that exosomes secreted by human glioma cells provide a strong driving force for rat neural stem cells to differentiate into astrocytes, uncovering potential pathways and therapeutic targets that might control this aggressive tumor type.
Collapse
Affiliation(s)
- Krishna D. Sharma
- Department of Biological Sciences and Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Danielle Schaal
- Department of Biology, Ouachita Baptist University, Arkadelphia, Arkansas, United States of America
| | - Rajshekhar A. Kore
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Rabab N. Hamzah
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Sahitya Chetan Pandanaboina
- Department of Biological Sciences and Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Abdallah Hayar
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Malathi Srivatsan
- Department of Biological Sciences and Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Nathan S. Reyna
- Department of Biology, Ouachita Baptist University, Arkadelphia, Arkansas, United States of America
| | - Jennifer Yanhua Xie
- Department of Basic Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, Arkansas, United States of America
| |
Collapse
|
41
|
Bloise FF, Santos AT, de Brito J, de Andrade CBV, Oliveira TS, de Souza AFP, Fontes KN, Silva JD, Blanco N, Silva PL, Rocco PRM, Fliers E, Boelen A, da-Silva WS, Ortiga-Carvalho TM. Sepsis Impairs Thyroid Hormone Signaling and Mitochondrial Function in the Mouse Diaphragm. Thyroid 2020; 30:1079-1090. [PMID: 32200709 DOI: 10.1089/thy.2019.0124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Sepsis can cause the nonthyroidal illness syndrome (NTIS), resulting in perturbed thyroid hormone (TH) signaling and reduced thyroxine (T4) levels. TH is a major regulator of muscle function, via its influence on mitochondria. This study aimed at evaluating the relationship between TH signaling, mitochondrial function, and the antioxidant defense system in the diaphragms of septic mice. Methods: Male C57Bl/6 mice were divided into two groups: cecal ligation and puncture (CLP) and sham. Twenty-four hours after surgery, plasma, diaphragms, and livers were collected. TH metabolism and responses were analyzed by measuring messenger RNA (mRNA) expression of Dio1 in the liver, and Thra, Thrb, Dio2, Slc16a10, and Slc16a2 (encodes MCT 10 and 8), in the diaphragm. T4 plasma levels were measured by radioimmunoassay. Damage to diaphragm mitochondria was assessed by electron microscopy and real-time polymerase chain reaction (qPCR), and function with oxygraphy. The diaphragm antioxidative defense system was examined by qPCR, analyzing superoxide dismutase (SOD) 1 (Sod1), mitochondrial superoxide dismutase (SOD 2; Sod2), extracellular superoxide dismutase (SOD 3; Sod3), glutathione peroxidase 1 (Gpx1), and catalase (Cat) expression. The effect of TH replacement was tested by treating the mice with T4 and triiodothyronine (T3) (CLP+TH) after surgery. Results: CLP mice presented reduced total plasma T4 concentrations, downregulated Dio1, and upregulated Il1b mRNA expression in the liver. CLP mice also displayed downregulated Thra, Thrb, Slc16a10, and Slc16a2 expression in the diaphragm, suggesting that TH signaling was compromised. The expression of Ppargc1a (encoding PGC1a) was downregulated, which correlated with the decrease in the number of total mitochondria, increase in the percentage of injured mitochondria, downregulation of respiratory chain complex 2 and 3 mRNA expression, and reduced maximal respiration. In addition, septic animals presented a three-fold increase in Ucp3 and G6pdh expression; downregulated Sod3, Gpx1, and Cat expression; and upregulated Sod2 expression, potentially due to elevated reactive oxygen species levels. The mitochondrial number and the percentage of injured mitochondrial were similar between sham and CLP+TH mice. Conclusions: Sepsis induced responses consistent with NTIS, resulted in mitochondrial damage and functional impairment, and modulated the expression of key antioxidant enzymes in the diaphragm. Thus, impaired diaphragm function during sepsis seems to involve altered local TH signaling, mitochondrial dysfunction, and oxidative stress defense.
Collapse
Affiliation(s)
- Flavia Fonseca Bloise
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson Teixeira Santos
- Laboratory of Metabolic Adaptations, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana de Brito
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cherley Borba Vieira de Andrade
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamires Siqueira Oliveira
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Fonseca Pereira de Souza
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Klaus Novaes Fontes
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johnatas D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eric Fliers
- Department of Endocrinology & Metabolism, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology & Metabolism, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Endocrinology Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Wagner Seixas da-Silva
- Laboratory of Metabolic Adaptations, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tânia Maria Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Mancino G, Sibilio A, Luongo C, Di Cicco E, Miro C, Cicatiello AG, Nappi A, Sagliocchi S, Ambrosio R, De Stefano MA, Di Girolamo D, Porcelli T, Murolo M, Saracino F, Perruolo G, Formisano P, Stornaiuolo M, Dentice M. The Thyroid Hormone Inactivator Enzyme, Type 3 Deiodinase, Is Essential for Coordination of Keratinocyte Growth and Differentiation. Thyroid 2020; 30:1066-1078. [PMID: 32111151 DOI: 10.1089/thy.2019.0557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Thyroid hormones (THs) are key regulators of development, tissue differentiation, and maintenance of metabolic balance in virtually every cell of the body. Accordingly, severe alteration of TH action during fetal life leads to permanent deficits in humans. The skin is among the few adult tissues expressing the oncofetal protein type 3 deiodinase (D3), the TH inactivating enzyme. Here, we demonstrate that D3 is dynamically regulated during epidermal ontogenesis. Methods: To investigate the function of D3 in a postdevelopmental context, we used a mouse model of conditional epidermal-specific D3 depletion. Loss of D3 resulted in tissue hypoplasia and enhanced epidermal differentiation in a cell-autonomous manner. Results: Accordingly, wound healing repair and hair follicle cycle were altered in the D3-depleted epidermis. Further, in vitro ablation of D3 in primary culture of keratinocytes indicated that various markers of stratified epithelial layers were upregulated, thereby confirming the pro-differentiative action of D3 depletion and the consequent increased intracellular triiodothyronine levels. Notably, loss of D3 reduced the clearance of systemic TH in vivo, thereby demonstrating the critical requirement for epidermal D3 in the maintenance of TH homeostasis. Conclusion: In conclusion, our results show that the D3 enzyme is a key TH-signaling component in the skin, thereby providing a striking example of a physiological context for deiodinase-mediated TH metabolism, as well as a rationale for therapeutic manipulation of deiodinases in pathophysiological contexts.
Collapse
Affiliation(s)
- Giuseppina Mancino
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Annarita Sibilio
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Cristina Luongo
- Department of Public Health, and Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Caterina Miro
- Department of Public Health, and Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Annarita Nappi
- Department of Public Health, and Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | | | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Daniela Di Girolamo
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Tommaso Porcelli
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Federica Saracino
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Giuseppe Perruolo
- Department of Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Pietro Formisano
- Department of Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy; Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
| |
Collapse
|
43
|
Payne JA, Proszkowiec-Weglarz M, Ellestad LE. Delayed access to feed alters gene expression associated with hormonal signaling, cellular differentiation, and protein metabolism in muscle of newly hatch chicks. Gen Comp Endocrinol 2020; 292:113445. [PMID: 32135160 DOI: 10.1016/j.ygcen.2020.113445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
Birds rely solely on utilization of the yolk sac as a means of nutritional support throughout embryogenesis and early post-hatch, before first feeding occurs. Newly hatched broiler (meat-type) chickens are frequently not given immediate access to feed, and this can result in numerous alterations to developmental processes, including those that occur in muscle. The objective of this study was to characterize the gene expression profile of newly hatched chicks' breast muscle with regards to hormonal regulation of growth and metabolism and development and differentiation of muscle tissue, and determine impacts of delayed access to feed on these profiles. Within 3 h of hatch, birds were placed in battery pens and given immediate access to feed (Fed) or delayed access to feed for 48 h (Delayed Fed). Breast muscle collected from male birds at hatch, or 4 h, 1 day (D), 2D, 4D, and 8D after hatch was used for analysis of mRNA expression by reverse transcription-quantitative PCR. Under fully fed conditions, insulin-like growth factor receptor and leptin receptor mRNA expression decreased as birds aged; however, delayed access to feed resulted in prolonged upregulation of these genes so their mRNA levels were higher in Delayed Fed birds at 2D. These expression profiles suggest that delayed feed access alters sensitivity to hormones that may regulate muscle development. Myogenin, a muscle differentiation factor, showed increasing mRNA expression in Fed birds through 2D, after which expression decreased. A similar expression pattern in Delayed Fed birds was deferred until 4D. Levels of myostatin, a negative regulator of muscle growth, increased in Fed birds starting at 2D, while levels in Delayed Fed birds began to increase at 4D. In Fed birds, levels of transcripts for two genes associated with protein catabolism, F-box protein 32 and forkhead box O3, were lower at 2D, while Delayed Fed mRNA levels did not decrease until 4D. Mechanistic target of rapamycin mRNA levels decreased from 1D through 8D in both treatments, except for a transient increase in the Delayed Fed birds between 1D and 2D. These data suggest that within breast muscle, delayed feeding alters hormonal signaling, interrupts tissue differentiation, postpones onset of growth, and may lead to increased protein catabolism. Together, these processes could ultimately contribute to a reduction in proper growth and development of birds not given feed immediately after hatch, and ultimately hinder the long-term potential of muscle accretion in meat type birds.
Collapse
Affiliation(s)
- Jason A Payne
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30601, USA.
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Northeast Area, 10300 Baltimore Ave, BARC-East, Bldg 200, Beltsville, MD 20705, USA.
| | - Laura E Ellestad
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30601, USA.
| |
Collapse
|
44
|
Miro C, Di Cicco E, Ambrosio R, Mancino G, Di Girolamo D, Cicatiello AG, Sagliocchi S, Nappi A, De Stefano MA, Luongo C, Antonini D, Visconte F, Varricchio S, Ilardi G, Del Vecchio L, Staibano S, Boelen A, Blanpain C, Missero C, Salvatore D, Dentice M. Thyroid hormone induces progression and invasiveness of squamous cell carcinomas by promoting a ZEB-1/E-cadherin switch. Nat Commun 2019; 10:5410. [PMID: 31776338 PMCID: PMC6881453 DOI: 10.1038/s41467-019-13140-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Epithelial tumor progression often involves epithelial-mesenchymal transition (EMT). We report that increased intracellular levels of thyroid hormone (TH) promote the EMT and malignant evolution of squamous cell carcinoma (SCC) cells. TH induces the EMT by transcriptionally up-regulating ZEB-1, mesenchymal genes and metalloproteases and suppresses E-cadherin expression. Accordingly, in human SCC, elevated D2 (the T3-producing enzyme) correlates with tumor grade and is associated with an increased risk of postsurgical relapse and shorter disease-free survival. These data provide the first in vivo demonstration that TH and its activating enzyme, D2, play an effective role not only in the EMT but also in the entire neoplastic cascade starting from tumor formation up to metastatic transformation, and supports the concept that TH is an EMT promoter. Our studies indicate that tumor progression relies on precise T3 availability, suggesting that pharmacological inactivation of D2 and TH signaling may suppress the metastatic proclivity of SCC.
Collapse
Affiliation(s)
- Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Giuseppina Mancino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Daniela Di Girolamo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Dario Antonini
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | | | - Silvia Varricchio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gennaro Ilardi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Stefania Staibano
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Cedric Blanpain
- IRIBHM, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Caterina Missero
- Department of Biology, University of Naples "Federico II", Naples, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
| | - Domenico Salvatore
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy.
| |
Collapse
|
45
|
Leonardi A, Evke S, Lee M, Melendez JA, Begley TJ. Epitranscriptomic systems regulate the translation of reactive oxygen species detoxifying and disease linked selenoproteins. Free Radic Biol Med 2019; 143:573-593. [PMID: 31476365 PMCID: PMC7650020 DOI: 10.1016/j.freeradbiomed.2019.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Here we highlight the role of epitranscriptomic systems in post-transcriptional regulation, with a specific focus on RNA modifying writers required for the incorporation of the 21st amino acid selenocysteine during translation, and the pathologies linked to epitranscriptomic and selenoprotein defects. Epitranscriptomic marks in the form of enzyme-catalyzed modifications to RNA have been shown to be important signals regulating translation, with defects linked to altered development, intellectual impairment, and cancer. Modifications to rRNA, mRNA and tRNA can affect their structure and function, while the levels of these dynamic tRNA-specific epitranscriptomic marks are stress-regulated to control translation. The tRNA for selenocysteine contains five distinct epitranscriptomic marks and the ALKBH8 writer for the wobble uridine (U) has been shown to be vital for the translation of the glutathione peroxidase (GPX) and thioredoxin reductase (TRXR) family of selenoproteins. The reactive oxygen species (ROS) detoxifying selenocysteine containing proteins are a prime examples of how specialized translation can be regulated by specific tRNA modifications working in conjunction with distinct codon usage patterns, RNA binding proteins and specific 3' untranslated region (UTR) signals. We highlight the important role of selenoproteins in detoxifying ROS and provide details on how epitranscriptomic marks and selenoproteins can play key roles in and maintaining mitochondrial function and preventing disease.
Collapse
Affiliation(s)
- Andrea Leonardi
- Colleges of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Sara Evke
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - May Lee
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - J Andres Melendez
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA.
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA; RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
46
|
Regulation of mitochondrial activity controls the duration of skeletal muscle regeneration in response to injury. Sci Rep 2019; 9:12249. [PMID: 31439911 PMCID: PMC6706433 DOI: 10.1038/s41598-019-48703-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormone is a major regulator of skeletal muscle development and repair, and also a key regulator of mitochondrial activity. We have previously identified a 43 kDa truncated form of the nuclear T3 receptor TRα1 (p43) which stimulates mitochondrial activity and regulates skeletal muscle features. However, its role in skeletal muscle regeneration remains to be addressed. To this end, we performed acute muscle injury induced by cardiotoxin in mouse tibialis in two mouse models where p43 is overexpressed in or depleted from skeletal muscle. The measurement of muscle fiber size distribution at different time point (up to 70 days) upon injury lead us to unravel requirement of the p43 signaling pathway for satellite cells dependent muscle regeneration; strongly delayed in the absence of p43; whereas the overexpression of the receptor enhances of the regeneration process. In addition, we found that satellite cells derived from p43-Tg mice display higher proliferation rates when cultured in vitro when compared to control myoblasts, whereas p43-/- satellites shows reduced proliferation capacity. These finding strongly support that p43 plays an important role in vivo by controling the duration of skeletal muscle regeneration after acute injury, possibly through the regulation of mitochondrial activity and myoblasts proliferation.
Collapse
|
47
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
48
|
Abstract
The deiodinase family of enzymes mediates the activation and inactivation of thyroid hormone. The role of these enzymes in the regulation of the systemic concentrations of thyroid hormone is well established and underpins the treatment of common thyroid diseases. Interest in this field has increased in the past 10 years as the deiodinases became implicated in tissue development and homeostasis, as well as in the pathogenesis of a wide range of human diseases. Three deiodinases have been identified, namely, types 1, 2 and 3 iodothyronine deiodinases, which differ in their catalytic properties and tissue distribution. Notably, the expression of these enzymes changes during the lifetime of an individual in relation to the different needs of each organ and to ageing. The systemic homeostatic role of deiodinases clearly emerges during changes in serum concentrations of thyroid hormone, as seen in patients with thyroid dysfunction. By contrast, the role of deiodinases at the tissue level allows thyroid hormone signalling to be finely tuned within a given cell in a precise time-space window without perturbing serum concentrations of thyroid hormone. This Review maps the overall functional role of the deiodinases and explores challenges and novel opportunities arising from the expanding knowledge of these 'master' components of the thyroid homeostatic system.
Collapse
Affiliation(s)
- Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
49
|
Darnet S, Dragalzew AC, Amaral DB, Sousa JF, Thompson AW, Cass AN, Lorena J, Pires ES, Costa CM, Sousa MP, Fröbisch NB, Oliveira G, Schneider PN, Davis MC, Braasch I, Schneider I. Deep evolutionary origin of limb and fin regeneration. Proc Natl Acad Sci U S A 2019; 116:15106-15115. [PMID: 31270239 PMCID: PMC6660751 DOI: 10.1073/pnas.1900475116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Salamanders and lungfishes are the only sarcopterygians (lobe-finned vertebrates) capable of paired appendage regeneration, regardless of the amputation level. Among actinopterygians (ray-finned fishes), regeneration after amputation at the fin endoskeleton has only been demonstrated in polypterid fishes (Cladistia). Whether this ability evolved independently in sarcopterygians and actinopterygians or has a common origin remains unknown. Here we combine fin regeneration assays and comparative RNA-sequencing (RNA-seq) analysis of Polypterus and axolotl blastemas to provide support for a common origin of paired appendage regeneration in Osteichthyes (bony vertebrates). We show that, in addition to polypterids, regeneration after fin endoskeleton amputation occurs in extant representatives of 2 other nonteleost actinopterygians: the American paddlefish (Chondrostei) and the spotted gar (Holostei). Furthermore, we assessed regeneration in 4 teleost species and show that, with the exception of the blue gourami (Anabantidae), 3 species were capable of regenerating fins after endoskeleton amputation: the white convict and the oscar (Cichlidae), and the goldfish (Cyprinidae). Our comparative RNA-seq analysis of regenerating blastemas of axolotl and Polypterus reveals the activation of common genetic pathways and expression profiles, consistent with a shared genetic program of appendage regeneration. Comparison of RNA-seq data from early Polypterus blastema to single-cell RNA-seq data from axolotl limb bud and limb regeneration stages shows that Polypterus and axolotl share a regeneration-specific genetic program. Collectively, our findings support a deep evolutionary origin of paired appendage regeneration in Osteichthyes and provide an evolutionary framework for studies on the genetic basis of appendage regeneration.
Collapse
Affiliation(s)
- Sylvain Darnet
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
| | - Aline C Dragalzew
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
| | - Danielson B Amaral
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
| | - Josane F Sousa
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
| | - Andrew W Thompson
- Department of Integrative Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824
| | - Amanda N Cass
- Department of Biology, James Madison University, Harrisonburg, VA 22807
| | - Jamily Lorena
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
- Instituto Tecnológico Vale, 66055-090 Belém, Brazil
| | - Eder S Pires
- Instituto Tecnológico Vale, 66055-090 Belém, Brazil
| | - Carinne M Costa
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
| | - Marcos P Sousa
- Laboratório de Biologia Molecular, Museu Paraense Emílio Goeldi, 66077-530 Belém, Pará, Brazil
| | - Nadia B Fröbisch
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | | | - Patricia N Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
| | - Marcus C Davis
- Department of Biology, James Madison University, Harrisonburg, VA 22807
| | - Ingo Braasch
- Department of Integrative Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824
| | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil;
| |
Collapse
|
50
|
Köhrle J. The Colorful Diversity of Thyroid Hormone Metabolites. Eur Thyroid J 2019; 8:115-129. [PMID: 31259154 PMCID: PMC6587369 DOI: 10.1159/000497141] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of L-thyroxine, the main secretory product of the thyroid gland, and its major metabolite T3, which exerts the majority of thyroid hormone action via ligand-dependent modulation of the function of T3 receptors in nuclei, mitochondria, and other subcellular compartments, various other T4-derived endogenous metabolites have been identified in blood and tissues of humans, animals, and early protochordates. This review addresses major historical milestones and experimental findings resulting in the discovery of the key enzymes of thyroid hormone metabolism, the three selenoprotein deiodinases, as well as the decarboxylases and amine oxidases involved in formation and degradation of recently identified endogenous thyroid hormone metabolites, i.e. 3-iodothyronamine and 3-thyroacetic acid. The concerted action of deiodinases 2 and 3 in regulation of local T3 availability is discussed. Special attention is given to the role of the thyromimetic "hot" metabolite 3,5-T2 and the "cool" 3-iodothyronamine, especially after administration of pharmacological doses of these endogenous thyroid hormone metabolites in various animal experimental models. In addition, available information on the biological roles of the two major acetic acid derivatives of thyroid hormones, i.e. Tetrac and Triac, as well as sulfated metabolites of thyroid hormones is reviewed. This review addresses the consequences of the existence of this broad spectrum of endogenous thyroid hormone metabolites, the "thyronome," beyond the classical thyroid hormone profile comprising T4, T3, and rT3 for appropriate analytical coverage and clinical diagnostics using mass spectrometry versus immunoassays for determination of total and free concentrations of thyroid hormone metabolites in blood and tissues.
Collapse
Affiliation(s)
- Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité Campus Virchow-Klinikum (CVK), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|