1
|
Berdowska I, Matusiewicz M, Fecka I. A Comprehensive Review of Metabolic Dysfunction-Associated Steatotic Liver Disease: Its Mechanistic Development Focusing on Methylglyoxal and Counterbalancing Treatment Strategies. Int J Mol Sci 2025; 26:2394. [PMID: 40141037 PMCID: PMC11942149 DOI: 10.3390/ijms26062394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multifactorial disorder characterized by excessive lipid accumulation in the liver which dysregulates the organ's function. The key contributor to MASLD development is insulin resistance (IR) which affects many organs (including adipose tissue, skeletal muscles, and the liver), whereas the molecular background is associated with oxidative, nitrosative, and carbonyl stress. Among molecules responsible for carbonyl stress effects, methylglyoxal (MGO) seems to play a major pathological function. MGO-a by-product of glycolysis, fructolysis, and lipolysis (from glycerol and fatty acids-derived ketone bodies)-is implicated in hyperglycemia, hyperlipidemia, obesity, type 2 diabetes, hypertension, and cardiovascular diseases. Its causative effect in the stimulation of prooxidative and proinflammatory pathways has been well documented. Since metabolic dysregulation leading to these pathologies promotes MASLD, the role of MGO in MASLD is addressed in this review. Potential MGO participation in the mechanism of MASLD development is discussed in regard to its role in different signaling routes leading to pathological events accelerating the disorder. Moreover, treatment strategies including approved and potential therapies in MASLD are overviewed and discussed in this review. Among them, medications aimed at attenuating MGO-induced pathological processes are addressed.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Małgorzata Matusiewicz
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|
2
|
Rashad S, Marahleh A. Metabolism Meets Translation: Dietary and Metabolic Influences on tRNA Modifications and Codon Biased Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70011. [PMID: 40119534 PMCID: PMC11928779 DOI: 10.1002/wrna.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
Transfer RNA (tRNA) is not merely a passive carrier of amino acids, but an active regulator of mRNA translation controlling codon bias and optimality. The synthesis of various tRNA modifications is regulated by many "writer" enzymes, which utilize substrates from metabolic pathways or dietary sources. Metabolic and bioenergetic pathways, such as one-carbon (1C) metabolism and the tricarboxylic acid (TCA) cycle produce essential substrates for tRNA modifications synthesis, such as S-Adenosyl methionine (SAM), sulfur species, and α-ketoglutarate (α-KG). The activity of these metabolic pathways can directly impact codon decoding and translation via regulating tRNA modifications levels. In this review, we discuss the complex interactions between diet, metabolism, tRNA modifications, and mRNA translation. We discuss how nutrient availability, bioenergetics, and intermediates of metabolic pathways, modulate the tRNA modification landscape to fine-tune protein synthesis. Moreover, we highlight how dysregulation of these metabolic-tRNA interactions contributes to disease pathogenesis, including cancer, metabolic disorders, and neurodegenerative diseases. We also discuss the new emerging field of GlycoRNA biology drawing parallels from glycobiology and metabolic diseases to guide future directions in this area. Throughout our discussion, we highlight the links between specific modifications, their metabolic/dietary precursors, and various diseases, emphasizing the importance of a metabolism-centric tRNA view in understanding many pathologies. Future research should focus on uncovering the interplay between metabolism and tRNA in specific cellular and disease contexts. Addressing these gaps will guide new research into novel disease interventions.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Aseel Marahleh
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
- Graduate School of DentistryTohoku UniversitySendaiJapan
| |
Collapse
|
3
|
Martin MS, Jacob-Dolan JW, Pham VTT, Sjoblom NM, Scheck RA. The chemical language of protein glycation. Nat Chem Biol 2025; 21:324-336. [PMID: 38942948 PMCID: PMC12020258 DOI: 10.1038/s41589-024-01644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/10/2024] [Indexed: 06/30/2024]
Abstract
Glycation is a non-enzymatic post-translational modification (PTM) that is correlated with many diseases, including diabetes, cancer and age-related disorders. Although recent work points to the importance of glycation as a functional PTM, it remains an open question whether glycation has a causal role in cellular signaling and/or disease development. In this Review, we contextualize glycation as a specific mechanism of carbon stress and consolidate what is known about advanced glycation end-product (AGE) structures and mechanisms. We highlight the current understanding of glycation as a PTM, focusing on mechanisms for installing, removing or recognizing AGEs. Finally, we discuss challenges that have hampered a more complete understanding of the biological consequences of glycation. The development of tools for predicting, modulating, mimicking or capturing glycation will be essential for interpreting a post-translational glycation network. Therefore, continued insights into the chemistry of glycation will be necessary to advance understanding of glycation biology.
Collapse
|
4
|
Pender CL, Dishart JG, Gildea HK, Nauta KM, Page EM, Siddiqi TF, Cheung SS, Joe L, Burton NO, Dillin A. Perception of a pathogenic signature initiates intergenerational protection. Cell 2025; 188:594-605.e10. [PMID: 39721586 DOI: 10.1016/j.cell.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Transmission of immune responses from one generation to the next represents a powerful adaptive mechanism to protect an organism's descendants. Parental infection by the natural C. elegans pathogen Pseudomonas vranovensis induces a protective response in progeny, but the bacterial cues and intergenerational signal driving this response were previously unknown. Here, we find that animals activate a protective stress response program upon exposure to P. vranovensis-derived cyanide and that a metabolic byproduct of cyanide detoxification, β-cyanoalanine, acts as an intergenerational signal to protect progeny from infection. Remarkably, this mechanism does not require direct parental infection; rather, exposure to pathogen-derived volatiles is sufficient to enhance the survival of the next generation, indicating that parental surveillance of environmental cues can activate a protective intergenerational response. Therefore, the mere perception of a pathogen-derived toxin, in this case cyanide, can protect an animal's progeny from future pathogenic challenges.
Collapse
Affiliation(s)
- Corinne L Pender
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julian G Dishart
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Holly K Gildea
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kelsie M Nauta
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Emily M Page
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Talha F Siddiqi
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shannon S Cheung
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry Joe
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas O Burton
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Hilsabeck TAU, Narayan VP, Wilson KA, Carrera EM, Raftery D, Promislow D, Brem RB, Campisi J, Kapahi P. Systems biology approaches identify metabolic signatures of dietary lifespan and healthspan across species. Nat Commun 2024; 15:9330. [PMID: 39472442 PMCID: PMC11522498 DOI: 10.1038/s41467-024-52909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024] Open
Abstract
Dietary restriction (DR) is a potent method to enhance lifespan and healthspan, but individual responses are influenced by genetic variations. Understanding how metabolism-related genetic differences impact longevity and healthspan are unclear. To investigate this, we used metabolites as markers to reveal how different genotypes respond to diet to influence longevity and healthspan traits. We analyzed data from Drosophila Genetic Reference Panel (DGRP) strains raised under AL and DR conditions, combining metabolomic, phenotypic, and genome-wide information. We employed two computational and complementary methods across species-random forest modeling within the DGRP as our primary analysis and Mendelian randomization in human cohorts as a secondary analysis. We pinpointed key traits with cross-species relevance as well as underlying heterogeneity and pleiotropy that influence lifespan and healthspan. Notably, orotate was linked to parental age at death in humans and blocked the DR lifespan extension in flies, while threonine supplementation extended lifespan, in a strain- and sex-specific manner. Thus, utilizing natural genetic variation data from flies and humans, we employed a systems biology approach to elucidate potential therapeutic pathways and metabolomic targets for diet-dependent changes in lifespan and healthspan.
Collapse
Affiliation(s)
- Tyler A U Hilsabeck
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Davis School of Gerontology, University of Southern California, University Park, University Park, Los Angeles, CA, 90089, USA
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Vikram P Narayan
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Biology & Chemistry, Embry-Riddle Aeronautical University, Prescott, AZ, 86301, USA
| | - Kenneth A Wilson
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Davis School of Gerontology, University of Southern California, University Park, University Park, Los Angeles, CA, 90089, USA
| | - Enrique M Carrera
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Dominican University of California, San Rafael, CA, 94901, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Daniel Promislow
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Davis School of Gerontology, University of Southern California, University Park, University Park, Los Angeles, CA, 90089, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Davis School of Gerontology, University of Southern California, University Park, University Park, Los Angeles, CA, 90089, USA.
| |
Collapse
|
6
|
Yan C, Feng K, Bao B, Chen J, Xu X, Jiang G, Wang Y, Guo J, Jiang T, Kang Y, Wang C, Li C, Zhang C, Nie P, Liu S, Machens H, Zhu L, Yang X, Niu R, Chen Z. Biohybrid Nanorobots Carrying Glycoengineered Extracellular Vesicles Promote Diabetic Wound Repair through Dual-Enhanced Cell and Tissue Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404456. [PMID: 38894569 PMCID: PMC11336935 DOI: 10.1002/advs.202404456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Considerable progress has been made in the development of drug delivery systems for diabetic wounds. However, underlying drawbacks, such as low delivery efficiency and poor tissue permeability, have rarely been addressed. In this study, a multifunctional biohybrid nanorobot platform comprising an artificial unit and several biological components is constructed. The artificial unit is a magnetically driven nanorobot surface modified with antibacterial 2-hydroxypropyltrimethyl ammonium chloride chitosan, which enables the entire platform to move and has excellent tissue penetration capacity. The biological components are two-step engineered extracellular vesicles that are first loaded with mangiferin, a natural polyphenolic compound with antioxidant properties, and then glycoengineered on the surface to enhance cellular uptake efficiency. As expected, the platform is more easily absorbed by endothelial cells and fibroblasts and exhibits outstanding dermal penetration performance and antioxidant properties. Encouraging results are also observed in infected diabetic wound models, showing improved wound re-epithelialization, collagen deposition, angiogenesis, and accelerated wound healing. Collectively, a biohybrid nanorobot platform that possesses the functionalities of both artificial units and biological components serves as an efficient delivery system to promote diabetic wound repair through dual-enhanced cell and tissue penetration and multistep interventions.
Collapse
Affiliation(s)
- Chengqi Yan
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Kai Feng
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Bingkun Bao
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Jing Chen
- Department of DermatologyWuhan No.1 HospitalWuhanHubei430022China
| | - Xiang Xu
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Guoyong Jiang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yufeng Wang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiahe Guo
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Tao Jiang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yu Kang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Cheng Wang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Chengcheng Li
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Chi Zhang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Pengjuan Nie
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shuoyuan Liu
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Hans‐Günther Machens
- Department of Plastic and Hand SurgeryTechnical University of MunichD‐80333MunichGermany
| | - Linyong Zhu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Xiaofan Yang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Zhenbing Chen
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
7
|
Treibmann S, Venema K, Henle T. Glycation reactions of methylglyoxal during digestion in a dynamic, in vitro model of the upper gastrointestinal tract (TIM-1). Food Sci Nutr 2024; 12:4702-4712. [PMID: 39055211 PMCID: PMC11266905 DOI: 10.1002/fsn3.4118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 07/27/2024] Open
Abstract
The 1,2-dicarbonyl compound methylglyoxal (MGO) can react with and thereby impair the function of proteins and DNA, leading to pathophysiological pathways in vivo. However, studies on the bioavailability of dietary MGO and its reactions during digestion have diverging results. Therefore, simulated digestion experiments of MGO, protein, and creatine were performed in the dynamic, in vitro model of the upper gastrointestinal tract (TIM-1). This multicompartment model continuously adjusts pH values and has realistic gastrointestinal transit times while also removing water and metabolites by dialysis. Samples were analyzed with HPLC-UV for MGO and HPLC-MS/MS for creatine and glycated amino compounds. MGO reacted with creatine during simulated digestion in TIM-1 to form the hydroimidazolone MG-HCr in similar amounts as in a human intervention study. 28%-69% of MGO from the meal were passively absorbed in TIM-1, depending on the addition of creatine and protein. Simultaneous digestion of MGO with ovalbumin led to the formation of the lysine adduct N ε -carboxyethyllysine (CEL) and the methylglyoxal-derived hydroimidazolone of arginine (MG-H1). The formation of both compounds decreased with added creatine. Hence, glycation compounds are formed during digestion and significantly contribute to other ingested dietary glycation compounds, whose physiological consequences are critically discussed.
Collapse
Affiliation(s)
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI)Maastricht University – Campus VenloVenloThe Netherlands
| | - Thomas Henle
- Chair of Food ChemistryTechnische Universität DresdenDresdenGermany
| |
Collapse
|
8
|
Marinos G, Hamerich IK, Debray R, Obeng N, Petersen C, Taubenheim J, Zimmermann J, Blackburn D, Samuel BS, Dierking K, Franke A, Laudes M, Waschina S, Schulenburg H, Kaleta C. Metabolic model predictions enable targeted microbiome manipulation through precision prebiotics. Microbiol Spectr 2024; 12:e0114423. [PMID: 38230938 PMCID: PMC10846184 DOI: 10.1128/spectrum.01144-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
While numerous health-beneficial interactions between host and microbiota have been identified, there is still a lack of targeted approaches for modulating these interactions. Thus, we here identify precision prebiotics that specifically modulate the abundance of a microbiome member species of interest. In the first step, we show that defining precision prebiotics by compounds that are only taken up by the target species but no other species in a community is usually not possible due to overlapping metabolic niches. Subsequently, we use metabolic modeling to identify precision prebiotics for a two-member Caenorhabditis elegans microbiome community comprising the immune-protective target species Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71. We experimentally confirm four of the predicted precision prebiotics, L-serine, L-threonine, D-mannitol, and γ-aminobutyric acid, to specifically increase the abundance of MYb11. L-serine was further assessed in vivo, leading to an increase in MYb11 abundance also in the worm host. Overall, our findings demonstrate that metabolic modeling is an effective tool for the design of precision prebiotics as an important cornerstone for future microbiome-targeted therapies.IMPORTANCEWhile various mechanisms through which the microbiome influences disease processes in the host have been identified, there are still only few approaches that allow for targeted manipulation of microbiome composition as a first step toward microbiome-based therapies. Here, we propose the concept of precision prebiotics that allow to boost the abundance of already resident health-beneficial microbial species in a microbiome. We present a constraint-based modeling pipeline to predict precision prebiotics for a minimal microbial community in the worm Caenorhabditis elegans comprising the host-beneficial Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71 with the aim to boost the growth of MYb11. Experimentally testing four of the predicted precision prebiotics, we confirm that they are specifically able to increase the abundance of MYb11 in vitro and in vivo. These results demonstrate that constraint-based modeling could be an important tool for the development of targeted microbiome-based therapies against human diseases.
Collapse
Affiliation(s)
- Georgios Marinos
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Inga K. Hamerich
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Reena Debray
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Nancy Obeng
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Carola Petersen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Jan Taubenheim
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - Dana Blackburn
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Katja Dierking
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Silvio Waschina
- Nutriinformatics, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Hinrich Schulenburg
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
9
|
Du L, Zhao L, Elumalai P, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J, Gao X. Effects of sublethal fipronil exposure on cross-generational functional responses and gene expression in Binodoxys communis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32211-6. [PMID: 38296923 DOI: 10.1007/s11356-024-32211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
The effective systemic insecticide fipronil is widely used on a variety of crops and in public spaces to control insect pests. Binodoxys communis (Gahan) (Hymenoptera: Braconidae) is the dominant natural enemy of Aphis gossypii Glover (Homoptera: Aphididae), an important cotton pest, and has good efficiency in inhibiting aphid populations. The direct effects of environmental residues of sublethal fipronil doses on adult B. communis have not previously been reported. This study therefore aimed to evaluate the side effects and transcriptomic impacts of sublethal fipronil doses on B. communis. The results showed that exposure to the LC10 dose of fipronil significantly reduced the survival rate and parasitism rate of the F0 generation, but did not affect these indicators in the F1 generation. The LC25 dose did not affect the survival or parasitic rates of the F0 generation, but did significantly reduce the survival rate of F1 generation parasitoids. These results indicated that sublethal doses of fipronil affected B. communis population growth. Transcriptome analysis showed that differentially expressed genes (DEGs) in B. communis at 1 h after treatment were primarily enriched in pathways associated with fatty acid elongation, biosynthesis of fatty acids, and fatty acid metabolism. DEGs at 3 days after treatment were mainly enriched in ribosomal functions, glycolysis/gluconeogenesis, and tyrosine metabolism. Six DEGs (PY, ELOVL, VLCOAR, MRJP1, ELOVL AAEL008004-like, and RPL13) were selected for validation with real-time fluorescent quantitative PCR. This is the first report of sublethal, trans-generational, and transcriptomic side effects of fipronil on the dominant parasitoid of A. gossypii. The results of this study show that adaptation of parasitoids to high concentrations of pesticides may be at the expense of their offspring. These findings broaden our overall understanding of the intergenerational adjustments used by insects to respond to pesticide stress and call for risk assessments of the long-term impacts and intergenerational effects of other pesticides.
Collapse
Affiliation(s)
- Lingen Du
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Likang Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Punniyakotti Elumalai
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
10
|
Thomas C, Erni R, Wu JY, Fischer F, Lamers G, Grigolon G, Mitchell SJ, Zarse K, Carreira EM, Ristow M. A naturally occurring polyacetylene isolated from carrots promotes health and delays signatures of aging. Nat Commun 2023; 14:8142. [PMID: 38065964 PMCID: PMC10709416 DOI: 10.1038/s41467-023-43672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
To ameliorate or even prevent signatures of aging in ultimately humans, we here report the identification of a previously undescribed polyacetylene contained in the root of carrots (Daucus carota), hereafter named isofalcarintriol, which we reveal as potent promoter of longevity in the nematode C. elegans. We assign the absolute configuration of the compound as (3 S,8 R,9 R,E)-heptadeca-10-en-4,6-diyne-3,8,9-triol, and develop a modular asymmetric synthesis route for all E-isofalcarintriol stereoisomers. At the molecular level, isofalcarintriol affects cellular respiration in mammalian cells, C. elegans, and mice, and interacts with the α-subunit of the mitochondrial ATP synthase to promote mitochondrial biogenesis. Phenotypically, this also results in decreased mammalian cancer cell growth, as well as improved motility and stress resistance in C. elegans, paralleled by reduced protein accumulation in nematodal models of neurodegeneration. In addition, isofalcarintriol supplementation to both wild-type C57BL/6NRj mice on high-fat diet, and aged mice on chow diet results in improved glucose metabolism, increased exercise endurance, and attenuated parameters of frailty at an advanced age. Given these diverse effects on health parameters in both nematodes and mice, isofalcarintriol might become a promising mitohormesis-inducing compound to delay, ameliorate, or prevent aging-associated diseases in humans.
Collapse
Affiliation(s)
- Carolin Thomas
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Reto Erni
- Laboratory of Chemistry and Applied Biosciences, Department of Organic Chemistry, Swiss Federal Institute (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland
- Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Jia Yee Wu
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Fabian Fischer
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
- CureVac SE, Tübingen, 72076, Germany
| | - Greta Lamers
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Sarah J Mitchell
- Ludwig Princeton Branch, Princeton University, Princeton, NJ, 08540, USA
| | - Kim Zarse
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
- Institute of Experimental Endocrinology, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Erick M Carreira
- Laboratory of Chemistry and Applied Biosciences, Department of Organic Chemistry, Swiss Federal Institute (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland.
| | - Michael Ristow
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland.
- Institute of Experimental Endocrinology, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany.
| |
Collapse
|
11
|
Hilsabeck TAU, Narayan VP, Wilson KA, Carrera E, Raftery D, Promislow D, Brem RB, Campisi J, Kapahi P. Systems biology and machine learning approaches identify metabolites that influence dietary lifespan and healthspan responses across flies and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548232. [PMID: 37503266 PMCID: PMC10369897 DOI: 10.1101/2023.07.09.548232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dietary restriction (DR) is a potent method to enhance lifespan and healthspan, but individual responses are influenced by genetic variations. Understanding how metabolism-related genetic differences impact longevity and healthspan are unclear. To investigate this, we used metabolites as markers to reveal how different genotypes respond to diet to influence longevity and healthspan traits. We analyzed data from Drosophila Genetic Reference Panel strains raised under AL and DR conditions, combining metabolomic, phenotypic, and genome-wide information. Employing two computational methods across species-random forest modeling within the DGRP and Mendelian randomization in the UK Biobank-we pinpointed key traits with cross-species relevance that influence lifespan and healthspan. Notably, orotate was linked to parental age at death in humans and counteracted DR effects in flies, while threonine extended lifespan, in a strain- and sex-specific manner. Thus, utilizing natural genetic variation data from flies and humans, we employed a systems biology approach to elucidate potential therapeutic pathways and metabolomic targets for diet-dependent changes in lifespan and healthspan.
Collapse
|
12
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
13
|
Evans F, Alí-Ruiz D, Rego N, Negro-Demontel ML, Lago N, Cawen FA, Pannunzio B, Sanchez-Molina P, Reyes L, Paolino A, Rodríguez-Duarte J, Pérez-Torrado V, Chicote-González A, Quijano C, Marmisolle I, Mulet AP, Schlapp G, Meikle MN, Bresque M, Crispo M, Savio E, Malagelada C, Escande C, Peluffo H. CD300f immune receptor contributes to healthy aging by regulating inflammaging, metabolism, and cognitive decline. Cell Rep 2023; 42:113269. [PMID: 37864797 DOI: 10.1016/j.celrep.2023.113269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023] Open
Abstract
Emerging evidence suggests that immune receptors may participate in many aging-related processes such as energy metabolism, inflammation, and cognitive decline. CD300f, a TREM2-like lipid-sensing immune receptor, is an exceptional receptor as it integrates activating and inhibitory cell-signaling pathways that modulate inflammation, efferocytosis, and microglial metabolic fitness. We hypothesize that CD300f can regulate systemic aging-related processes and ultimately healthy lifespan. We closely followed several cohorts of two strains of CD300f-/- and WT mice of both sexes for 30 months and observed an important reduction in lifespan and healthspan in knockout mice. This was associated with systemic inflammaging, increased cognitive decline, reduced brain glucose uptake observed by 18FDG PET scans, enrichment in microglial aging/neurodegeneration phenotypes, proteostasis alterations, senescence, increased frailty, and sex-dependent systemic metabolic changes. Moreover, the absence of CD300f altered macrophage immunometabolic phenotype. Taken together, we provide strong evidence suggesting that myeloid cell CD300f immune receptor contributes to healthy aging.
Collapse
Affiliation(s)
- Frances Evans
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay; Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Daniela Alí-Ruiz
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay; Faculty of Sciences, UDELAR, Montevideo, Uruguay
| | - María Luciana Negro-Demontel
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay; Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Lago
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fabio Andrés Cawen
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Bruno Pannunzio
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay; Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paula Sanchez-Molina
- Department of Cell Biology, Physiology and Immunology, and Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Reyes
- Uruguayan Center for Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Andrea Paolino
- Uruguayan Center for Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Jorge Rodríguez-Duarte
- Laboratory of Vascular Biology and Drug Development, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Valentina Pérez-Torrado
- Metabolic Diseases and Aging Laboratory, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Almudena Chicote-González
- Unitat de Bioquímica i Biologia Molecular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain
| | - Celia Quijano
- Departamento de Bioquímica y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Inés Marmisolle
- Departamento de Bioquímica y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Paula Mulet
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Geraldine Schlapp
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Noel Meikle
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariana Bresque
- Metabolic Diseases and Aging Laboratory, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Martina Crispo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Eduardo Savio
- Uruguayan Center for Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Cristina Malagelada
- Unitat de Bioquímica i Biologia Molecular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain
| | - Carlos Escande
- Metabolic Diseases and Aging Laboratory, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Hugo Peluffo
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay; Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Unitat de Bioquímica i Biologia Molecular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
14
|
Muthaiyan Shanmugam M, Chaudhuri J, Sellegounder D, Sahu AK, Guha S, Chamoli M, Hodge B, Bose N, Amber C, Farrera DO, Lithgow G, Sarpong R, Galligan JJ, Kapahi P. Methylglyoxal-derived hydroimidazolone, MG-H1, increases food intake by altering tyramine signaling via the GATA transcription factor ELT-3 in Caenorhabditis elegans. eLife 2023; 12:e82446. [PMID: 37728328 PMCID: PMC10611433 DOI: 10.7554/elife.82446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/19/2023] [Indexed: 09/21/2023] Open
Abstract
The Maillard reaction, a chemical reaction between amino acids and sugars, is exploited to produce flavorful food ubiquitously, from the baking industry to our everyday lives. However, the Maillard reaction also occurs in all cells, from prokaryotes to eukaryotes, forming advanced glycation end-products (AGEs). AGEs are a heterogeneous group of compounds resulting from the irreversible reaction between biomolecules and α-dicarbonyls (α-DCs), including methylglyoxal (MGO), an unavoidable byproduct of anaerobic glycolysis and lipid peroxidation. We previously demonstrated that Caenorhabditis elegans mutants lacking the glod-4 glyoxalase enzyme displayed enhanced accumulation of α-DCs, reduced lifespan, increased neuronal damage, and touch hypersensitivity. Here, we demonstrate that glod-4 mutation increased food intake and identify that MGO-derived hydroimidazolone, MG-H1, is a mediator of the observed increase in food intake. RNAseq analysis in glod-4 knockdown worms identified upregulation of several neurotransmitters and feeding genes. Suppressor screening of the overfeeding phenotype identified the tdc-1-tyramine-tyra-2/ser-2 signaling as an essential pathway mediating AGE (MG-H1)-induced feeding in glod-4 mutants. We also identified the elt-3 GATA transcription factor as an essential upstream regulator for increased feeding upon accumulation of AGEs by partially controlling the expression of tdc-1 gene. Furthermore, the lack of either tdc-1 or tyra-2/ser-2 receptors suppresses the reduced lifespan and rescues neuronal damage observed in glod-4 mutants. Thus, in C. elegans, we identified an elt-3 regulated tyramine-dependent pathway mediating the toxic effects of MG-H1 AGE. Understanding this signaling pathway may help understand hedonistic overfeeding behavior observed due to modern AGE-rich diets.
Collapse
Affiliation(s)
| | | | | | | | - Sanjib Guha
- The Buck Institute for Research on AgingNovatoUnited States
| | - Manish Chamoli
- The Buck Institute for Research on AgingNovatoUnited States
| | - Brian Hodge
- The Buck Institute for Research on AgingNovatoUnited States
| | - Neelanjan Bose
- The Buck Institute for Research on AgingNovatoUnited States
| | - Charis Amber
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Dominique O Farrera
- Department of Pharmacology and Toxicology, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Gordon Lithgow
- The Buck Institute for Research on AgingNovatoUnited States
| | - Richmond Sarpong
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Pankaj Kapahi
- The Buck Institute for Research on AgingNovatoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
15
|
Zong GW, Wang WY, Zheng J, Zhang W, Luo WM, Fang ZZ, Zhang Q. A Metabolism-Based Interpretable Machine Learning Prediction Model for Diabetic Retinopathy Risk: A Cross-Sectional Study in Chinese Patients with Type 2 Diabetes. J Diabetes Res 2023; 2023:3990035. [PMID: 37229505 PMCID: PMC10205414 DOI: 10.1155/2023/3990035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/19/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
The burden of diabetic retinopathy (DR) is increasing, and the sensitive biomarkers of the disease were not enough. Studies have found that the metabolic profile, such as amino acid (AA) and acylcarnitine (AcylCN), in the early stages of DR patients might have changed, indicating the potential of metabolites to become new biomarkers. We are amid to construct a metabolite-based prediction model for DR risk. This study was conducted on type 2 diabetes (T2D) patients with or without DR. Logistic regression and extreme gradient boosting (XGBoost) prediction models were constructed using the traditional clinical features and the screening features, respectively. Assessing the predictive power of the models in terms of both discrimination and calibration, the optimal model was interpreted using the Shapley Additive exPlanations (SHAP) to quantify the effect of features on prediction. Finally, the XGBoost model incorporating AA and AcylCN variables had the best comprehensive evaluation (ROCAUC = 0.82, PRAUC = 0.44, Brier score = 0.09). C18 : 1OH lower than 0.04 μmol/L, C18 : 1 lower than 0.70 μmol/L, threonine higher than 27.0 μmol/L, and tyrosine lower than 36.0 μmol/L were associated with an increased risk of developing DR. Phenylalanine higher than 52.0 μmol/L was associated with a decreased risk of developing DR. In conclusion, our study mainly used AAs and AcylCNs to construct an interpretable XGBoost model to predict the risk of developing DR in T2D patients which is beneficial in identifying high-risk groups and preventing or delaying the onset of DR. In addition, our study proposed possible risk cut-off values for DR of C18 : 1OH, C18 : 1, threonine, tyrosine, and phenylalanine.
Collapse
Affiliation(s)
- Guo-Wei Zong
- Department of Mathematics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Wan-Ying Wang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jun Zheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Wei Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wei-Ming Luo
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhong-Ze Fang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
16
|
Fu ZW, Feng YR, Gao X, Ding F, Li JH, Yuan TT, Lu YT. Salt stress-induced chloroplastic hydrogen peroxide stimulates pdTPI sulfenylation and methylglyoxal accumulation. THE PLANT CELL 2023; 35:1593-1616. [PMID: 36695476 PMCID: PMC10118271 DOI: 10.1093/plcell/koad019] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 06/17/2023]
Abstract
High salinity, an adverse environmental factor affecting about 20% of irrigated arable land worldwide, inhibits plant growth and development by causing oxidative stress, damaging cellular components, and disturbing global metabolism. However, whether and how reactive oxygen species disturb the metabolism of salt-stressed plants remain elusive. Here, we report that salt-induced hydrogen peroxide (H2O2) inhibits the activity of plastid triose phosphate isomerase (pdTPI) to promote methylglyoxal (MG) accumulation and stimulates the sulfenylation of pdTPI at cysteine 74. We also show that MG is a key factor limiting the plant growth, as a decrease in MG levels completely rescued the stunted growth and repressed salt stress tolerance of the pdtpi mutant. Furthermore, targeting CATALASE 2 into chloroplasts to prevent salt-induced overaccumulation of H2O2 conferred salt stress tolerance, revealing a role for chloroplastic H2O2 in salt-caused plant damage. In addition, we demonstrate that the H2O2-mediated accumulation of MG in turn induces H2O2 production, thus forming a regulatory loop that further inhibits the pdTPI activity in salt-stressed plants. Our findings, therefore, illustrate how salt stress induces MG production to inhibit the plant growth.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yu-Rui Feng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Feng Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Jian-Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Maasen K, Eussen SJ, Dagnelie PC, Stehouwer CDA, Opperhuizen A, van Greevenbroek MM, Schalkwijk CG. Habitual intake of dietary dicarbonyls is associated with greater insulin sensitivity and lower prevalence of type 2 diabetes: The Maastricht Study. Am J Clin Nutr 2023:S0002-9165(23)46840-2. [PMID: 37054886 DOI: 10.1016/j.ajcnut.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/11/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Dicarbonyls are reactive precursors of advanced glycation endproducts (AGEs). Dicarbonyls are formed endogenously, but also during food processing. Circulating dicarbonyls are positively associated with insulin resistance and type 2 diabetes, but consequences of dietary dicarbonyls are unknown. OBJECTIVE To examine the associations of dietary intake of dicarbonyls with insulin sensitivity, β-cell function, and prevalence of prediabetes or type 2 diabetes. METHODS In 6282 participants (60±9 years, 50% men, 23% type 2 diabetes (oversampled)) of the population-based cohort The Maastricht Study, we estimated habitual intake of the dicarbonyls methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) using Food Frequency Questionnaires. Insulin sensitivity (n=2390), β-cell function (n=2336) and glucose metabolism status (n=6282) were measured by a seven-point oral glucose tolerance test. Insulin sensitivity was assessed as the Matsuda index. Additionally, insulin sensitivity was measured as HOMA2-IR (n=2611). β-cell function was assessed as C-peptidogenic index, overall insulin secretion, glucose sensitivity, potentiation factor, and rate sensitivity. Cross-sectional associations of dietary dicarbonyls with these outcomes were investigated using linear or logistic regression adjusting for age, sex, cardio-metabolic risk-factors, lifestyle, and dietary factors. RESULTS Higher dietary MGO and 3-DG intakes were associated with greater insulin sensitivity after full adjustment, indicated by both a higher Matsuda index (MGO: Std. β [95% CI]=0.08 [0.04, 0.12] and 3-DG: 0.09 [0.05, 0.13]) and a lower HOMA2-IR (MGO: Std. β=-0.05 [-0.09, -0.01] and 3-DG: -0.04 [-0.08, -0.01]). Moreover, higher MGO and 3-DG intakes were associated with lower prevalence of newly diagnosed type 2 diabetes (OR [95%CI]=0.78 [0.65, 0.93] and 0.81 [0.66, 0.99]). There were no consistent associations of MGO, GO, and 3-DG intakes with β-cell function. CONCLUSIONS Higher habitual consumption of the dicarbonyls MGO and 3-DG was associated with better insulin sensitivity and with lower prevalence of type 2 diabetes, after excluding individuals with known diabetes. These novel observations warrant further exploration in prospective cohorts and intervention studies.
Collapse
Affiliation(s)
- Kim Maasen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Simone Jpm Eussen
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute/CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Pieter C Dagnelie
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Coen DA Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands; Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands
| | - Marleen Mj van Greevenbroek
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands.
| |
Collapse
|
18
|
de Graaf MCG, Scheijen JLJM, Spooren CEGM, Mujagic Z, Pierik MJ, Feskens EJM, Keszthelyi D, Schalkwijk CG, Jonkers DMAE. The Intake of Dicarbonyls and Advanced Glycation Endproducts as Part of the Habitual Diet Is Not Associated with Intestinal Inflammation in Inflammatory Bowel Disease and Irritable Bowel Syndrome Patients. Nutrients 2022; 15:nu15010083. [PMID: 36615740 PMCID: PMC9824683 DOI: 10.3390/nu15010083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
A Western diet comprises high levels of dicarbonyls and advanced glycation endproducts (AGEs), which may contribute to flares and symptoms in inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). We therefore investigated the intake of dietary dicarbonyls and AGEs in IBD and IBS patients as part of the habitual diet, and their association with intestinal inflammation. Food frequency questionnaires from 238 IBD, 261 IBS as well as 195 healthy control (HC) subjects were used to calculate the intake of dicarbonyls methylglyoxal, glyoxal, and 3-deoxyglucosone, and of the AGEs Nε-(carboxymethyl)lysine, Nε-(1-carboxyethyl)lysine and methylglyoxal-derived hydroimidazolone-1. Intestinal inflammation was assessed using faecal calprotectin. The absolute dietary intake of all dicarbonyls and AGEs was higher in IBD and HC as compared to IBS (all p < 0.05). However, after energy-adjustment, only glyoxal was lower in IBD versus IBS and HC (p < 0.05). Faecal calprotectin was not significantly associated with dietary dicarbonyls and AGEs in either of the subgroups. The absolute intake of methylglyoxal was significantly higher in patients with low (<15 μg/g) compared to moderate calprotectin levels (15−<50 μg/g, p = 0.031). The concentrations of dietary dicarbonyls and AGEs generally present in the diet of Dutch patients with IBD or IBS are not associated with intestinal inflammation, although potential harmful effects might be counteracted by anti-inflammatory components in the food matrix.
Collapse
Affiliation(s)
- Marlijne C. G. de Graaf
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-38-84-237
| | - Jean L. J. M. Scheijen
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Corinne E. G. M. Spooren
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Zlatan Mujagic
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Marieke J. Pierik
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Edith J. M. Feskens
- Division of Human Nutrition and Health, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Daniel Keszthelyi
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
19
|
Maasen K, Eussen SJPM, Dagnelie PC, Houben AJHM, Webers CAB, Schram MT, Berendschot TTJM, Stehouwer CDA, Opperhuizen A, van Greevenbroek MMJ, Schalkwijk CG. Habitual intake of dietary methylglyoxal is associated with less low-grade inflammation: the Maastricht Study. Am J Clin Nutr 2022; 116:1715-1728. [PMID: 36055771 PMCID: PMC9761753 DOI: 10.1093/ajcn/nqac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Dicarbonyls are major reactive precursors of advanced glycation endproducts (AGEs). Dicarbonyls are formed endogenously and also during food processing. Circulating dicarbonyls and AGEs are associated with inflammation and microvascular complications of diabetes, but for dicarbonyls from the diet these associations are currently unknown. OBJECTIVES We sought to examine the associations of dietary dicarbonyl intake with low-grade inflammation and microvascular function. METHODS In 2792 participants (mean ± SD age: 60 ± 8 y; 50% men; 26% type 2 diabetes) of the population-based cohort the Maastricht Study, we estimated the habitual intake of the dicarbonyls methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) by linking FFQ outcome data to our food composition database of the MGO, GO, and 3-DG content of >200 foods. Low-grade inflammation was assessed as six plasma biomarkers, which were compiled in a z score. Microvascular function was assessed as four plasma biomarkers, compiled in a zscore; as diameters and flicker light-induced dilation in retinal microvessels; as heat-induced skin hyperemic response; and as urinary albumin excretion. Cross-sectional associations of dietary dicarbonyls with low-grade inflammation and microvascular function were investigated using linear regression with adjustments for age, sex, potential confounders related to cardiometabolic risk factors, and lifestyle and dietary factors. RESULTS Fully adjusted analyses revealed that higher intake of MGO was associated with a lower z score for inflammation [standardized β coefficient (STD β): -0.05; 95% CI: -0.09 to -0.01, with strongest inverse associations for hsCRP and TNF-α: both -0.05; -0.10 to -0.01]. In contrast, higher dietary MGO intake was associated with impaired retinal venular dilation after full adjustment (STD β: -0.07; 95% CI: -0.12 to -0.01), but not with the other features of microvascular function. GO and 3-DG intakes were not consistently associated with any of the outcomes. CONCLUSION Higher habitual intake of MGO was associated with less low-grade inflammation. This novel, presumably beneficial, association is the first observation of an association between MGO intake and health outcomes in humans and warrants further investigation.
Collapse
Affiliation(s)
- Kim Maasen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute/CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter C Dagnelie
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute/CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alfons J H M Houben
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Miranda T Schram
- Department of Internal Medicine, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, Utrecht, The Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
20
|
Kim J, Jo Y, Cho D, Ryu D. L-threonine promotes healthspan by expediting ferritin-dependent ferroptosis inhibition in C. elegans. Nat Commun 2022; 13:6554. [PMID: 36323683 PMCID: PMC9628521 DOI: 10.1038/s41467-022-34265-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
The pathways that impact longevity in the wake of dietary restriction (DR) remain still ill-defined. Most studies have focused on nutrient limitation and perturbations of energy metabolism. We showed that the L-threonine was elevated in Caenorhabditis elegans under DR, and that L-threonine supplementation increased its healthspan. Using metabolic and transcriptomic profiling in worms that were fed with RNAi to induce loss of key candidate mediators. L-threonine supplementation and loss-of-threonine dehydrogenaseincreased the healthspan by attenuating ferroptosis in a ferritin-dependent manner. Transcriptomic analysis showed that FTN-1 encoding ferritin was elevated, implying FTN-1 is an essential mediator of longevity promotion. Organismal ferritin levels were positively correlated with chronological aging and L-threonine supplementation protected against age-associated ferroptosis through the DAF-16 and HSF-1 pathways. Our investigation uncovered the role of a distinct and universal metabolite, L-threonine, in DR-mediated improvement in organismal healthspan, suggesting it could be an effective intervention for preventing senescence progression and age-induced ferroptosis.
Collapse
Affiliation(s)
- Juewon Kim
- Basic Research & Innovation Division, Amorepacific R&D Center, Yongin, Korea
| | - Yunju Jo
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Donghyun Cho
- Basic Research & Innovation Division, Amorepacific R&D Center, Yongin, Korea
| | - Dongryeol Ryu
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
21
|
Frankino PA, Siddiqi TF, Bolas T, Bar-Ziv R, Gildea HK, Zhang H, Higuchi-Sanabria R, Dillin A. SKN-1 regulates stress resistance downstream of amino catabolism pathways. iScience 2022; 25:104571. [PMID: 35784796 PMCID: PMC9240870 DOI: 10.1016/j.isci.2022.104571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022] Open
Abstract
The deleterious potential to generate oxidative stress is a fundamental challenge to metabolism. The oxidative stress response transcription factor, SKN-1/NRF2, can sense and respond to changes in metabolic state, although the mechanism and consequences of this remain unknown. Here, we performed a genetic screen in C. elegans targeting amino acid catabolism and identified multiple metabolic pathways as regulators of SKN-1 activity. We found that knockdown of the conserved amidohydrolase T12A2.1/amdh-1 activates a unique subset of SKN-1 regulated genes. Interestingly, this transcriptional program is independent of canonical P38-MAPK signaling components but requires ELT-3, NHR-49 and MDT-15. This activation of SKN-1 is dependent on upstream histidine catabolism genes HALY-1 and Y51H4A.7/UROC-1 and may occur through accumulation of a catabolite, 4-imidazolone-5-propanoate. Activating SKN-1 results in increased oxidative stress resistance but decreased survival to heat stress. Together, our data suggest that SKN-1 acts downstream of key catabolic pathways to influence physiology and stress resistance.
Collapse
Affiliation(s)
- Phillip A. Frankino
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Talha F. Siddiqi
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Theodore Bolas
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Raz Bar-Ziv
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Holly K. Gildea
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hanlin Zhang
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
22
|
Kizil C, Sariya S, Kim YA, Rajabli F, Martin E, Reyes-Dumeyer D, Vardarajan B, Maldonado A, Haines JL, Mayeux R, Jiménez-Velázquez IZ, Santa-Maria I, Tosto G. Admixture Mapping of Alzheimer's disease in Caribbean Hispanics identifies a new locus on 22q13.1. Mol Psychiatry 2022; 27:2813-2820. [PMID: 35365809 PMCID: PMC9167722 DOI: 10.1038/s41380-022-01526-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 11/09/2022]
Abstract
Late-onset Alzheimer's disease (LOAD) is significantly more frequent in Hispanics than in non-Hispanic Whites. Ancestry may explain these differences across ethnic groups. To this end, we studied a large cohort of Caribbean Hispanics (CH, N = 8813) and tested the association between Local Ancestry (LA) and LOAD ("admixture mapping") to identify LOAD-associated ancestral blocks, separately for ancestral components (European [EUR], African [AFR], Native American[NA]) and jointly (AFR + NA). Ancestral blocks significant after permutation were fine-mapped employing multi-ethnic whole-exome sequencing (WES) to identify rare variants associated with LOAD (SKAT-O) and replicated in the UK Biobank WES dataset. Candidate genes were validated studying (A) protein expression in human LOAD and control brains; (B) two animal AD models, Drosophila and Zebrafish. In the joint AFR + NA model, we identified four significant ancestral blocks located on chromosomes 1 (p value = 8.94E-05), 6 (p value = 8.63E-05), 21 (p value = 4.64E-05) and 22 (p value = 1.77E-05). Fine-mapping prioritized the GCAT gene on chromosome 22 (SKAT-O p value = 3.45E-05) and replicated in the UK Biobank (SKAT-O p value = 0.05). In LOAD brains, a decrease of 28% in GCAT protein expression was observed (p value = 0.038), and GCAT knockdown in Amyloid-β42 Drosophila exacerbated rough eye phenotype (68% increase, p value = 4.84E-09). In zebrafish, gcat expression increased after acute amyloidosis (34%, p value = 0.0049), and decreased upon anti-inflammatory Interleukin-4 (39%, p value = 2.3E-05). Admixture mapping uncovered genomic regions harboring new LOAD-associated loci that might explain the observed different frequency of LOAD across ethnic groups. Our results suggest that the inflammation-related activity of GCAT is a response to amyloid toxicity, and reduced GCAT expression exacerbates AD pathology.
Collapse
Affiliation(s)
- Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tatzberg 41, 01307, Dresden, Germany
| | - Sanjeev Sariya
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Farid Rajabli
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Eden Martin
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Badri Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Aleyda Maldonado
- Department of Medicine, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA
| | - Jonathan L Haines
- Department of Population & Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Medicine, College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 630 West 168th Street, New York, NY, 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Ivonne Z Jiménez-Velázquez
- Department of Medicine, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA.
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA.
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
23
|
Jia W, Wang C, Zheng J, Li Y, Yang C, Wan QL, Shen J. Pioglitazone Hydrochloride Extends the Lifespan of Caenorhabditis elegans by Activating DAF-16/FOXO- and SKN-1/NRF2-Related Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8496063. [PMID: 35677109 PMCID: PMC9168093 DOI: 10.1155/2022/8496063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Pioglitazone hydrochloride (PGZ), a nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, is a universally adopted oral agent for the treatment of type 2 diabetes (T2D). Previous studies reported that PGZ could ameliorate the symptoms of aging-related diseases and Alzheimer's disease. However, whether PGZ participates in aging regulation and the underlying mechanism remain undetermined. Here, we found that PGZ significantly prolonged the lifespan and healthspan of Caenorhabditis elegans (C. elegans). We found that a variety of age-related pathways and age-related genes are required for PGZ-induced lifespan extension. The transcription factors DAF-16/FOXO, HSF-1, and SKN-1/NRF2, as well as the nuclear receptors DAF-12 and NHR-49, all functioned in the survival advantage conferred by PGZ. Moreover, our results demonstrated that PGZ induced lifespan extension through the inhibition of insulin/insulin-like signaling (IIS) and reproductive signaling pathways, as well as the activation of dietary restriction- (DR-) related pathways. Additionally, our results also indicated that beneficial longevity mediated by PGZ is linked to its antioxidative activity. Our research may provide a basis for further research on PGZ, as an anti-T2D drug, to interfere with aging and reduce the incidence of age-related diseases in diabetic patients.
Collapse
Affiliation(s)
- Wenjuan Jia
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
- Department of Endocrinology, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Chongyang Wang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| | - Jingming Zheng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yimin Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Caixian Yang
- Department of Endocrinology, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Qin-Li Wan
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528399, China
| |
Collapse
|
24
|
Dai W, Huang S, Luo Y, Cheng X, Xia P, Yang M, Zhao P, Zhang Y, Lin WJ, Ye X. Sex-Specific Transcriptomic Signatures in Brain Regions Critical for Neuropathic Pain-Induced Depression. Front Mol Neurosci 2022; 15:886916. [PMID: 35663269 PMCID: PMC9159910 DOI: 10.3389/fnmol.2022.886916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is a chronic debilitating condition with a high comorbidity with depression. Clinical reports and animal studies have suggested that both the medial prefrontal cortex (mPFC) and the anterior cingulate cortex (ACC) are critically implicated in regulating the affective symptoms of neuropathic pain. Neuropathic pain induces differential long-term structural, functional, and biochemical changes in both regions, which are thought to be regulated by multiple waves of gene transcription. However, the differences in the transcriptomic profiles changed by neuropathic pain between these regions are largely unknown. Furthermore, women are more susceptible to pain and depression than men. The molecular mechanisms underlying this sexual dimorphism remain to be explored. Here, we performed RNA sequencing and analyzed the transcriptomic profiles of the mPFC and ACC of female and male mice at 2 weeks after spared nerve injury (SNI), an early time point when the mice began to show mild depressive symptoms. Our results showed that the SNI-induced transcriptomic changes in female and male mice were largely distinct. Interestingly, the female mice exhibited more robust transcriptomic changes in the ACC than male, whereas the opposite pattern occurred in the mPFC. Cell type enrichment analyses revealed that the differentially expressed genes involved genes enriched in neurons, various types of glia and endothelial cells. We further performed gene set enrichment analysis (GSEA), which revealed significant de-enrichment of myelin sheath development in both female and male mPFC after SNI. In the female ACC, gene sets for synaptic organization were enriched, and gene sets for extracellular matrix were de-enriched after SNI, while such signatures were absent in male ACC. Collectively, these findings revealed region-specific and sexual dimorphism at the transcriptional levels induced by neuropathic pain, and provided novel therapeutic targets for chronic pain and its associated affective disorders.
Collapse
Affiliation(s)
- Weiping Dai
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuying Huang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan Luo
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pei Xia
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengqian Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Panwu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingying Zhang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaojing Ye,
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Wei-Jye Lin,
| |
Collapse
|
25
|
Maasen K, Eussen SJPM, Scheijen JLJM, van der Kallen CJH, Dagnelie PC, Opperhuizen A, Stehouwer CDA, van Greevenbroek MMJ, Schalkwijk CG. Higher habitual intake of dietary dicarbonyls is associated with higher corresponding plasma dicarbonyl concentrations and skin autofluorescence: the Maastricht Study. Am J Clin Nutr 2022; 115:34-44. [PMID: 34625788 DOI: 10.1093/ajcn/nqab329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dicarbonyls are highly reactive compounds and major precursors of advanced glycation end products (AGEs). Both dicarbonyls and AGEs are associated with development of age-related diseases. Dicarbonyls are formed endogenously but also during food processing. To what extent dicarbonyls from the diet contribute to circulating dicarbonyls and AGEs in tissues is unknown. OBJECTIVES To examine cross-sectional associations of dietary dicarbonyl intake with plasma dicarbonyl concentrations and skin AGEs. METHODS In 2566 individuals of the population-based Maastricht Study (age: 60 ± 8 y, 50% males, 26% with type 2 diabetes), we estimated habitual intake of the dicarbonyls methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) by combining FFQs with our dietary dicarbonyl database of MGO, GO, and 3-DG concentrations in > 200 commonly consumed food products. Fasting plasma concentrations of MGO, GO, and 3-DG were measured by ultra-performance liquid chromatography-tandem mass spectrometry. Skin AGEs were measured as skin autofluorescence (SAF), using the AGE Reader. Associations of dietary dicarbonyl intake with their respective plasma concentrations and SAF (all standardized) were examined using linear regression models, adjusted for age, sex, potential confounders related to cardiometabolic risk factors, and lifestyle. RESULTS Median intake of MGO, GO, and 3-DG was 3.6, 3.5, and 17 mg/d, respectively. Coffee was the main dietary source of MGO, whereas this was bread for GO and 3-DG. In the fully adjusted models, dietary MGO was associated with plasma MGO (β: 0.08; 95% CI: 0.02, 0.13) and SAF (β: 0.12; 95% CI: 0.07, 0.17). Dietary GO was associated with plasma GO (β: 0.10; 95% CI: 0.04, 0.16) but not with SAF. 3-DG was not significantly associated with either plasma 3-DG or SAF. CONCLUSIONS Higher habitual intake of dietary MGO and GO, but not 3-DG, was associated with higher corresponding plasma concentrations. Higher intake of MGO was also associated with higher SAF. These results suggest dietary absorption of MGO and GO. Biological implications of dietary absorption of MGO and GO need to be determined. The study has been approved by the institutional medical ethical committee (NL31329.068.10) and the Minister of Health, Welfare and Sports of the Netherlands (Permit 131088-105234-PG).
Collapse
Affiliation(s)
- Kim Maasen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute/CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Carla J H van der Kallen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Pieter C Dagnelie
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute/CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.,Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, Utrecht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
26
|
Grigolon G, Araldi E, Erni R, Wu JY, Thomas C, La Fortezza M, Laube B, Pöhlmann D, Stoffel M, Zarse K, Carreira EM, Ristow M, Fischer F. Grainyhead 1 acts as a drug-inducible conserved transcriptional regulator linked to insulin signaling and lifespan. Nat Commun 2022; 13:107. [PMID: 35013237 PMCID: PMC8748497 DOI: 10.1038/s41467-021-27732-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is impacted by interventions across species, often converging on metabolic pathways. Transcription factors regulate longevity yet approaches for their pharmacological modulation to exert geroprotection remain sparse. We show that increased expression of the transcription factor Grainyhead 1 (GRH-1) promotes lifespan and pathogen resistance in Caenorhabditis elegans. A compound screen identifies FDA-approved drugs able to activate human GRHL1 and promote nematodal GRH-1-dependent longevity. GRHL1 activity is regulated by post-translational lysine methylation and the phosphoinositide (PI) 3-kinase C2A. Consistently, nematodal longevity following impairment of the PI 3-kinase or insulin/IGF-1 receptor requires grh-1. In BXD mice, Grhl1 expression is positively correlated with lifespan and insulin sensitivity. In humans, GRHL1 expression positively correlates with insulin receptor signaling and also with lifespan. Fasting blood glucose levels, including in individuals with type 2 diabetes, are negatively correlated with GRHL1 expression. Thereby, GRH-1/GRHL1 is identified as a pharmacologically malleable transcription factor impacting insulin signaling and lifespan. Life- and healthspan of organisms can be modulated by dietary, genetic, or pharmacological interventions, which often affect metabolic pathways. Here the authors report that Grainyhead 1 is an evolutionarily conserved, drug-inducible transcription factor that promotes longevity in C. elegans, and thus a potential target for the development of geroprotective drugs.
Collapse
Affiliation(s)
- Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, CH-8603, Switzerland
| | - Elisa Araldi
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, CH-8603, Switzerland.,Metabolism and Metabolic Disease Laboratory, Institute for Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, CH-8093, Switzerland
| | - Reto Erni
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, CH-8093, Switzerland
| | - Jia Yee Wu
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, CH-8603, Switzerland
| | - Carolin Thomas
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, CH-8603, Switzerland
| | - Marco La Fortezza
- Evolutionary Biology Laboratory, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, CH-8092, Switzerland
| | - Beate Laube
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, CH-8603, Switzerland
| | - Doris Pöhlmann
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, CH-8603, Switzerland
| | - Markus Stoffel
- Metabolism and Metabolic Disease Laboratory, Institute for Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, CH-8093, Switzerland
| | - Kim Zarse
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, CH-8603, Switzerland
| | - Erick M Carreira
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, CH-8093, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, CH-8603, Switzerland.
| | - Fabian Fischer
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, CH-8603, Switzerland
| |
Collapse
|
27
|
Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol 2022; 23:56-73. [PMID: 34518687 PMCID: PMC8692439 DOI: 10.1038/s41580-021-00411-4] [Citation(s) in RCA: 352] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Dietary restriction with adequate nutrition is the gold standard for delaying ageing and extending healthspan and lifespan in diverse species, including rodents and non-human primates. In this Review, we discuss the effects of dietary restriction in these mammalian model organisms and discuss accumulating data that suggest that dietary restriction results in many of the same physiological, metabolic and molecular changes responsible for the prevention of multiple ageing-associated diseases in humans. We further discuss how different forms of fasting, protein restriction and specific reductions in the levels of essential amino acids such as methionine and the branched-chain amino acids selectively impact the activity of AKT, FOXO, mTOR, nicotinamide adenine dinucleotide (NAD+), AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21), which are key components of some of the most important nutrient-sensing geroprotective signalling pathways that promote healthy longevity.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
- Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy.
| |
Collapse
|
28
|
Li X, Fargue S, Challa AK, Poore W, Knight J, Wood KD. Generation of a GLO-2 deficient mouse reveals its effects on liver carbonyl and glutathione levels. Biochem Biophys Rep 2021; 28:101138. [PMID: 34584990 PMCID: PMC8453187 DOI: 10.1016/j.bbrep.2021.101138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Hydroxyacylglutathione hydrolase (aka as GLO-2) is a component of the glyoxalase pathway involved in the detoxification of the reactive oxoaldehydes, glyoxal and methylglyoxal. These reactive metabolites have been linked to a variety of pathological conditions, including diabetes, cancer and heart disease and may be involved in the aging process. The objective of this study was to generate a mouse model deficient in GLO-2 to provide insight into the function of GLO-2 and to determine if it is potentially linked to endogenous oxalate synthesis which could influence urinary oxalate excretion. METHODS A GLO-2 knock out mouse was generated using CRISPR/Cas 9 techniques. Tissue and 24-h urine samples were collected under baseline conditions from adult male and female animals for biochemical analyses, including chromatographic measurement of glycolate, oxalate, glyoxal, methylglyoxal, D-lactate, ascorbic acid and glutathione levels. RESULTS The GLO-2 KO animals developed normally and there were no changes in 24-h urinary oxalate excretion, liver levels of methylglyoxal, glyoxal, ascorbic acid and glutathione, or plasma d-lactate levels. GLO-2 deficient males had lower plasma glycolate levels than wild type males while this relationship was not observed in females. CONCLUSIONS The lack of a unique phenotype in a GLO-2 KO mouse model under baseline conditions is consistent with recent evidence, suggesting a functional glyoxalase pathway is not required for optimal health. A lower plasma glycolate in male GLO-2 KO animals suggests glyoxal production may be a significant contributor to circulating glycolate levels, but not to endogenous oxalate synthesis.
Collapse
Affiliation(s)
- Xingsheng Li
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sonia Fargue
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Anil Kumar Challa
- Department of Genetics University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - William Poore
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kyle D. Wood
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
29
|
Methylglyoxal Levels in Human Colorectal Precancer and Cancer: Analysis of Tumor and Peritumor Tissue. Life (Basel) 2021; 11:life11121319. [PMID: 34947850 PMCID: PMC8708054 DOI: 10.3390/life11121319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and its incidence is increasing; therefore, an understanding of its oncogenic mechanisms is critical for improving its treatment and management. Methylglyoxal (MGO) has a highly reactive aldehyde group and has been suggested to play a role in oncogenesis. However, no standardized data are currently available on MGO levels in colorectal precancerous and cancerous lesions. We collected 40 matched colorectal tumor and peritumor tissues from patients with low-grade dysplasia (LGD), high-grade dysplasia (HGD), and invasive cancer (IC). MGO levels increased between LGD, HGD, and IC tumor tissues (215.25 ± 39.69, 267.45 ± 100.61, and 587.36 ± 123.19 μg/g protein, respectively; p = 0.014). The MGO levels in peritumor tissue increased and were significantly higher than MGO levels in tumor tissue (197.99 ± 49.40, 738.09 ± 247.87, 933.41 ± 164.83 μg/g protein, respectively; p = 0.002). Tumor tissue MGO levels did not correlate with age, sex, underlying disease, or smoking status. These results suggest that MGO levels fluctuate in progression of CRC and warrants further research into its underlying mechanisms and function in tumor biology.
Collapse
|
30
|
Di Sanzo S, Spengler K, Leheis A, Kirkpatrick JM, Rändler TL, Baldensperger T, Dau T, Henning C, Parca L, Marx C, Wang ZQ, Glomb MA, Ori A, Heller R. Mapping protein carboxymethylation sites provides insights into their role in proteostasis and cell proliferation. Nat Commun 2021; 12:6743. [PMID: 34795246 PMCID: PMC8602705 DOI: 10.1038/s41467-021-26982-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Posttranslational mechanisms play a key role in modifying the abundance and function of cellular proteins. Among these, modification by advanced glycation end products has been shown to accumulate during aging and age-associated diseases but specific protein targets and functional consequences remain largely unexplored. Here, we devise a proteomic strategy to identify sites of carboxymethyllysine modification, one of the most abundant advanced glycation end products. We identify over 1000 sites of protein carboxymethylation in mouse and primary human cells treated with the glycating agent glyoxal. By using quantitative proteomics, we find that protein glycation triggers a proteotoxic response and indirectly affects the protein degradation machinery. In primary endothelial cells, we show that glyoxal induces cell cycle perturbation and that carboxymethyllysine modification reduces acetylation of tubulins and impairs microtubule dynamics. Our data demonstrate the relevance of carboxymethyllysine modification for cellular function and pinpoint specific protein networks that might become compromised during aging.
Collapse
Affiliation(s)
- Simone Di Sanzo
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Katrin Spengler
- grid.275559.90000 0000 8517 6224Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743 Jena, Germany
| | - Anja Leheis
- grid.275559.90000 0000 8517 6224Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743 Jena, Germany
| | - Joanna M. Kirkpatrick
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany ,grid.451388.30000 0004 1795 1830Present Address: Proteomics Science Technology Platform, The Francis Crick Institute, MW1 1AT London, UK
| | - Theresa L. Rändler
- grid.275559.90000 0000 8517 6224Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743 Jena, Germany
| | - Tim Baldensperger
- grid.9018.00000 0001 0679 2801Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Therese Dau
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Christian Henning
- grid.9018.00000 0001 0679 2801Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Luca Parca
- grid.413503.00000 0004 1757 9135Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Christian Marx
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Zhao-Qi Wang
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany ,grid.9613.d0000 0001 1939 2794Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Marcus A. Glomb
- grid.9018.00000 0001 0679 2801Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743, Jena, Germany.
| |
Collapse
|
31
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
32
|
Li Q, Wu T, Zhang M, Chen H, Liu R. Induction of the glycolysis product methylglyoxal on trimethylamine lyase synthesis in the intestinal microbiota from mice fed with choline and dietary fiber. Food Funct 2021; 12:9880-9893. [PMID: 34664588 DOI: 10.1039/d1fo01481a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study investigated the induction of the glycolysis product methylglyoxal by trimethylamine (TMA) lyase synthesis in the intestinal microbiota and investigated the intervention mechanism of the effects of dietary fiber on methylglyoxal formation. Intestinal digesta samples, collected from the ceca of mice fed with choline-rich and fiber-supplemented diets, were incubated in an anaerobic environment at 37 °C and pH 7.0 with choline, glycine, and methylglyoxal as inductive factors. The differences between the gut microbiota and its metagenomic and metabonomics profiles were determined using 16S rRNA gene sequencing analysis. The results elucidated that the different dietary interventions could induce differences in the composition of the microbiota, gene expression profiles associated with glycine metabolism, and glycolysis. As compared to the gut microbiota of choline-diet fed mice, fiber supplementation effectively altered the composition of the microbiota and inhibited the genes involved in choline metabolism, glycine and methylglyoxal accumulation, and TMA lyase expression, and improved the methylglyoxal utilization by regulating the pathway related to pyruvate production. However, the intervention of exogenous methylglyoxal significantly decreased these effects. These findings successfully revealed the correlations between the TMA lyase expression and glycine level, as well as the inhibitory effects of dietary fiber on the glycine level, thereby highlighting the role of common glycolytic metabolites as a potential target for TMA production.
Collapse
Affiliation(s)
- Qian Li
- Tianjin Agricultural University, Tianjin 300392, PR China.,China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China.,State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Tao Wu
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300392, PR China.,China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China.,State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Rui Liu
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
33
|
Abstract
In the current literature, the definitions of aging range from relying on certain sets of distinctive features at the molecular, organismal, populational and/or even evolutional levels/scales to declaring it a treatable disease and, moreover, to treating aging as a mental construct rather than a natural phenomenon. One reason of such a mess may be that it is common in the natural sciences to disregard philosophy of science where several categories of definitions are recognized, among which the nominal are less, and the so-called real ones are more appropriate in scientific contexts. E.g., water is, by its nominal definition, a liquid having certain observable features and, by its real definition, a specific combination (or a product of interaction) of hydrogen and oxygen atoms. Noteworthy, the real definition is senseless for people ignorant of atoms. Likewise, the nominal definition of aging as a set of observable features should be supplemented, if not replaced, with its real definition. The latter is suggested here to imply that aging is the product of chemical interactions between the rapidly turning-over free metabolites and the slowly turning-over metabolites incorporated in macromolecules involved in metabolic control. The phenomenon defined in this way emerged concomitantly with metabolic pathways controlled by enzymes coded for by information-storing macromolecules and is inevitable wherever such conditions coincide. Aging research, thus, is concerned with the elucidation of the pathways and mechanisms that link aging defined as above to its hallmarks and manifestations, including those comprised by its nominal definitions. Esoteric as it may seem, defining aging is important for deciding whether aging is what should be declared as the target of interventions aimed at increasing human life and health spans.
Collapse
Affiliation(s)
- Aleksei G Golubev
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia.
| |
Collapse
|
34
|
Yue Y, Wang J, Shen P, Kim KH, Park Y. Methylglyoxal influences development of Caenorhabditis elegans via lin-41-dependent pathway. Food Chem Toxicol 2021; 152:112238. [PMID: 33901606 DOI: 10.1016/j.fct.2021.112238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 01/02/2023]
Abstract
Methylglyoxal is a highly reactive dicarbonyl compound. It can be obtained either endogenously through biological enzymatic/non-enzymatic pathways or exogenously via the uptake of certain foods and beverages, such as Manuka honey. Studies about its biological properties are quite controversial, though the majority reported a positive association between methylglyoxal and certain pathologies. In this report, we tested if methylglyoxal can alter the development of animals using Caenorhabditis elegans as the in vivo model. Treatment of methylglyoxal at 0.1 and 1 mmol/L for 2 days significantly inhibited the development of Caenorhabditis elegans, particularly targeting the transition from L3 stage. Pharyngeal pumping rate, the food intake marker was also significantly reduced by methylglyoxal at both 0.1 and 1 mmol/L. Additionally, treatment of 0.1 mmol/L methylglyoxal increased, while 1 mmol/L methylglyoxal decreased the nematodes' average moving speed. The effect of methylglyoxal on development was in part due to the modulation of lin-41, which encodes a homolog of human TRIM71. The mutation of lin-41 could alleviate or abolish the effects of methylglyoxal on growth rate, body size, pumping rate and locomotive activity. In summary, these results suggested that methylglyoxal influenced the development of Caenorhabditis elegans, which is in part via the lin-41-dependent pathway.
Collapse
Affiliation(s)
- Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jiaying Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Peiyi Shen
- Department of Agriculture, Culinology® and Hospitality Management, Southwest Minnesota State University, Marshall, MN, 56258, USA
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
35
|
Bletsa E, Filippas-Dekouan S, Kostara C, Dafopoulos P, Dimou A, Pappa E, Chasapi S, Spyroulias G, Koutsovasilis A, Bairaktari E, Ferrannini E, Tsimihodimos V. Effect of Dapagliflozin on Urine Metabolome in Patients with Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106:1269-1283. [PMID: 33592103 PMCID: PMC8063232 DOI: 10.1210/clinem/dgab086] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 01/01/2023]
Abstract
CONTEXT Inhibitors of sodium-glucose cotransporters-2 have cardio- and renoprotective properties. However, the underlying mechanisms remain indeterminate. OBJECTIVE To evaluate the effect of dapagliflozin on renal metabolism assessed by urine metabolome analysis in patients with type 2 diabetes. DESIGN Prospective cohort study. SETTING Outpatient diabetes clinic of a tertiary academic center. PATIENTS Eighty patients with hemoglobin A1c > 7% on metformin monotherapy were prospectively enrolled. INTERVENTION Fifty patients were treated with dapagliflozin for 3 months. To exclude that the changes observed in urine metabolome were merely the result of the improvement in glycemia, 30 patients treated with insulin degludec were used for comparison. MAIN OUTCOME MEASURE Changes in urine metabolic profile before and after the administration of dapagliflozin and insulin degludec were assessed by proton-nuclear magnetic resonance spectroscopy. RESULTS In multivariate analysis urine metabolome was significantly altered by dapagliflozin (R2X = 0.819, R2Y = 0.627, Q2Y = 0.362, and coefficient of variation analysis of variance, P < 0.001) but not insulin. After dapagliflozin, the urine concentrations of ketone bodies, lactate, branched chain amino acids (P < 0.001), betaine, myo-inositol (P < 0001), and N-methylhydantoin (P < 0.005) were significantly increased. Additionally, the urine levels of alanine, creatine, sarcosine, and citrate were also increased (P < 0001, P <0.0001, and P <0.0005, respectively) whereas anserine decreased (P < 0005). CONCLUSIONS Dapagliflozin significantly affects urine metabolome in patients with type 2 diabetes in a glucose lowering-independent way. Most of the observed changes can be considered beneficial and may contribute to the renoprotective properties of dapagliflozin.
Collapse
Affiliation(s)
- Evdoxia Bletsa
- Third Internal Medicine Department, General Hospital of Nikaia, Athens, Greece
| | | | - Christina Kostara
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | | | - Aikaterini Dimou
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | - Eleni Pappa
- Department of Internal Medicine, University of Ioannina, Ioannina, Greece
| | | | | | | | - Eleni Bairaktari
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | | | | |
Collapse
|
36
|
Ramos LD, Mantovani MC, Sartori A, Dutra F, Stevani CV, Bechara EJH. Aerobic co-oxidation of hemoglobin and aminoacetone, a putative source of methylglyoxal. Free Radic Biol Med 2021; 166:178-186. [PMID: 33636334 DOI: 10.1016/j.freeradbiomed.2021.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
Aminoacetone (1-aminopropan-2-one), a putative minor biological source of methylglyoxal, reacts like other α-aminoketones such as 6-aminolevulinic acid (first heme precursor) and 1,4-diaminobutanone (a microbicide) yielding electrophilic α-oxoaldehydes, ammonium ion and reactive oxygen species by metal- and hemeprotein-catalyzed aerobic oxidation. A plethora of recent reports implicates triose phosphate-generated methylglyoxal in protein crosslinking and DNA addition, leading to age-related disorders, including diabetes. Importantly, methylglyoxal-treated hemoglobin adds four water-exposed arginine residues, which may compromise its physiological role and potentially serve as biomarkers for diabetes. This paper reports on the co-oxidation of aminoacetone and oxyhemoglobin in normally aerated phosphate buffer, leading to structural changes in hemoglobin, which can be attributed to the addition of aminoacetone-produced methylglyoxal to the protein. Hydroxyl radical-promoted chemical damage to hemoglobin may also occur in parallel, which is suggested by EPR-spin trapping studies with 5,5-dimethyl-1-pyrroline-N-oxide and ethanol. Concomitantly, oxyhemoglobin is oxidized to methemoglobin, as indicated by characteristic CD spectral changes in the Soret and visible regions. Overall, these findings may contribute to elucidate the molecular mechanisms underlying human diseases associated with hemoglobin dysfunctions and with aminoacetone in metabolic alterations related to excess glycine and threonine.
Collapse
Affiliation(s)
- Luiz D Ramos
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil; Centro Universitário Anhanguera, UniA, Santo André, SP, Brazil
| | - Mariana C Mantovani
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil; Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adriano Sartori
- Centro de Ciências Exatas e Tecnologia, Universidade Cruzeiro Do Sul, São Paulo, SP, Brazil
| | - Fernando Dutra
- Centro de Ciências Exatas e Tecnologia, Universidade Cruzeiro Do Sul, São Paulo, SP, Brazil
| | - Cassius V Stevani
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
37
|
Parkhitko AA, Ramesh D, Wang L, Leshchiner D, Filine E, Binari R, Olsen AL, Asara JM, Cracan V, Rabinowitz JD, Brockmann A, Perrimon N. Downregulation of the tyrosine degradation pathway extends Drosophila lifespan. eLife 2020; 9:58053. [PMID: 33319750 PMCID: PMC7744100 DOI: 10.7554/elife.58053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/28/2020] [Indexed: 12/31/2022] Open
Abstract
Aging is characterized by extensive metabolic reprogramming. To identify metabolic pathways associated with aging, we analyzed age-dependent changes in the metabolomes of long-lived Drosophila melanogaster. Among the metabolites that changed, levels of tyrosine were increased with age in long-lived flies. We demonstrate that the levels of enzymes in the tyrosine degradation pathway increase with age in wild-type flies. Whole-body and neuronal-specific downregulation of enzymes in the tyrosine degradation pathway significantly extends Drosophila lifespan, causes alterations of metabolites associated with increased lifespan, and upregulates the levels of tyrosine-derived neuromediators. Moreover, feeding wild-type flies with tyrosine increased their lifespan. Mechanistically, we show that suppression of ETC complex I drives the upregulation of enzymes in the tyrosine degradation pathway, an effect that can be rescued by tigecycline, an FDA-approved drug that specifically suppresses mitochondrial translation. In addition, tyrosine supplementation partially rescued lifespan of flies with ETC complex I suppression. Altogether, our study highlights the tyrosine degradation pathway as a regulator of longevity.
Collapse
Affiliation(s)
- Andrey A Parkhitko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States.,Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, United States
| | - Divya Ramesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lin Wang
- Department of Chemistry, Princeton University, Princeton, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Dmitry Leshchiner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| | - Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, United States
| | - Valentin Cracan
- Scintillon Institute, San Diego, United States.,Department of Chemistry, The Scripps Research Institute, La Jolla, United States
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
38
|
Dicarbonyl derived post-translational modifications: chemistry bridging biology and aging-related disease. Essays Biochem 2020; 64:97-110. [PMID: 31939602 DOI: 10.1042/ebc20190057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/17/2023]
Abstract
In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.
Collapse
|
39
|
Šilhavý J, Malínská H, Hüttl M, Marková I, Oliyarnyk O, Mlejnek P, Šimáková M, Liška F, Kazdová L, Moravcová R, Novotný J, Pravenec M. Downregulation of the Glo1 Gene Is Associated with Reduced Adiposity and Ectopic Fat Accumulation in Spontaneously Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9121179. [PMID: 33255888 PMCID: PMC7759780 DOI: 10.3390/antiox9121179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Methylglyoxal (MG), a potent precursor of advanced glycation end-products (AGE), is increased in metabolic disorders such as diabetes and obesity. MG and other dicarbonyl metabolites are detoxified by the glyoxalase system in which glyoxalase 1, coded by the Glo1 gene, serves as the rate-limiting enzyme. In this study, we analyzed the effects of Glo1 downregulation on glucose and lipid metabolism parameters in spontaneously hypertensive rats (SHR) by targeting the Glo1 gene (SHR-Glo1+/− heterozygotes). Compared to SHR wild-type animals, SHR-Glo1+/− rats showed significantly reduced Glo1 expression and lower GLO1 activity in tissues associated with increased MG levels. In contrast to SHR controls, SHR-Glo1+/− rats exhibited lower relative weight of epididymal fat, reduced ectopic fat accumulation in the liver and heart, and decreased serum triglycerides. In addition, compared to controls, SHR-Glo1+/− rats showed reduced serum insulin and increased basal and insulin stimulated incorporation of glucose into white adipose tissue lipids (lipogenesis). Reduced ectopic fat accumulation in the heart was associated with significantly increased pAMPK/AMPK ratio and GLUT4 activity. These results provide evidence that Glo1 downregulation in SHR is associated with reduced adiposity and ectopic fat accumulation, most likely mediated by AMPK activation in the heart.
Collapse
Affiliation(s)
- Jan Šilhavý
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.Š.); (P.M.); (M.Š.); (F.L.)
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (H.M.); (M.H.); (I.M.); (O.O.); (L.K.)
| | - Martina Hüttl
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (H.M.); (M.H.); (I.M.); (O.O.); (L.K.)
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (H.M.); (M.H.); (I.M.); (O.O.); (L.K.)
| | - Olena Oliyarnyk
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (H.M.); (M.H.); (I.M.); (O.O.); (L.K.)
| | - Petr Mlejnek
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.Š.); (P.M.); (M.Š.); (F.L.)
| | - Miroslava Šimáková
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.Š.); (P.M.); (M.Š.); (F.L.)
| | - František Liška
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.Š.); (P.M.); (M.Š.); (F.L.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 12800 Prague, Czech Republic
| | - Ludmila Kazdová
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (H.M.); (M.H.); (I.M.); (O.O.); (L.K.)
| | - Radka Moravcová
- Department of Physiology, Faculty of Science, Charles University, 12843 Prague, Czech Republic; (R.M.); (J.N.)
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, 12843 Prague, Czech Republic; (R.M.); (J.N.)
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.Š.); (P.M.); (M.Š.); (F.L.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 12800 Prague, Czech Republic
- Correspondence: ; Tel.: +420-241-062-297; Fax: +420-244-472-269
| |
Collapse
|
40
|
Morgenstern J, Campos Campos M, Nawroth P, Fleming T. The Glyoxalase System-New Insights into an Ancient Metabolism. Antioxidants (Basel) 2020; 9:antiox9100939. [PMID: 33019494 PMCID: PMC7600140 DOI: 10.3390/antiox9100939] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The glyoxalase system was discovered over a hundred years ago and since then it has been claimed to provide the role of an indispensable enzyme system in order to protect cells from a toxic byproduct of glycolysis. This review gives a broad overview of what has been postulated in the last 30 years of glyoxalase research, but within this context it also challenges the concept that the glyoxalase system is an exclusive tool of detoxification and that its substrate, methylglyoxal, is solely a detrimental burden for every living cell due to its toxicity. An overview of consequences of a complete loss of the glyoxalase system in various model organisms is presented with an emphasis on the role of alternative detoxification pathways of methylglyoxal. Furthermore, this review focuses on the overlooked posttranslational modification of Glyoxalase 1 and its possible implications for cellular maintenance under various (patho-)physiological conditions. As a final note, an intriguing point of view for the substrate methylglyoxal is offered, the concept of methylglyoxal (MG)-mediated hormesis.
Collapse
Affiliation(s)
- Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- Correspondence:
| | - Marta Campos Campos
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Institute for Diabetes and Cancer at Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
41
|
Palomino-Schätzlein M, Mayneris-Perxachs J, Caballano-Infantes E, Rodríguez MA, Palomo-Buitrago ME, Xiao X, Mares R, Ricart W, Simó R, Herance JR, Fernández-Real JM. Combining metabolic profiling of plasma and faeces as a fingerprint of insulin resistance in obesity. Clin Nutr 2020; 39:2292-2300. [DOI: 10.1016/j.clnu.2019.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
|
42
|
Do MH, Lee JH, Ahn J, Hong MJ, Kim J, Kim SY. Isosamidin from Peucedanum japonicum Roots Prevents Methylglyoxal-Induced Glucotoxicity in Human Umbilical Vein Endothelial Cells via Suppression of ROS-Mediated Bax/Bcl-2. Antioxidants (Basel) 2020; 9:antiox9060531. [PMID: 32560521 PMCID: PMC7346203 DOI: 10.3390/antiox9060531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Methylglyoxal (MGO) is a highly reactive metabolite of glucose. Elevated levels of MGO induce the generation of reactive oxygen species (ROS) and cause cell death in endothelial cells. Vascular endothelial cell damage by ROS has been implicated in the progression of diabetic vascular complications, cardiovascular diseases, and atherosclerosis. In this study, the protective effect of isosamidin, isolated from Peucedanum japonicum roots, on MGO-induced apoptosis was investigated using human umbilical vein endothelial cells (HUVECs). Among the 20 compounds isolated from P. japonicum, isosamidin showed the highest effectiveness in inhibiting MGO-induced apoptosis of HUVECs. Pretreatment of HUVECs with isosamidin significantly prevented the generation of ROS and cell death induced by MGO. Isosamidin prevented MGO-induced apoptosis in HUVECs by downregulating the expression of Bax and upregulating the expression of Bcl-2. MGO treatment activated mitogen-activated protein kinases (MAPKs), such as p38, c-Jun N terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). In contrast, pretreatment with isosamidin strongly inhibited the activation of p38 and JNK. Furthermore, isosamidin caused the breakdown of the crosslinks of the MGO-derived advanced glycation end products (AGEs). These findings suggest that isosamidin from P. japonicum may be used as a preventive agent against MGO-mediated endothelial dysfunction in diabetes. However, further study of the therapeutic potential of isosamidin on endothelial dysfunction needs to explored in vivo models.
Collapse
Affiliation(s)
- Moon Ho Do
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Jae Hyuk Lee
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea;
| | - Jongmin Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (J.A.); (M.J.H.); (J.K.)
| | - Min Jee Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (J.A.); (M.J.H.); (J.K.)
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (J.A.); (M.J.H.); (J.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea;
- Gachon Institute of Pharmaceutical Science, Gachon University; #191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
- Gachon Medical Research Institute, Gil Medical Center, Inchon 21565, Korea
- Correspondence: ; Tel.: +82-32-820-4931; Fax: +82-32-820-4829
| |
Collapse
|
43
|
Fischer F, Ristow M. Endogenous metabolites promote stress resistance through induction of mitohormesis. EMBO Rep 2020; 21:e50340. [PMID: 32329201 DOI: 10.15252/embr.202050340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interventions and small molecules, which promote formation of reactive oxygen species (ROS), have repeatedly been shown to increase stress resistance and lifespan of different model organisms. These phenotypes occur only in response to low concentrations of ROS, while higher concentrations exert opposing effects. This non-linear or hormetic dose-response relationship has been termed mitohormesis, since ROS are mainly generated within the mitochondrial compartment. A report by Matsumura et al in this issue of EMBO Reports now demonstrates that an endogenously formed metabolite, namely N-acetyl-L-tyrosine (NAT), is instrumental in promoting cellular and organismal resilience by inducing mitohormetic mechanisms, likely in an evolutionarily conserved manner [1].
Collapse
Affiliation(s)
- Fabian Fischer
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
44
|
Wan QL, Fu X, Dai W, Yang J, Luo Z, Meng X, Liu X, Zhong R, Yang H, Zhou Q. Uric acid induces stress resistance and extends the life span through activating the stress response factor DAF-16/FOXO and SKN-1/NRF2. Aging (Albany NY) 2020; 12:2840-2856. [PMID: 32074508 PMCID: PMC7041755 DOI: 10.18632/aging.102781] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
Uric acid is a common metabolite found in mammals’ serum. Recently, several metabolites have been identified that modulate aging, and uric acid levels are positively correlated with mammals’ lifespan. However, the molecular mechanisms underlying this are largely undefined. Here we show that uric acid, an end product of purine metabolism, enhances the resistance of oxidative stress and extends the life span of Caenorhabditis elegans (C. elegans). We show that uric acid enhances a variety of pathways and leads to the upregulation of genes that are required for uric acid-mediated life span extension. We find that the transcription factors DAF-16/FOXO, SKN-1/NRF2 and HSF-1 contribute to the beneficial longevity conferred by uric acid. We also show that uric acid induced life span extension by regulating the reproductive signaling and insulin/IGF-1 signaling (IIS) pathways. In addition, we find that mitochondrial function plays an important role in uric acid-mediated life span extension. Taken together, these data suggest that uric acid prolongs the life span of C. elegans, in part, because of its antioxidative activity, which in turn regulates the IIS and the reproductive signaling pathways, thereby activating the function of the transcription factors DAF-16, HSF-1 and SKN-1.
Collapse
Affiliation(s)
- Qin-Li Wan
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangdong 510632, Guangzhou, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangdong 510632, Guangzhou, China
| | - Xiaodie Fu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangdong 510632, Guangzhou, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangdong 510632, Guangzhou, China
| | - Wenyu Dai
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangdong 510632, Guangzhou, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangdong 510632, Guangzhou, China
| | - Jing Yang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangdong 510632, Guangzhou, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangdong 510632, Guangzhou, China
| | - Zhenhuan Luo
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangdong 510632, Guangzhou, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangdong 510632, Guangzhou, China
| | - Xiao Meng
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangdong 510632, Guangzhou, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangdong 510632, Guangzhou, China
| | - Xiao Liu
- Qingyuan People's Hospital, The Six Affiliated Hospital of Guangzhou Medical University, Guangdong 511518, Qingyuan, China
| | - Ruowei Zhong
- Internship Program, The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangdong, 510632, Guangzhou, China
| | - Hengwen Yang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangdong 510632, Guangzhou, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangdong 510632, Guangzhou, China
| | - Qinghua Zhou
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangdong 510632, Guangzhou, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangdong 510632, Guangzhou, China
| |
Collapse
|
45
|
Kold-Christensen R, Johannsen M. Methylglyoxal Metabolism and Aging-Related Disease: Moving from Correlation toward Causation. Trends Endocrinol Metab 2020; 31:81-92. [PMID: 31757593 DOI: 10.1016/j.tem.2019.10.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
Methylglyoxal (MG) is a ubiquitous metabolite that spontaneously reacts with biopolymers forming advanced glycation end-products (AGEs). AGEs are strongly associated with aging-related diseases, including cancer, neurodegenerative diseases, and diabetes. As the formation of AGEs is nonenzymatic, the damage caused by MG and AGEs has been regarded as unspecific. This may have resulted in the field generally been regarded as unappealing by many researchers, as detailed mechanisms have been difficult to probe. However, accumulating evidence highlighting the importance of MG in human metabolism and disease, as well as data revealing how MG can elicit its signaling function via specific protein AGEs, could change the current mindset, accelerating the field to the forefront of future research.
Collapse
Affiliation(s)
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
46
|
Wan QL, Fu X, Meng X, Luo Z, Dai W, Yang J, Wang C, Wang H, Zhou Q. Hypotaurine promotes longevity and stress tolerance via the stress response factors DAF-16/FOXO and SKN-1/NRF2 in Caenorhabditis elegans. Food Funct 2020; 11:347-357. [PMID: 31799533 DOI: 10.1039/c9fo02000d] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypotaurine, an important sulfur-containing and nonpeptidic amino acid, is a precursor of taurine and an antioxidant.
Collapse
Affiliation(s)
- Qin-Li Wan
- The First Affiliated Hospital
- Biomedical Translational Research Institute
- Jinan University
- Guangzhou
- China
| | - Xiaodie Fu
- The First Affiliated Hospital
- Biomedical Translational Research Institute
- Jinan University
- Guangzhou
- China
| | - Xiao Meng
- The First Affiliated Hospital
- Biomedical Translational Research Institute
- Jinan University
- Guangzhou
- China
| | - Zhenhuan Luo
- The First Affiliated Hospital
- Biomedical Translational Research Institute
- Jinan University
- Guangzhou
- China
| | - Wenyu Dai
- The First Affiliated Hospital
- Biomedical Translational Research Institute
- Jinan University
- Guangzhou
- China
| | - Jing Yang
- The First Affiliated Hospital
- Biomedical Translational Research Institute
- Jinan University
- Guangzhou
- China
| | - Chongyang Wang
- The First Affiliated Hospital
- Biomedical Translational Research Institute
- Jinan University
- Guangzhou
- China
| | - Hao Wang
- The First Affiliated Hospital
- Biomedical Translational Research Institute
- Jinan University
- Guangzhou
- China
| | - Qinghua Zhou
- The First Affiliated Hospital
- Biomedical Translational Research Institute
- Jinan University
- Guangzhou
- China
| |
Collapse
|
47
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
48
|
Luengo A, Abbott KL, Davidson SM, Hosios AM, Faubert B, Chan SH, Freinkman E, Zacharias LG, Mathews TP, Clish CB, DeBerardinis RJ, Lewis CA, Vander Heiden MG. Reactive metabolite production is a targetable liability of glycolytic metabolism in lung cancer. Nat Commun 2019; 10:5604. [PMID: 31811141 PMCID: PMC6898239 DOI: 10.1038/s41467-019-13419-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Increased glucose uptake and metabolism is a prominent phenotype of most cancers, but efforts to clinically target this metabolic alteration have been challenging. Here, we present evidence that lactoylglutathione (LGSH), a byproduct of methylglyoxal detoxification, is elevated in both human and murine non-small cell lung cancers (NSCLC). Methylglyoxal is a reactive metabolite byproduct of glycolysis that reacts non-enzymatically with nucleophiles in cells, including basic amino acids, and reduces cellular fitness. Detoxification of methylglyoxal requires reduced glutathione (GSH), which accumulates to high levels in NSCLC relative to normal lung. Ablation of the methylglyoxal detoxification enzyme glyoxalase I (Glo1) potentiates methylglyoxal sensitivity and reduces tumor growth in mice, arguing that targeting pathways involved in detoxification of reactive metabolites is an approach to exploit the consequences of increased glucose metabolism in cancer.
Collapse
Affiliation(s)
- Alba Luengo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shawn M Davidson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA
| | - Aaron M Hosios
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Brandon Faubert
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Elizaveta Freinkman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics and Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA.
- Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
| |
Collapse
|
49
|
Li Q, Chen H, Zhang M, Wu T, Liu R, Zhang Z. Potential Correlation between Dietary Fiber-Suppressed Microbial Conversion of Choline to Trimethylamine and Formation of Methylglyoxal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13247-13257. [PMID: 31707781 DOI: 10.1021/acs.jafc.9b04860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dietary interventions alter the formation of the disease-associated metabolite, trimethylamine (TMA), via intestinal microbial TMA lyase activity. Nevertheless, the mechanisms regulating microbial enzyme production are still unclear. Sequencing of the gut bacteria 16S rDNA demonstrated that dietary intervention changed the composition of the gut microbiota and the functional metagenome involved in the choline utilization pathway. Characterization of the functional profile of the metagenomes and metabonomics analysis revealed that a series of Kyoto Encyclopedia of Genes and Genomes orthologous groups and enzyme groups related to accumulation of methylglyoxal (MG) and glycine were enriched in red meat diet-fed animals, whereas fiber-rich diet suppressed glycine formation via the MG-dependent pathway. Our observations suggest associations between choline-TMA lyase expression and MG formation, which are indicative of a novel role of the gut microbiota in choline metabolism and highlight it as a potential target for inhibiting TMA production.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , PR China
| | - Min Zhang
- State Key Laboratory of Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , PR China
- Tianjin Agricultural University , Tianjin 300384 , PR China
| | - Tao Wu
- State Key Laboratory of Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , PR China
| | - Rui Liu
- State Key Laboratory of Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , PR China
| | - Zesheng Zhang
- State Key Laboratory of Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , PR China
| |
Collapse
|
50
|
Papaevgeniou N, Hoehn A, Tur JA, Klotz LO, Grune T, Chondrogianni N. Sugar-derived AGEs accelerate pharyngeal pumping rate and increase the lifespan of Caenorhabditis elegans. Free Radic Res 2019; 53:1056-1067. [DOI: 10.1080/10715762.2019.1661403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich Schiller University of Jena, Jena, Germany
| | - Annika Hoehn
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München, Germany
| | - Josep A. Tur
- Research Group on Nutrition and Oxidative Stress, University of the Balearic Islands and CIBEROBN (Physiopathology of Obesity and Nutrition), Palma de Mallorca, Spain
| | - Lars-Oliver Klotz
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich Schiller University of Jena, Jena, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|