1
|
Peschard S, Raverdy V, Bauvin P, Goutchtat R, Touche V, Derudas B, Gheeraert C, Dubois-Chevalier J, Caiazzo R, Baud G, Marciniak C, Verkindt H, Oukhouya Daoud N, Le Roux CW, Lefebvre P, Staels B, Lestavel S, Pattou F. Genetic Evidence of Causal Relation Between Intestinal Glucose Absorption and Early Postprandial Glucose Response: A Mendelian Randomization Study. Diabetes 2024; 73:983-992. [PMID: 38498375 PMCID: PMC11109783 DOI: 10.2337/db23-0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
The postprandial glucose response is an independent risk factor for type 2 diabetes. Observationally, early glucose response after an oral glucose challenge has been linked to intestinal glucose absorption, largely influenced by the expression of sodium-glucose cotransporter 1 (SGLT1). This study uses Mendelian randomization (MR) to estimate the causal effect of intestinal SGLT1 expression on early glucose response. Involving 1,547 subjects with class II/III obesity from the Atlas Biologique de l'Obésité Sévère cohort, the study uses SGLT1 genotyping, oral glucose tolerance tests, and jejunal biopsies to measure SGLT1 expression. A loss-of-function SGLT1 haplotype serves as the instrumental variable, with intestinal SGLT1 expression as the exposure and the change in 30-min postload glycemia from fasting glycemia (Δ30 glucose) as the outcome. Results show that 12.8% of the 1,342 genotyped patients carried the SGLT1 loss-of-function haplotype, associated with a mean Δ30 glucose reduction of -0.41 mmol/L and a significant decrease in intestinal SGLT1 expression. The observational study links a 1-SD decrease in SGLT1 expression to a Δ30 glucose reduction of -0.097 mmol/L. MR analysis parallels these findings, associating a statistically significant reduction in genetically instrumented intestinal SGLT1 expression with a Δ30 glucose decrease of -0.353. In conclusion, the MR analysis provides genetic evidence that reducing intestinal SGLT1 expression causally lowers early postload glucose response. This finding has a potential translational impact on managing early glucose response to prevent or treat type 2 diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Simon Peschard
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1011 Nuclear Receptors, Metabolic and Cardiovascular Diseases, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
| | - Violeta Raverdy
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1190 Translational Research on Diabetes, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
- Department of General and Endocrine Surgery, CHU Lille, Lille, France
| | - Pierre Bauvin
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1190 Translational Research on Diabetes, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
| | - Rebecca Goutchtat
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1190 Translational Research on Diabetes, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
| | - Veronique Touche
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1011 Nuclear Receptors, Metabolic and Cardiovascular Diseases, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
| | - Bruno Derudas
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1011 Nuclear Receptors, Metabolic and Cardiovascular Diseases, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
| | - Celine Gheeraert
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1011 Nuclear Receptors, Metabolic and Cardiovascular Diseases, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
| | - Julie Dubois-Chevalier
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1011 Nuclear Receptors, Metabolic and Cardiovascular Diseases, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
| | - Robert Caiazzo
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1190 Translational Research on Diabetes, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
- Department of General and Endocrine Surgery, CHU Lille, Lille, France
| | - Gregory Baud
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1190 Translational Research on Diabetes, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
- Department of General and Endocrine Surgery, CHU Lille, Lille, France
| | - Camille Marciniak
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1190 Translational Research on Diabetes, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
- Department of General and Endocrine Surgery, CHU Lille, Lille, France
| | - Helene Verkindt
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1190 Translational Research on Diabetes, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
- Department of General and Endocrine Surgery, CHU Lille, Lille, France
| | - Naima Oukhouya Daoud
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1190 Translational Research on Diabetes, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
- Department of General and Endocrine Surgery, CHU Lille, Lille, France
| | - Carel W. Le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1011 Nuclear Receptors, Metabolic and Cardiovascular Diseases, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1011 Nuclear Receptors, Metabolic and Cardiovascular Diseases, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
| | - Sophie Lestavel
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1011 Nuclear Receptors, Metabolic and Cardiovascular Diseases, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
| | - François Pattou
- European Genomic Institute for Diabetes, University Lille, Lille, France
- U1190 Translational Research on Diabetes, Institut Pasteur de Lille, CHU Lille, INSERM, University Lille, Lille, France
- Department of General and Endocrine Surgery, CHU Lille, Lille, France
| |
Collapse
|
2
|
Robert M, Poghosyan T, Maucort-Boulch D, Filippello A, Caiazzo R, Sterkers A, Khamphommala L, Reche F, Malherbe V, Torcivia A, Saber T, Delaunay D, Langlois-Jacques C, Suffisseau A, Bin S, Disse E, Pattou F. Efficacy and safety of one anastomosis gastric bypass versus Roux-en-Y gastric bypass at 5 years (YOMEGA): a prospective, open-label, non-inferiority, randomised extension study. Lancet Diabetes Endocrinol 2024; 12:267-276. [PMID: 38452784 DOI: 10.1016/s2213-8587(24)00035-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The multicentre randomised trial YOMEGA (NCT02139813) comparing the one anastomosis gastric bypass (OAGB) with the Roux-en-Y gastric bypass (RYGB) confirmed the non-inferiority of OAGB on weight loss outcomes at 24 months. We aimed to report weight loss, metabolic, and safety outcomes at 5 years. METHODS YOMEGA is a prospective, open-label, non-inferiority, randomised trial conducted at nine centres in France. Inclusion criteria were BMI of 40 kg/m2 or more, or 35 kg/m2 or more with comorbidities. Key exclusion criteria were severe gastro-oesophageal reflux disease or Barrett's oesophagus and previous bariatric surgery. Patients were randomly assigned (1 :1) to OAGB (one gastrojejunal anastomosis with a 200 cm biliopancreatic limb) or RYGB (with a 150 cm alimentary limb and a 50 cm biliary limb), stratified by centre, with blocks of variable size. The primary endpoint of this extension study was percentage excess BMI loss and was analysed in the per-protocol population, including patients with data who were operated on with the technique randomly assigned to them and excluding patients with major deviations from the protocol during the follow-up (change of surgical technique, death, or withdrawal of consent). Non-inferiority was concluded for the primary endpoint if the upper bound of the CI was less than the non-inferiority limit (7 percentage points). YOMEGA is registered with ClinicalTrials.gov, NCT02139813, and the 5-year follow-up of YOMEGA is registered with ClinicalTrials.gov, NCT05549271. FINDINGS Between May 13, 2014, and March 2, 2016, 253 patients were randomly assigned to OAGB (n=129) or RYGB (n=124), and from these patients 114 in the OAGB group and 118 in the RYGB group were included in the per-protocol analysis. In the per-protocol population, at baseline, mean age was 43·0 years (SD 10·8), mean BMI was 44·0 kg/m2 (5·6), 54 (23%) patients were male and 178 (77%) were female; 55 (27%) of 207 patients had type 2 diabetes. After 5 years, mean percentage excess BMI loss was -75·6% (SD 28·1) in the OAGB group versus -71·4% (SD 29·8) in the RYGB group, confirming non-inferiority (mean difference -4·1% [90% CI -12·0 to 3·7], p=0·0099). Remission of type 2 diabetes was similar in both groups. Nutritional status did not differ; the most common adverse event was clinical gastro-oesophageal reflux disease, occurring in 27 (41%) of 66 patients in the OAGB group versus 14 (18%) of 76 patients in the RYGB group (p=0·0030). Among serious adverse events, ten (8%) of 127 patients converted from OAGB to RYGB. 171 (68%) of 253 patients were followed up. INTERPRETATION OAGB was not inferior to RYGB regarding percentage excess BMI loss at 5 years with similar metabolic outcomes. The high rate of clinical gastro-oesophageal reflux disease after OAGB raises questions about its long-term consequences, which need to be further investigated. FUNDING Medtronic.
Collapse
Affiliation(s)
- Maud Robert
- Department of Digestive and Bariatric Surgery, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France; CarMeN Laboratory INSERM Unit 1060, Lyon 1 University, Lyon, France.
| | - Tigran Poghosyan
- Digestive, Esogastric, and Bariatric Surgery Department, Hôpital Bichat-Claude Bernard, Université Paris Cité, UMRS-INSERM1149, Paris, France
| | - Delphine Maucort-Boulch
- Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, Lyon, France; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Université Lyon1, Lyon, France
| | | | - Robert Caiazzo
- General and Endocrine Surgery, Université de Lille, Inserm U1190, Centre Hospitalier et Universitaire de Lille, Institut Pasteur de Lille, Lille, France
| | - Adrien Sterkers
- Department of Digestive, Hepatobiliary Surgery, Centre Hospitalier Privé Saint Grégoire, Saint Gregoire, France
| | - Lita Khamphommala
- Department of Digestive, Hepatobiliary Surgery, Centre Hospitalier Privé Saint Grégoire, Saint Gregoire, France
| | - Fabian Reche
- Digestive Surgery Department, CHU Grenoble, Grenoble, France
| | - Vincent Malherbe
- General and Endocrine Surgery Department, Hôpital Privé Drôme et Ardèche, Guilherand-Granges, France
| | - Adriana Torcivia
- Department of Digestive, Hepatobiliary Surgery, Hôpital Pitié Salpétrière, Paris, France
| | - Toufic Saber
- Department of General Surgery, Lebanese American Medical Center, Saint John Hospital, Beyrouth, Lebanon
| | - Dominique Delaunay
- Department of Digestive and Bariatric Surgery, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Carole Langlois-Jacques
- Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, Lyon, France; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Université Lyon1, Lyon, France
| | - Augustin Suffisseau
- Digestive, Esogastric, and Bariatric Surgery Department, Hôpital Bichat-Claude Bernard, Université Paris Cité, UMRS-INSERM1149, Paris, France
| | - Sylvie Bin
- Clinical Research Unit, Hospices Civils de Lyon, Lyon, France
| | - Emmanuel Disse
- CarMeN Laboratory INSERM Unit 1060, Lyon 1 University, Lyon, France; Department of Endocrinology, Diabetology and Nutrition, Specialized Center for Obesity Management, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Benite, France
| | - François Pattou
- General and Endocrine Surgery, Université de Lille, Inserm U1190, Centre Hospitalier et Universitaire de Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
3
|
Ke Z, Lu Z, Li Q, Tong W. Intestinal glucose excretion: A potential mechanism for glycemic control. Metabolism 2024; 152:155743. [PMID: 38007149 DOI: 10.1016/j.metabol.2023.155743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The gut has been increasingly recognized in recent years as a pivotal organ in the maintenance of glucose homeostasis. Specifically, the profound and enduring improvement in glucose metabolism achieved through metabolic surgery to modify the anatomy of the gut has prompted scholars to acknowledge that the most effective strategy for treating type 2 diabetes mellitus (T2DM) involves the gut. The mechanisms underlying the regulation of glucose metabolism by the gut encompass gut hormones, bile acids, intestinal gluconeogenesis, gut microbiota, and signaling interactions between the gut and other organs (liver, brain, adipose, etc.). Recent studies have also revealed a novel phenomenon of glucose lowering through the gut: metabolic surgery and metformin promote the excretion of glucose from the circulation into the intestinal lumen by enterocytes. However, there is still limited understanding regarding the underlying mechanisms of intestinal glucose excretion and its contribution to glycemic control. This article reviews current research on intestinal glucose excretion while focusing on its role in T2DM management as well as potential mechanisms.
Collapse
Affiliation(s)
- Zhigang Ke
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Qing Li
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Weidong Tong
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
4
|
Miskelly MG, Lindqvist A, Piccinin E, Hamilton A, Cowan E, Nergård BJ, Del Giudice R, Ngara M, Cataldo LR, Kryvokhyzha D, Volkov P, Engelking L, Artner I, Lagerstedt JO, Eliasson L, Ahlqvist E, Moschetta A, Hedenbro J, Wierup N. RNA sequencing unravels novel L cell constituents and mechanisms of GLP-1 secretion in human gastric bypass-operated intestine. Diabetologia 2024; 67:356-370. [PMID: 38032369 PMCID: PMC10789678 DOI: 10.1007/s00125-023-06046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/15/2023] [Indexed: 12/01/2023]
Abstract
AIMS/HYPOTHESIS Roux-en-Y gastric bypass surgery (RYGB) frequently results in remission of type 2 diabetes as well as exaggerated secretion of glucagon-like peptide-1 (GLP-1). Here, we assessed RYGB-induced transcriptomic alterations in the small intestine and investigated how they were related to the regulation of GLP-1 production and secretion in vitro and in vivo. METHODS Human jejunal samples taken perisurgically and 1 year post RYGB (n=13) were analysed by RNA-seq. Guided by bioinformatics analysis we targeted four genes involved in cholesterol biosynthesis, which we confirmed to be expressed in human L cells, for potential involvement in GLP-1 regulation using siRNAs in GLUTag and STC-1 cells. Gene expression analyses, GLP-1 secretion measurements, intracellular calcium imaging and RNA-seq were performed in vitro. OGTTs were performed in C57BL/6j and iScd1-/- mice and immunohistochemistry and gene expression analyses were performed ex vivo. RESULTS Gene Ontology (GO) analysis identified cholesterol biosynthesis as being most affected by RYGB. Silencing or chemical inhibition of stearoyl-CoA desaturase 1 (SCD1), a key enzyme in the synthesis of monounsaturated fatty acids, was found to reduce Gcg expression and secretion of GLP-1 by GLUTag and STC-1 cells. Scd1 knockdown also reduced intracellular Ca2+ signalling and membrane depolarisation. Furthermore, Scd1 mRNA expression was found to be regulated by NEFAs but not glucose. RNA-seq of SCD1 inhibitor-treated GLUTag cells identified altered expression of genes implicated in ATP generation and glycolysis. Finally, gene expression and immunohistochemical analysis of the jejunum of the intestine-specific Scd1 knockout mouse model, iScd1-/-, revealed a twofold higher L cell density and a twofold increase in Gcg mRNA expression. CONCLUSIONS/INTERPRETATION RYGB caused robust alterations in the jejunal transcriptome, with genes involved in cholesterol biosynthesis being most affected. Our data highlight SCD as an RYGB-regulated L cell constituent that regulates the production and secretion of GLP-1.
Collapse
Affiliation(s)
- Michael G Miskelly
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Elena Piccinin
- Department of Translational Biomedicine and Neuroscience, University of Bari 'Aldo Moro', Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
| | - Alexander Hamilton
- Molecular Metabolism, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Elaine Cowan
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | | | - Rita Del Giudice
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Mtakai Ngara
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Luis R Cataldo
- Molecular Metabolism, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmytro Kryvokhyzha
- Bioinformatics Unit, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Petr Volkov
- Bioinformatics Unit, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Luke Engelking
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isabella Artner
- Endocrine Cell Differentiation and Function, Stem Cell Centre, Lund University, Malmö, Sweden
| | - Jens O Lagerstedt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Emma Ahlqvist
- Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
- INBB National Institute for Biostructure and Biosystems, Rome, Italy
| | - Jan Hedenbro
- Department of Surgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Nils Wierup
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| |
Collapse
|
5
|
Pannu PR, Chukwudi C, Wang J, Yang P, Esfahani FN, Saeidi N. Physical properties of food or bile redirection do not contribute to the intestinal adaptations after Roux-en-Y Gastric Bypass in rats. Obes Sci Pract 2023; 9:274-284. [PMID: 37287514 PMCID: PMC10242252 DOI: 10.1002/osp4.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 06/09/2023] Open
Abstract
Objective Metabolic and morphological adaptations of the intestine have been suggested to play a role in the various therapeutic benefits of Roux-en-Y Gastric Bypass (RYGB) surgery. However, the precise underlying mechanisms remain unclear. In this study, the effects of physical properties of ingested food and redirection of biliopancreatic secretions on intestinal remodeling were investigated in RYGB operated rats. Methods RYGB employing two different Roux Limb (RL) lengths was performed on high fat diet induced obese rats. Post-operatively, rats were fed either Solid or isocaloric Liquid diets. Metabolic and morphological remodeling of intestine was compared across both diet forms (Solid and Liquid diets) and surgical models (Short RL and Long RL). Results RYGB surgery in rats induced weight loss and improved glucose tolerance which was independent of physical properties of ingested food and biliopancreatic secretions. Intestinal glucose utilization after RYGB was not determined by either food form or biliopancreatic secretions. The GLUT-1 expression in RL was not influenced by physical properties of food. Furthermore, both physical properties of food and biliopancreatic secretions showed no effects on intestinal morphological adaptations after RYGB. Conclusion Results of this study demonstrate that physical properties of food and bile redirection are not major determinants of intestinal remodeling after RYGB in rats.
Collapse
Affiliation(s)
- Prabh R. Pannu
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| | - Chijioke Chukwudi
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| | - Jianxun Wang
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| | - Po‐Jen Yang
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | - Farid Nasr Esfahani
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| | - Nima Saeidi
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| |
Collapse
|
6
|
Fogelson KA, Dorrestein PC, Zarrinpar A, Knight R. The Gut Microbial Bile Acid Modulation and Its Relevance to Digestive Health and Diseases. Gastroenterology 2023; 164:1069-1085. [PMID: 36841488 PMCID: PMC10205675 DOI: 10.1053/j.gastro.2023.02.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/27/2023]
Abstract
The human gut microbiome has been linked to numerous digestive disorders, but its metabolic products have been much less well characterized, in part due to the expense of untargeted metabolomics and lack of ability to process the data. In this review, we focused on the rapidly expanding information about the bile acid repertoire produced by the gut microbiome, including the impacts of bile acids on a wide range of host physiological processes and diseases, and discussed the role of short-chain fatty acids and other important gut microbiome-derived metabolites. Of particular note is the action of gut microbiome-derived metabolites throughout the body, which impact processes ranging from obesity to aging to disorders traditionally thought of as diseases of the nervous system, but that are now recognized as being strongly influenced by the gut microbiome and the metabolites it produces. We also highlighted the emerging role for modifying the gut microbiome to improve health or to treat disease, including the "engineered native bacteria'' approach that takes bacterial strains from a patient, modifies them to alter metabolism, and reintroduces them. Taken together, study of the metabolites derived from the gut microbiome provided insights into a wide range of physiological and pathophysiological processes, and has substantial potential for new approaches to diagnostics and therapeutics of disease of, or involving, the gastrointestinal tract.
Collapse
Affiliation(s)
- Kelly A Fogelson
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California.
| | - Amir Zarrinpar
- Center for Microbiome Innovation, University of California San Diego, San Diego, California; Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, San Diego, California; Division of Gastroenterology, University of California San Diego, San Diego, California; Institute of Diabetes and Metabolic Health, University of California San Diego, San Diego, California.
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California; Department of Bioengineering, University of California San Diego, San Diego, California; Department of Computer Science and Engineering, University of California San Diego, San Diego, California.
| |
Collapse
|
7
|
Zubiaga L, Briand O, Auger F, Touche V, Hubert T, Thevenet J, Marciniak C, Quenon A, Bonner C, Peschard S, Raverdy V, Daoudi M, Kerr-Conte J, Pasquetti G, Koepsell H, Zdzieblo D, Mühlemann M, Thorens B, Delzenne ND, Bindels LB, Deprez B, Vantyghem MC, Laferrère B, Staels B, Huglo D, Lestavel S, Pattou F. Oral metformin transiently lowers post-prandial glucose response by reducing the apical expression of sodium-glucose co-transporter 1 in enterocytes. iScience 2023; 26:106057. [PMID: 36942050 PMCID: PMC10024157 DOI: 10.1016/j.isci.2023.106057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Metformin (MET) is the most prescribed antidiabetic drug, but its mechanisms of action remain elusive. Recent data point to the gut as MET's primary target. Here, we explored the effect of MET on the gut glucose transport machinery. Using human enterocytes (Caco-2/TC7 cells) in vitro, we showed that MET transiently reduced the apical density of sodium-glucose transporter 1 (SGLT1) and decreased the absorption of glucose, without changes in the mRNA levels of the transporter. Administered 1 h before a glucose challenge in rats (Wistar, GK), C57BL6 mice and mice pigs, oral MET reduced the post-prandial glucose response (PGR). This effect was abrogated in SGLT1-KO mice. MET also reduced the luminal clearance of 2-(18F)-fluoro-2-deoxy-D-glucose after oral administration in rats. In conclusion, oral metformin transiently lowers post-prandial glucose response by reducing the apical expression of SGLT1 in enterocytes, which may contribute to the clinical effects of the drug.
Collapse
Affiliation(s)
- Lorea Zubiaga
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Olivier Briand
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Florent Auger
- University of Lille, Preclinical Imaging Core Facility, 59000 Lille, France
| | - Veronique Touche
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Thomas Hubert
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Julien Thevenet
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Camille Marciniak
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Audrey Quenon
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Caroline Bonner
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
- Institut Pasteur de Lille, 59000 Lille, France
| | - Simon Peschard
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Violeta Raverdy
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Mehdi Daoudi
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Gianni Pasquetti
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Daniela Zdzieblo
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Markus Mühlemann
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Bernard Thorens
- University of Lausanne, Center for Integrative Genomics, Lausanne, Switzerland
| | - Nathalie D. Delzenne
- Université catholique de Louvain, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Brussels, Belgium
| | - Laure B. Bindels
- Université catholique de Louvain, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Brussels, Belgium
| | - Benoit Deprez
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1177, 59000 Lille, France
| | - Marie C. Vantyghem
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Blandine Laferrère
- Department of Medicine, New York Nutrition Obesity Research Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Bart Staels
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Damien Huglo
- University of Lille, Preclinical Imaging Core Facility, 59000 Lille, France
| | - Sophie Lestavel
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - François Pattou
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
- Corresponding author
| |
Collapse
|
8
|
Caiazzo R, Marciniak C, Rémond A, Baud G, Pattou F. Future of bariatric surgery beyond simple weight loss: Metabolic surgery. J Visc Surg 2023; 160:S55-S62. [PMID: 36774271 DOI: 10.1016/j.jviscsurg.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Anatomical modifications implemented during bariatric surgery not only result in weight loss, but also lead to metabolic corrections that translate into better glycemia stability and improvement in cardiovascular and liver disorders. The logical extension of surgical indications beyond mere reduction of the body mass index (BMI) (i.e. patients with<35kg/m2) is a hot topic today in France and worldwide. Metabolic surgeries make use of multiple modalities (endoscopic, mini-invasive, invasive) that should be carried out by trained physicians and within the same type of multidisciplinary formation as that for bariatric surgery. The aim of this update is to describe the physiological mechanisms that result in the benefits of bariatric surgery, the various procedures currently available and the perspectives for this new field in visceral and digestive surgery.
Collapse
Affiliation(s)
- R Caiazzo
- General and Endocrine Surgery Department, Inuversity Hospital of Lille, Lille, France.
| | - C Marciniak
- General and Endocrine Surgery Department, Inuversity Hospital of Lille, Lille, France
| | - A Rémond
- General and Endocrine Surgery Department, Inuversity Hospital of Lille, Lille, France
| | - G Baud
- General and Endocrine Surgery Department, Inuversity Hospital of Lille, Lille, France
| | - F Pattou
- General and Endocrine Surgery Department, Inuversity Hospital of Lille, Lille, France
| |
Collapse
|
9
|
Grzych G, Bernard L, Lestrelin R, Tailleux A, Staels B. [State of the art on the pathophysiology, diagnosis and treatment of non-alcoholic steatohepatitis (NASH)]. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:183-201. [PMID: 36126753 DOI: 10.1016/j.pharma.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
NAFLD or non-alcoholic fatty liver disease is one of the complications of obesity and diabetes, the prevalence of which is increasing. The causes of the pathology and its development towards its severe form, NASH or non-alcoholic steatohepatitis, are multiple and still poorly understood. Many different pharmacological classes are being tested in clinical trials to treat NASH, but no pharmaceutical treatment is currently on the market. Moreover, the diagnosis of certainty is only possible by liver biopsy and histological analysis, an invasive procedure with high risk for the patient. It is therefore necessary to better understand the natural history of the disease in order to identify therapeutic targets, but also to identify markers for the diagnosis and monitoring of the disease using a blood sample, which will allow an improvement in patient management.
Collapse
Affiliation(s)
- G Grzych
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - L Bernard
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - R Lestrelin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - A Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - B Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
10
|
Anhê FF, Zlitni S, Zhang SY, Choi BSY, Chen CY, Foley KP, Barra NG, Surette MG, Biertho L, Richard D, Tchernof A, Lam TKT, Marette A, Schertzer J. Human gut microbiota after bariatric surgery alters intestinal morphology and glucose absorption in mice independently of obesity. Gut 2023; 72:460-471. [PMID: 36008102 PMCID: PMC9933168 DOI: 10.1136/gutjnl-2022-328185] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Bariatric surgery is an effective treatment for type 2 diabetes (T2D) that changes gut microbial composition. We determined whether the gut microbiota in humans after restrictive or malabsorptive bariatric surgery was sufficient to lower blood glucose. DESIGN Women with obesity and T2D had biliopancreatic diversion with duodenal switch (BPD-DS) or laparoscopic sleeve gastrectomy (LSG). Faecal samples from the same patient before and after each surgery were used to colonise rodents, and determinants of blood glucose control were assessed. RESULTS Glucose tolerance was improved in germ-free mice orally colonised for 7 weeks with human microbiota after either BPD-DS or LSG, whereas food intake, fat mass, insulin resistance, secretion and clearance were unchanged. Mice colonised with microbiota post-BPD-DS had lower villus height/width and crypt depth in the distal jejunum and lower intestinal glucose absorption. Inhibition of sodium-glucose cotransporter (Sglt)1 abrogated microbiota-transmissible improvements in blood glucose control in mice. In specific pathogen-free (SPF) rats, intrajejunal colonisation for 4 weeks with microbiota post-BPD-DS was sufficient to improve blood glucose control, which was negated after intrajejunal Sglt-1 inhibition. Higher Parabacteroides and lower Blautia coincided with improvements in blood glucose control after colonisation with human bacteria post-BPD-DS and LSG. CONCLUSION Exposure of rodents to human gut microbiota after restrictive or malabsorptive bariatric surgery improves glycaemic control. The gut microbiota after bariatric surgery is a standalone factor that alters upper gut intestinal morphology and lowers Sglt1-mediated intestinal glucose absorption, which improves blood glucose control independently from changes in obesity, insulin or insulin resistance.
Collapse
Affiliation(s)
- Fernando F Anhê
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Soumaya Zlitni
- Department of Genetics and Medicine, Stanford University, Stanford, California, USA
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Béatrice So-Yun Choi
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, Quebec, Canada
| | - Cassandra Y Chen
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Kevin P Foley
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Surette
- Department of Medicine, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Laurent Biertho
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, Quebec, Canada
| | - Denis Richard
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, Quebec, Canada
| | - André Tchernof
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, Quebec, Canada.,School of Nutrition, Laval University, Quebec, Quebec, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Andre Marette
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, Quebec, Canada
| | - Jonathan Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Bergeat D, Coquery N, Gautier Y, Clotaire S, Vincent É, Romé V, Guérin S, Le Huërou-Luron I, Blat S, Thibault R, Val-Laillet D. Exploration of fMRI brain responses to oral sucrose after Roux-en-Y gastric bypass in obese yucatan minipigs in relationship with microbiota and metabolomics profiles. Clin Nutr 2023; 42:394-410. [PMID: 36773369 DOI: 10.1016/j.clnu.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS In most cases, Roux-en-Y gastric bypass (RYGBP) is an efficient intervention to lose weight, change eating behavior and improve metabolic outcomes in obese patients. We hypothesized that weight loss induced by RYGBP in obese Yucatan minipigs would induce specific modifications of the gut-brain axis and neurocognitive responses to oral sucrose stimulation in relationship with food intake control. METHODS An integrative study was performed after SHAM (n = 8) or RYGBP (n = 8) surgery to disentangle the physiological, metabolic and neurocognitive mechanisms of RYGBP. BOLD fMRI responses to sucrose stimulations at different concentrations, brain mRNA expression, cecal microbiota, and plasma metabolomics were explored 4 months after surgery and integrated with WGCNA analysis. RESULTS We showed that weight loss induced by RYGBP or SHAM modulated differently the frontostriatal responses to oral sucrose stimulation, suggesting a different hedonic treatment and inhibitory control related to palatable food after RYGBP. The expression of brain genes involved in the serotoninergic and cannabinoid systems were impacted by RYGBP. Cecal microbiota was deeply modified and many metabolite features were differentially increased in RYGBP. Data integration with WGCNA identified interactions between key drivers of OTUs and metabolites features linked to RYGBP. CONCLUSION This longitudinal study in the obese minipig model illustrates with a systemic and integrative analysis the mid-term consequences of RYGBP on brain mRNA expression, cecal microbiota and plasma metabolites. We confirmed the impact of RYGBP on functional brain responses related to food reward, hedonic evaluation and inhibitory control, which are key factors for the success of anti-obesity therapy and weight loss maintenance.
Collapse
Affiliation(s)
- Damien Bergeat
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France; Department of Digestive Surgery, CHU Rennes, Rennes, France
| | - Nicolas Coquery
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Yentl Gautier
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Sarah Clotaire
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Émilie Vincent
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Véronique Romé
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Sylvie Guérin
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Isabelle Le Huërou-Luron
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Sophie Blat
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Ronan Thibault
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France; Department of Endocrinology-Diabetology-Nutrition, Home Parenteral Nutrition Centre, CHU Rennes, Rennes, France.
| | - David Val-Laillet
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France.
| |
Collapse
|
12
|
Yang J, van Dijk TH, Koehorst M, Havinga R, de Boer JF, Kuipers F, van Zutphen T. Intestinal Farnesoid X Receptor Modulates Duodenal Surface Area but Does Not Control Glucose Absorption in Mice. Int J Mol Sci 2023; 24:ijms24044132. [PMID: 36835544 PMCID: PMC9961586 DOI: 10.3390/ijms24044132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Bile acids facilitate the intestinal absorption of dietary lipids and act as signalling molecules in the maintenance of metabolic homeostasis. Farnesoid X receptor (FXR) is a bile acid-responsive nuclear receptor involved in bile acid metabolism, as well as lipid and glucose homeostasis. Several studies have suggested a role of FXR in the control of genes regulating intestinal glucose handling. We applied a novel dual-label glucose kinetic approach in intestine-specific FXR-/- mice (iFXR-KO) to directly assess the role of intestinal FXR in glucose absorption. Although iFXR-KO mice showed decreased duodenal expression of hexokinase 1 (Hk1) under obesogenic conditions, the assessment of glucose fluxes in these mice did not show a role for intestinal FXR in glucose absorption. FXR activation with the specific agonist GS3972 induced Hk1, yet the glucose absorption rate remained unaffected. FXR activation increased the duodenal villus length in mice treated with GS3972, while stem cell proliferation remained unaffected. Accordingly, iFXR-KO mice on either chow, short or long-term HFD feeding displayed a shorter villus length in the duodenum compared to wild-type mice. These findings indicate that delayed glucose absorption reported in whole-body FXR-/- mice is not due to the absence of intestinal FXR. Yet, intestinal FXR does have a role in the small intestinal surface area.
Collapse
Affiliation(s)
- Jiufang Yang
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Theo H. van Dijk
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Rick Havinga
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- Correspondence: (F.K.); (T.v.Z.); Tel.: +31-58-288-2132 (F.K.)
| | - Tim van Zutphen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- Faculty Campus Fryslân, University of Groningen, 8911CE Leeuwarden, The Netherlands
- Correspondence: (F.K.); (T.v.Z.); Tel.: +31-58-288-2132 (F.K.)
| |
Collapse
|
13
|
Magkos F, Reeds DN, Mittendorfer B. Evolution of the diagnostic value of "the sugar of the blood": hitting the sweet spot to identify alterations in glucose dynamics. Physiol Rev 2023; 103:7-30. [PMID: 35635320 PMCID: PMC9576168 DOI: 10.1152/physrev.00015.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
In this paper, we provide an overview of the evolution of the definition of hyperglycemia during the past century and the alterations in glucose dynamics that cause fasting and postprandial hyperglycemia. We discuss how extensive mechanistic, physiological research into the factors and pathways that regulate the appearance of glucose in the circulation and its uptake and metabolism by tissues and organs has contributed knowledge that has advanced our understanding of different types of hyperglycemia, namely prediabetes and diabetes and their subtypes (impaired fasting plasma glucose, impaired glucose tolerance, combined impaired fasting plasma glucose, impaired glucose tolerance, type 1 diabetes, type 2 diabetes, gestational diabetes mellitus), their relationships with medical complications, and how to prevent and treat hyperglycemia.
Collapse
Affiliation(s)
- Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
14
|
Stefater-Richards MA, Panciotti C, Feldman HA, Gourash WF, Shirley E, Hutchinson JN, Golick L, Park SW, Courcoulas AP, Stylopoulos N. Gut adaptation after gastric bypass in humans reveals metabolically significant shift in fuel metabolism. Obesity (Silver Spring) 2023; 31:49-61. [PMID: 36541157 PMCID: PMC10240542 DOI: 10.1002/oby.23585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Roux-en-Y gastric bypass surgery (RYGB) is among the most effective therapies for obesity and type 2 diabetes, and intestinal adaptation is a proposed mechanism for these effects. It was hypothesized that intestinal adaptation precedes and relates to metabolic improvement in humans after RYGB. METHODS This was a prospective, longitudinal, first-in-human study of gene expression (GE) in the "Roux limb" (RL) collected surgically/endoscopically from 19 patients with and without diabetes. GE was determined by microarray across six postoperative months, including at an early postoperative (1 month ± 15 days) time point. RESULTS RL GE demonstrated tissue remodeling and metabolic reprogramming, including increased glucose and amino acid use. RL GE signatures were established early, before maximal clinical response, and persisted. Distinct GE fingerprints predicted concurrent and future improvements in HbA1c and in weight. Human RL exhibited GE changes characterized by anabolic growth and shift in metabolic substrate use. Paradoxically, anabolic growth in RL appeared to contribute to the catabolic state elicited by RYGB. CONCLUSIONS These data support a role for a direct effect of intestinal energy metabolism to contribute to the beneficial clinical effects of RYGB, suggesting that related pathways might be potential targets of therapeutic interest for patients with obesity with or without type 2 diabetes.
Collapse
Affiliation(s)
- Margaret A. Stefater-Richards
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Courtney Panciotti
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children’s Hospital, Boston, MA
| | - Henry A. Feldman
- Harvard Medical School, Boston, MA
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA
| | - William F. Gourash
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Eleanor Shirley
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - John N. Hutchinson
- Harvard Medical School, Boston, MA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | - Lena Golick
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA
| | - Sang W. Park
- Harvard Medical School, Boston, MA
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA
| | - Anita P. Courcoulas
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Nicholas Stylopoulos
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Cheng ZQ, Liu TM, Ren PF, Chen C, Wang YL, Dai Y, Zhang X. Duodenal-jejunal bypass reduces serum ceramides via inhibiting intestinal bile acid-farnesoid X receptor pathway. World J Gastroenterol 2022; 28:4328-4337. [PMID: 36159007 PMCID: PMC9453759 DOI: 10.3748/wjg.v28.i31.4328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bile acids play an important role in the amelioration of type 2 diabetes following duodenal-jejunal bypass (DJB). Serum bile acids are elevated postoperatively. However, the clinical relevance is not known. Bile acids in the peripheral circulation reflect the amount of bile acids in the gut. Therefore, a further investigation of luminal bile acids following DJB is of great significance.
AIM To investigate changes of luminal bile acids following DJB.
METHODS Salicylhydroxamic acid (SHAM), DJB, and DJB with oral chenodeoxycholic acid (CDCA) supplementation were performed in a high-fat-diet/streptozotocin-induced diabetic rat model. Body weight, energy intake, oral glucose tolerance test, luminal bile acids, serum ceramides and intestinal ceramide synthesis were analyzed at week 12 postoperatively.
RESULTS Compared to SHAM, DJB achieved rapid and durable improvement in glucose tolerance and led to increased total luminal bile acid concentrations with preferentially increased proportion of farnesoid X receptor (FXR) - inhibitory bile acids within the common limb. Intestinal ceramide synthesis was repressed with decreased serum ceramides, and this phenomenon could be partially antagonized by luminal supplementation of FXR activating bile acid CDCA.
CONCLUSION DJB significantly changes luminal bile acid composition with increased proportion FXR-inhibitory bile acids and reduces serum ceramide levels. There observations suggest a novel mechanism of bile acids in metabolic regulation after DJB.
Collapse
Affiliation(s)
- Zhi-Qiang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Tong-Ming Liu
- Department of Colorectal and Anal Surgery, Feicheng Hospital Affiliated to Shandong First Medical University, Feicheng 271600, Shandong Province, China
| | - Peng-Fei Ren
- Department of General Surgery, Lincheng People’s Hospital, Dezhou 253500, Shandong Province, China
| | - Chang Chen
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yan-Lei Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yong Dai
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
16
|
Akalestou E, Lopez-Noriega L, Tough IR, Hu M, Leclerc I, Cox HM, Rutter GA. Vertical Sleeve Gastrectomy Lowers SGLT2/Slc5a2 Expression in the Mouse Kidney. Diabetes 2022; 71:1623-1635. [PMID: 35594379 DOI: 10.2337/db21-0768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022]
Abstract
Bariatric surgery improves glucose homeostasis, but the underlying mechanisms are not fully elucidated. Here, we show that the expression of sodium-glucose cotransporter 2 (SGLT2/Slc5a2) is reduced in the kidney of lean and obese mice following vertical sleeve gastrectomy (VSG). Indicating an important contribution of altered cotransporter expression to the impact of surgery, inactivation of the SGLT2/Slc5a2 gene by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 attenuated the effects of VSG, with glucose excursions following intraperitoneal injection lowered by ∼30% in wild-type mice but by ∼20% in SGLT2-null animals. The effects of the SGLT2 inhibitor dapaglifozin were similarly blunted by surgery. Unexpectedly, effects of dapaglifozin were still observed in SGLT2-null mice, consistent with the existence of metabolically beneficial off-target effects of SGLT2 inhibitors. Thus, we describe a new mechanism involved in mediating the glucose-lowering effects of bariatric surgery.
Collapse
Affiliation(s)
- Elina Akalestou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, U.K
| | - Livia Lopez-Noriega
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, U.K
| | - Iain R Tough
- Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London, U.K
| | - Ming Hu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, U.K
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, U.K
- Centre de Recherches du Centre hospitalier de l'Université de Montréal (CHUM), University of Montreal, Montreal, Quebec, Canada
| | - Helen M Cox
- Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London, U.K
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, U.K
- Centre de Recherches du Centre hospitalier de l'Université de Montréal (CHUM), University of Montreal, Montreal, Quebec, Canada
- Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore
| |
Collapse
|
17
|
Schneider R, Kraljević M, Peterli R, Rohm TV, Bosch AJ, Low AJ, Keller L, AlAsfoor S, Häfliger S, Yilmaz B, Peterson CJ, Lazaridis II, Vonaesch P, Delko T, Cavelti-Weder C. Roux-en-Y gastric bypass with a long compared to a short biliopancreatic limb improves weight loss and glycemic control in obese mice. Surg Obes Relat Dis 2022; 18:1286-1297. [DOI: 10.1016/j.soard.2022.06.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/02/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
|
18
|
Abu-Gazala S, Bergel M, Arad Y, Hefetz L, Azulai S, Baker A, Haran A, Israeli H, Kleiman D, Samuel I, Tsubary U, Permyakova A, Tam J, Ben-Haroush Schyr R, Ben-Zvi D. Generation and characterization of a mouse model for one anastomosis gastric bypass surgery. Am J Physiol Endocrinol Metab 2022; 322:E414-E424. [PMID: 35285295 DOI: 10.1152/ajpendo.00416.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One anastomosis gastric bypass (OAGB) surgery became a common bariatric procedure in recent years. In this surgery, the distal stomach, duodenum, and proximal jejunum are bypassed, leading to weight loss, improvement in metabolic parameters, and a change in hormonal secretion. We sought to generate and characterize a mouse model for OAGB. Mice fed for 26 wk on a high-fat diet were assigned to OAGB, sham surgery, or caloric restriction and were followed for 50 more days on a high-fat diet. Physiological and histological parameters of the mice were compared during and at the end of the experiment. OAGB-operated mice lost weight and displayed low levels of plasma lipids, high insulin sensitivity, and rapid glucose metabolism compared with sham-operated mice. OAGB-operated mice had higher energy expenditure, higher levels of glucagon-like peptide (GLP-1), and lower albumin than weight-matched calorie-restricted mice. There was no difference in the histology of the endocrine pancreas. The livers of OAGB mice had little hepatic steatosis yet presented with a large number of phagocytic cells. The OAGB mouse model recapitulates many of the phenotypes described in patients that underwent OAGB and enables molecular and physiological studies on the outcome of this surgery.NEW & NOTEWORTHY A mouse model for one anastomosis gastric bypass (OAGB) surgery displays similar outcomes to clinical reports and enables to study the weight loss-dependent and -independent effects of this bariatric surgery.
Collapse
Affiliation(s)
- Samir Abu-Gazala
- Department of Surgery, Hadassah Medical Center-Ein Kerem, Jerusalem, Israel
- Department of Surgery, Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Bergel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yhara Arad
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Military Medicine and Tzameret, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Hefetz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Military Medicine and Tzameret, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shira Azulai
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Aaron Baker
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Arnon Haran
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hadar Israeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Doron Kleiman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Itia Samuel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Uria Tsubary
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Military Medicine and Tzameret, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anna Permyakova
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
19
|
Albaugh VL. Comment on: Measures of glucose homeostasis during and after duodenal exclusion using a duodenal-jejunal bypass liner in a normal glycemic, nonobese canine model. Surg Obes Relat Dis 2022; 18:702-703. [DOI: 10.1016/j.soard.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022]
|
20
|
Camastra S, Palumbo M, Santini F. Nutrients handling after bariatric surgery, the role of gastrointestinal adaptation. Eat Weight Disord 2022; 27:449-461. [PMID: 33895917 PMCID: PMC8933374 DOI: 10.1007/s40519-021-01194-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/10/2021] [Indexed: 01/19/2023] Open
Abstract
Bariatric surgery determines a rearrangement of the gastrointestinal tract that influences nutrient handling and plays a role in the metabolic changes observed after surgery. Most of the changes depend on the accelerated gastric emptying observed in Roux-en-Y gastric bypass (RYGB) and, to a lesser extent, in sleeve gastrectomy (SG). The rapid delivery of meal into the jejunum, particularly after RYGB, contributes to the prompt appearance of glucose in peripheral circulation. Glucose increase is the principal determinant of GLP-1 increase with the consequent stimulation of insulin secretion, the latter balanced by a paradoxical glucagon increase that stimulates EGP to prevent hypoglycaemia. Protein digestion and amino acid absorption appear accelerated after RYGB but not after SG. After RYGB, the adaptation of the gut to the new condition participates to the metabolic change. The intestinal transit is delayed, the gut microbioma is changed, the epithelium becomes hypertrophic and increases the expression of glucose transporter and of the number of cell secreting hormones. These changes are not observed after SG. After RYGB-less after SG-bile acids (BA) increase, influencing glucose metabolism probably modulating FXR and TGR5 with an effect on insulin sensitivity. Muscle, hepatic and adipose tissue insulin sensitivity improve, and the gut reinforces the recovery of IS by enhancing glucose uptake and through the effect of the BA. The intestinal changes observed after RYGB result in a light malabsorption of lipid but not of carbohydrate and protein. In conclusion, functional and morphological adaptations of the gut after RYGB and SG activate inter-organs cross-talk that modulates the metabolic changes observed after surgery.Level of evidence Level V, narrative literature review.
Collapse
Affiliation(s)
- Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy. .,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| | - Maria Palumbo
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Ferruccio Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Itoh H, Tanaka M. “Greedy Organs Hypothesis” for sugar and salt in the pathophysiology of non-communicable diseases in relation to sodium-glucose co-transporters in the intestines and the kidney. Metabol Open 2022; 13:100169. [PMID: 35198947 PMCID: PMC8844901 DOI: 10.1016/j.metop.2022.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/05/2022] Open
Abstract
Deposition of visceral fat and insulin resistance play central role in the development of non-communicable diseases (NCDs) including obesity, hypertension and type 2 diabetes. However, we shed more light upon the intestines and the kidney as a strong driver of NCDs. Based upon unexpected outcomes of clinical trials using sodium-glucose cotransporter (SGLT) 2 inhibitors to demonstrate their actions for not only body weight reduction and blood glucose fall but also remarkable cardiorenal protection, we speculate that hyperfunction of the intestines and the kidney is one of critical contributing factors for initiation of NCDs. By detecting high amount of glucose and sodium chloride around them by sweet/salt taste sensors, the intestines and the kidney are designed to (re)absorb these nutrients by up-regulating SGLT1 or SGLT2. We designate these hyperfunctioning organs for nutrient uptake as “greedy organs”. The greedy organs can induce NCDs (“greedy organ hypothesis”). SGLTs are regulated by glucose and sodium chloride, and SGLTs or other genes can be “greedy genes.” Regulating factors for greedy organs are renin-angiotensin system, renal sympathetic nervous activity, gut inflammation/microbiota or oxidative stress. Mitigation of organ greediness by SGLT2 inhibitors, ketone bodies, bariatric surgery, and regular lifestyle to keep rhythmicity of biological clock are promising. We propose the concept of “Greedy Organs” hypothesis as a possible cause of NCDs. Clinical implication of greedy kidney is supported by the effect of SGLT2 inhibitors. The significance of greedy intestines is suggested by the effect of bariatric surgery. The intestines and kidney become hyperactive through upregulation of SGLT1 or 2. To mitigate “greedy organs” should be a promising strategy against NCDs.
Collapse
|
22
|
A pilot study about the development and characterization of a Roux en Y gastric bypass model in obese Yucatan minipigs. Sci Rep 2021; 11:20190. [PMID: 34642370 PMCID: PMC8511153 DOI: 10.1038/s41598-021-98575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
Performing the Roux-en-Y gastric bypass (RYGBP) in obese Yucatan minipigs provides an opportunity to explore the mechanisms behind the effects of this surgery in controlled environmental and nutritional conditions. We hypothesized that RYGBP in these minipigs would induce changes at multiple levels, as in obese humans. We sought to characterize RYGBP in a diet-induced obese minipig model, compared with a pair-fed sham group. After inducing obesity with an ad libitum high-fat/high-sugar diet, we performed RYGBP (n = 7) or sham surgery (n = 6). Oral glucose tolerance tests (OGTT) were performed before and after surgery. Histological analyses were conducted to compare the alimentary limb at sacrifice with tissue sampled during RYGBP surgery. One death occurred in the RYGBP group at postoperative day (POD) 3. Before sacrifice, weight loss was the same across groups. GLP-1 secretion (OGTT) was significantly higher at 15, 30 and 60 min at POD 7, and at 30 and 60 min at POD 30 in the RYGBP group. Incremental insulin area under the curve increased significantly after RYGBP (p = 0.02). RYGBP induced extensive remodeling of the alimentary limb. Results show that RYGBP can be safely performed in obese minipigs, and changes mimic those observed in humans.
Collapse
|
23
|
Ben-Haroush Schyr R, Al-Kurd A, Moalem B, Permyakova A, Israeli H, Bardugo A, Arad Y, Hefetz L, Bergel M, Haran A, Azar S, Magenheim I, Tam J, Grinbaum R, Ben-Zvi D. Sleeve Gastrectomy Suppresses Hepatic Glucose Production and Increases Hepatic Insulin Clearance Independent of Weight Loss. Diabetes 2021; 70:2289-2298. [PMID: 34341005 PMCID: PMC8576500 DOI: 10.2337/db21-0251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022]
Abstract
Bariatric operations induce weight loss, which is associated with an improvement in hepatic steatosis and a reduction in hepatic glucose production. It is not clear whether these outcomes are entirely due to weight loss, or whether the new anatomy imposed by the surgery contributes to the improvement in the metabolic function of the liver. We performed vertical sleeve gastrectomy (VSG) on obese mice provided with a high-fat high-sucrose diet and compared them to diet and weight-matched sham-operated mice (WMS). At 40 days after surgery, VSG-operated mice displayed less hepatic steatosis compared with WMS. By measuring the fasting glucose and insulin levels in the blood vessels feeding and draining the liver, we showed directly that hepatic glucose production was suppressed after VSG. Insulin levels were elevated in the portal vein, and hepatic insulin clearance was elevated in VSG-operated mice. The hepatic expression of genes associated with insulin clearance was upregulated. We repeated the experiment in lean mice and observed that portal insulin and glucagon are elevated, but only insulin clearance is increased in VSG-operated mice. In conclusion, direct measurement of glucose and insulin in the blood entering and leaving the liver shows that VSG affects glucose and insulin metabolism through mechanisms independent of weight loss and diet.
Collapse
Affiliation(s)
- Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School-The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abbas Al-Kurd
- Department of Surgery, Hadassah Medical Center-Mt. Scopus, Jerusalem, Israel
| | - Botros Moalem
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School-The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anna Permyakova
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadar Israeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School-The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aya Bardugo
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School-The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yhara Arad
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School-The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Hefetz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School-The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Bergel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School-The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arnon Haran
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School-The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shahar Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itia Magenheim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School-The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Grinbaum
- Department of Surgery, Hadassah Medical Center-Mt. Scopus, Jerusalem, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School-The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
24
|
Pavlou P, Koutroukas V, Lissett C, Smith JC. Colesevelam-induced hypoglycaemia in a patient with type 1 diabetes mellitus. Clin Case Rep 2021; 9:e04830. [PMID: 34691455 PMCID: PMC8517595 DOI: 10.1002/ccr3.4830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022] Open
Abstract
Colesevelam possesses antidiabetic properties, which could potentiate sulphonylurea or insulin-induced hypoglycemia; clinically significant hypoglycemia, as a side effect to bile acid sequestrants, may be under-recognized in clinical practice.
Collapse
Affiliation(s)
- Panagiotis Pavlou
- Diabetes and EndocrinologySouth Devon Healthcare NHS Foundation TrustHengrave HouseTorbay HospitalTorquayUK
| | - Vaios Koutroukas
- Diabetes and EndocrinologySouth Devon Healthcare NHS Foundation TrustHengrave HouseTorbay HospitalTorquayUK
| | - Catherine Lissett
- Diabetes and EndocrinologySouth Devon Healthcare NHS Foundation TrustHengrave HouseTorbay HospitalTorquayUK
| | - Jamie C. Smith
- Diabetes and EndocrinologySouth Devon Healthcare NHS Foundation TrustHengrave HouseTorbay HospitalTorquayUK
| |
Collapse
|
25
|
Angelini G, Salinari S, Castagneto-Gissey L, Bertuzzi A, Casella-Mariolo J, Ahlin S, Boskoski I, Gaggini M, Raffaelli M, Costamagna G, Casella G, Marini PL, Gastaldelli A, Bornstein S, Mingrone G. Small intestinal metabolism is central to whole-body insulin resistance. Gut 2021; 70:1098-1109. [PMID: 32994312 DOI: 10.1136/gutjnl-2020-322073] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To assess the role of jejunum in insulin resistance in humans and in experimental animals. DESIGN Twenty-four subjects undergoing biliopancreatic diversion (BPD) or Roux-en-Y gastric bypass (RYGB) were enrolled. Insulin sensitivity was measured at baseline and at 1 week after surgery using oral glucose minimal model.We excluded the jejunum from intestinal continuity in pigs and created a jejunal loop with its vascular and nerve supply intact accessible from two cutaneous stomas, and reconnected the bowel with an end-to-end anastomosis. Glucose stable isotopes were given in the stomach or in the jejunal loop.In vitro studies using primary porcine and human hepatocytes or myoblasts tested the effects of plasma on gluconeogenesis or glucose uptake and insulin signalling. RESULTS Whole-body insulin sensitivity (SI∙104: 0.54±0.12 before vs 0.82±0.11 after BPD, p=0.024 and 0.41±0.09 before vs 0.65±0.09/pM/min after RYGB, p=not significant) and Glucose Disposition Index increased only after BPD. In pigs, insulin sensitivity was significantly lower when glucose was administered in the jejunal loop than in the stomach (glucose rate of disappearance (Rd) area under the curve (AUC)/insulin AUC∙10: 1.82±0.31 vs 2.96±0.33 mmol/pM/min, p=0.0017).Metabolomics showed a similar pattern before surgery and during jejunal-loop stimulation, pointing to a higher expression of gluconeogenetic substrates, a metabolic signature of impaired insulin sensitivity.A greater hepatocyte phosphoenolpyruvate-carboxykinase and glucose-6-phosphatase gene expression was elicited with plasma from porcine jejunal loop or before surgery compared with plasma from jejunectomy in pigs or jejunal bypass in humans.Stimulation of myoblasts with plasma from porcine jejunal loop or before surgery reduced glucose uptake, Ser473-Akt phosphorylation and GLUT4 expression compared with plasma obtained during gastric glucose administration after jejunectomy in pigs or after jejunal bypass in humans. CONCLUSION Proximal gut plays a crucial role in controlling insulin sensitivity through a distinctive metabolic signature involving hepatic gluconeogenesis and muscle insulin resistance. Bypassing the jejunum is beneficial in terms of insulin-mediated glucose disposal in obesity. TRIAL REGISTRATION NUMBER NCT03111953.
Collapse
Affiliation(s)
- Giulia Angelini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serenella Salinari
- Department of Computer, Control, and Management Engineering "Antonio Ruberti", Universityof Rome "Sapienza", Rome, Italy
| | | | | | | | - Sofie Ahlin
- Department of Molecular and Clinical Medicine, Institute of Medicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ivo Boskoski
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Melania Gaggini
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Marco Raffaelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Guido Costamagna
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Casella
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Pier Luigi Marini
- Department of Surgery, Azienda Ospedaliera S. Camillo Forlanini, Rome, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Stefan Bornstein
- Division of Diabetes & Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.,Department of Medicine III, Universitätsklinikum Carl Gustav Carus an der Technischen, Universität Dresden, Dresden, Germany
| | - Geltrude Mingrone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy .,Università Cattolica del Sacro Cuore, Rome, Italy.,Division of Diabetes & Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
26
|
Miras AD, Kamocka A, Pérez-Pevida B, Purkayastha S, Moorthy K, Patel A, Chahal H, Frost G, Bassett P, Castagnetto-Gissey L, Coppin L, Jackson N, Umpleby AM, Bloom SR, Tan T, Ahmed AR, Rubino F. The Effect of Standard Versus Longer Intestinal Bypass on GLP-1 Regulation and Glucose Metabolism in Patients With Type 2 Diabetes Undergoing Roux-en-Y Gastric Bypass: The Long-Limb Study. Diabetes Care 2021; 44:1082-1090. [PMID: 33158945 PMCID: PMC8132320 DOI: 10.2337/dc20-0762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) characteristically enhances postprandial levels of glucagon-like peptide 1 (GLP-1), a mechanism that contributes to its profound glucose-lowering effects. This enhancement is thought to be triggered by bypass of food to the distal small intestine with higher densities of neuroendocrine L-cells. We hypothesized that if this is the predominant mechanism behind the enhanced secretion of GLP-1, a longer intestinal bypass would potentiate the postprandial peak in GLP-1, translating into higher insulin secretion and, thus, additional improvements in glucose tolerance. To investigate this, we conducted a mechanistic study comparing two variants of RYGB that differ in the length of intestinal bypass. RESEARCH DESIGN AND METHODS A total of 53 patients with type 2 diabetes (T2D) and obesity were randomized to either standard limb RYGB (50-cm biliopancreatic limb) or long limb RYGB (150-cm biliopancreatic limb). They underwent measurements of GLP-1 and insulin secretion following a mixed meal and insulin sensitivity using euglycemic hyperinsulinemic clamps at baseline and 2 weeks and at 20% weight loss after surgery. RESULTS Both groups exhibited enhancement in postprandial GLP-1 secretion and improvements in glycemia compared with baseline. There were no significant differences in postprandial peak concentrations of GLP-1, time to peak, insulin secretion, and insulin sensitivity. CONCLUSIONS The findings of this study demonstrate that lengthening of the intestinal bypass in RYGB does not affect GLP-1 secretion. Thus, the characteristic enhancement of GLP-1 response after RYGB might not depend on delivery of nutrients to more distal intestinal segments.
Collapse
Affiliation(s)
| | - Anna Kamocka
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Belén Pérez-Pevida
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | | | - Krishna Moorthy
- Department of Surgery and Cancer, Imperial College London, London, U.K
| | - Ameet Patel
- Department of Surgery, King's College London, London, U.K
| | - Harvinder Chahal
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Gary Frost
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | | | | | - Lucy Coppin
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Nicola Jackson
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Anne Margot Umpleby
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Stephen Robert Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Tricia Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Ahmed Rashid Ahmed
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | | |
Collapse
|
27
|
Marciniak C, Chávez-Talavera O, Caiazzo R, Hubert T, Zubiaga L, Baud G, Quenon A, Descat A, Vallez E, Goossens JF, Kouach M, Vangelder V, Gobert M, Daoudi M, Derudas B, Pigny P, Klein A, Gmyr V, Raverdy V, Lestavel S, Laferrère B, Staels B, Tailleux A, Pattou F. Characterization of one anastomosis gastric bypass and impact of biliary and common limbs on bile acid and postprandial glucose metabolism in a minipig model. Am J Physiol Endocrinol Metab 2021; 320:E772-E783. [PMID: 33491532 PMCID: PMC8906817 DOI: 10.1152/ajpendo.00356.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The alimentary limb has been proposed to be a key driver of the weight-loss-independent metabolic improvements that occur upon bariatric surgery. However, the one anastomosis gastric bypass (OAGB) procedure, consisting of one long biliary limb and a short common limb, induces similar beneficial metabolic effects compared to Roux-en-Y Gastric Bypass (RYGB) in humans, despite the lack of an alimentary limb. The aim of this study was to assess the role of the length of biliary and common limbs in the weight loss and metabolic effects that occur upon OAGB. OAGB and sham surgery, with or without modifications of the length of either the biliary limb or the common limb, were performed in Gottingen minipigs. Weight loss, metabolic changes, and the effects on plasma and intestinal bile acids (BAs) were assessed 15 days after surgery. OAGB significantly decreased body weight, improved glucose homeostasis, increased postprandial GLP-1 and fasting plasma BAs, and qualitatively changed the intestinal BA species composition. Resection of the biliary limb prevented the body weight loss effects of OAGB and attenuated the postprandial GLP-1 increase. Improvements in glucose homeostasis along with changes in plasma and intestinal BAs occurred after OAGB regardless of the biliary limb length. Resection of only the common limb reproduced the glucose homeostasis effects and the changes in intestinal BAs. Our results suggest that the changes in glucose metabolism and BAs after OAGB are mainly mediated by the length of the common limb, whereas the length of the biliary limb contributes to body weight loss.NEW & NOTEWORTHY Common limb mediates postprandial glucose metabolism change after gastric bypass whereas biliary limb contributes to weight loss.
Collapse
Affiliation(s)
- Camille Marciniak
- U1190, Institut Pasteur de Lille, University of Lille, Inserm, Lille, France
| | | | - Robert Caiazzo
- U1190, Institut Pasteur de Lille, University of Lille, Inserm, Lille, France
| | - Thomas Hubert
- U1190, Institut Pasteur de Lille, University of Lille, Inserm, Lille, France
| | - Lorea Zubiaga
- U1190, Institut Pasteur de Lille, University of Lille, Inserm, Lille, France
| | - Gregory Baud
- U1190, Institut Pasteur de Lille, University of Lille, Inserm, Lille, France
| | - Audrey Quenon
- U1190, Institut Pasteur de Lille, University of Lille, Inserm, Lille, France
| | - Amandine Descat
- Mass Spectrometry Department, Pharmacy Faculty, PSM-GRITA, Lille, France
| | - Emmanuelle Vallez
- U1011, Institut Pasteur de Lille, University of Lille, Inserm Lille, France
| | | | - Mostafa Kouach
- Mass Spectrometry Department, Pharmacy Faculty, PSM-GRITA, Lille, France
| | - Vincent Vangelder
- U1190, Institut Pasteur de Lille, University of Lille, Inserm, Lille, France
| | - Mathilde Gobert
- U1190, Institut Pasteur de Lille, University of Lille, Inserm, Lille, France
| | - Mehdi Daoudi
- U1190, Institut Pasteur de Lille, University of Lille, Inserm, Lille, France
| | - Bruno Derudas
- U1011, Institut Pasteur de Lille, University of Lille, Inserm Lille, France
| | - Pascal Pigny
- Mass Spectrometry Department, Pharmacy Faculty, PSM-GRITA, Lille, France
| | - André Klein
- Metabolism and Glycosylation Diseases, Biology Pathology Center, Lille, France
| | - Valéry Gmyr
- U1190, Institut Pasteur de Lille, University of Lille, Inserm, Lille, France
| | - Violeta Raverdy
- U1190, Institut Pasteur de Lille, University of Lille, Inserm, Lille, France
| | - Sophie Lestavel
- U1011, Institut Pasteur de Lille, University of Lille, Inserm Lille, France
| | - Blandine Laferrère
- Division of Endocrinology, Department of Medicine, New York Obesity Research Center, Columbia University Irving Medical Center, New York, New York
| | - Bart Staels
- U1011, Institut Pasteur de Lille, University of Lille, Inserm Lille, France
| | - Anne Tailleux
- U1011, Institut Pasteur de Lille, University of Lille, Inserm Lille, France
| | - François Pattou
- U1190, Institut Pasteur de Lille, University of Lille, Inserm, Lille, France
| |
Collapse
|
28
|
Nuzzo A, Czernichow S, Hertig A, Ledoux S, Poghosyan T, Quilliot D, Le Gall M, Bado A, Joly F. Prevention and treatment of nutritional complications after bariatric surgery. Lancet Gastroenterol Hepatol 2021; 6:238-251. [PMID: 33581762 DOI: 10.1016/s2468-1253(20)30331-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
Obesity and the corresponding burden of related diseases is a major public health issue worldwide that is reaching pandemic proportions. Bariatric surgery is the only intervention that has been shown to result in substantial and lasting weight loss, and a decrease in overall mortality for patients with severe obesity. Consequently, the population of patients having undergone this procedure is increasing. Multifactorial weight-dependent and independent mechanisms underlying metabolic diseases could also drive preventable, but potentially life-threatening, long-term nutritional complications. However, given post-bariatric patients are prone to functional gastrointestinal symptoms and substantial weight loss, nutritional complications might be challenging. This Review is focused on the prevention and treatment of nutritional complications after bariatric surgery in the clinical setting.
Collapse
Affiliation(s)
- Alexandre Nuzzo
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Gastroenterology, IBD and Intestinal Failure, Beaujon Hospital, Clichy, France; Université de Paris, Paris, France
| | - Sebastien Czernichow
- Université de Paris, Paris, France; AP-HP, Service de Nutrition, Centre Spécialisé Obésité, Hôpital Européen Georges Pompidou, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1153, Centre de Recherche Épidémiologie et Statistique Sorbonne Paris Cité, Paris, France
| | - Alexandre Hertig
- AP-HP, Department of Nephrology, Pitié Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Séverine Ledoux
- Université de Paris, Paris, France; AP-HP, Service des Explorations Fonctionnelles, Centre Spécialisé Obésité, Hôpital Louis Mourier, Colombes, France; INSERM, UMR 1149, Centre de Recherche sur l'Inflammation Paris Montmartre, Paris, France
| | - Tigran Poghosyan
- Université de Paris, Paris, France; Service de Chirurgie Digestive, Oncologique et Bariatrique, Centre Spécialisé Obésité, Hôpital Européen Georges Pompidou, Paris, France; INSERM, UMR 1149, Centre de Recherche sur l'Inflammation Paris Montmartre, Paris, France
| | - Didier Quilliot
- Unité Multidisciplinaire de Chirurgie de l'Obésité, Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre les Nancy Cedex, France
| | - Maude Le Gall
- Université de Paris, Paris, France; INSERM, UMR 1149, Centre de Recherche sur l'Inflammation Paris Montmartre, Paris, France
| | - André Bado
- Université de Paris, Paris, France; INSERM, UMR 1149, Centre de Recherche sur l'Inflammation Paris Montmartre, Paris, France
| | - Francisca Joly
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Gastroenterology, IBD and Intestinal Failure, Beaujon Hospital, Clichy, France; Université de Paris, Paris, France; INSERM, UMR 1149, Centre de Recherche sur l'Inflammation Paris Montmartre, Paris, France.
| |
Collapse
|
29
|
Steenackers N, Vanuytsel T, Augustijns P, Tack J, Mertens A, Lannoo M, Van der Schueren B, Matthys C. Adaptations in gastrointestinal physiology after sleeve gastrectomy and Roux-en-Y gastric bypass. Lancet Gastroenterol Hepatol 2021; 6:225-237. [PMID: 33581761 DOI: 10.1016/s2468-1253(20)30302-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/19/2023]
Abstract
Linked to the growing obesity epidemic, demand for bariatric and metabolic surgery has increased, the most common procedures being sleeve gastrectomy and Roux-en-Y gastric bypass. Originally, bariatric procedures were described as purely restrictive, malabsorptive, or combined restrictive-malabsorptive procedures limiting food intake, nutrient absorption, or both. Nowadays, anatomical alterations are known to affect gastrointestinal physiology, which in turn affects the digestion and absorption of nutrients and drugs. Therefore, understanding gastrointestinal physiology is crucial to prevent postoperative nutritional deficiencies and to optimise postoperative drug therapy. Preclinical and clinical research indicates that sleeve gastrectomy accelerates liquid and solid gastric emptying and small intestinal transit, and increases bile acid serum levels, whereas its effects on gastrointestinal acidity, gastric and pancreatic secretions, surface area, and colonic transit remain largely unknown. Roux-en-Y gastric bypass diminishes gastric acid secretion, accelerates liquid gastric emptying, and increases bile acid serum levels, but its effects on intestinal pH, solid gastric emptying, intestinal transit time, gastric enzyme secretions, and surface area remain largely unknown. In this Review, we summarise current knowledge of the effects of these two procedures on gastrointestinal physiology and assess the knowledge gaps.
Collapse
Affiliation(s)
- Nele Steenackers
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Department of Chronic Diseases and Metabolism, and Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Ann Mertens
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Matthias Lannoo
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
30
|
Miskelly MG, Shcherbina L, Thorén Fischer AH, Abels M, Lindqvist A, Wierup N. GK-rats respond to gastric bypass surgery with improved glycemia despite unaffected insulin secretion and beta cell mass. Peptides 2021; 136:170445. [PMID: 33197511 DOI: 10.1016/j.peptides.2020.170445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Roux-en-Y gastric bypass (RYGB) is the most effective treatment for morbid obesity and results in rapid remission of type 2 diabetes (T2D), before significant weight loss occurs. The underlying mechanisms for T2D remission are not fully understood. To gain insight into these mechanisms we used RYGB-operated diabetic GK-rats and Wistar control rats. Twelve adult male Wistar- and twelve adult male GK-rats were subjected to RYGB- or sham-operation. Oral glucose tolerance tests (OGTT) were performed six weeks after surgery. RYGB normalized fasting glucose levels in GK-rats, without affecting fasting insulin levels. In both rat strains, RYGB caused increased postprandial responses in glucose, GLP-1, and GIP. RYGB caused elevated postprandial insulin secretion in Wistar-rats, but had no effect on insulin secretion in GK-rats. In agreement with this, RYGB improved HOMA-IR in GK-rats, but had no effect on HOMA-β. RYGB-operated GK-rats had an increased number of GIP receptor and GLP-1 receptor immunoreactive islet cells, but RYGB had no major effect on beta or alpha cell mass. Furthermore, in RYGB-operated GK-rats, increased Slc5a1, Pck2 and Pfkfb1 and reduced Fasn hepatic mRNA expression was observed. In summary, our data shows that RYGB induces T2D remission and enhanced postprandial incretin hormone secretion in GK-rats, without affecting insulin secretion or beta cell mass. Thus our data question the dogmatic view of how T2D remission is achieved and instead point at improved insulin sensitivity as the main mechanism of remission.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/surgery
- Disease Models, Animal
- Gastric Bypass
- Gastric Inhibitory Polypeptide/genetics
- Glucagon-Like Peptide 1/genetics
- Glucose Tolerance Test
- Humans
- Insulin/genetics
- Insulin/metabolism
- Insulin Secretion/genetics
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Obesity, Morbid/genetics
- Obesity, Morbid/metabolism
- Obesity, Morbid/pathology
- Obesity, Morbid/surgery
- Rats
- Rats, Wistar
- Weight Loss/genetics
- Weight Loss/physiology
Collapse
Affiliation(s)
- Michael G Miskelly
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Malmö, Sweden
| | - Liliya Shcherbina
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Malmö, Sweden
| | | | - Mia Abels
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Malmö, Sweden
| | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Malmö, Sweden
| | - Nils Wierup
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Malmö, Sweden.
| |
Collapse
|
31
|
van den Broek M, de Heide LJM, Sips FLP, Koehorst M, van Zutphen T, Emous M, van Faassen M, Groen AK, van Riel NAW, de Boer JF, van Beek AP, Kuipers F. Altered bile acid kinetics contribute to postprandial hypoglycaemia after Roux-en-Y gastric bypass surgery. Int J Obes (Lond) 2021; 45:619-630. [PMID: 33452416 DOI: 10.1038/s41366-020-00726-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/16/2020] [Accepted: 12/03/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND/OBJECTIVES Bile acids (BA) act as detergents in intestinal fat absorption and as modulators of metabolic processes via activation of receptors such as FXR and TGR5. Elevated plasma BA as well as increased intestinal BA signalling to promote GLP-1 release have been implicated in beneficial health effects of Roux-en-Y gastric bypass surgery (RYGB). Whether BA also contribute to the postprandial hypoglycaemia that is frequently observed post-RYGB is unknown. METHODS Plasma BA, fibroblast growth factor 19 (FGF19), 7α-hydroxy-4-cholesten-3-one (C4), GLP-1, insulin and glucose levels were determined during 3.5 h mixed-meal tolerance tests (MMTT) in subjects after RYGB, either with (RYGB, n = 11) or without a functioning gallbladder due to cholecystectomy (RYGB-CC, n = 11). Basal values were compared to those of age, BMI and sex-matched obese controls without RYGB (n = 22). RESULTS Fasting BA as well as FGF19 levels were elevated in RYGB and RYGB-CC subjects compared to non-bariatric controls, without significant differences between RYGB and RYGB-CC. Postprandial hypoglycaemia was observed in 8/11 RYGB-CC and only in 3/11 RYGB. Subjects who developed hypoglycaemia showed higher postprandial BA levels coinciding with augmented GLP-1 and insulin responses during the MMTT. The nadir of plasma glucose concentrations after meals showed a negative relationship with postprandial BA peaks. Plasma C4 was lower during MMTT in subjects experiencing hypoglycaemia, indicating lower hepatic BA synthesis. Computer simulations revealed that altered intestinal transit underlies the occurrence of exaggerated postprandial BA responses in hypoglycaemic subjects. CONCLUSION Altered BA kinetics upon ingestion of a meal, as frequently observed in RYGB-CC subjects, appear to contribute to postprandial hypoglycaemia by stimulating intestinal GLP-1 release.
Collapse
Affiliation(s)
- Merel van den Broek
- Center for Obesity North Netherlands (CON), Department of Surgery, MCL, Leeuwarden, The Netherlands.,Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
| | - Loek J M de Heide
- Center for Obesity North Netherlands (CON), Department of Surgery, MCL, Leeuwarden, The Netherlands
| | - Fianne L P Sips
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim van Zutphen
- Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marloes Emous
- Center for Obesity North Netherlands (CON), Department of Surgery, MCL, Leeuwarden, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Natal A W van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jan F de Boer
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - André P van Beek
- Center for Obesity North Netherlands (CON), Department of Surgery, MCL, Leeuwarden, The Netherlands.,Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. .,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
32
|
Hankir MK, Langseder T, Bankoglu EE, Ghoreishi Y, Dischinger U, Kurlbaum M, Kroiss M, Otto C, le Roux CW, Arora T, Seyfried F, Schlegel N. Simulating the Post-gastric Bypass Intestinal Microenvironment Uncovers a Barrier-Stabilizing Role for FXR. iScience 2020; 23:101777. [PMID: 33294786 PMCID: PMC7689555 DOI: 10.1016/j.isci.2020.101777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Regional changes to the intestinal microenvironment brought about by Roux-en-Y gastric bypass (RYGB) surgery may contribute to some of its potent systemic metabolic benefits through favorably regulating various local cellular processes. Here, we show that the intestinal contents of RYGB-operated compared with sham-operated rats region-dependently confer superior glycemic control to recipient germ-free mice in association with suppression of endotoxemia. Correspondingly, they had direct barrier-stabilizing effects on an intestinal epithelial cell line which, bile-exposed intestinal contents, were partly farnesoid X receptor (FXR)-dependent. Further, circulating fibroblast growth factor 19 levels, a readout of intestinal FXR activation, negatively correlated with endotoxemia severity in longitudinal cohort of RYGB patients. These findings suggest that various host- and/or microbiota-derived luminal factors region-specifically and synergistically stabilize the intestinal epithelial barrier following RYGB through FXR signaling, which could potentially be leveraged to better treat endotoxemia-induced insulin resistance in obesity in a non-invasive and more targeted manner.
Collapse
Affiliation(s)
- Mohammed K. Hankir
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Center of Operative Medicine, Oberduerrbacherstrasse 6, Wuerzburg, Bavaria 97080, Germany
| | - Theresa Langseder
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Center of Operative Medicine, Oberduerrbacherstrasse 6, Wuerzburg, Bavaria 97080, Germany
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Bavaria 97080, Germany
| | - Yalda Ghoreishi
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Center of Operative Medicine, Oberduerrbacherstrasse 6, Wuerzburg, Bavaria 97080, Germany
| | - Ulrich Dischinger
- Department of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany
| | - Max Kurlbaum
- Department of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany
| | - Matthias Kroiss
- Department of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Center of Operative Medicine, Oberduerrbacherstrasse 6, Wuerzburg, Bavaria 97080, Germany
| | - Carel W. le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin 4, Ireland
| | - Tulika Arora
- Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Florian Seyfried
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Center of Operative Medicine, Oberduerrbacherstrasse 6, Wuerzburg, Bavaria 97080, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Center of Operative Medicine, Oberduerrbacherstrasse 6, Wuerzburg, Bavaria 97080, Germany
| |
Collapse
|
33
|
Gut Microbiota in Patients with Morbid Obesity Before and After Bariatric Surgery: a Ten-Year Review Study (2009-2019). Obes Surg 2020; 31:317-326. [PMID: 33130944 DOI: 10.1007/s11695-020-05074-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The changes in the composition and function of gut microbiota affect the metabolic functions (which are mediated by microbial effects) in patients with obesity, resulting in significant physiological regulation in these patients. Most of the studies emphasize that the Western-style diet (high fat and low vegetable consumption) leads to significant changes in the intestinal microbiome in individuals with metabolic syndrome. A deeper understanding of the profiles of gut microbes will contribute to the development of new therapeutic strategies for the management of metabolic syndrome and other metabolic diseases and related disorders. The aim of this review is to evaluate recent experimental evidence outlining the alterations of gut microbiota composition and function in recovery from bariatric surgical operations with an emphasis on sleeve gastrectomy and gastric bypass.
Collapse
|
34
|
Recent advances in the mechanisms underlying the beneficial effects of bariatric and metabolic surgery. Surg Obes Relat Dis 2020; 17:231-238. [PMID: 33036939 DOI: 10.1016/j.soard.2020.08.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
Bariatric and metabolic surgery (BMS) is the most effective treatment for obesity, type 2 diabetes and co-morbidities, including nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. The beneficial effects of BMS are beyond the primary goal of gastric restriction and nutrients malabsorption. Roux-en-Y gastric bypass and vertical sleeve gastrectomy are the 2 most commonly performed procedures of BMS. Both surgeries lead to physiologic changes in gastrointestinal tract; subsequently alter bile acids pool and composition, gut microbial activities, gut hormones, and circulating exosomes; and ultimately contribute to the improved glycemic control, insulin sensitivity, lipid metabolism, energy expenditure, and weight loss. The mechanisms underlying the benefits of BMS likely involve the bile acid-signaling pathway mediated mainly by nuclear farnesoid X receptor and the membrane Takeda G protein-coupled receptor, bile acids-gut microbiota interaction, and exosomes. In this review, we focus on recent advances in potential mechanisms and aim to learn novel insights into the molecular mechanisms underlying metabolic disorders.
Collapse
|
35
|
Wallenius V, Elias E, Elebring E, Haisma B, Casselbrant A, Larraufie P, Spak E, Reimann F, le Roux CW, Docherty NG, Gribble FM, Fändriks L. Suppression of enteroendocrine cell glucagon-like peptide (GLP)-1 release by fat-induced small intestinal ketogenesis: a mechanism targeted by Roux-en-Y gastric bypass surgery but not by preoperative very-low-calorie diet. Gut 2020; 69:1423-1431. [PMID: 31753852 PMCID: PMC7347417 DOI: 10.1136/gutjnl-2019-319372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Food intake normally stimulates release of satiety and insulin-stimulating intestinal hormones, such as glucagon-like peptide (GLP)-1. This response is blunted in obese insulin resistant subjects, but is rapidly restored following Roux-en-Y gastric bypass (RYGB) surgery. We hypothesised this to be a result of the metabolic changes taking place in the small intestinal mucosa following the anatomical rearrangement after RYGB surgery, and aimed at identifying such mechanisms. DESIGN Jejunal mucosa biopsies from patients undergoing RYGB surgery were retrieved before and after very-low calorie diet, at time of surgery and 6 months postoperatively. Samples were analysed by global protein expression analysis and Western blotting. Biological functionality of these findings was explored in mice and enteroendocrine cells (EECs) primary mouse jejunal cell cultures. RESULTS The most prominent change found after RYGB was decreased jejunal expression of the rate-limiting ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHMGCS), corroborated by decreased ketone body levels. In mice, prolonged high-fat feeding induced the expression of mHMGCS and functional ketogenesis in jejunum. The effect of ketone bodies on gut peptide secretion in EECs showed a ∼40% inhibition of GLP-1 release compared with baseline. CONCLUSION Intestinal ketogenesis is induced by high-fat diet and inhibited by RYGB surgery. In cell culture, ketone bodies inhibited GLP-1 release from EECs. Thus, we suggest that this may be a mechanism by which RYGB can remove the inhibitory effect of ketone bodies on EECs, thereby restituting the responsiveness of EECs resulting in increased meal-stimulated levels of GLP-1 after surgery.
Collapse
Affiliation(s)
- Ville Wallenius
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden .,Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Östra, University of Gothenburg, Gothenburg, Sweden
| | - Erik Elias
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden,Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden
| | - Erik Elebring
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden
| | - Bauke Haisma
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Anna Casselbrant
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden
| | - Pierre Larraufie
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Emma Spak
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden
| | - Frank Reimann
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College of Dublin, Dublin, Ireland
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute, University College of Dublin, Dublin, Ireland
| | - Fiona M Gribble
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Lars Fändriks
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Cho A, Kwon IG, Kim S, Noh SH, Ku CR. Altered systematic glucose utilization after gastrectomy: correlation with weight loss. Surg Obes Relat Dis 2020; 16:900-907. [DOI: 10.1016/j.soard.2020.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
|
37
|
Martinussen C, Veedfald S, Dirksen C, Bojsen-Møller KN, Svane MS, Wewer Albrechtsen NJ, van Hall G, Kristiansen VB, Fenger M, Holst JJ, Madsbad S. The effect of acute dual SGLT1/SGLT2 inhibition on incretin release and glucose metabolism after gastric bypass surgery. Am J Physiol Endocrinol Metab 2020; 318:E956-E964. [PMID: 32182123 DOI: 10.1152/ajpendo.00023.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enhanced meal-related enteroendocrine secretion, particularly of glucagon-like peptide-1 (GLP-1), contributes to weight-loss and improved glycemia after Roux-en-Y gastric bypass (RYGB). Dietary glucose drives GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) secretion postoperatively. Understanding how glucose triggers incretin secretion following RYGB could lead to new treatments of diabetes and obesity. In vitro, incretin release depends on glucose absorption via sodium-glucose cotransporter 1 (SGLT1). We investigated the importance of SGLT1/SGLT2 for enteropancreatic hormone concentrations and glucose metabolism after RYGB in a randomized, controlled, crossover study. Ten RYGB-operated patients ingested 50 g of oral glucose with and without acute pretreatment with 600 mg of the SGLT1/SGLT2-inhibitor canagliflozin. Paracetamol and 3-O-methyl-d-glucopyranose (3-OMG) were added to the glucose drink to evaluate rates of intestinal entry and absorption of glucose, respectively. Blood samples were collected for 4 h. The primary outcome was 4-h plasma GLP-1 (incremental area-under the curve, iAUC). Secondary outcomes included glucose, GIP, insulin, and glucagon. Canagliflozin delayed glucose absorption (time-to-peak 3-OMG: 50 vs. 132 min, P < 0.01) but did not reduce iAUC GLP-1 (6,067 vs. 7,273·min·pmol-1·L-1, P = 0.23), although peak GLP-1 concentrations were lowered (-28%, P = 0.03). Canagliflozin reduced GIP (iAUC -28%, P = 0.01; peak concentrations -57%, P < 0.01), insulin, and glucose excursions, whereas plasma glucagon (AUC 3,216 vs. 4,160 min·pmol·L-1, P = 0.02) and amino acids were increased. In conclusion, acute SGLT1/SGLT2-inhibition during glucose ingestion did not reduce 4-h plasma GLP-1 responses in RYGB-patients but attenuated the early rise in GLP-1, GIP, and insulin, whereas late glucagon concentrations were increased. The results suggest that SGLT1-mediated glucose absorption contributes to incretin hormone secretion after RYGB.
Collapse
Affiliation(s)
- Christoffer Martinussen
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Simon Veedfald
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine N Bojsen-Møller
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Maria S Svane
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Viggo B Kristiansen
- Department of Surgical Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | - Mogens Fenger
- Department of Clinical Biochemistry, Hvidovre Hospital, Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 2020; 77:129-143. [PMID: 30517714 DOI: 10.1093/nutrit/nuy064] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plasticity of a material corresponds to its capacity to change its feature under the effect of an external action. Intestinal plasticity could be defined as the ability of the intestine to modify its size or thickness and intestinal cells to modulate their absorption and secretion functions in response to external or internal cues/signals. This review will focus on intestinal adaptation mechanisms in response to diet and nutritional status. These physiological mechanisms allow a fine and rapid adaptation of the gut to promote absorption of ingested food, but they can also lead to obesity in response to overnutrition. This plasticity could thus become a therapeutic target to treat not only undernutrition but also obesity. How the intestine adapts in response to 2 types of surgical remodeling of the digestive tract-extensive bowel resection leading to intestinal failure and surgical treatment of pathological obesity (ie, bariatric surgeries)-will also be reviewed.
Collapse
Affiliation(s)
- Maude Le Gall
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Doriane Aguanno
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Anne-Charlotte Jarry
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutriomics Team, Paris, France, and the Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hepato-Biliary and Pancreatic Surgery, Liver Transplantation, Paris, France
| | - Lara Ribeiro-Parenti
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of General and Digestive Surgery, University Hospital Bichat-Claude-Bernard, Paris, France
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of Gastroenterology, Inflammatory Bowel Diseases, Nutritional Support and Intestinal Transplantation, Paris, France
| | - Séverine Ledoux
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Service des Explorations Fonctionnelles, Centre de référence de prise en charge de l'obésité, GHUPNVS, Hôpital Louis Mourier, Colombes, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière-Charles Foix, Biochimie Endocrinienne et Oncologique, Paris, France
| |
Collapse
|
39
|
Blanchard C, Ledoux S, Verhaegen A, Wargny M, Letessier E, Stepanian A, Huten N, Jacobi D, Krempf M, Le Bras M, Perrocheau Guillouche M, Arnaud L, Pichelin M, Van Gaal L, Cariou B, Le May C. Roux-en-Y gastric bypass, but not sleeve gastrectomy, decreases plasma PCSK9 levels in morbidly obese patients. DIABETES & METABOLISM 2020; 46:480-487. [PMID: 32032671 DOI: 10.1016/j.diabet.2020.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
Abstract
AIM Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a master regulator of low-density lipoprotein cholesterol (LDL-C) metabolism, acting as an endogenous inhibitor of the LDL receptor. While it has been shown that bariatric surgery differentially affects plasma LDL-C levels, little is known of its effects on plasma PCSK9 concentrations. Therefore, the present study aimed to: (i) investigate the effect of sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) on plasma PCSK9 concentrations; and (ii) correlate baseline or postoperative plasma PCSK9 concentration variations with anthropometric and metabolic parameters. METHODS Fasting plasma PCSK9 levels were measured by ELISA in morbidly obese patients before and 6 months after bariatric surgery. Patients were recruited from three prospective cohorts (in Nantes and Colombes in France, and Antwerp in Belgium). RESULTS A total of 156 patients (34SG, 122RYGB) were included. Plasma PCSK9, LDL-C and non-high-density lipoprotein cholesterol (non-HDL-C) levels were significantly reduced after RYGB (-19.6%, -16.6% and -19.5%, respectively; P<0.0001), but not after SG. In all patients, postoperative PCSK9 change was positively correlated with fasting plasma glucose (FPG; r=0.22, P=0.007), HOMA-IR (r=0.24, P=0.005), total cholesterol (r=0.17, P=0.037) and non-HDL-C (r=0.17, P=0.038) variations, but not LDL-C. In contrast to what was observed for glucose parameters (FPG, HOMA-IR), correlation between PCSK9 and non-HDL-C changes after RYGB was independent of total weight loss. CONCLUSION RYGB, but not SG, promotes a significant reduction in plasma PCSK9 levels, and such changes in circulating PCSK9 levels after RYGB appear to be more associated with glucose improvement than with lipid homoeostasis parameters.
Collapse
Affiliation(s)
- C Blanchard
- University of Nantes, CNRS, Inserm, Thorax Institute, 44000 Nantes, France; Clinical Department of Digestive and Endocrine Surgery, CHU of Nantes, Nantes, France
| | - S Ledoux
- Department of Functional Explorations, North Francilien Integrated Obesity Centre (CINFO), Hôpital Louis Mourier (AP-HP.7), University of Paris, Paris, France
| | - A Verhaegen
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - M Wargny
- University of Nantes, CNRS, Inserm, Thorax Institute, 44000 Nantes, France; Thorax Institute, Department of Endocrinology, CIC 1413 Inserm, CHU Nantes, Nantes, France
| | - E Letessier
- Clinical Department of Digestive and Endocrine Surgery, CHU of Nantes, Nantes, France
| | - A Stepanian
- AP-HP, Hôpital Lariboisière, Department of Biological Haematology, Paris, France
| | - N Huten
- Digestive, Endocrine, Oncology and Liver Transplantation Department, CHU of Tours, Tours, France
| | - D Jacobi
- University of Nantes, CNRS, Inserm, Thorax Institute, 44000 Nantes, France; Digestive, Endocrine, Oncology and Liver Transplantation Department, CHU of Tours, Tours, France
| | - M Krempf
- Thorax Institute, Department of Endocrinology, CIC 1413 Inserm, CHU Nantes, Nantes, France; INRA, UMR 1280, Physiology of Nutritional Adaptations, CHU Hôtel-Dieu, 44000 Nantes, France
| | - M Le Bras
- Thorax Institute, Department of Endocrinology, CIC 1413 Inserm, CHU Nantes, Nantes, France
| | | | - L Arnaud
- University of Nantes, CNRS, Inserm, Thorax Institute, 44000 Nantes, France
| | - M Pichelin
- University of Nantes, CNRS, Inserm, Thorax Institute, 44000 Nantes, France; Thorax Institute, Department of Endocrinology, CIC 1413 Inserm, CHU Nantes, Nantes, France
| | - L Van Gaal
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - B Cariou
- University of Nantes, CNRS, Inserm, Thorax Institute, 44000 Nantes, France; Thorax Institute, Department of Endocrinology, CIC 1413 Inserm, CHU Nantes, Nantes, France
| | - C Le May
- University of Nantes, CNRS, Inserm, Thorax Institute, 44000 Nantes, France.
| |
Collapse
|
40
|
Li M, Liu Z, Qian B, Liu W, Horimoto K, Xia J, Shi M, Wang B, Zhou H, Chen L. "Dysfunctions" induced by Roux-en-Y gastric bypass surgery are concomitant with metabolic improvement independent of weight loss. Cell Discov 2020; 6:4. [PMID: 32025334 PMCID: PMC6985254 DOI: 10.1038/s41421-019-0138-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Metabolic surgery has been increasingly recommended for obese diabetic patients, but questions remain as to its molecular mechanism that leads to improved metabolic parameters independently of weight loss from a network viewpoint. We evaluated the role of the Roux limb (RL) in Roux-en-Y gastric bypass (RYGB) surgery in nonobese diabetic rat models. Improvements in metabolic parameters were greater in the long-RL RYGB group. Transcriptome profiles reveal that amelioration of diabetes state following RYGB differs remarkably from both normal and diabetic states. According to functional analysis, RYGB surgery significantly affected a major gene group, i.e., the newly changed group, which represented diabetes-irrelevant genes abnormally expressed after RYGB. We hypothesize that novel "dysfunctions" carried by this newly changed gene group induced by RYGB rebalance diabetic states and contribute to amelioration of metabolic parameters. An unusual increase in cholesterol (CHOL) biosynthesis in RL enriched by the newly changed group was concomitant with ameliorated metabolic parameters, as demonstrated by measurements of physiological parameters and biodistribution analysis using [14C]-labeled glucose. Our findings demonstrate RYGB-induced "dysfunctions" in the newly changed group as a compensatory role contributes to amelioration of diabetes. Rather than attempting to normalize "abnormal" molecules, we suggest a new disease treatment strategy of turning "normal" molecules "abnormal" in order to achieve a new "normal" physiological balance. It further implies a novel strategy for drug discovery, i.e. targeting also on "normal" molecules, which are traditionally ignored in pharmaceutical development.
Collapse
Affiliation(s)
- Meiyi Li
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199 China
| | - Zhiyuan Liu
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
| | - Bangguo Qian
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
| | - Weixin Liu
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
| | - Katsuhisa Horimoto
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Jie Xia
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
| | - Meilong Shi
- Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Bing Wang
- Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Huarong Zhou
- Sherman College of Chiropractic, Boiling Springs, SC 29316 USA
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031 China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210 China
| |
Collapse
|
41
|
Korakas E, Kountouri A, Raptis A, Kokkinos A, Lambadiari V. Bariatric Surgery and Type 1 Diabetes: Unanswered Questions. Front Endocrinol (Lausanne) 2020; 11:525909. [PMID: 33071965 PMCID: PMC7531037 DOI: 10.3389/fendo.2020.525909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/20/2020] [Indexed: 01/19/2023] Open
Abstract
In recent decades there has been an alarming increase in the prevalence of obesity in patients with type 1 diabetes leading to the development of insulin resistance and cardiometabolic complications, with mechanisms poorly clarified. While bariatric surgery has long been considered an effective treatment option for patients with type 2 diabetes, the evidence regarding its benefits on weight loss and the prevention of complications in T1DM patients is scarce, with controversial outcomes. Bariatric surgery has been associated with a significant reduction in daily insulin requirement, along with a considerable reduction in body mass index, results which were sustained in the long term. Furthermore, studies suggest that bariatric surgery in type 1 diabetes results in the improvement of comorbidities related to obesity including hypertension and dyslipidemia. However, regarding glycemic control, the reduction of mean glycosylated hemoglobin was modest or statistically insignificant in most studies. The reasons for these results are yet to be elucidated; possible explanations include preservation of beta cell mass and increased residual function post-surgery, improvement in insulin action, altered GLP-1 function, timing of surgery, and association with residual islet cell mass. A number of concerns regarding safety issues have arisen due to the reporting of peri-operative and post-operative adverse events. The most significant complications are metabolic and include diabetic ketoacidosis, severe hypoglycemia and glucose fluctuations. Further prospective clinical studies are required to provide evidence for the effect of bariatric surgery on T1DM patients. The results may offer a better knowledge for the selection of people living with diabetes who will benefit more from a metabolic surgery.
Collapse
Affiliation(s)
- Emmanouil Korakas
- Second Department of Internal Medicine, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Kountouri
- Second Department of Internal Medicine, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Raptis
- Second Department of Internal Medicine, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Vaia Lambadiari
| |
Collapse
|
42
|
Abstract
Biliopancreatic diversion (BPD) surgery leads to more frequent diabetes remission than Roux-en-Y gastric bypass (RYGB). In this issue, Harris et al. (2019) compare each surgery after careful matching for percentage weight loss and find the gut as a major site of difference between the effects of the two surgeries.
Collapse
Affiliation(s)
- Blandine Laferrère
- New York Obesity Research Center, Division of Endocrinology, Department of Medicine, Columbia University Medical Center, New York, NY, USA.
| | - François Pattou
- Université de Lille, Inserm, CHU Lille, U1190 - European Genomic Institute for Diabetes, 59000 Lille, France
| |
Collapse
|
43
|
Biliopancreatic Diversion Induces Greater Metabolic Improvement Than Roux-en-Y Gastric Bypass. Cell Metab 2019; 30:855-864.e3. [PMID: 31588013 PMCID: PMC6876863 DOI: 10.1016/j.cmet.2019.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/03/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Diabetes remission is greater after biliopancreatic diversion (BPD) than Roux-en-Y gastric bypass (RYGB) surgery. We used a mixed-meal test with ingested and infused glucose tracers and the hyperinsulinemic-euglycemic clamp procedure with glucose tracer infusion to assess the effect of 20% weight loss induced by either RYGB or BPD on glucoregulation in people with obesity (ClinicalTrials.gov number: NCT03111953). The rate of appearance of ingested glucose into the circulation was much slower, and the postprandial increases in plasma glucose and insulin concentrations were markedly blunted after BPD compared to after RYGB. Insulin sensitivity, assessed as glucose disposal rate during insulin infusion, was ∼45% greater after BPD than RYGB, whereas β cell function was not different between groups. These results demonstrate that compared with matched-percentage weight loss induced by RYGB, BPD has unique beneficial effects on glycemic control, manifested by slower postprandial glucose absorption, blunted postprandial plasma glucose and insulin excursions, and greater improvement in insulin sensitivity.
Collapse
|
44
|
Val-Laillet D. Review: Impact of food, gut-brain signals and metabolic status on brain activity in the pig model: 10 years of nutrition research using in vivo brain imaging. Animal 2019; 13:2699-2713. [PMID: 31354119 DOI: 10.1017/s1751731119001745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review is to offer a panorama on 10 years of nutrition research using in vivo brain imaging in the pig model. First, we will review some work describing the brain responses to food signals, including basic tastants such as sweet and bitter at both oral and visceral levels, as well as conditioned preferred and aversive flavours. Second, we will have a look at the impact of weight gain and obesity on brain metabolism and functional responses, drawing the parallel with obese human patients. Third, we will evoke the concept of the developmental origins of health and diseases, and how the pig model can shed light on the importance of maternal nutrition during gestation and lactation for the development of the gut-brain axis and adaptation abilities of the progeny to nutritional environments. Finally, three examples of preventive or therapeutic strategies will be introduced: the use of sensory food ingredients or pre-, pro-, and postbiotics to improve metabolic and cognitive functions; the implementation of chronic vagus nerve stimulation to prevent weight gain and glucose metabolism alterations; and the development of bariatric surgery in the pig model for the understanding of its complex mechanisms at the gut-brain level. A critical conclusion will brush the limitations of neurocognitive studies in the pig model and put in perspective the rationale and ethical concerns underlying the use of pig experimentation in nutrition and neurosciences.
Collapse
Affiliation(s)
- D Val-Laillet
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| |
Collapse
|
45
|
Douros JD, Tong J, D’Alessio DA. The Effects of Bariatric Surgery on Islet Function, Insulin Secretion, and Glucose Control. Endocr Rev 2019; 40:1394-1423. [PMID: 31241742 PMCID: PMC6749890 DOI: 10.1210/er.2018-00183] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 04/23/2019] [Indexed: 01/19/2023]
Abstract
Although bariatric surgery was developed primarily to treat morbid obesity, evidence from the earliest clinical observations to the most recent clinical trials consistently demonstrates that these procedures have substantial effects on glucose metabolism. A large base of research indicates that bariatric surgeries such as Roux-en-Y gastric bypass (RYGB), vertical sleeve gastrectomy (VSG), and biliopancreatic diversion (BPD) improve diabetes in most patients, with effects frequently evident prior to substantial weight reduction. There is now unequivocal evidence from randomized controlled trials that the efficacy of surgery is superior to intensive life-style/medical management. Despite advances in the clinical understanding and application of bariatric surgery, there remains only limited knowledge of the mechanisms by which these procedures confer such large changes to metabolic physiology. The improvement of insulin sensitivity that occurs with weight loss (e.g., the result of diet, illness, physical training) also accompanies bariatric surgery. However, there is evidence to support specific effects of surgery on insulin clearance, hepatic glucose production, and islet function. Understanding the mechanisms by which surgery affects these parameters of glucose regulation has the potential to identify new targets for therapeutic discovery. Studies to distinguish among bariatric surgeries on key parameters of glucose metabolism are limited but would be of considerable value to assist clinicians in selecting specific procedures and investigators in delineating the resulting physiology. This review is based on literature related to factors governing glucose metabolism and insulin secretion after the commonly used RYGB and VSG, and the less frequently used BPD and adjustable gastric banding.
Collapse
Affiliation(s)
- Jonathan D Douros
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Jenny Tong
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - David A D’Alessio
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| |
Collapse
|
46
|
Abstract
Purpose of Review Hypertension is related to impaired metabolic homeostasis and can be regarded as a metabolic disorder. This review presents possible mechanisms by which metabolic disorders increase blood pressure (BP) and discusses the importance of the gut as a novel modulator of BP. Recent Findings Obesity and high salt intake are major risk factors for hypertension. There is a hypothesis of “salt-induced obesity”; i.e., high salt intake may tie to obesity. Heightened sympathetic nervous system (SNS) activity, especially in the kidney and brain, increases BP in obese patients. Adipokines, including adiponectin and leptin, and renin-angiotensin-aldosterone system (RAAS) contribute to hypertension. Adiponectin induced by a high-salt diet may decrease sodium/glucose cotransporter (SGLT) 2 expression in the kidney, which results in reducing BP. High salt can change secretions of adipokines and RAAS-related components. Evidence has been accumulating linking the gastrointestinal tract to BP. Glucagon-like peptide-1 (GLP-1) and ghrelin decrease BP in both rodents and humans. The sweet taste receptor in enteroendocrine cells increases SGLT1 expression and stimulates sodium/glucose absorption. Roux-en-Y gastric bypass improves glycemic and BP control due to reducing the activity of SGLT1. Na/H exchanger isoform 3 (NHE3) increases BP by stimulating the intestinal absorption of sodium. Gastrin functions as an intestinal sodium taste sensor and inhibits NHE3 activity. Intestinal mineralocorticoid receptors also regulate sodium absorption and BP due to changing ENaC activity. Gastric sensing of sodium induces natriuresis, and gastric distension increases BP. Changes in the composition and function of gut microbiota contribute to hypertension. A high-salt/fat diet may disrupt the gut barrier, which results in systemic inflammation, insulin resistance, and increased BP. Gut microbiota regulates BP by secreting vasoactive hormones and short-chain fatty acids. BP-lowering effects of probiotics and antibiotics have been reported. Bariatric surgery improves metabolic disorders and hypertension due to increasing GLP-1 secretion, decreasing leptin secretion and SNS activity, and changing gut microbiome composition. Strategies targeting the gastrointestinal system may be therapeutic options for improving metabolic abnormalities and reducing BP in humans. Summary SNS, brain, adipocytes, RAAS, the kidney, the gastrointestinal tract, and microbiota play important roles in regulating BP. Most notably, the gut could be a novel target for treatment of hypertension as a metabolic disorder.
Collapse
|
47
|
Chen X, Zhang J, Zhou Z. Targeting Islets: Metabolic Surgery Is More than a Bariatric Surgery. Obes Surg 2019; 29:3001-3009. [DOI: 10.1007/s11695-019-03979-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
Flynn CR, Albaugh VL, Abumrad NN. Metabolic Effects of Bile Acids: Potential Role in Bariatric Surgery. Cell Mol Gastroenterol Hepatol 2019; 8:235-246. [PMID: 31075353 PMCID: PMC6664228 DOI: 10.1016/j.jcmgh.2019.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
Bariatric surgery is the most effective and durable treatment for morbid obesity, with an unexplained yet beneficial side effect of restoring insulin sensitivity and improving glycemia, often before weight loss is observed. Among the many contributing mechanisms often cited, the altered handling of intestinal bile acids is of considerable therapeutic interest. Here, we review a growing body of literature examining the metabolic effects of bile acids ranging from their physical roles in dietary fat handling within the intestine to their functions as endocrine and paracrine hormones in potentiating responses to bariatric surgery. The roles of 2 important bile acid receptors, Takeda G-protein coupled receptor (also known as G-protein coupled bile acid receptor) and farnesoid X receptor, are highlighted as is downstream signaling through glucagon-like polypeptide 1 and its cognate receptor. Additional improvements in other phenotypes and potential contributions of commensal gut bacteria, such as Akkermansia muciniphila, which are manifest after Roux-en-Y gastric bypass and other emulations, such as gallbladder bile diversion to the ileum, are also discussed.
Collapse
Affiliation(s)
- Charles R. Flynn
- Correspondence Address correspondence to: Charles R. Flynn, PhD, 1161 21st Avenue S, CCC-2308 MCN, Nashville, Tennessee 37232-2730. fax: (615) 343-6456.
| | | | | |
Collapse
|
49
|
Pal A, Rhoads DB, Tavakkoli A. Portal milieu and the interplay of multiple antidiabetic effects after gastric bypass surgery. Am J Physiol Gastrointest Liver Physiol 2019; 316:G668-G678. [PMID: 30896970 PMCID: PMC6580237 DOI: 10.1152/ajpgi.00389.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diabetes is a worldwide health problem. Roux-en-Y gastric bypass (RYGB) leads to rapid resolution of type 2 diabetes (T2D). Decreased hepatic insulin resistance is key, but underlying mechanisms are poorly understood. We hypothesized that changes in intestinal function and subsequent changes in portal venous milieu drive some of these postoperative benefits. We therefore aimed to evaluate postoperative changes in portal milieu. Two rat strains, healthy [Sprague-Dawley (SD)] and obese diabetic [Zucker diabetic fatty (ZDF)] rats, underwent RYGB or control surgery. After 4 wk, portal and systemic blood was sampled before and during an intestinal glucose bolus to investigate changes in intestinal glucose absorption (Gabsorp) and utilization (Gutil), and intestinal secretion of incretins and glucagon-like peptide-2 (GLP-2). Hepatic activity of dipeptidyl peptidase-4 (DPP4), which degrades incretins, was also measured. RYGB decreased Gabsorp in both rat strains. Gutil increased in SD rats and decreased in ZDF rats. In both strains, there was increased expression of intestinal hexokinase and gluconeogenesis enzymes. Systemic incretin and GLP-2 levels also increased after RYGB. This occurred without an increase in secretion. Hepatic DPP4 activity and expression were unchanged. RYGB perturbs multiple intestinal pathways, leading to decreased intestinal glucose absorption and increased incretin levels in both healthy and diabetic animals. In diabetic rats, intestinal glucose balance shifts toward glucose release. The portal vein as the gut-liver axis may integrate these intestinal changes to contribute to rapid changes in hepatic glucose and hormone handling. This fresh insight into the surgical physiology of RYGB raises the hope of less invasive alternatives. NEW & NOTEWORTHY Portal milieu after gastric bypass surgery is an underinvestigated area. Roux-en-Y gastric bypass perturbs multiple intestinal pathways, reducing intestinal glucose absorption and increasing incretin levels. In diabetic rats, the intestine becomes a net releaser of glucose, increasing portal glucose levels. The portal vein as the gut-liver axis may integrate these intestinal changes to contribute to changes in hepatic glucose handling. This fresh insight raises the hope of less invasive alternatives.
Collapse
Affiliation(s)
- Atanu Pal
- 1Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts,2Harvard Medical School, Boston, Massachusetts
| | - David B. Rhoads
- 2Harvard Medical School, Boston, Massachusetts,3Pediatric Endocrinology, MassGeneral Hospital for Children, Boston, Massachusetts
| | - Ali Tavakkoli
- 1Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts,2Harvard Medical School, Boston, Massachusetts,4Center for Weight Management and Metabolic Surgery, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
50
|
Debédat J, Amouyal C, Aron-Wisnewsky J, Clément K. Impact of bariatric surgery on type 2 diabetes: contribution of inflammation and gut microbiome? Semin Immunopathol 2019; 41:461-475. [PMID: 31025085 DOI: 10.1007/s00281-019-00738-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023]
|