1
|
Li S, Zhou Y, Kong D, Miao Y, Guan N, Gao G, Jin J, Ye H. A visually-induced optogenetically-engineered system enables autonomous glucose homeostasis in mice. J Control Release 2025; 378:27-37. [PMID: 39645086 DOI: 10.1016/j.jconrel.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
With the global population increasing and the demographic shifting toward an aging society, the number of patients diagnosed with conditions such as peripheral neuropathies resulting from diabetes is expected to rise significantly. This growing health burden has emphasized the need for innovative solutions, such as brain-computer interfaces. brain-computer interfaces, a multidisciplinary field that integrates neuroscience, engineering, and computer science, enable direct communication between the human brain and external devices. In this study, we developed an autonomous diabetes therapeutic system that employs visually-induced electroencephalography devices to capture and decode event-related potentials using machine learning techniques. We present the visually-induced optogenetically-engineered system for therapeutic expression regulation (VISITER), which generates diverse output commands to control illumination durations. This system regulates insulin expression through optogenetically-engineered cells, achieving blood glucose homeostasis in mice. Our results demonstrate that VISITER effectively and precisely modulates therapeutic protein expression in mammalian cells, facilitating the rapid restoration of blood glucose homeostasis in diabetic mice. These findings underscore the potential for diabetic patients to manage insulin levels autonomously by focusing on target images, paving the way for a more self-directed approach to blood glucose control.
Collapse
Affiliation(s)
- Shurui Li
- School of Mathematics, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhou
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Wuhu Hospital, Health Science Center, East China Normal University, Anhui 241001, China
| | - Deqiang Kong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yangyang Miao
- School of Electrical Engineering and Automation, Nantong University, Jiangsu 226019, China
| | - Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ganglong Gao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Jing Jin
- School of Mathematics, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Wuhu Hospital, Health Science Center, East China Normal University, Anhui 241001, China.
| |
Collapse
|
2
|
Kumar V, Yildirim AÖ, Nawroth PP. The role of DNA damage in diabetic complications. Nat Rev Endocrinol 2024; 20:629-630. [PMID: 39266727 DOI: 10.1038/s41574-024-01038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Affiliation(s)
- Varun Kumar
- Department of Lung Health and Immunity, Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Institute of Experimental Pneumology, University Hospital, Ludwig-Maximilians University, Munich, Germany.
| | - Ali Önder Yildirim
- Department of Lung Health and Immunity, Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Peter P Nawroth
- Department of Lung Health and Immunity, Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.
- Department of Internal Medicine III, Technical University of Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Noble PA, Pozhitkov A, Singh K, Woods E, Liu C, Levin M, Javan G, Wan J, Abouhashem AS, Mathew-Steiner SS, Sen CK. Unraveling the Enigma of Organismal Death: Insights, Implications, and Unexplored Frontiers. Physiology (Bethesda) 2024; 39:0. [PMID: 38624244 PMCID: PMC11460531 DOI: 10.1152/physiol.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
Significant knowledge gaps exist regarding the responses of cells, tissues, and organs to organismal death. Examining the survival mechanisms influenced by metabolism and environment, this research has the potential to transform regenerative medicine, redefine legal death, and provide insights into life's physiological limits, paralleling inquiries in embryogenesis.
Collapse
Affiliation(s)
- Peter A Noble
- Department of Microbiology, University of Alabama Birmingham, Birmingham, Alabama, United States
| | - Alexander Pozhitkov
- Division of Research Informatics, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Kanhaiya Singh
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Erik Woods
- Ossium Health, Indianapolis, Indiana, United States
| | - Chunyu Liu
- Institute for Human Performance, Upstate Medical University, Syracuse, New York, United States
| | - Michael Levin
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| | - Gulnaz Javan
- Department of Physical and Forensic Sciences, Alabama State University, Montgomery, Alabama, United States
| | - Jun Wan
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ahmed Safwat Abouhashem
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shomita S Mathew-Steiner
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Chandan K Sen
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
4
|
Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective Factors and the Pathogenesis of Complications in Diabetes. Endocr Rev 2024; 45:227-252. [PMID: 37638875 PMCID: PMC10911956 DOI: 10.1210/endrev/bnad030] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Chronic complications of diabetes are due to myriad disorders of numerous metabolic pathways that are responsible for most of the morbidity and mortality associated with the disease. Traditionally, diabetes complications are divided into those of microvascular and macrovascular origin. We suggest revising this antiquated classification into diabetes complications of vascular, parenchymal, and hybrid (both vascular and parenchymal) tissue origin, since the profile of diabetes complications ranges from those involving only vascular tissues to those involving mostly parenchymal organs. A major paradigm shift has occurred in recent years regarding the pathogenesis of diabetes complications, in which the focus has shifted from studies on risks to those on the interplay between risk and protective factors. While risk factors are clearly important for the development of chronic complications in diabetes, recent studies have established that protective factors are equally significant in modulating the development and severity of diabetes complications. These protective responses may help explain the differential severity of complications, and even the lack of pathologies, in some tissues. Nevertheless, despite the growing number of studies on this field, comprehensive reviews on protective factors and their mechanisms of action are not available. This review thus focused on the clinical, biochemical, and molecular mechanisms that support the idea of endogenous protective factors, and their roles in the initiation and progression of chronic complications in diabetes. In addition, this review also aimed to identify the main needs of this field for future studies.
Collapse
Affiliation(s)
- Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Gordin
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Stenbäckinkatu 9, FI-00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jialin Fu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - George Liang King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
5
|
Goyal S, Rani J, Bhat MA, Vanita V. Genetics of diabetes. World J Diabetes 2023; 14:656-679. [PMID: 37383588 PMCID: PMC10294065 DOI: 10.4239/wjd.v14.i6.656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetes mellitus is a complicated disease characterized by a complex interplay of genetic, epigenetic, and environmental variables. It is one of the world's fastest-growing diseases, with 783 million adults expected to be affected by 2045. Devastating macrovascular consequences (cerebrovascular disease, cardiovascular disease, and peripheral vascular disease) and microvascular complications (like retinopathy, nephropathy, and neuropathy) increase mortality, blindness, kidney failure, and overall quality of life in individuals with diabetes. Clinical risk factors and glycemic management alone cannot predict the development of vascular problems; multiple genetic investigations have revealed a clear hereditary component to both diabetes and its related complications. In the twenty-first century, technological advancements (genome-wide association studies, next-generation sequencing, and exome-sequencing) have led to the identification of genetic variants associated with diabetes, however, these variants can only explain a small proportion of the total heritability of the condition. In this review, we address some of the likely explanations for this "missing heritability", for diabetes such as the significance of uncommon variants, gene-environment interactions, and epigenetics. Current discoveries clinical value, management of diabetes, and future research directions are also discussed.
Collapse
Affiliation(s)
- Shiwali Goyal
- Department of Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Rockville, MD 20852, United States
| | - Jyoti Rani
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Mohd Akbar Bhat
- Department of Ophthalmology, Georgetown University Medical Center, Washington DC, DC 20057, United States
| | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
6
|
Varun K, Zoltan K, Alba S, Manuel B, Elisabeth K, Dimitrios T, Jan B G, Maik B, Khurrum S, Berend I, Stephen H, Thomas F, Julia S, Peter N, Stefan K. Elevated markers of DNA damage and senescence are associated with the progression of albuminuria and restrictive lung disease in patients with type 2 diabetes. EBioMedicine 2023; 90:104516. [PMID: 36934657 PMCID: PMC10025008 DOI: 10.1016/j.ebiom.2023.104516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND This study was conducted to investigate the cascade involving DNA damage, senescence, and senescence-associated secretory phenotype (SASP) in experimental diabetes and in a four-year follow-up study in patients with pre-diabetes and type 2 diabetes. METHODS Kidney, lung, and liver were studied in 4 months diabetic db/db mice and age-matched controls for the presence of DNA damage and fibrosis. DNA damage (comet-tail-length and ɤH2Ax-positivity in white blood cells), urinary p21-excretion, and plasma IL-6 and TGF-β1 were determined from 115 healthy participants, 34 patients with pre-diabetes and 221 with type 2 diabetes. Urinary albumin-creatinine-ratio, lung function, and transient elastography of the liver were performed in a prospective follow-up study over 4 years. FINDINGS db/db mice showed an increased nuclear ɤH2AX signal in all tissues as compared to the background control. Markers for DNA damage, senescence, and SASP were increased in patients with diabetes. The presence of nephropathy, restrictive lung disease (RLD), and increased liver stiffness was in a cross-sectional design associated with increased markers for DNA damage, senescence, and SASP. The progression of nephropathy over 4 years was predicted by increased DNA damage, senescence, and SASP, while the progression of RLD was associated with increased DNA damage and IL-6 only. The progression of liver stiffness was not associated with any of these parameters. HbA1c was not predictive for progression. INTERPRETATION In db/db mice, the cascade of DNA damage is associated with diabetes-related complications. In patients with diabetes, the progression of complications in the kidney and lung is predicted by markers reflecting DNA damage, and senescence-triggered organ fibrosis. FUNDING This work was supported by the German Research Foundation (DFG) in the CRC 1118 and CRC 1158, by the GRK DIAMICOM, by the German Center for Diabetes Research (DZD e.V.), and by the Ministry of Science, Research and the Arts, Baden-Württemberg (Kompetenznetzwerk Präventivmedizin).
Collapse
Affiliation(s)
- Kumar Varun
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Kender Zoltan
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sulaj Alba
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Blume Manuel
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
| | - Kliemank Elisabeth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tsilingiris Dimitrios
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Groener Jan B
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Medicover Neuroendokrinologie, Munich, Germany
| | - Brune Maik
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
| | - Shahzad Khurrum
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital of Leipzig, Germany
| | - Isermann Berend
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital of Leipzig, Germany
| | - Herzig Stephen
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Helmholtz Diabetes Center, Institute for Diabetes and Cancer, Helmholtz Center Munich, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Fleming Thomas
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Szendroedi Julia
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Nawroth Peter
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Kopf Stefan
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
7
|
Sun D, Chen S, Li S, Wang N, Zhang S, Xu L, Zhu S, Li H, Gu Q, Xu X, Wei F. Enhancement of glycolysis-dependent DNA repair regulated by FOXO1 knockdown via PFKFB3 attenuates hyperglycemia-induced endothelial oxidative stress injury. Redox Biol 2022; 59:102589. [PMID: 36577299 PMCID: PMC9803794 DOI: 10.1016/j.redox.2022.102589] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022] Open
Abstract
The accumulation of DNA damage induced by oxidative stress is a crucial pathogenic factor of endothelial loss in diabetic vascular complications, but it is still unknown whether aberrant glucose metabolism leads to defective DNA repair and accounts for hyperglycemia-induced endothelial oxidative stress injury. Here, we showed that Foxo1 knockdown alleviated diabetes-associated retinal DNA damage and vascular dysfunction. Mechanistically, FOXO1 knockdown avoided persistent DNA damage and cellular senescence under high glucose in endothelial cells by promoting DNA repair mediated by the MRN (MRE11-RAD50-NBS1 complex)-ATM pathway in response to oxidative stress injury. Moreover, FOXO1 knockdown mediated robust DNA repair by restoring glycolysis capacity under high glucose. During this process, the key glycolytic enzyme PFKFB3 was stimulated and, in addition to its promoting effect on glycolysis, directly participated in DNA repair. Under genotoxic stress, PFKFB3 relocated into oxidative stress-induced DNA damage sites and promoted DNA repair by interaction with the MRN-ATM pathway. Our study proposed that defective glycolysis-dependent DNA repair is present in diabetic endothelial cells and contributes to hyperglycemia-induced vascular dysfunction, which could provide novel therapeutic targets for diabetic vascular complications.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shenping Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Ning Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Li Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shaopin Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Huiming Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
8
|
Nawroth PP, Kumar V, Kopf S. Diabetische Folgeschäden: Eine Erkrankung der DNA? – Paul-Langerhans-Medaille 2022 – eine Kurzübersicht über den Preisträger Peter Nawroth. DIABETOL STOFFWECHS 2022. [DOI: 10.1055/a-1902-4778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Syreeni A, Carroll LM, Mutter S, Januszewski AS, Forsblom C, Lehto M, Groop PH, Jenkins AJ. Telomeres do not always shorten over time in individuals with type 1 diabetes. Diabetes Res Clin Pract 2022; 188:109926. [PMID: 35580703 DOI: 10.1016/j.diabres.2022.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
Abstract
AIMS We aimed to determine how white blood cell (WBC) telomeres and telomere length change over time are associated with health status in type 1 diabetes. METHODS Relative telomere length (rTL) was measured in WBC DNA from two time-points (median 6.8 years apart) in 618 individuals from the Finnish Diabetic Nephropathy Study by quantitative PCR, with interassay CV ≤ 4%. RESULTS Baseline rTL correlated inversely with age and was shorter in men. Individuals in the shortest vs. longest rTL tertile had adverse cardiometabolic profiles, worse renal function, and were prescribed more antihypertensive and lipid-lowering drugs. While overall rTL tended to decrease during the median 6.8-years of follow-up, telomeres shortened in 55.3% of subjects, lengthened in 40.0%, and did not change in 4.7%. Baseline rTL correlated inversely with rTL change. Telomere lengthening was associated with higher HDL-Cholesterol (HDL-C), HDL-C/ApoA1, and with antihypertensive drug and (inversely) with lipid-lowering drug commencement during follow-up. Correlates of rTL percentage change per-annum (adjusted model) were baseline BMI, eGFR, previous retinal laser treatment, HDL-C, and HDL-C/ApoA1. CONCLUSIONS Telomere length measurements may facilitate the treatment and monitoring of the health status of individuals with type 1 diabetes.
Collapse
Affiliation(s)
- Anna Syreeni
- Folkhälsan Research Center, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Luke M Carroll
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - Stefan Mutter
- Folkhälsan Research Center, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Carol Forsblom
- Folkhälsan Research Center, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markku Lehto
- Folkhälsan Research Center, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Research Center, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Alicia J Jenkins
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Moreno-Fernandez J, Sastre J, Pinés P, Del Val F, Calderon-Vicente D, Quiroga I, Herranz S, Lopez Gallardo G, Gonzalez J, Muñoz-Rodriguez JR. "Clinical status and mortality in older adults with type 1 diabetes: Results from a public health system". Diabetes Res Clin Pract 2022; 185:109221. [PMID: 35101455 DOI: 10.1016/j.diabres.2022.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
Abstract
AIM To evaluate clinical status and mortality in older adults with long-standing type 1 diabetes mellitus (T1D). METHODS Cross-sectional analysis of all patients with T1D for 50 years or more from a cohort followed since 2010 at Castilla-La Mancha Public Health Service (Spain). Primary outcome was HbA1c change during the follow-up (2010-2020 period). Secondary outcomes included evaluation of insulin and continuous glucose monitoring (CGM) use, cardiovascular risk factors (CVRF), diabetes chronic complications and mortality. RESULTS A total of fifty-five T1D patients were analysed. Mean age was 69.5 ± 8.3 yrs. and T1D duration of 54.7 ± 4.7 yrs. We detected a HbA1c reduction of -0.5% (-6 mmol/mol) [95% CI -0.1, -0.9 (-2, -10); P = 0.016]. CGM was used by 26% of the patients. More patients suffered from hypertension and obesity in 2020 (66% vs. 78%, P = 0.016; and 26% vs. 31%, P = 0.016; respectively). An increase of diabetic polyneuropathy was detected (45% vs. 67%, P = 0.008). Rate of mortality was higher among patients with long-standing T1D (26% vs. 3.5%, P < 0.001), due to cardiovascular disease (57%). CONCLUSIONS Older adults with long-standing T1D patients improved glycemic control although a worsening of CVRF and higher mortality rateweredetected.
Collapse
Affiliation(s)
- Jesus Moreno-Fernandez
- Service of Endocrinology and Nutrition, Ciudad Real General University Hospital, Ciudad Real, Spain.
| | - Julia Sastre
- Service of Endocrinology and Nutrition, Virgen de la Salud Hospital, Toledo, Spain.
| | - Pedro Pinés
- Service of Endocrinology and Nutrition, Albacete University Hospital, Albacete, Spain.
| | - Florentino Del Val
- Service of Endocrinology and Nutrition, La Mancha-Centro Hospital, Alcazar de San Juan, Ciudad Real, Spain.
| | | | - Ivan Quiroga
- Service of Endocrinology and Nutrition, Nuestra Señora del Prado Hospital, Talavera de la Reina (Toledo), Spain.
| | - Sandra Herranz
- Service of Endocrinology and Nutrition, Guadalajara University Hospital, Guadalajara, Spain.
| | - Gema Lopez Gallardo
- Service of Endocrinology and Nutrition, Santa Barbara Hospital, Puertollano (Ciudad Real), Spain.
| | - Javier Gonzalez
- Service of Endocrinology and Nutrition, Virgen de la Luz Hospital, Cuenca, Spain.
| | | |
Collapse
|
11
|
Yu G, Zhang M, Gao L, Zhou Y, Qiao L, Yin J, Wang Y, Zhou J, Ye H. Far-red light-activated human islet-like designer cells enable sustained fine-tuned secretion of insulin for glucose control. Mol Ther 2022; 30:341-354. [PMID: 34530162 PMCID: PMC8753431 DOI: 10.1016/j.ymthe.2021.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
Diabetes affects almost half a billion people, and all individuals with type 1 diabetes (T1D) and a large portion of individuals with type 2 diabetes rely on self-administration of the peptide hormone insulin to achieve glucose control. However, this treatment modality has cumbersome storage and equipment requirements and is susceptible to fatal user error. Here, reasoning that a cell-based therapy could be coupled to an external induction circuit for blood glucose control, as a proof of concept we developed far-red light (FRL)-activated human islet-like designer (FAID) cells and demonstrated how FAID cell implants achieved safe and sustained glucose control in diabetic model mice. Specifically, by introducing a FRL-triggered optogenetic device into human mesenchymal stem cells (hMSCs), which we encapsulated in poly-(l-lysine)-alginate and implanted subcutaneously under the dorsum of T1D model mice, we achieved FRL illumination-inducible secretion of insulin that yielded improvements in glucose tolerance and sustained blood glucose control over traditional insulin glargine treatment. Moreover, the FAID cell implants attenuated both oxidative stress and development of multiple diabetes-related complications in kidneys. This optogenetics-controlled "living cell factory" platform could be harnessed to develop multiple synthetic designer therapeutic cells to achieve long-term yet precisely controllable drug delivery.
Collapse
Affiliation(s)
- Guiling Yu
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Yang Zhou
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Longliang Qiao
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jianli Yin
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yiwen Wang
- Electron Microscopy Center, School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| |
Collapse
|
12
|
Haider N, Lebastchi J, Jayavelu AK, Batista TM, Pan H, Dreyfuss JM, Carcamo-Orive I, Knowles JW, Mann M, Kahn CR. Signaling defects associated with insulin resistance in nondiabetic and diabetic individuals and modification by sex. J Clin Invest 2021; 131:e151818. [PMID: 34506305 DOI: 10.1172/jci151818] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Insulin resistance is present in one-quarter of the general population, predisposing these people to a wide range of diseases. Our aim was to identify cell-intrinsic determinants of insulin resistance in this population using induced pluripotent stem cell-derived (iPSC-derived) myoblasts (iMyos). We found that these cells exhibited a large network of altered protein phosphorylation in vitro. Integrating these data with data from type 2 diabetic iMyos revealed critical sites of conserved altered phosphorylation in IRS-1, AKT, mTOR, and TBC1D1 in addition to changes in protein phosphorylation involved in Rho/Rac signaling, chromatin organization, and RNA processing. There were also striking differences in the phosphoproteome in cells from men versus women. These sex-specific and insulin-resistance defects were linked to functional differences in downstream actions. Thus, there are cell-autonomous signaling alterations associated with insulin resistance within the general population and important differences between men and women, many of which also occur in diabetes, that contribute to differences in physiology and disease.
Collapse
Affiliation(s)
- Nida Haider
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jasmin Lebastchi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA.,Division of Endocrinology, Brown, Alpert Medical School, Providence, Rhode Island, USA
| | - Ashok Kumar Jayavelu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thiago M Batista
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivan Carcamo-Orive
- Division of Cardiovascular Medicine, Cardiovascular Institute and Diabetes Research Center, Stanford University School of Medicine, Stanford, California, USA
| | - Joshua W Knowles
- Division of Cardiovascular Medicine, Cardiovascular Institute and Diabetes Research Center, Stanford University School of Medicine, Stanford, California, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Perkins BA, Lovblom LE, Lanctôt SO, Lamb K, Cherney DZI. Discoveries from the study of longstanding type 1 diabetes. Diabetologia 2021; 64:1189-1200. [PMID: 33661335 DOI: 10.1007/s00125-021-05403-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
Award programmes that acknowledge the remarkable accomplishments of long-term survivors with type 1 diabetes have naturally evolved into research programmes to determine the factors associated with survivorship and resistance to chronic complications. In this review, we present an overview of the methodological sources of selection bias inherent in survivorship research (selection of those with early-onset diabetes, incidence-prevalence bias and bias from losses to follow-up in cohort studies) and the breadth and depth of literature focusing on this special study population. We focus on the learnings from the study of longstanding type 1 diabetes on discoveries about the natural history of insulin production loss and microvascular complications, and mechanisms associated with them that may in future offer therapeutic targets. We detail descriptive findings about the prevalence of preserved insulin production and resistance to complications, and the putative mechanisms associated with such resistance. To date, findings imply that the following mechanisms exist: strategies to maintain or recover beta cells and their function; activation of specific glycolytic enzymes such as pyruvate kinase M2; modification of AGE production and processing; novel mechanisms for modification of renin-angiotensin-aldosterone system activation, in particular those that may normalise afferent rather than efferent renal arteriolar resistance; and activation and modification of processes such as retinol binding and DNA damage checkpoint proteins. Among the many clinical and public health insights, research into this special study population has identified putative mechanisms that may in future serve as therapeutic targets, knowledge that likely could not have been gained without studying long-term survivors.
Collapse
Affiliation(s)
- Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Leif Erik Lovblom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sebastien O Lanctôt
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Krista Lamb
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Kopf S, Kumar V, Kender Z, Han Z, Fleming T, Herzig S, Nawroth PP. Diabetic Pneumopathy-A New Diabetes-Associated Complication: Mechanisms, Consequences and Treatment Considerations. Front Endocrinol (Lausanne) 2021; 12:765201. [PMID: 34899603 PMCID: PMC8655305 DOI: 10.3389/fendo.2021.765201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 01/04/2023] Open
Abstract
Patients with diabetes are over-represented among the total cases reported with "idiopathic" pulmonary fibrosis (IPF). This raises the question, whether this is an association only or whether diabetes itself can cause pulmonary fibrosis. Recent studies in mouse models of type 1 and type 2 diabetes demonstrated that diabetes causes pulmonary fibrosis. Both types of diabetes trigger a cascade, starting with increased DNA damage, an impaired DNA repair, and leading to persistent DNA damage signaling. This response, in turn, induces senescence, a senescence-associated-secretory phenotype (SASP), marked by the release of pro-inflammatory cytokines and growth factors, finally resulting in fibrosis. Restoring DNA repair drives fibrosis into remission, thus proving causality. These data can be translated clinically to patients with type 2 diabetes, characterized by long-term diabetes and albuminuria. Hence there are several arguments, to substitute the term "idiopathic" pulmonary fibrosis (IPF) in patients with diabetes (and exclusion of other causes of lung diseases) by the term "diabetes-induced pulmonary fibrosis" (DiPF). However, future studies are required to establish this term and to study whether patients with diabetes respond to the established therapies similar to non-diabetic patients.
Collapse
Affiliation(s)
- Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Zoltan Kender
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Zhe Han
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Munich-Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Programme, Helmholtz-Zentrum, Munich, Germany
| | - Peter P. Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Programme, Helmholtz-Zentrum, Munich, Germany
- *Correspondence: Peter P. Nawroth,
| |
Collapse
|
15
|
Batista TM, Jayavelu AK, Wewer Albrechtsen NJ, Iovino S, Lebastchi J, Pan H, Dreyfuss JM, Krook A, Zierath JR, Mann M, Kahn CR. A Cell-Autonomous Signature of Dysregulated Protein Phosphorylation Underlies Muscle Insulin Resistance in Type 2 Diabetes. Cell Metab 2020; 32:844-859.e5. [PMID: 32888406 PMCID: PMC7875546 DOI: 10.1016/j.cmet.2020.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/26/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Skeletal muscle insulin resistance is the earliest defect in type 2 diabetes (T2D), preceding and predicting disease development. To what extent this reflects a primary defect or is secondary to tissue cross talk due to changes in hormones or circulating metabolites is unknown. To address this question, we have developed an in vitro disease-in-a-dish model using iPS cells from T2D patients differentiated into myoblasts (iMyos). We find that T2D iMyos in culture exhibit multiple defects mirroring human disease, including an altered insulin signaling, decreased insulin-stimulated glucose uptake, and reduced mitochondrial oxidation. More strikingly, global phosphoproteomic analysis reveals a multidimensional network of signaling defects in T2D iMyos going beyond the canonical insulin-signaling cascade, including proteins involved in regulation of Rho GTPases, mRNA splicing and/or processing, vesicular trafficking, gene transcription, and chromatin remodeling. These cell-autonomous defects and the dysregulated network of protein phosphorylation reveal a new dimension in the cellular mechanisms underlying the fundamental defects in T2D.
Collapse
Affiliation(s)
- Thiago M Batista
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ashok Kumar Jayavelu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nicolai J Wewer Albrechtsen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Salvatore Iovino
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jasmin Lebastchi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
16
|
Gupta MK, Vethe H, Softic S, Rao TN, Wagh V, Shirakawa J, Barsnes H, Vaudel M, Takatani T, Kahraman S, Sakaguchi M, Martinez R, Hu J, Bjørlykke Y, Raeder H, Kulkarni RN. Leptin Receptor Signaling Regulates Protein Synthesis Pathways and Neuronal Differentiation in Pluripotent Stem Cells. Stem Cell Reports 2020; 15:1067-1079. [PMID: 33125875 PMCID: PMC7664055 DOI: 10.1016/j.stemcr.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 01/05/2023] Open
Abstract
The role of leptin receptor (OB-R) signaling in linking pluripotency with growth and development and the consequences of dysfunctional leptin signaling on progression of metabolic disease is poorly understood. Using a global unbiased proteomics approach we report that embryonic fibroblasts (MEFs) carrying the db/db mutation exhibit metabolic abnormalities, while their reprogrammed induced pluripotent stem cells (iPSCs) show altered expression of proteins involved in embryonic development. An upregulation in expression of eukaryotic translation initiation factor 4e (Eif4e) and Stat3 binding to the Eif4e promoter was supported by enhanced protein synthesis in mutant iPSCs. Directed differentiation of db/db iPSCs toward the neuronal lineage showed defects. Gene editing to correct the point mutation in db/db iPSCs using CRISPR-Cas9, restored expression of neuronal markers and protein synthesis while reversing the metabolic defects. These data imply a direct role for OB-R in regulating metabolism in embryonic fibroblasts and key developmental pathways in iPSCs. Pluripotency markers are decreased in db/db iPSCs (lacking functional OB-R) Mouse db/db iPSCs exhibit higher protein synthesis mediated by the Stat3/Eif4e axis OB-R signaling regulates neuronal development markers—NOGGIN, NESTIN, GFAP CRISPR correction reverses defects in db/db iPSCs
Collapse
Affiliation(s)
- Manoj K Gupta
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Heidrun Vethe
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; KG Jebsen Center for Diabetes Research, Department of Clinical Medicine, University of Bergen, Bergen 5009, Norway
| | - Samir Softic
- Department of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA; Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tata Nageswara Rao
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; University Clinic of Hematology, Department of Biomedical Research, Inselspital Bern and University of Bern, Bern, Switzerland
| | - Vilas Wagh
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jun Shirakawa
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Harald Barsnes
- KG Jebsen Center for Diabetes Research, Department of Clinical Medicine, University of Bergen, Bergen 5009, Norway; Proteomics Unit, Department of Biomedicine, University of Bergen, Norway
| | - Marc Vaudel
- KG Jebsen Center for Diabetes Research, Department of Clinical Medicine, University of Bergen, Bergen 5009, Norway; Proteomics Unit, Department of Biomedicine, University of Bergen, Norway
| | - Tomozumi Takatani
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Sevim Kahraman
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Masaji Sakaguchi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rachael Martinez
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jiang Hu
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yngvild Bjørlykke
- KG Jebsen Center for Diabetes Research, Department of Clinical Medicine, University of Bergen, Bergen 5009, Norway; Department of Pediatrics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Helge Raeder
- KG Jebsen Center for Diabetes Research, Department of Clinical Medicine, University of Bergen, Bergen 5009, Norway; Department of Pediatrics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
17
|
Casalena GA, Yu L, Gil R, Rodriguez S, Sosa S, Janssen W, Azeloglu EU, Leventhal JS, Daehn IS. The diabetic microenvironment causes mitochondrial oxidative stress in glomerular endothelial cells and pathological crosstalk with podocytes. Cell Commun Signal 2020; 18:105. [PMID: 32641054 PMCID: PMC7341607 DOI: 10.1186/s12964-020-00605-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the setting of diabetes mellitus, mitochondrial dysfunction and oxidative stress are important pathogenic mechanisms causing end organ damage, including diabetic kidney disease (DKD), but mechanistic understanding at a cellular level remains obscure. In mouse models of DKD, glomerular endothelial cell (GEC) dysfunction precedes albuminuria and contributes to neighboring podocyte dysfunction, implicating GECs in breakdown of the glomerular filtration barrier. In the following studies we wished to explore the cellular mechanisms by which GECs become dysfunctional in the diabetic milieu, and the impact to neighboring podocytes. METHODS Mouse GECs were exposed to high glucose media (HG) or 2.5% v/v serum from diabetic mice or serum from non-diabetic controls, and evaluated for mitochondrial function (oxygen consumption), structure (electron microscopy), morphology (mitotracker), mitochondrial superoxide (mitoSOX), as well as accumulation of oxidized products (DNA lesion frequency (8-oxoG, endo-G), double strand breaks (γ-H2AX), endothelial function (NOS activity), autophagy (LC3) and apoptotic cell death (Annexin/PI; caspase 3). Supernatant transfer experiments from GECs to podocytes were performed to establish the effects on podocyte survival and transwell experiments were performed to determine the effects in co-culture. RESULTS Diabetic serum specifically causes mitochondrial dysfunction and mitochondrial superoxide release in GECs. There is a rapid oxidation of mitochondrial DNA and loss of mitochondrial biogenesis without cell death. Many of these effects are blocked by mitoTEMPO a selective mitochondrial anti-oxidant. Secreted factors from dysfunctional GECs were sufficient to cause podocyte apoptosis in supernatant transfer experiments, or in co-culture but this did not occur when GECs had been previously treated with mitoTEMPO. CONCLUSION Dissecting the impact of the diabetic environment on individual cell-types from the kidney glomerulus indicates that GECs become dysfunctional and pathological to neighboring podocytes by increased levels of mitochondrial superoxide in GEC. These studies indicate that GEC-signaling to podocytes contributes to the loss of the glomerular filtration barrier in DKD. Video abstract.
Collapse
Affiliation(s)
- Gabriella A Casalena
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - Liping Yu
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - Roberto Gil
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - Samuel Rodriguez
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - Shantel Sosa
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - William Janssen
- Microscopy CoRE, The Icahn School of Medicine at Mount Sinai, New York, USA
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - Jeremy S Leventhal
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - Ilse S Daehn
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA.
| |
Collapse
|
18
|
New insights into human beta cell biology using human pluripotent stem cells. Semin Cell Dev Biol 2020; 103:31-40. [DOI: 10.1016/j.semcdb.2019.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/21/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
|
19
|
Kumar V, Agrawal R, Pandey A, Kopf S, Hoeffgen M, Kaymak S, Bandapalli OR, Gorbunova V, Seluanov A, Mall MA, Herzig S, Nawroth PP. Compromised DNA repair is responsible for diabetes-associated fibrosis. EMBO J 2020; 39:e103477. [PMID: 32338774 PMCID: PMC7265245 DOI: 10.15252/embj.2019103477] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 11/09/2022] Open
Abstract
Diabetes-associated organ fibrosis, marked by elevated cellular senescence, is a growing health concern. Intriguingly, the mechanism underlying this association remained unknown. Moreover, insulin alone can neither reverse organ fibrosis nor the associated secretory phenotype, favoring the exciting notion that thus far unknown mechanisms must be operative. Here, we show that experimental type 1 and type 2 diabetes impairs DNA repair, leading to senescence, inflammatory phenotypes, and ultimately fibrosis. Carbohydrates were found to trigger this cascade by decreasing the NAD+ /NADH ratio and NHEJ-repair in vitro and in diabetes mouse models. Restoring DNA repair by nuclear over-expression of phosphomimetic RAGE reduces DNA damage, inflammation, and fibrosis, thereby restoring organ function. Our study provides a novel conceptual framework for understanding diabetic fibrosis on the basis of persistent DNA damage signaling and points to unprecedented approaches to restore DNA repair capacity for resolution of fibrosis in patients with diabetes.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.,European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Heidelberg, Germany
| | - Raman Agrawal
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Aparamita Pandey
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Heidelberg, Germany
| | - Manuel Hoeffgen
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Serap Kaymak
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Hopp Children's Cancer Center, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Heidelberg, Germany.,Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany.,Technical University Munich, Munich, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Heidelberg, Germany.,Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany
| |
Collapse
|
20
|
Vaisar T, Kanter JE, Wimberger J, Irwin AD, Gauthier J, Wolfson E, Bahnam V, Wu IH, Shah H, Keenan HA, Greenbaum CJ, King GL, Heinecke JW, Bornfeldt KE. High Concentration of Medium-Sized HDL Particles and Enrichment in HDL Paraoxonase 1 Associate With Protection From Vascular Complications in People With Long-standing Type 1 Diabetes. Diabetes Care 2020; 43:178-186. [PMID: 31597668 PMCID: PMC6925582 DOI: 10.2337/dc19-0772] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/18/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE A subset of people with long-standing type 1 diabetes (T1D) appears to be protected from microvascular and macrovascular complications. Previous studies have focused on improved abilities to respond to glucose and its downstream effects as protective mechanisms. It is unclear whether lipoproteins play a role in the vascular health of these people. We therefore determined whether HDL particle concentration, size, function, and/or protein composition associate with protection from vascular complications. RESEARCH DESIGN AND METHODS We studied two independent cross-sectional cohorts with T1D: the T1D Exchange Living Biobank (n = 47) and the Joslin Medalist Study (n = 100). Some of the subjects had vascular complications, whereas others never exhibited vascular complications, despite an average duration of diabetes in the cohorts of 45 years. We assessed HDL particle size and concentration by calibrated ion mobility analysis, the HDL proteome by targeted mass spectrometry, and HDL function ex vivo by quantifying cholesterol efflux capacity and inhibition of monocyte adhesion to endothelial cells. RESULTS In both cohorts, people without vascular complications exhibited significantly higher concentrations of medium-sized HDL particles (M-HDL) independently of total and HDL cholesterol levels. While no consistent differences in HDL functions were observed ex vivo, people without vascular complications had higher levels of HDL-associated paraoxonase 1 (PON1), an enzyme that inhibits atherosclerosis in animal models. CONCLUSIONS Elevated concentrations of M-HDL particles and elevated levels of HDL-associated PON1 may contribute to long-term protection from the vascular complications of diabetes by pathways that are independent of total cholesterol and HDL cholesterol.
Collapse
Affiliation(s)
- Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA
| | - Jake Wimberger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA
| | - Angela D Irwin
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA
| | - John Gauthier
- Research Division, Joslin Diabetes Center, Boston, MA
| | - Emily Wolfson
- Research Division, Joslin Diabetes Center, Boston, MA
| | | | - I-Hsien Wu
- Research Division, Joslin Diabetes Center, Boston, MA
| | - Hetal Shah
- Research Division, Joslin Diabetes Center, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | | | | | - George L King
- Research Division, Joslin Diabetes Center, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Jay W Heinecke
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA .,Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
21
|
Gupta MK, De Jesus DF, Kahraman S, Valdez IA, Shamsi F, Yi L, Swensen AC, Tseng YH, Qian WJ, Kulkarni RN. Insulin receptor-mediated signaling regulates pluripotency markers and lineage differentiation. Mol Metab 2018; 18:153-163. [PMID: 30316806 PMCID: PMC6308035 DOI: 10.1016/j.molmet.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022] Open
Abstract
Objectives Insulin receptor (IR)-mediated signaling is involved in the regulation of pluripotent stem cells; however, its direct effects on regulating the maintenance of pluripotency and lineage development are not fully understood. The main objective of this study is to understand the role of IR signaling in pluripotency and lineage development. Methods To explore the role of IR signaling, we generated IR knock-out (IRKO) mouse induced pluripotent stem cells (miPSCs) from E14.5 mouse embryonic fibroblasts (MEFs) of global IRKO mice using a cocktail of four reprogramming factors: Oct4, Sox2, Klf4, cMyc. We performed pluripotency characterization and directed the differentiation of control and IRKO iPSCs into neural progenitors (ectoderm), adipocyte progenitors (mesoderm), and pancreatic beta-like cells (endoderm). We mechanistically confirmed these findings via phosphoproteomics analyses of control and IRKO iPSCs. Results Interestingly, expression of pluripotency markers including Klf4, Lin28a, Tbx3, and cMyc were upregulated, while abundance of Oct4 and Nanog were enhanced by 4-fold and 3-fold, respectively, in IRKO iPSCs. Analyses of signaling pathways demonstrated downregulation of phospho-STAT3, p-mTor and p-Erk and an increase in the total mTor and Erk proteins in IRKO iPSCs in the basal unstimulated state. Stimulation with leukemia inhibitory factor (LIF) showed a ∼33% decrease of phospho-ERK in IRKO iPSCs. On the contrary, Erk phosphorylation was increased during in vitro spontaneous differentiation of iPSCs lacking IRs. Lineage-specific directed differentiation of the iPSCs revealed that cells lacking IR showed enhanced expression of neuronal lineage markers (Pax6, Tubb3, Ascl1 and Oligo2) while exhibiting a decrease in adipocyte (Fas, Acc, Pparγ, Fabp4, C/ebpα, and Fsp27) and pancreatic beta cell markers (Ngn3, Isl1, and Sox9). Further molecular characterization by phosphoproteomics confirmed the novel IR-mediated regulation of the global pluripotency network including several key proteins involved in diverse aspects of growth and embryonic development. Conclusion We report, for the first time to our knowledge, the phosphoproteome of insulin, IGF1, and LIF stimulation in mouse iPSCs to reveal the importance of insulin receptor signaling for the maintenance of pluripotency and lineage determination. Insulin receptor signaling regulates expression of key pluripotency genes including Oct4 and Nanog. IRKO iPSCs show upregulation of neuronal markers during differentiation. Adipocyte and pancreatic beta cell differentiation are perturbed in IRKO iPSCs. Phosphoproteomics analyses confirmed the role of IR in regulation of pluripotency and developmental proteins.
Collapse
Affiliation(s)
- Manoj K Gupta
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Dario F De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA; Graduate Program in Areas of Basic and Applied Biology (GABBA), Abel Salazar Biomedical Sciences Institute, University of Porto, 5000 Porto, Portugal
| | - Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ivan A Valdez
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Farnaz Shamsi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lian Yi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Yu-Hua Tseng
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
22
|
Satake E, Pezzolesi MG, Md Dom ZI, Smiles AM, Niewczas MA, Krolewski AS. Circulating miRNA Profiles Associated With Hyperglycemia in Patients With Type 1 Diabetes. Diabetes 2018; 67:1013-1023. [PMID: 29453204 PMCID: PMC5910001 DOI: 10.2337/db17-1207] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
We investigated plasma microRNA (miRNA) profiles associated with variation of hyperglycemia, measured as hemoglobin A1c (HbA1c), in two panels of patients with type 1 diabetes (T1D). Using the HTG Molecular Diagnostics EdgeSeq platform, 2,083 miRNAs were measured in plasma from 71 patients included in a screening panel. Quantitative real-time PCR was used to measure the candidate miRNAs in plasma from 95 patients included in an independent replication panel. We found 10 miRNAs replicated in both panels and 4 with high statistical significance. The strongest positive correlations with HbA1c were found with miR-125b-5p (rs = 0.40, P = 6.0 × 10-5) and miR-365a-3p (rs = 0.35, P = 5.9 × 10-4). The strongest negative correlations were found with miR-5190 (rs = -0.30, P = 0.003) and miR-770-5p (rs = -0.27, P = 0.008). Pathway analysis revealed that 50 Kyoto Encyclopedia of Genes and Genomes pathways were significantly enriched by genes targeted by these four miRNAs. The axon guidance signaling pathway was enriched (P < 1 × 10-7) by genes targeted by all four miRNAs. In addition, three other pathways (Rap1 signaling, focal adhesion, and neurotrophin signaling) were also significantly enriched but with genes targeted by only by three of the identified miRNAs. In conclusion, our study identified four circulating miRNAs that were influenced by variation in hyperglycemia. Dysregulation of these miRNAs, which are associated with hyperglycemia in patients with T1D, may contribute to the development of diabetes complications. However, there are multitudes of possible mechanisms/pathways through which dysregulation of these miRNAs may impact risk of diabetes complications.
Collapse
Affiliation(s)
- Eiichiro Satake
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Marcus G Pezzolesi
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT
| | - Zaipul I Md Dom
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Adam M Smiles
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA
| | - Monika A Niewczas
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Andrzej S Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
23
|
Riedinger C, Mendler M, Schlotterer A, Fleming T, Okun J, Hammes HP, Herzig S, Nawroth PP. High-glucose toxicity is mediated by AICAR-transformylase/IMP cyclohydrolase and mitigated by AMP-activated protein kinase in Caenorhabditis elegans. J Biol Chem 2018; 293:4845-4859. [PMID: 29414769 PMCID: PMC5880143 DOI: 10.1074/jbc.m117.805879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/29/2018] [Indexed: 11/06/2022] Open
Abstract
The enzyme AICAR-transformylase/IMP cyclohydrolase (ATIC) catalyzes the last two steps of purine de novo synthesis. It metabolizes 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), which is an AMP analogue, leading to activation of AMP-activated kinase (AMPK). We investigated whether the AICAR-ATIC pathway plays a role in the high glucose (HG)-mediated DNA damage response and AICAR-mediated AMPK activation, explaining the detrimental effects of glucose on neuronal damage and shortening of the lifespan. HG up-regulated the expression and activity of the Caenorhabditis elegans homologue of ATIC, C55F2.1 (atic-1), and increased the levels of reactive oxygen species and methylglyoxal-derived advanced glycation end products. Overexpression of atic-1 decreased the lifespan and head motility and increased neuronal damage under both standard and HG conditions. Inhibition of atic-1 expression, by RNAi, under HG was associated with increased lifespan and head motility and reduced neuronal damage, reactive oxygen species, and methylglyoxal-derived advanced glycation end product accumulation. This effect was independent of an effect on DNA damage or antioxidant defense pathways, such as superoxide dismutase (sod-3) or glyoxalase-1 (glod-4), but was dependent on AMPK and accumulation of AICAR. Through AMPK, AICAR treatment also reduced the negative effects of HG. The mitochondrial inhibitor rotenone abolished the AICAR/AMPK-induced amelioration of HG effects, pointing to mitochondria as a prime target of the glucotoxic effects in C. elegans We conclude that atic-1 is involved in glucotoxic effects under HG conditions, either by blocked atic-1 expression or via AICAR and AMPK induction.
Collapse
Affiliation(s)
- Christin Riedinger
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Michael Mendler
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Andrea Schlotterer
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Jürgen Okun
- Department of Pediatrics, Dietmar Hopp Metabolism Centre, 69120 Heidelberg, Germany
| | - Hans-Peter Hammes
- V. Medical Hospital, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Joint Heidelberg Institute for Diabetes and Cancer Translational Diabetes Program, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; German Center for Diabetes Research, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Joint Heidelberg Institute for Diabetes and Cancer Translational Diabetes Program, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; German Center for Diabetes Research, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
24
|
Miao C, Chang J, Zhang G, Fang Y. MicroRNAs in type 1 diabetes: new research progress and potential directions. Biochem Cell Biol 2018; 96:498-506. [PMID: 29554441 DOI: 10.1139/bcb-2018-0027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of noncoding single-stranded RNA molecules encoded by endogenous genes of about 22 nucleotides, which are involved in post-transcriptional gene expression regulation in animals and plants. Type 1 diabetes (T1D) is an autoimmune disease that is clinically silent until the majority of β cells are destroyed, and a large number of studies have shown that miRNAs are involved in the pathological mechanism of T1D. In this review, we searched the related research in recent years and summarized the important roles of miRNAs in T1D diagnosis and treatment. Furthermore, we summarized the current understanding of miRNA-mediated regulation mechanisms of gene expression in the T1D pathogenesis as well as related signaling pathways with a focus on the important roles of miRNAs and their antagonists in T1D pathogenesis, and brought insight into the potential therapeutic value of miRNAs for T1D patients. In view of the important roles of miRNAs in T1D pathology, disordered miRNAs may be important diagnostic markers and therapeutic targets for patients with T1D.
Collapse
Affiliation(s)
- Chenggui Miao
- a Department of Pharmacy, College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Jun Chang
- b Department of Orthopaedics, 4th Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Guoxue Zhang
- c College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanxi Fang
- a Department of Pharmacy, College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
25
|
Chambers SEJ, O'Neill CL, Guduric-Fuchs J, McLoughlin KJ, Liew A, Egan AM, O'Brien T, Stitt AW, Medina RJ. The Vasoreparative Function of Myeloid Angiogenic Cells Is Impaired in Diabetes Through the Induction of IL1β. Stem Cells 2018; 36:834-843. [PMID: 29484768 PMCID: PMC6001623 DOI: 10.1002/stem.2810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 01/26/2023]
Abstract
Myeloid angiogenic cells (MACs) promote revascularization through the paracrine release of angiogenic factors and have been harnessed as therapeutic cells for many ischemic diseases. However, their proangiogenic properties have been suggested to be diminished in diabetes. This study investigates how the diabetic milieu affects the immunophenotype and function of MACs. Both MACs isolated from diabetic conditions and healthy cells exposed to a diabetic environment were used to determine the potential of MACs as a cell therapy for diabetic‐related ischemia. MACs were isolated from human peripheral blood and characterized alongside proinflammatory macrophages M (LPS + IFNγ) and proangiogenic macrophages M (IL4). Functional changes in MACs in response to high‐d‐glucose were assessed using an in vitro 3D‐tubulogenesis assay. Phenotypic changes were determined by gene and protein expression analysis. Additionally, MACs from type 1 diabetic (T1D) patients and corresponding controls were isolated and characterized. Our evidence demonstrates MACs identity as a distinct macrophage subtype that shares M2 proangiogenic characteristics, but can be distinguished by CD163hi expression. High‐d‐glucose treatment significantly reduced MACs proangiogenic capacity, which was associated with a significant increase in IL1β mRNA and protein expression. Inhibition of IL1β abrogated the antiangiogenic effect induced by high‐d‐glucose. IL1β was also significantly upregulated in MACs isolated from T1D patients with microvascular complications compared to T1D patients without microvascular complications or nondiabetic volunteers. This study demonstrates that Type 1 diabetes and diabetic‐like conditions impair the proangiogenic and regenerative capacity of MACs, and this response is mediated by IL‐1β. Stem Cells2018;36:834–843
Collapse
Affiliation(s)
- Sarah E J Chambers
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Christina L O'Neill
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Kiran J McLoughlin
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Aaron Liew
- Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science
| | - Aoife M Egan
- Galway Diabetes Research Centre, Department of Medicine, National University of Ireland, Galway, Ireland.,Department of Endocrinology, University Hospital Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
26
|
Kondo Y, Toyoda T, Inagaki N, Osafune K. iPSC technology-based regenerative therapy for diabetes. J Diabetes Investig 2018; 9:234-243. [PMID: 28609558 PMCID: PMC5835458 DOI: 10.1111/jdi.12702] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/01/2017] [Accepted: 06/04/2017] [Indexed: 12/28/2022] Open
Abstract
The directed differentiation of human pluripotent stem cells, such as embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), into pancreatic endocrine lineages has been vigorously examined by reproducing the in vivo developmental processes of the pancreas. Recent advances in this research field have enabled the generation from hESCs/iPSCs of functionally mature β-like cells in vitro that show glucose-responsive insulin secretion ability. The therapeutic potentials of hESC/iPSC-derived pancreatic cells have been evaluated using diabetic animal models, and transplantation methods including immunoprotective devices that prevent immune responses from hosts to the implanted pancreatic cells have been investigated towards the development of regenerative therapies against diabetes. These efforts led to the start of a clinical trial that involves the implantation of hESC-derived pancreatic progenitors into type 1 diabetes patients. In addition, patient-derived iPSCs have been generated from diabetes-related disorders towards the creation of novel in vitro disease models and drug discovery, although few reports so far have analyzed the disease mechanisms. Considering recent advances in differentiation methods that generate pancreatic endocrine lineages, we will see the development of novel cell therapies and therapeutic drugs against diabetes based on iPSC technology-based research in the next decade.
Collapse
Affiliation(s)
- Yasushi Kondo
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Department of Diabetes, Endocrinology and NutritionKyoto University Graduate School of MedicineKyotoJapan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and NutritionKyoto University Graduate School of MedicineKyotoJapan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| |
Collapse
|
27
|
Weisman A, Lovblom LE, Keenan HA, Tinsley LJ, D'Eon S, Boulet G, Farooqi MA, Lovshin JA, Orszag A, Lytvyn Y, Brent MH, Paul N, Bril V, Cherney DZ, Perkins BA. Diabetes Care Disparities in Long-standing Type 1 Diabetes in Canada and the U.S.: A Cross-sectional Comparison. Diabetes Care 2018; 41:88-95. [PMID: 29118059 PMCID: PMC5741151 DOI: 10.2337/dc17-1074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/05/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess national differences in diabetes care and quality of life (QOL) between individuals with long-standing type 1 diabetes (≥50 years) in Canada and the U.S. RESEARCH DESIGN AND METHODS Cross-sectional data from identical surveys administered in the Canadian Study of Longevity in Diabetes and the Joslin Medalist Study, collected in 2013-2016 and 2005-2011, respectively, were compared. Laboratory values and ophthalmic examination were completed by clinical care physicians for Canadians and the Joslin Clinic for Americans. Univariate comparisons and multivariable regression for HbA1c, QOL, insulin pump use, and coronary artery disease (CAD) were performed. Nephropathy, CAD, and peripheral arterial disease (PAD) were self-reported; neuropathy was defined by a Michigan Neuropathy Screening Instrument (Questionnaire component) score ≥3, and proliferative retinopathy was documented from ophthalmic examination. QOL was self-reported on an ordinal scale. RESULTS Three hundred sixty-one Canadians and 668 Americans had similar ages (mean 65.78 years [SD 8.67] vs. 66.38 years [7.66], P = 0.27) and durations of diabetes (median 53.00 years [interquartile range 51.00, 58.00] vs. 53.00 years [51.00, 57.00], P = 0.51). Canadians had higher HbA1c (mean 7.53% [SD 1.03] [59 mmol/mol] vs. 7.22% [0.98] [55 mmol/mol], P < 0.0001), lower QOL (36.9% vs. 48.7% with "excellent" QOL, P = 0.0002), and less CAD (29.7% vs. 41.2%, P = 0.0003) and insulin pump use (43.3% vs. 55.6%, P = 0.0002). Other complication rates were similar. Residual differences for Canadians compared with Americans remained after adjustment for age, sex, CAD, PAD, education, and relevant a priori selected variables: 0.28% higher HbA1c (P = 0.0004); and odds ratios of 0.68 (95% CI 0.51, 0.90), 0.46 (0.31, 0.68), and 0.71 (0.52, 0.96) for higher QOL, CAD, and insulin pump use, respectively. CONCLUSIONS Although Canadians and Americans have similar rates of complications other than CAD, further research is required to understand why Canadians have higher HbA1c levels, lower QOL, and less insulin pump use.
Collapse
Affiliation(s)
- Alanna Weisman
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Leif E Lovblom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | - Genevieve Boulet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mohammed A Farooqi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Julie A Lovshin
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Andrej Orszag
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yuliya Lytvyn
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael H Brent
- Department of Ophthalmology & Vision Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Narinder Paul
- Division of Cardiothoracic Imaging, Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Vera Bril
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Z Cherney
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada .,Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Nawroth PP, Bendszus M, Pham M, Jende J, Heiland S, Ries S, Schumann C, Schmelz M, Schuh-Hofer S, Treede RD, Kuner R, Oikonomou D, Groener JB, Kopf S. The Quest for more Research on Painful Diabetic Neuropathy. Neuroscience 2017; 387:28-37. [PMID: 28942323 DOI: 10.1016/j.neuroscience.2017.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/07/2017] [Accepted: 09/12/2017] [Indexed: 01/15/2023]
Abstract
A 62-year-old diabetologist diagnosed himself to have diabetes type-2, with an HbA1c of 9.5. Five months after lifestyle intervention and a multi-drug approach, HbA1c was 6.3, systolic blood pressure was below 135mmHg and BMI reduced to 27. But he suffered from severe painful diabetic neuropathy. Therefore he decided to visit his friend, a famous neuroscientist at an even more famous university. He asked him several plain questions: 1. What is the natural course of painful diabetic neuropathy? 2. Why do I have, despite almost normalizing HbA1c, more problems than before? 3. Are you sure my problems are due to diabetes or should we do a nerve biopsy? 4. Are there imaging techniques helpful for the diagnosis of this diabetic complication, starting in the distal nerve endings of the foot and slowly moving ahead? 5. Can you suggest any drug, specific and effective, for relieving painful diabetic neuropathy? This review will use the experts' answers to the questions of the diabetologist, not only to give a summary of the current knowledge, but even more to highlight areas of research needed for improving the fate of patients with painful diabetic neuropathy. Based on the unknowns, which exceed the knowns in diabetic neuropathy, a quest for more public support of research is made.
Collapse
Affiliation(s)
- P P Nawroth
- University Hospital Heidelberg, Department of Internal Medicine 1 and Clinical Chemistry, Heidelberg, Germany; German Center for Diabetes Research (DZD), Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany.
| | - M Bendszus
- University Hospital Heidelberg, Department of Neuroradiology, Heidelberg, Germany
| | - M Pham
- University Hospital Würzburg, Department of Neuroradiology, Würzburg, Germany
| | - J Jende
- University Hospital Heidelberg, Department of Neuroradiology, Heidelberg, Germany
| | - S Heiland
- University Hospital Heidelberg, Department of Neuroradiology, Heidelberg, Germany
| | - S Ries
- Neuro Centrum Odenwald, Darmstadt, Germany
| | - C Schumann
- Neuro Centrum Odenwald, Darmstadt, Germany
| | - M Schmelz
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - S Schuh-Hofer
- Department of Neurophysiology, Centre of Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - R D Treede
- Department of Neurophysiology, Centre of Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - R Kuner
- University of Heidelberg, Institute of Pharmacology, Heidelberg, Germany
| | - D Oikonomou
- University Hospital Heidelberg, Department of Internal Medicine 1 and Clinical Chemistry, Heidelberg, Germany
| | - J B Groener
- University Hospital Heidelberg, Department of Internal Medicine 1 and Clinical Chemistry, Heidelberg, Germany; German Center for Diabetes Research (DZD), Germany
| | - S Kopf
- University Hospital Heidelberg, Department of Internal Medicine 1 and Clinical Chemistry, Heidelberg, Germany; German Center for Diabetes Research (DZD), Germany
| |
Collapse
|
29
|
Loeken MR. Importance of long-term care of diabetic women starting in pregnancy. Diabetes Metab Res Rev 2017; 33:10.1002/dmrr.2906. [PMID: 28486767 PMCID: PMC5640448 DOI: 10.1002/dmrr.2906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/15/2017] [Accepted: 05/04/2017] [Indexed: 11/06/2022]
Abstract
Large scale, multi-center, controlled studies have demonstrated the importance of glycemic control, as indicated by HbA1c levels, in reducing the incidence and progression of diabetic complications. However, Yasue Omori, who began practicing medicine in Tokyo 60 years ago, in 1957, has the vantage point of long-term continuing care for women with type 2 diabetes, some for several decades. An internist who specializes in diabetic pregnancy, Dr Omori began caring for many of her patients during their pregnancies and continued to care for them following their deliveries, some now more than 50 years. Surprisingly, despite lack of optimal HbA1c levels, they have suffered relatively few diabetic complications. As reported in "The importance of nonstop treatment after delivery for pregnant women with type 2 diabetes" in Diabetes/Metabolism Research and Reviews, Omori and colleagues present a historical perspective that provides evidence that a long-term patient-care giver relationship following pregnancy can be valuable in reducing the onset and progression of diabetic complications.
Collapse
Affiliation(s)
- Mary R Loeken
- Section on Islet and Regenerative Cell Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Satthenapalli VR, Lamberts RR, Katare RG. Concise Review: Challenges in Regenerating the Diabetic Heart: A Comprehensive Review. Stem Cells 2017; 35:2009-2026. [PMID: 28639375 DOI: 10.1002/stem.2661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022]
Abstract
Stem cell therapy is one of the promising regenerative strategies developed to improve cardiac function in patients with ischemic heart diseases (IHD). However, this approach is limited in IHD patients with diabetes due to a progressive decline in the regenerative capacity of stem cells. This decline is mainly attributed to the metabolic memory incurred by diabetes on stem cell niche and their systemic cues. Understanding the molecular pathways involved in the diabetes-induced deterioration of stem cell function will be critical for developing new cardiac regeneration therapies. In this review, we first discuss the most common molecular alterations occurring in the diabetic stem cells/progenitor cells. Next, we highlight the key signaling pathways that can be dysregulated in a diabetic environment and impair the mobilization of stem/progenitor cells, which is essential for the transplanted/endogenous stem cells to reach the site of injury. We further discuss the possible methods of preconditioning the diabetic cardiac progenitor cell (CPC) with an aim to enrich the availability of efficient stem cells to regenerate the diseased diabetic heart. Finally, we propose new modalities for enriching the diabetic CPC through genetic or tissue engineering that would aid in developing autologous therapeutic strategies, improving the proliferative, angiogenic, and cardiogenic properties of diabetic stem/progenitor cells. Stem Cells 2017;35:2009-2026.
Collapse
Affiliation(s)
- Venkata R Satthenapalli
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Rajesh G Katare
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
31
|
Abstract
The induced pluripotent stem cell (iPSC) was first described more than 10 years ago and is currently used in various basic science and clinical research fields. The aim of this report is to examine the trends in research using iPSCs over the last 10 years. The 2006-2016 PubMed database was searched using the MeSH term "induced pluripotent stem cells." Only original research articles were selected, with a total of 3323 articles. These were classified according to research theme into reprogramming, differentiation protocols for specific cells and/or tissues, pathophysiological research on diseases, and discovery of new drugs, and then the trends over the years were analyzed. We also focused on 232 research publications on the pathophysiological causes of diseases and drug discovery with impact factor (IF; Thomson Reuters) of six or more. The IF of each article was summed up by year, by main target disease, and by country, and the total IF score was expressed as trends of research. The trends of research activities of reprogramming and differentiation on specific cells and/or tissues reached maxima in 2013/2014. On the other hand, research on pathophysiology and drug discovery increased continuously. The 232 articles with IF ≥6 dealt with neurological, immunological/hematological, cardiovascular, and digestive tract diseases, in that order. The majority of articles were published from the United States, followed by Japan, Germany, and United Kingdom. In conclusion, iPSCs have become a general tool for pathophysiological research on disease and drug discovery.
Collapse
Affiliation(s)
- Takaharu Negoro
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hanayuki Okura
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Akifumi Matsuyama
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
32
|
Dalgaard LT, Eliasson L. An 'alpha-beta' of pancreatic islet microribonucleotides. Int J Biochem Cell Biol 2017; 88:208-219. [PMID: 28122254 DOI: 10.1016/j.biocel.2017.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are cellular, short, non-coding ribonucleotides acting as endogenous posttranscriptional repressors following incorporation in the RNA-induced silencing complex. Despite being chemically and mechanistically very similar, miRNAs exert a multitude of different cellular effects by acting on mRNA species, whose gene-products partake in a wide array of processes. Here, the aim was to review the knowledge of miRNA expression and action in the islet of Langerhans. We have focused on: 1) physiological consequences of islet or beta cell specific inhibition of miRNA processing, 2) mechanisms regulating processing of miRNAs in islet cells, 3) presence and function of miRNAs in alpha versus beta cells - the two main cell types of islets, and 4) miRNA mediators of beta cell decompensation. It is clear that miRNAs regulate pancreatic islet development, maturation, and function in vivo. Moreover, processing of miRNAs appears to be altered by obesity, diabetes, and aging. A number of miRNAs (such as miR-7, miR-21, miR-29, miR-34a, miR-212/miR-132, miR-184, miR-200 and miR-375) are involved in mediating beta cell dysfunction and/or compensation induced by hyperglycemia, oxidative stress, cytotoxic cytokines, and in rodent models of fetal metabolic programming prediabetes and overt diabetes. Studies of human type 2 diabetic islets underline that these miRNA families could have important roles also in human type 2 diabetes. Furthermore, there is a genuine gap of knowledge regarding miRNA expression and function in pancreatic alpha cells. Progress in this area would be enhanced by improved in vitro alpha cell models and better tools for islet cell sorting.
Collapse
Affiliation(s)
| | - Lena Eliasson
- Lund University Diabetes Center, Department of Clinical Sciences Malmö, CRC, SUS, Malmö, Sweden.
| |
Collapse
|
33
|
Chan CYX, Gritsenko MA, Smith RD, Qian WJ. The current state of the art of quantitative phosphoproteomics and its applications to diabetes research. Expert Rev Proteomics 2016; 13:421-33. [PMID: 26960075 DOI: 10.1586/14789450.2016.1164604] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation is a fundamental regulatory mechanism in many cellular processes and aberrant perturbation of phosphorylation has been implicated in various human diseases. Kinases and their cognate inhibitors have been considered as hotspots for drug development. Therefore, the emerging tools, which enable a system-wide quantitative profiling of phosphoproteome, would offer a powerful impetus in unveiling novel signaling pathways, drug targets and/or biomarkers for diseases of interest. This review highlights recent advances in phosphoproteomics, the current state of the art of the technologies and the challenges and future perspectives of this research area. Finally, some exemplary applications of phosphoproteomics in diabetes research are underscored.
Collapse
Affiliation(s)
- Chi Yuet X'avia Chan
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Marina A Gritsenko
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Richard D Smith
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Wei-Jun Qian
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|
34
|
Kahraman S, Okawa ER, Kulkarni RN. Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes? Curr Diab Rep 2016; 16:70. [PMID: 27313072 PMCID: PMC5877461 DOI: 10.1007/s11892-016-0764-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes is a progressive disease affecting millions of people worldwide. There are several medications and treatment options to improve the life quality of people with diabetes. One of the strategies for the treatment of diabetes could be the use of human pluripotent stem cells or induced pluripotent stem cells. The recent advances in differentiation of stem cells into insulin-secreting beta-like cells in vitro make the transplantation of the stem cell-derived beta-like cells an attractive approach for treatment of type 1 and type 2 diabetes. While stem cell-derived beta-like cells provide an unlimited cell source for beta cell replacement therapies, these cells can also be used as a platform for drug screening or modeling diseases.
Collapse
Affiliation(s)
- Sevim Kahraman
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Erin R Okawa
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Boston, MA, 02215, USA
| | - Rohit N Kulkarni
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA.
- Harvard Stem Cell Institute, Boston, MA, 02215, USA.
| |
Collapse
|
35
|
Li X, Cheng J, Zhou Z. Revisiting multiple models of progression of β-cell loss of function in type 1 diabetes: Significance for prevention and cure. J Diabetes 2016; 8:460-9. [PMID: 26754489 DOI: 10.1111/1753-0407.12376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/24/2015] [Accepted: 01/07/2016] [Indexed: 01/12/2023] Open
Abstract
Type 1 diabetes (T1D) results from a chronic autoimmune process that leads to β-cell destruction and exogenous insulin dependence. The natural history of T1D proposed by Eisenbarth suggested six relatively independent stages over the course of the entire disease process, which was considered to be linear and chronic. Based on this classical theory, immunotherapies aim to prevent or reverse all these periods of β-cell loss. Over the past 30 years, much novel information about the pathogenesis of T1D proved that there are complex metabolic changes occurring throughout the entire disease process. Therefore, new possible models for the natural history of the disease have been proposed; these models, in turn, may help facilitate fresh avenues for the prevention and cure of T1D. Herein, we briefly review recent findings in this field of research, with the aim of providing a better theoretical basis for clinical practice.
Collapse
Affiliation(s)
- Xia Li
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, Hunan, China
| | - Jin Cheng
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
36
|
Proinflammatory Cytokines Induce Endocrine Differentiation in Pancreatic Ductal Cells via STAT3-Dependent NGN3 Activation. Cell Rep 2016; 15:460-470. [PMID: 27068459 DOI: 10.1016/j.celrep.2016.03.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/18/2016] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
A major goal of diabetes research is to develop strategies that replenish pancreatic insulin-producing beta cells. One emerging strategy is to harness pancreatic plasticity-the ability of pancreatic cells to undergo cellular interconversions-a phenomenon implicated in physiological stress and pancreatic injury. Here, we investigate the effects of inflammatory cytokine stress on the differentiation potential of ductal cells in a human cell line, in mouse ductal cells by pancreatic intraductal injection, and during the progression of autoimmune diabetes in the non-obese diabetic (NOD) mouse model. We find that inflammatory cytokine insults stimulate epithelial-to-mesenchymal transition (EMT) as well as the endocrine program in human pancreatic ductal cells via STAT3-dependent NGN3 activation. Furthermore, we show that inflammatory cytokines activate ductal-to-endocrine cell reprogramming in vivo independent of hyperglycemic stress. Together, our findings provide evidence that inflammatory cytokines direct ductal-to-endocrine cell differentiation, with implications for beta cell regeneration.
Collapse
|
37
|
Hall AE, Lu WT, Godfrey JD, Antonov AV, Paicu C, Moxon S, Dalmay T, Wilczynska A, Muller PAJ, Bushell M. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration. Cell Death Dis 2016; 7:e2184. [PMID: 27054339 PMCID: PMC4855670 DOI: 10.1038/cddis.2016.91] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 12/19/2022]
Abstract
The integrity of the genome is maintained by a host of surveillance and repair mechanisms that are pivotal for cellular function. The tumour suppressor protein p53 is a major component of the DNA damage response pathway and plays a vital role in the maintenance of cell-cycle checkpoints. Here we show that a microRNA, miR-486, and its host gene ankyrin-1 (ANK1) are induced by p53 following DNA damage. Strikingly, the cytoskeleton adaptor protein ankyrin-1 was induced over 80-fold following DNA damage. ANK1 is upregulated in response to a variety of DNA damage agents in a range of cell types. We demonstrate that miR-486-5p is involved in controlling G1/S transition following DNA damage, whereas the induction of the ankyrin-1 protein alters the structure of the actin cytoskeleton and sustains limited cell migration during DNA damage. Importantly, we found that higher ANK1 expression correlates with decreased survival in cancer patients. Thus, these observations highlight ANK1 as an important effector downstream of the p53 pathway.
Collapse
Affiliation(s)
- A E Hall
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| | - W-T Lu
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| | - J D Godfrey
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| | - A V Antonov
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| | - C Paicu
- The Genome Analysis Centre, Norwich, UK.,School of Computing Sciences, University of East Anglia, Norwich, UK
| | - S Moxon
- The Genome Analysis Centre, Norwich, UK
| | - T Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - A Wilczynska
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| | - P A J Muller
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| | - M Bushell
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| |
Collapse
|
38
|
Abdelalim EM, Emara MM. Pluripotent Stem Cell-Derived Pancreatic β Cells: From In Vitro Maturation to Clinical Application. RECENT ADVANCES IN STEM CELLS 2016. [DOI: 10.1007/978-3-319-33270-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Abstract
Type 1 diabetes is an autoimmune disease that manifests as impaired insulin secretion, with compounding complications over time. Bhatt et al. (2015) investigate protective mechanisms in survivors of type 1 diabetes by using induced pluripotent stem cells as genetic models, uncovering novel interactions between microRNA and the DNA damage checkpoint pathway.
Collapse
Affiliation(s)
- Curtis R Warren
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Chad A Cowan
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|