1
|
He F, Chen Q, Gu P, Liu X, Chen Y, Liu T, Li C. Exploring the Causal Relationships between Lipid Biomarkers and Anti-VEGF Treatment Response in Patients with Neovascular Age-related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2025; 5:100711. [PMID: 40225410 PMCID: PMC11986618 DOI: 10.1016/j.xops.2025.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 04/15/2025]
Abstract
Purpose To identify the connections between lipid biomarkers and the anti-VEGF therapy response in patients with neovascular age-related macular degeneration (nAMD). Design A bidirectional and multivariable Mendelian randomization study. Participants The summary statistics for anti-VEGF nAMD treatment response included a total of 128 responders, 51 nonresponders, and 6 908 005 genetic variants available for analysis. The sample size of lipid biomarkers is 441 016 and 12 321 875 genetic variants available for analysis. Methods Two-sample Mendelian randomization (MR) method was conducted to exhaustively appraise the causalities among 13 lipid biomarkers and the risk of different anti-VEGF treatment responses (including visual acuity [VA] and central retinal thickness [CRT]) for nAMD subtypes. Main Outcome Measures Thirteen lipid biomarkers, VA, and CRT. Results A positive causal relationship was identified between triglycerides (TGs), apolipoproteins (Apos) E2, ApoE3, total cholesterol (TC), and VA response to anti-VEGF therapy in patients with nAMD, as confirmed by MR-Egger, weighted median, and weighted mode models. The MR-Egger model yielded statistically significant results for TC, ApoA-I, ApoB, and ApoA-V in relation to the CRT response to anti-VEGF treatment in patients with nAMD. In the reverse MR, the MR-Egger model identified significant causal relationships between ApoA-I, low-density lipoprotein cholesterol (LDL-c), ApoE3, and ApoF and the VA response. However, this was not the case in the weighted median and weighted mode models. In the MR-Egger model, ApoB, LDL-c, ApoE3, and ApoM were identified as significantly influencing the CRT response. In the multisample MR analysis, TC, high-density lipoprotein cholesterol, LDL-c, and TG were found to be causally related to VA response, and TC was also identified as being causally related to the CRT response to anti-VEGF therapy in patients with nAMD. Conclusions This MR study suggests unidirectional causality between TG and ApoE3 and the response to anti-VEGF treatment in patients with nAMD. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Feixiang He
- Department of Ophthalmology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qifang Chen
- Department of Ophthalmology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Peilin Gu
- Department of Ophthalmology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xuemei Liu
- Department of Ophthalmology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yinglian Chen
- Western Institution of Health Data Science, Chongqing, China
| | - Ting Liu
- Department of Ophthalmology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Chongyi Li
- Department of Ophthalmology, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
2
|
Zhang MJ, Wan X, Shi M, Yu Y, Ou R, Ge RS. Curcuminoids WM03 inhibits ovarian cancer cisplatin-resistant cells proliferation and reverses cisplatin resistance by targeting DYRK2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156632. [PMID: 40315643 DOI: 10.1016/j.phymed.2025.156632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 05/04/2025]
Abstract
PURPOSE Cisplatin is a common chemotherapy agent used to treat ovarian cancer and cisplatin resistance is the most common consequence after its treatment. Curcumin has been shown to effectively inhibit the proliferation and invasion of ovarian cancer cells but its bioavailability restricts its application. The objective of this study was to develop the novel curcumin derivatives with high efficacy and synergic effects with cisplatin to inhibit cisplatin resistant ovarian cancers. STUDY DESIGN AND METHODS Colony formation assay and growth curve assay Were used to detect cell proliferation. Transwell and cell scratch assay Were used to detect cell invasion and migration. Western blot (WB), Immunohistochemistry (IHC) and Immunofluorescence (IF) Were used to detect the expression levels of related molecules. qPCR was used to detect mRNA levels of related molecules. Kinase profile sequencing was used to analyze kinase activity. RNA seq was used to analyze significant signaling pathways. The ability of Surface plasmon resonance (SPR), Isothermal titration calorimetry (ITC) and Cellular Thermal Shift Assay (CESTA), molecular docking to analyze the binding of drugs and molecules; Co-Immunoprecipitation (Co-IP) and confocal are used to analyze intermolecular interactions. Ubiquitination is used to detect ubiquitin levels of related molecules; Animal experiments are used to simulate clinical validation RESULTS: Four curcumin derivatives Were synthesized and evaluated to treat ovarian cancers. Curcumin derivative WM03 was the most effective to inhibit A2780DR and HO8910PMDR cell proliferation with about 8-12 times more potent than curcumin. WM03 inhibited A2780DR and HO8910PMDR cell proliferation, migration, and invasion with a synergic effect of cisplatin for cisplatin resistant ovarian cells. RNA-seq results showed that the PI3K-Akt pathway differentially changed. Kinotome analysis showed that WM03 specifically targeted 4 kinases of 50 curcumin-effective kinases and dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2) was the most significant kinase, The IC50 of WM03 on DYRK2 activity is 4.58 μM, and the strong binding ability of WM03 to DYRK2 was confirmed in cell-free systems such as SPR, ITC and CESTA. Docking analysis showed that WM03 bound to the ATP pocket of DYRK2 similarly to curcumin. Further analysis showed that WM03 significantly inhibited ovarian cell proliferation and invasion via DYRK2-Akt/ATP7A/CTR1 axis. Tumor inoculation in nude mice demonstrated that WM03 at 5 mg/kg every 2 days for 16 days was effective to reduce tumor size. CONCLUSION WM03 specifically targets DYRK2 and is more potent than curcumin to inhibit cisplatin resistant ovarian cancer cells, being a promising new drug candidate for ovarian cancers.
Collapse
Affiliation(s)
- Min-Jie Zhang
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoxi Wan
- The First Clinical College, China Medical University, Shenyang 110000, China
| | - Mengna Shi
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Yu
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Rongying Ou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ren-Shan Ge
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
3
|
Roscigno G, Jacobs S, Toledo B, Borea R, Russo G, Pepe F, Serrano MJ, Calabrò V, Troncone G, Giovannoni R, Giovannetti E, Malapelle U. The potential application of stroma modulation in targeting tumor cells: focus on pancreatic cancer and breast cancer models. Semin Cancer Biol 2025:S1044-579X(25)00060-4. [PMID: 40373890 DOI: 10.1016/j.semcancer.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/08/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer development and spreading being considered as "the dark side of the tumor". Within this term tumor cells, immune components, supporting cells, extracellular matrix and a myriad of bioactive molecules that synergistically promote tumor development and therapeutic resistance, are included. Recent findings revealed the profound impacts of TME on cancer development, serving as physical support, critical mediator and biodynamic matrix in cancer evolution, immune modulation, and treatment outcomes. TME targeting strategies built on vasculature, immune checkpoints, and immuno-cell therapies, have paved the way for revolutionary clinical interventions. On this basis, the relevance of pre-clinical and clinical investigations has rapidly become fundamental for implementing novel therapeutical strategies breaking cell-cell and cell -mediators' interactions between TME components and tumor cells. This review summarizes the key players in the breast and pancreatic TME, elucidating the intricate interactions among cancer cells and their essential role for cancer progression and therapeutic resistance. Different tumors such breast and pancreatic cancer have both different and similar stroma features, that might affect therapeutic strategies. Therefore, this review aims to comprehensively evaluate recent findings for refining breast and pancreatic cancer therapies and improve patient prognoses by exploiting the TME's complexity in the next future.
Collapse
Affiliation(s)
- Giuseppina Roscigno
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Sacha Jacobs
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| | - Belen Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain.
| | - Roberto Borea
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pepe
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Maria Jose Serrano
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain.
| | - Viola Calabrò
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Roberto Giovannoni
- Department of Biology, Genetic Unit, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy.
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
4
|
Li X, Wu M, Chen G, Ma W, Chen Y, Ding Y, Dong P, Ding W, Zhang L, Yang L, Gan W, Li D. The Role of HADHB in Mitochondrial Fatty Acid Metabolism During Initiation of Metastasis in ccRCC. Mol Carcinog 2025; 64:923-935. [PMID: 39991877 DOI: 10.1002/mc.23898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/07/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
The initiation and progression of clear cell renal cell carcinoma (ccRCC) are closely linked to significant metabolic alterations. Specifically, lipid metabolism alterations and their association with the high invasiveness in ccRCC require further investigation. After conducting RNA-sequencing (RNA-seq), we discovered that Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta (HADHB) was significantly downregulated in the highly invasive ccRCC cell line. It was found that the expression of HADHB in ccRCC tumor tissues was lower than that in paracancer tissues, which is associated with poor patient prognosis. Subsequently, we confirmed that highly invasive ccRCC exhibited an increased lipid accumulation due to the suppression of mitochondrial fatty acid transport and enhanced conversion of fatty acids to triglycerides within cancer cells. Specifically, the downregulation of HADHB inhibited mitochondrial fatty acid β-oxidation (FAO) in cancer cells, leading to partial impairment of mitochondrial function and decreased ATP production. However, this trade-off involving the reduction of a high-yield ATP production conferred an advantage by reducing reactive oxygen species (ROS) generation within cancer cells, thereby protecting them from oxidative stress and enhancing their invasive potential. Furthermore, the downregulation of HADHB promoted epithelial-mesenchymal transition (EMT) and angiogenesis in cancer cells, accelerating the progression of ccRCC and endowing ccRCC cells with metastatic capabilities.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Mengmeng Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Guijuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yi Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yibing Ding
- Translational Medicine Core Facilities, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Dong
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Weidong Ding
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Luqing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Yang
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Rodríguez-Rodríguez R, Baena M, Zagmutt S, Paraiso WK, Reguera AC, Fadó R, Casals N. International Union of Basic and Clinical Pharmacology. CXIX. Fundamental insights and clinical relevance regarding the carnitine palmitoyltransferase family of enzymes. Pharmacol Rev 2025; 77:100051. [PMID: 40106976 DOI: 10.1016/j.pharmr.2025.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
The carnitine palmitoyltransferases (CPTs) play a key role in controlling the oxidation of long-chain fatty acids and are potential therapeutic targets for diseases with a strong metabolic component, such as obesity, diabetes, and cancer. Four distinct proteins are CPT1A, CPT1B, CPT1C, and CPT2, differing in tissue expression and catalytic activity. CPT1s are finely regulated by malonyl-CoA, a metabolite whose intracellular levels reflect the cell's nutritional state. Although CPT1C does not exhibit significant catalytic activity, it is capable of modulating the functioning of other neuronal proteins. Structurally, all CPTs share a Y-shaped catalytic tunnel that allows the entry of 2 substrates and accommodation of the acyl group in a hydrophobic pocket. Several molecules targeting these enzymes have been described, some showing potential in normalizing blood glucose levels in diabetic patients, and others that, through a central mechanism, are anorexigenic and enhance energy expenditure. However, given the critical roles that CPTs play in certain tissues, such as the heart, liver, and brain, it is essential to fully understand the differences between the various isoforms. We analyze in detail the structure of these proteins, their cellular and physiological functions, and their potential as therapeutic targets in diseases such as obesity, diabetes, and cancer. We also describe drugs identified to date as having inhibitory or activating capabilities for these proteins. This knowledge will support the design of new drugs specific to each isoform, and the development of nanomedicines that can selectively target particular tissues or cells. SIGNIFICANCE STATEMENT: Carnitine palmitoyltransferase (CPT) proteins, as gatekeepers of fatty acid oxidation, have great potential as pharmacological targets to treat metabolic diseases like obesity, diabetes, and cancer. In recent years, significant progress has been made in understanding the 3-dimensional structure of CPTs and their pathophysiological functions. A deeper understanding of the differences between the various CPT family members will enable the design of selective drugs and therapeutic approaches with fewer side effects.
Collapse
Affiliation(s)
- Rosalía Rodríguez-Rodríguez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Miguel Baena
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Sebastián Zagmutt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - West Kristian Paraiso
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Ana Cristina Reguera
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Núria Casals
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Lu Y, Wang J, Bi X, Qian H, Pan J, Ye J. Non-invasive and rapid diagnosis of low-grade bladder cancer via SERSomes of urine. NANOSCALE 2025; 17:7303-7312. [PMID: 39988954 DOI: 10.1039/d4nr05306k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Early screening and diagnosis of low-grade bladder cancer (LGBC) can help to guide timely clinical treatments before deterioration, reducing relapse rates and improving patient survival and quality of life. However, current clinical technologies are mainly invasive, painful, and lack sensitivity and time efficacy, which cannot always meet clinical needs. Surface-enhanced Raman scattering (SERS) is a label-free detection technique with high sensitivity and can provide molecular-specific information. In this work, we adopt SERSomes, an advanced SERS characterization approach using a SERS spectral set, to comprehensively and accurately profile urine metabolites of LGBC patients and healthy controls. With the help of machine learning, we achieved high accuracy of LGBC diagnosis (89.47%) and LGBC stratification (90%). The entire diagnostic process is very rapid, convenient, non-invasive, and low-cost, holding potential for future use in mass population health screenings. Moreover, we explore the metabolite contribution based on the varying SERSome patterns in LGBC patients, aiming at indicating potential urine biomarkers of LGBC.
Collapse
Affiliation(s)
- Yao Lu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Jiayi Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Xinyuan Bi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Hongyang Qian
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Jiahua Pan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
7
|
Grigoraș A, Amalinei C. The Role of Perirenal Adipose Tissue in Carcinogenesis-From Molecular Mechanism to Therapeutic Perspectives. Cancers (Basel) 2025; 17:1077. [PMID: 40227577 PMCID: PMC11987925 DOI: 10.3390/cancers17071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Perirenal adipose tissue (PRAT) exhibits particular morphological features, with its activity being mainly related to thermogenesis. However, an expanded PRAT area seems to play a significant role in cardiovascular diseases, diabetes mellitus, and chronic kidney disease pathogenesis. Numerous studies have demonstrated that PRAT may support cancer progression and invasion, mainly in obese patients. The mechanism underlying these processes is of dysregulation of PRAT's secretion of adipokines and pro-inflammatory cytokines, such as leptin, adiponectin, chemerin, apelin, omentin-1, vistatin, nesfatin-1, and other pro-inflammatory cytokines, modulated by tumor cells. Cancer cells may also induce a metabolic reprogramming of perirenal adipocytes, leading to increased lipids and lactate transfer to the tumor microenvironment, contributing to cancer growth in a hypoxic milieu. In addition, the PRAT browning process has been specifically detected in renal cell carcinoma (RCC), being characterized by upregulated expression of brown/beige adipocytes markers (UCP1, PPAR-ɣ, c/EBPα, and PGC1α) and downregulated white fat cells markers, such as LEPTIN, SHOX2, HOXC8, and HOXC9. Considering its multifaceted role in cancer, modulation of PRAT's role in tumor progression may open new directions for oncologic therapy improvement. Considering the increasing evidence of the relationship between PRAT and tumor cells, our review aims to provide a comprehensive analysis of the perirenal adipocytes' impact on tumor progression and metastasis.
Collapse
Affiliation(s)
- Adriana Grigoraș
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| |
Collapse
|
8
|
Sun M, He L, Chen R, Lv M, Chen ZS, Fan Z, Zhou Y, Qin J, Du J. Rational design of peptides to overcome drug resistance by metabolic regulation. Drug Resist Updat 2025; 79:101208. [PMID: 39914188 DOI: 10.1016/j.drup.2025.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Chemotherapy is widely used clinically, however, its efficacy is often compromised by the development of drug resistance, which arises from prolonged administration of drugs or other stimuli. One of the driven causes of drug resistance in tumors or bacterial infections is metabolic reprogramming, which alters mitochondrial metabolism, disrupts metabolic pathways and causes ion imbalance. Bioactive peptide materials, due to their biocompatibility, diverse bioactivities, customizable sequences, and ease of modification, have shown promise in overcoming drug resistance. This review provides an in-depth analysis of metabolic reprogramming and associated microenvironmental changes that contribute to drug resistance in common tumors and bacterial infections, suggesting potential therapeutic targets. Additionally, we explore peptide-based materials for regulating metabolism and their potential synergic effect with other therapies, highlighting the mechanisms by which these peptides reverse drug resistance. Finally, we discuss future perspectives and the clinical challenges in peptide-based treatments, aiming to offer insights for overcoming drug-resistant diseases.
Collapse
Affiliation(s)
- Min Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Le He
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Mingchen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhen Fan
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxiao Zhou
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| |
Collapse
|
9
|
Wang L, Duan W, Ruan C, Liu J, Miyagishi M, Kasim V, Wu S. YY2-CYP51A1 signaling suppresses hepatocellular carcinoma progression by restraining de novo cholesterol biosynthesis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167658. [PMID: 39761760 DOI: 10.1016/j.bbadis.2025.167658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Lipid accumulation is a frequently observed characteristic of cancer. Lipid accumulation is closely related to tumor progression, metastasis, and drug resistance; however, the mechanism underlying lipid metabolic reprogramming in tumor cells is not fully understood. Yin yang 2 (YY2) is a C2H2‑zinc finger transcription factor that exerts tumor-suppressive effects. However, its involvement in tumor cell lipid metabolic reprogramming remains unclear. In the present study, we identified YY2 as a novel regulator of cholesterol metabolism. We showed that YY2 suppressed cholesterol accumulation in hepatocellular carcinoma (HCC) cells by downregulating the transcriptional activity of cytochrome P450 family 51 subfamily A member 1 (CYP51A1), a key enzyme in de novo cholesterol biosynthesis. Subsequently, through in vitro and in vivo experiments, we demonstrated that this downregulation is crucial for the YY2 tumor suppressive effect. Together, our findings unraveled a previously unprecedented regulation of HCC cells cholesterol metabolism, and eventually, their tumorigenic potential, through YY2 negative regulation on CYP51A1 expression. This study revealed a novel regulatory mechanism of lipid metabolic reprogramming in tumor cells and provided insights into the molecular mechanism underlying the YY2 the suppressive effect. Furthermore, our findings suggest a potential antitumor therapeutic strategy targeting cholesterol metabolic reprogramming using YY2.
Collapse
Affiliation(s)
- Lingxian Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wei Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Cao Ruan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jingyi Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Makoto Miyagishi
- Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China.
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
10
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
11
|
Zhang L, Sun Y, Lin Y, Li H, Huang Y, Tang N, Zhang X, Lu Y, Kovalev VA, Snezhko EV, Luo Y, Wang B. Cell calcification reverses the chemoresistance of cancer cells via the conversion of glycolipid metabolism. Biomaterials 2025; 314:122886. [PMID: 39427430 DOI: 10.1016/j.biomaterials.2024.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Drug resistance is an inherent challenge during cancer chemotherapy. Cancer cells favor fatty acid metabolism through metabolic reprogramming to achieve therapeutic resistance. However, an effective approach to overcoming the switch from glycolysis-dependent to fatty acid beta-oxidation-dependent anabolic and energy metabolism remains elusive. Here, we developed a macromolecular drug (folate-polySia, FpSA) to induce the extracellular microcalcification of cervical cancer cells with cisplatin resistance. Microcalcification attenuated the uptake of fatty acids and the beta-oxidation of fatty acids by mitochondrial dysfunction but boosted the glycolysis pathway. Consequently, cotreatment with Pt and FpSA inhibited cisplatin-resistant tumor growth and improved tumor-bearing mice's survival rates, indicating that FpSA switched fatty acid metabolism to glycolysis to sensitize cisplatin-resistant cells further. Taken together, cancer cell calcification induced by FpSA provides a reprogramming metabolic strategy for the treatment of chemotherapy-resistant tumors.
Collapse
Affiliation(s)
- Lihong Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yandi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Yindan Lin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanhui Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Yuqiao Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Ning Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xueyun Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Vassili A Kovalev
- Biomedical Image Analysis Department, The United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, 220012, Belarus
| | - Eduard V Snezhko
- Biomedical Image Analysis Department, The United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, 220012, Belarus
| | - Yan Luo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China; Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, 310029, China; Cancer Center, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
12
|
Miao C, Huang Y, Zhang C, Wang X, Wang B, Zhou X, Song Y, Wu P, Chen ZS, Feng Y. Post-translational modifications in drug resistance. Drug Resist Updat 2025; 78:101173. [PMID: 39612546 DOI: 10.1016/j.drup.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Resistance to antitumor drugs, antimicrobial drugs, and antiviral drugs severely limits treatment effectiveness and cure rate of diseases. Protein post-translational modifications (PTMs) represented by glycosylation, ubiquitination, SUMOylation, acetylation, phosphorylation, palmitoylation, and lactylation are closely related to drug resistance. PTMs are typically achieved by adding sugar chains (glycosylation), small proteins (ubiquitination), lipids (palmitoylation), or functional groups (lactylation) to amino acid residues. These covalent additions are usually the results of signaling cascades and could be reversible, with the triggering mechanisms depending on the type of modifications. PTMs are involved in antitumor drug resistance, not only as inducers of drug resistance but also as targets for reversing drug resistance. Bacteria exhibit multiple PTMs-mediated antimicrobial drug resistance. PTMs allow viral proteins and host cell proteins to form complex interaction networks, inducing complex antiviral drug resistance. This review summarizes the important roles of PTMs in drug resistance, providing new ideas for exploring drug resistance mechanisms, developing new drug targets, and guiding treatment plans.
Collapse
Affiliation(s)
- Chenggui Miao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yurong Huang
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital, Jilin University, Changchun 130021, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Bing Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yingqiu Song
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhe-Sheng Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
13
|
Wang K, Zhang Y, Si C, Cao Y, Shao P, Zhang P, Wang N, Su G, Qian J, Yang L. Cholesterol: The driving force behind the remodeling of tumor microenvironment in colorectal cancer. Heliyon 2024; 10:e39425. [PMID: 39687190 PMCID: PMC11648115 DOI: 10.1016/j.heliyon.2024.e39425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 12/18/2024] Open
Abstract
Essential membrane components and metabolites with a wide range of biological roles are both produced by cholesterol metabolism. Cell-intrinsic and cell-extrinsic stimuli alter cholesterol metabolism in the tumor microenvironment (TME), which in turn encourages colorectal carcinogenesis. Metabolites produced from cholesterol play intricate roles in promoting the development of colorectal cancer (CRC) and stifling immunological responses. By altering the extracellular matrix of the main tumor, redesigning its immunological environment, and altering its mechanical stiffness, cholesterol can encourage the epithelial-mesenchymal transition of the primary tumor, opening up a pathway for tumor metastasis. Its functions in TME remodeling and tumor prevention have been recently identified. In this review we address the function of cholesterol in TME remodeling and therapeutic techniques designed to block cholesterol metabolism, and discuss how combining these strategies with already available anti-CRC medicines can have combined effects and open up new therapeutic avenues.
Collapse
Affiliation(s)
- Ke Wang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yuanyuan Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Chengshuai Si
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yuepeng Cao
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Peng Shao
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Nannan Wang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Guoqing Su
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jinghang Qian
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Liu Yang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
14
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
15
|
Yang S, Lin M, Hao S, Ye H, Zhang X. Current hotspots and trends in cancer metabolic reprogramming: a scientometric analysis. Front Immunol 2024; 15:1497461. [PMID: 39588377 PMCID: PMC11586341 DOI: 10.3389/fimmu.2024.1497461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/27/2024] Open
Abstract
Background Metabolic reprogramming (MR) in cancer (CA) has been a focus of intense research in the recent two decades. This phenomenon has attracted great interest because it offers potential targets for cancer therapy. To capture the intellectual landscape of this field, we conducted a bibliometric analysis to assess the scientific output, major contributors, and trends in the MR/CA research. Methods We performed a systematic search using the Web of Science to retrieve articles published on MR of cancer from 2006 until 2023. The bibliometric tools such as Biblioshiny, VOSviewer, and Microsoft Excel were used to identify the most prolific authors, institutions, citation patterns, and keywords. We also used co-citation analysis to map the conceptual structure of the field and identify influential publications. Furthermore, we examined the literature by analyzing publication years, citations, and research impact factors. Results A total of 4,465 publications about MR/CA were retrieved. Publications on MR/CA increased rapidly from 2006 to 2023. Frontiers in Oncology published the most papers, while Cell Metabolism had the most citations. Highly cited papers were mainly published in Cancer Cell, Nature, Cell, Science and Cell Metabolism. China and the United States led the way in publications and contributed the most to MR/CA research. The University of Texas System, Chinese Academy of Sciences, and Fudan University were the most productive institutions. The profitable authors were Deberardinis Ralph J and Chiarugi Paola. The current topics included MR in tumorigenesis and progression of CA, MR of tumor cells and tumor microenvironment, the effect of MR on the CA treatment, the underlying mechanisms of MR (such as gene regulation, epigenetics, extracellular vesicles, and gut microbiota), and the modulation of MR. Some topics such as tumor microenvironment, lipid MR, circular RNA, long noncoding RNA, exosome, prognostic model, and immunotherapy may be the focus of MR/CA research in the next few years. Conclusion This study evaluated the global scientific output in the field of MR/CA research, analyzing its quantitative characteristics. It identified some significant and distinguished papers and compiled information regarding the current status and evolving trends of MR/CA research.
Collapse
Affiliation(s)
- Shanshan Yang
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| | - Miaomiao Lin
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| | - Shaodong Hao
- Spleen and Stomach Disease Department, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Ye
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| | - Xuezhi Zhang
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| |
Collapse
|
16
|
Chang J, Pan Y, Jiang F, Xu W, Wang Y, Wang L, Hu B. Mechanism of CXCL8 regulation of methionine metabolism to promote angiogenesis in gliomas. Discov Oncol 2024; 15:614. [PMID: 39488622 PMCID: PMC11531453 DOI: 10.1007/s12672-024-01467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Gliomas are the most common malignant brain tumors characterized by angiogenesis and invasive growth. A detailed understanding of its molecular characteristics could provide potential therapeutic targets. In the present study, we sought to explore the key gene CXCL8 in methionine metabolism in gliomas and its potential role in angiogenesis. METHODS U251 glioma cells were divided into control and methionine-restriction tolerant (constructed with 1/4 of the standard level of methionine in the culture medium) groups for transcriptome and metabolome analysis. To confirm the functions and mechanism of CXCL8 in glioma, heat map, volcano map, Go enrichment, gene set enrichment analysis (GSEA), protein-protein interaction network analysis, RT-PCR, western blotting assays, chicken embryo chorioallantoic membrane (CAM) test, chicken embryo yolk sac membrane (YSM) test and transplantation tumor nude mice model were performed. The TCGA database, CGGA database and clinical tissue samples were used to analyze CXCL8's significance on prognosis for patients with glioma. RESULTS CXCL8 expression was significantly up-regulated in methionine-restricted tolerance cells, it also activated vascular system development and triggered angiogenesis. CXCL8 expression is negatively correlated with survival prognosis in gliomas. CONCLUSIONS Glioma cells promote angiogenesis in methionine-restricted environments through the activation of CXCL8, compensating for nutrient deprivation, and possibly contributing to the failure of antiangiogenic therapy.
Collapse
Affiliation(s)
- Jie Chang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Precision Diagnosis and Treatment Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Key Laboratory of Nutrition and Metabolism Research for Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yi Pan
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Precision Diagnosis and Treatment Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Key Laboratory of Nutrition and Metabolism Research for Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fengfeng Jiang
- Neurological Surgery Department, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Precision Diagnosis and Treatment Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Key Laboratory of Nutrition and Metabolism Research for Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yue Wang
- Dian Diagnostics Group Co. Ltd, Hangzhou, China
| | - Lude Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
- Precision Diagnosis and Treatment Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
- Key Laboratory of Nutrition and Metabolism Research for Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| | - Bin Hu
- Department of Pathology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| |
Collapse
|
17
|
Tosato G, Wang Y. Celebrating the 1945 JNCI pioneering contribution to antiangiogenic therapy for cancer. J Natl Cancer Inst 2024; 116:1715-1720. [PMID: 39178374 PMCID: PMC12116294 DOI: 10.1093/jnci/djae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/25/2024] Open
Affiliation(s)
- Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuyi Wang
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Duan Y, Liu J, Li A, Liu C, Shu G, Yin G. The Role of the CPT Family in Cancer: Searching for New Therapeutic Strategies. BIOLOGY 2024; 13:892. [PMID: 39596847 PMCID: PMC11592116 DOI: 10.3390/biology13110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Along with abnormalities in glucose metabolism, disturbances in the balance of lipid catabolism and synthesis have emerged as a new area of cancer metabolism that needs to be studied in depth. Disturbances in lipid metabolic homeostasis, represented by fatty acid oxidation (FAO) imbalance, leading to activation of pro-cancer signals and abnormalities in the expression and activity of related metabolically critical rate-limiting enzymes, have become an important part of metabolic remodeling in cancer. The FAO process is a metabolic pathway that facilitates the breakdown of fatty acids into CO2 and H2O and releases large amounts of energy in the body under aerobic conditions. More and more studies have shown that FAO provides an important energy supply for the development of cancer cells. At the same time, the CPT family, including carnitine palmitoyltransferase 1 (CPT1) and carnitine palmitoyltransferase 2 (CPT2), are key rate-limiting enzymes for FAO that exert a pivotal influence on the genesis and progression of neoplastic growth. Therefore, we look at molecular structural properties of the CPT family, the roles they play in tumorigenesis and development, the target drugs, and the possible regulatory roles of CPTs in energy metabolism reprogramming to help understand the current state of CPT family research and to search for new therapeutic strategies.
Collapse
Affiliation(s)
- Yanxia Duan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Jiaxin Liu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Ailin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Chang Liu
- School of Basic Medical Sciences, Central South University, Changsha 410000, China;
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha 410000, China
| |
Collapse
|
19
|
Georgakopoulou VE, Lempesis IG, Trakas N, Sklapani P, He Y, Spandidos DA. Lung cancer and obesity: A contentious relationship (Review). Oncol Rep 2024; 52:158. [PMID: 39497438 PMCID: PMC11462394 DOI: 10.3892/or.2024.8817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
The global obesity epidemic, attributed to sedentary lifestyles, unhealthy diets, genetics and environmental factors, has led to over 1.9 billion adults being classified as overweight and 650 million living with obesity. Despite advancements in early detection and treatment, lung cancer prognosis remains poor due to late diagnoses and limited therapies. The obesity paradox challenges conventional thinking by suggesting that individuals with obesity and certain diseases, including cancer, may have an improved prognosis compared with their counterparts of a normal weight. This observation has prompted investigations to understand protective mechanisms, including potentially favorable adipokine secretion and metabolic reserves that contribute to tolerating cancer treatments. However, understanding the association between obesity and lung cancer is complex. While smoking is the primary risk factor of lung cancer, obesity may independently impact lung cancer risk, particularly in non‑smokers. Adipose tissue dysfunction, including low‑grade chronic inflammation, and hormonal changes contribute to lung cancer development and progression. Obesity‑related factors may also influence treatment responses and survival outcomes in patients with lung cancer. The impact of obesity on treatment modalities such as chemotherapy, radiotherapy and surgery is still under investigation. Challenges in managing patients with obesity and cancer include increased surgical complexity, higher rates of postoperative complications and limited treatment options due to comorbidities. Targeted interventions aimed at reducing obesity prevalence and promoting healthy lifestyles are crucial for lung cancer prevention. The impact of obesity on lung cancer is multifaceted and requires further research to elucidate the underlying mechanisms and develop personalized interventions for prevention and treatment.
Collapse
Affiliation(s)
| | - Ioannis G. Lempesis
- Medical Chronobiology Program, Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, Athens 15126, Greece
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, Athens 15126, Greece
| | - Yutong He
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050010, P.R. China
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
20
|
Yan M, Luo X, Han H, Qiu J, Ye Q, Zhang L, Wang Y. ROCK2 increases drug resistance in acute myeloid leukemia via metabolic reprogramming and MAPK/PI3K/AKT signaling. Int Immunopharmacol 2024; 140:112897. [PMID: 39126734 DOI: 10.1016/j.intimp.2024.112897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Rho-associated coiled-coil kinase 2 (ROCK2) is classified as a member of the serine/threonine protein kinase family and has been identified as a key driver of the development of various forms of cancer. The cause of ROCK2's impact on acute myeloid leukemia (AML) is still unknown. We found that ROCK2 expression was higher in AML patients, leading to lower complete response rates and worse overall survival. Additionally, ROCK2 expression was elevated in the doxorubicin-resistant leukemia cell line HL-60/ADM when compared to their individual parent cells. Moreover, the suppression or inhibition of ROCK2 leads to enhanced drug sensitivity in both AML cell lines and primary AML specimens, along with a notable decrease in downstream signaling pathways. Furthermore, the suppression of ROCK2 caused disruption of cellular energy production pathways by directly affecting the functionality of proteins within the mitochondrial electron transport chain. Finally, we discovered that TRIM26, a specific E3 ligase, is capable of ubiquitylating ROCK2, and the upregulation of TRIM26 within HL-60/ADM cells resulted in heightened sensitivity to the drug and reduced resistance. Thus, our study presents a new strategy for overcoming drug resistance in AML through targeting ROCK2/AKT/MAPK signaling pathway.
Collapse
Affiliation(s)
- Muxia Yan
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xin Luo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Hong Han
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jiachun Qiu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Ye
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Yiqian Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Zhang D, Wang M, Liu G, Li X, Yu W, Hui Z, Ren X, Sun Q. Novel FABP4 +C1q + macrophages enhance antitumor immunity and associated with response to neoadjuvant pembrolizumab and chemotherapy in NSCLC via AMPK/JAK/STAT axis. Cell Death Dis 2024; 15:717. [PMID: 39353883 PMCID: PMC11445384 DOI: 10.1038/s41419-024-07074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024]
Abstract
Immune checkpoint inhibitors (ICIs) immunotherapy facilitates new approaches to achieve precision cancer treatment. A growing number of patients with non-small cell lung cancer (NSCLC) have benefited from treatment with neoadjuvant ICIs combined with chemotherapy. However, the mechanisms and associations between the therapeutic efficacy of neoadjuvant pembrolizumab and chemotherapy (NAPC) and macrophage subsets are still unclear. We performed single-cell RNA sequencing (scRNA-seq) and identified a novel FABP4+C1q+ macrophage subtype, which exhibited stronger proinflammatory cytokine production and phagocytic ability. This subtype was found to be more abundant in tumor tissues and lymph nodes of major pathological response (MPR) patients compared to non-MPR patients, and was associated with a good efficacy of NAPC. Multiplex fluorescent immunohistochemical (mIHC) staining was subsequently used to verify our findings. Further mechanistic studies indicated that FABP4 and C1q regulate the expression of proinflammatory cytokines synergistically. In addition, FABP4 and C1q promote fatty acid synthesis, enhance anti-apoptosis ability and phagocytic ability of macrophage via the interaction of AMPK/JAK/STAT axis. This study provides novel insights into the underlying mechanisms and predictive biomarkers of NAPC. Our findings contribute to improving the prognosis of patients with NSCLC by potentially guiding more precise patient selection and treatment strategies. NOVELTY & IMPACT STATEMENTS: We identified a group of macrophages (FABP4+C1q+ macrophages) related to the therapeutic efficacy of neoadjuvant chemoimmunotherapy. FABP4+C1q+ macrophages highly expressed proinflammatory cytokines-related genes and had a strong cytokine production and phagocytic ability. We believe that our study provides a novel insight into the synergistic mechanism of neoadjuvant ICI combined with chemotherapy and may lead to improved clinical outcomes in patients with NSCLC in the future.
Collapse
Affiliation(s)
- Dong Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Min Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Gen Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xin Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenwen Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenzhen Hui
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Qian Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
22
|
Rauth S, Malafa M, Ponnusamy MP, Batra SK. Emerging Trends in Gastrointestinal Cancer Targeted Therapies: Harnessing Tumor Microenvironment, Immune Factors, and Metabolomics Insights. Gastroenterology 2024; 167:867-884. [PMID: 38759843 PMCID: PMC11793124 DOI: 10.1053/j.gastro.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Gastrointestinal (GI) cancers are the leading cause of new cancer cases and cancer-related deaths worldwide. The treatment strategies for patients with GI tumors have focused on oncogenic molecular profiles associated with tumor cells. Recent evidence has demonstrated that the tumor cell functions are modulated by its microenvironment, compromising fibroblasts, extracellular matrices, microbiome, immune cells, and the enteric nervous system. Along with the tumor microenvironment components, alterations in key metabolic pathways have emerged as a hallmark of tumor cells. From these perspectives, this review will highlight the functions of different cellular components of the GI tumor microenvironment and their implications for treatment. Furthermore, we discuss the major metabolic reprogramming in GI tumor cells and how understanding metabolic rewiring could lead to new therapeutic strategies. Finally, we briefly summarize the targeted agents currently being studied in GI cancers. Understanding the complex interplay between tumor cell-intrinsic and -extrinsic factors during tumor progression is critical for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| |
Collapse
|
23
|
Moncada-Diaz MJ, Rodríguez-Almonacid CC, Quiceno-Giraldo E, Khuong FTH, Muskus C, Karamysheva ZN. Molecular Mechanisms of Drug Resistance in Leishmania spp. Pathogens 2024; 13:835. [PMID: 39452707 PMCID: PMC11510721 DOI: 10.3390/pathogens13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The protozoan parasite Leishmania causes leishmaniasis, a neglected tropical disease, that disproportionately affects underdeveloped countries. This disease has major health, economic, and social implications, particularly because of the limited treatment options, high cost, the severe side effects associated with available therapeutics, and the high rate of treatment failure caused by the parasites' growing resistance to current medications. In this review, we describe first the common strategies used by pathogens to develop drug resistance and then focus on the arsenal of available drugs to treat leishmaniasis, their modes of action, and the molecular mechanisms contributing to drug resistance in Leishmania spp., including the role of genomic, transcriptional, and translational control. We focus more specifically on our recent discovery of translational reprogramming as a major driver of drug resistance leading to coordinated changes in the translation of transcripts and orchestrating changes in metabolome and lipidome to support drug resistance. A thorough understanding of these mechanisms is essential to identify the key elements needed to combat resistance and improve leishmaniasis treatment methods.
Collapse
Affiliation(s)
- Maria Juliana Moncada-Diaz
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Cristian Camilo Rodríguez-Almonacid
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Eyson Quiceno-Giraldo
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Francis T. H. Khuong
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Zemfira N. Karamysheva
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| |
Collapse
|
24
|
Feng W, Ting Y, Tang X, Liu D, Zhou WC, Li Y, Shen Z. The role of ESM1 in the lipids metabolic reprogramming and angiogenesis of lung adenocarcinoma cells. Heliyon 2024; 10:e36897. [PMID: 39281564 PMCID: PMC11400980 DOI: 10.1016/j.heliyon.2024.e36897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background Lung adenocarcinoma (LUAD) is one of the respiratory diseases with high mortality and incidence. As an important angiogenic factor, (Endothelial cell-specific molecule 1) ESM1 plays an important role in the occurrence and development of LUAD. However, the role and molecular mechanism of ESM1 on LUAD metabolic reprogramming and angiogenesis remain unclear. Methods We used multiple databases to analyze the prognostic significance and potential function of ESM1 in patients with LUAD. The expression of ESM1 in LUAD cells was down-regulated/overexpressed by RNA interference, and the effects of ESM1 on the proliferation, migration, lipid metabolism and angiogenesis of LUAD cells in vitro and in vivo were analyzed using MTT, EdU, wound healing, oil red O, tubule formation, xenograft tumor model and chicken embryo allantoic model. Results ESM1 is closely associated with poor prognosis in LUAD patients. ESM1 promotes LUAD proliferation, migration, fatty acid synthesis and angiogenesis. It also accelerates the proliferation, migration, lipid synthesis and tubule formation of endothelial cells in the tumor microenvironment in the form of secreted protein. Mechanically, ESM1 can promote the activation of AKT signaling pathway and up-regulate the expression of SCD1 and FASN. Conclusion Our results suggest that ESM1 promotes the proliferation, migration, lipid reprogramming, and angiogenesis of LUAD cells by activating the AKT signaling pathway, suggesting that ESM1 may be a potential therapeutic target and prognostic marker in LUAD patients.
Collapse
Affiliation(s)
- Wenchang Feng
- Cardiology Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Ting
- Department of Trauma Center, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wen-Chao Zhou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Zhenyu Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, 418000, China
| |
Collapse
|
25
|
Jin X, Wang S, Luo L, Yan F, He Q. Targeting the Wnt/β-catenin signal pathway for the treatment of gastrointestinal cancer: Potential for advancement. Biochem Pharmacol 2024; 227:116463. [PMID: 39102994 DOI: 10.1016/j.bcp.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Gastrointestinal cancers (GICs) are highly prevalent cancers that threaten human health worldwide. The Wnt/β-catenin signaling pathway has been reported to play a pivotal role in the carcinogenesis of GICs. Numerous interventions targeting the Wnt/β-catenin signaling in GICs are currently being tested in clinical trials with promising results. Unfortunately, there are no clinically approved drugs that effectively target this pathway. This comprehensive review aims to evaluate the impact of clinical therapies targeting the Wnt/β-catenin signaling pathway in GICs. By integrating data from bioinformatics databases and recent literature from the past five years, we examine the heterogeneous expression and regulatory mechanisms of Wnt/β-catenin pathway genes and proteins in GICs. Specifically, we focus on expression patterns, mutation frequencies, and clinical prognoses to understand their implications for treatment strategies. Additionally, we discuss recent clinical trial efforts targeting this pathway. Understanding the inhibitors currently under clinical investigation may help optimize foundational research and clinical strategies. We hope that elucidating the current status of precision therapeutic stratification for patients targeting the Wnt/β-catenin pathway will guide future innovations in precision medicine for GICs.
Collapse
Affiliation(s)
- Xizhi Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang 310018, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Fangjie Yan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang 310018, PR China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
26
|
Zhang F, Guo J, Yu S, Zheng Y, Duan M, Zhao L, Wang Y, Yang Z, Jiang X. Cellular senescence and metabolic reprogramming: Unraveling the intricate crosstalk in the immunosuppressive tumor microenvironment. Cancer Commun (Lond) 2024; 44:929-966. [PMID: 38997794 PMCID: PMC11492308 DOI: 10.1002/cac2.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
The intrinsic oncogenic mechanisms and properties of the tumor microenvironment (TME) have been extensively investigated. Primary features of the TME include metabolic reprogramming, hypoxia, chronic inflammation, and tumor immunosuppression. Previous studies suggest that senescence-associated secretory phenotypes that mediate intercellular information exchange play a role in the dynamic evolution of the TME. Specifically, hypoxic adaptation, metabolic dysregulation, and phenotypic shifts in immune cells regulated by cellular senescence synergistically contribute to the development of an immunosuppressive microenvironment and chronic inflammation, thereby promoting the progression of tumor events. This review provides a comprehensive summary of the processes by which cellular senescence regulates the dynamic evolution of the tumor-adapted TME, with focus on the complex mechanisms underlying the relationship between senescence and changes in the biological functions of tumor cells. The available findings suggest that components of the TME collectively contribute to the progression of tumor events. The potential applications and challenges of targeted cellular senescence-based and combination therapies in clinical settings are further discussed within the context of advancing cellular senescence-related research.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
- Department of Hepatobiliary and Pancreatic SurgeryPeking University First HospitalBeijingP. R. China
| | - Junchen Guo
- Department of RadiologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Shengmiao Yu
- Outpatient DepartmentThe Fourth Affiliated HospitalChina Medical UniversityShenyangLiaoningP. R. China
| | - Youwei Zheng
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Meiqi Duan
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Liang Zhao
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Yihan Wang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhi Yang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xiaofeng Jiang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
27
|
Xi Y, Yang Y, Wang Z, Wang J. Higher genetically predicted triglyceride level increases the bladder cancer risk independent of LDL and HDL levels. Sci Rep 2024; 14:18652. [PMID: 39134790 PMCID: PMC11319622 DOI: 10.1038/s41598-024-69737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
The causal relationship between lipid levels and bladder cancer is still inconclusive currently. We aimed to reveal the causal relationship between triglycerides, HDL, and LDL and the risk of bladder cancer by univariable and multivariable Mendelian randomization (MR) analysis. The single nucleotide polymorphisms (SNPs) of exposure (triglycerides: 441,016 samples; HDL: 403,943 samples; LDL: 440,546 samples) were obtained from UK Biobank. The Genetic variation related to bladder cancer included 1554 cases and 359,640 controls. Univariable and multivariable MR methods were conducted with subsequent analysis, and smoking was regarded as a confounder. The inverse-variance weighted (IVW), MR-Egger, weighted-median method, Cochran's Q test, and MR-PRESSO were considered the main MR analysis and sensitivity analysis methods. Univariable MR analysis results suggested the triglycerides level (P = 0.011, OR = 1.001, 95% CI = 1.000-1.002) was causally associated with increased risk of bladder cancer. Multivariable MR results indicated that higher triglyceride levels could still increase the risk of bladder cancer after adjusting the effects of HDL, LDL, and smoking (P = 0.042, OR = 1.001, 95% CI = 1.000-1.002). Our findings supported that triglyceride level is causally associated with an increased risk of bladder cancer independent of LDL and HDL at the genetic level. Timely attention to changes in blood lipid levels might reduce the risk of bladder cancer.
Collapse
Affiliation(s)
- Yujia Xi
- Department of Urology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
- Male Reproductive Health Research Center, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Yusi Yang
- Department of Cardiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Zhenxing Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
- Male Reproductive Health Research Center, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Jingqi Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China.
- Male Reproductive Health Research Center, Shanxi Medical University, Jinzhong, Shanxi, China.
| |
Collapse
|
28
|
Kerdkumthong K, Roytrakul S, Songsurin K, Pratummanee K, Runsaeng P, Obchoei S. Proteomics and Bioinformatics Identify Drug-Resistant-Related Genes with Prognostic Potential in Cholangiocarcinoma. Biomolecules 2024; 14:969. [PMID: 39199357 PMCID: PMC11352417 DOI: 10.3390/biom14080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Drug resistance is a major challenge in the treatment of advanced cholangiocarcinoma (CCA). Understanding the mechanisms of drug resistance can aid in identifying novel prognostic biomarkers and therapeutic targets to improve treatment efficacy. This study established 5-fluorouracil- (5-FU) and gemcitabine-resistant CCA cell lines, KKU-213FR and KKU-213GR, and utilized comparative proteomics to identify differentially expressed proteins in drug-resistant cells compared to parental cells. Additionally, bioinformatics analyses were conducted to explore the biological and clinical significance of key proteins. The drug-resistant phenotypes of KKU-213FR and KKU-213GR cell lines were confirmed. In addition, these cells demonstrated increased migration and invasion abilities. Proteomics analysis identified 81 differentially expressed proteins in drug-resistant cells, primarily related to binding functions, biological regulation, and metabolic processes. Protein-protein interaction analysis revealed a highly interconnected network involving MET, LAMB1, ITGA3, NOTCH2, CDH2, and NDRG1. siRNA-mediated knockdown of these genes in drug-resistant cell lines attenuated cell migration and cell invasion abilities and increased sensitivity to 5-FU and gemcitabine. The mRNA expression of these genes is upregulated in CCA patient samples and is associated with poor prognosis in gastrointestinal cancers. Furthermore, the functions of these proteins are closely related to the epithelial-mesenchymal transition (EMT) pathway. These findings elucidate the potential molecular mechanisms underlying drug resistance and tumor progression in CCA, providing insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Kankamol Kerdkumthong
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Tani 12120, Thailand;
| | - Kawinnath Songsurin
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Kandawasri Pratummanee
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Phanthipha Runsaeng
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand
| | - Sumalee Obchoei
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand
| |
Collapse
|
29
|
Märkl B, Reitsam NG, Grochowski P, Waidhauser J, Grosser B. The SARIFA biomarker in the context of basic research of lipid-driven cancers. NPJ Precis Oncol 2024; 8:165. [PMID: 39085485 PMCID: PMC11291993 DOI: 10.1038/s41698-024-00662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
SARIFA was very recently introduced as a histomorphological biomarker with strong prognostic power for colorectal, gastric, prostate, and pancreatic cancer. It is characterized by the direct contact between tumor cells and adipocytes due to a lack of stromal reaction. This can be easily evaluated on routinely available H&E-slides with high interobserver agreement. SARIFA also reflects a specific tumor biology driven by metabolic reprogramming. Tumor cells in SARIFA-positive tumors benefit from direct interaction with adipocytes as an external source of lipids. Numerous studies have shown that lipid metabolism is crucial in carcinogenesis and cancer progression. We found that the interaction between tumor cells and adipocytes was not triggered by obesity, as previously assumed. Instead, we believe that this is due to an immunological mechanism. Knowledge about lipid metabolism in cancer from basic experiments can be transferred to develop strategies targeting this reprogramed metabolism.
Collapse
Affiliation(s)
- Bruno Märkl
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany.
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany.
- WERA Comprehensive Cancer Center, Augsburg, Germany.
| | - Nic G Reitsam
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
| | - Przemyslaw Grochowski
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
| | - Johanna Waidhauser
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
- Hematology and Oncology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
| | - Bianca Grosser
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
| |
Collapse
|
30
|
Beton-Mysur K, Surmacki J, Brożek-Płuska B. Raman-AFM-fluorescence-guided impact of linoleic and eicosapentaenoic acids on subcellular structure and chemical composition of normal and cancer human colon cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124242. [PMID: 38581725 DOI: 10.1016/j.saa.2024.124242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
The regular overconsumption of high-energy food (rich in lipids and sugars) results in elevated nutrient absorption in intestine and consequently excessive accumulation of lipids in many organs e.g.: liver, adipose tissue, muscles. In the long term this can lead to obesity and obesity-associated diseases e.g. type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease, inflammatory bowel disease (IBD). In the presented paper based on RI data we have proved that Raman maps can be used successfully for subcellular structures visualization and analysis of fatty acids impact on morphology and chemical composition of human colon single cells - normal and cancer. Based on Raman data we have investigated the changes related to endoplasmic reticulum, mitochondria, lipid droplets and nucleus. Analysis of ratios calculated based on Raman bands typical for proteins (1256, 1656 cm-1), lipids (1304, 1444 cm-1) and nucleic acids (750 cm-1) has confirmed for endoplasmic reticulum the increased activity of this organelle in lipoproteins synthesis upon FAs supplementation; for LDs the changes of desaturation of accumulated lipids with the highest unsaturation level for CaCo-2 cells upon EPA supplementation; for mitochondria the stronger effect of FAs supplementation was observed for CaCo-2 cells confirming the increased activity of this organelle responsible for energy production necessary for tumor development; the weakest impact of FAs supplementation was observed for nucleus for both types of cells and both types of acids. Fluorescence imaging was used for the investigations of changes in LDs/ER morphology. Our measurements have shown the increased area of LDs/ER for CaCo-2 cancer cells, and the strongest effect was noticed for CaCo-2 cells upon EPA supplementation. The increased participation of lipid structures for all types of cells upon FAs supplementation has been confirmed also by AFM studies. The lowest YM values have been observed for CaCo-2 cells including samples treated with FAs.
Collapse
Affiliation(s)
- Karolina Beton-Mysur
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Jakub Surmacki
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Beata Brożek-Płuska
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
31
|
De Palma M, Hanahan D. Milestones in tumor vascularization and its therapeutic targeting. NATURE CANCER 2024; 5:827-843. [PMID: 38918437 DOI: 10.1038/s43018-024-00780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
Research into the mechanisms and manifestations of solid tumor vascularization was launched more than 50 years ago with the proposition and experimental demonstrations that angiogenesis is instrumental for tumor growth and was, therefore, a promising therapeutic target. The biological knowledge and therapeutic insights forthcoming have been remarkable, punctuated by new concepts, many of which were not foreseen in the early decades. This article presents a perspective on tumor vascularization and its therapeutic targeting but does not portray a historical timeline. Rather, we highlight eight conceptual milestones, integrating initial discoveries and recent progress and posing open questions for the future.
Collapse
Affiliation(s)
- Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
32
|
Liu H, Liu Y, Zhou Y, Chen X, Pan S, Zhou Q, Ji H, Zhu X. TM7SF2-induced lipid reprogramming promotes cell proliferation and migration via CPT1A/Wnt/β-Catenin axis in cervical cancer cells. Cell Death Discov 2024; 10:207. [PMID: 38693136 PMCID: PMC11063194 DOI: 10.1038/s41420-024-01975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
Cervical cancer poses a serious threat to women's health globally. Our previous studies found that upregulation of TM7SF2, which works as an enzyme involved in the process of cholesterol biosynthesis expression, was highly correlated with cervical cancer. However, the mechanistic basis of TM7SF2 promoting cervical cancer progression via lipid metabolism remains poorly understood. Therefore, quantification of fatty acids and lipid droplets were performed in vitro and in vivo. The protein-protein interaction was verified by Co-IP technique. The mechanism and underlying signaling pathway of TM7SF2 via CPT1A associated lipid metabolism in cervical cancer development were explored using Western blotting, IHC, colony formation, transwell assay, and wound healing assay. This study reported that overexpression of TM7SF2 increased fatty acids content and lipid droplets both in vivo and in vitro experiments. While knockout of TM7SF2 obviously attenuated this process. Moreover, TM7SF2 directly bonded with CPT1A, a key enzyme in fatty acid oxidation, and regulated CPT1A protein expression in cervical cancer cells. Notably, the proliferation and metastasis of cervical cancer cells were elevated when their CPT1A expression was upregulated. Then, rescue assay identified that CPT1A overexpressed could enhance the cell viability and migration in TM7SF2-knockout cells. Furthermore, depletion of TM7SF2 significantly inhibited WNT and β-catenin proteins expression, which was enhanced by CPT1A-overexpressed. The proliferation and migration of cervical cancer cells were reversed in CPT1A-overexpressed cells with the treatment of MSAB, an inhibitor of Wnt/β-Catenin pathway. This study put forward an idea that TM7SF2-induced lipid reprogramming promotes proliferation and migration via CPT1A/Wnt/β-Catenin axis in cervical cancer, underlying the progression of cervical cancer.
Collapse
Affiliation(s)
- Hejing Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yi Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yujia Zhou
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xin Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingfeng Zhou
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Huihui Ji
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
33
|
Kodama T, Takehara T. Molecular Genealogy of Metabolic-associated Hepatocellular Carcinoma. Semin Liver Dis 2024; 44:147-158. [PMID: 38499207 PMCID: PMC11245329 DOI: 10.1055/a-2289-2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
This review examines the latest epidemiological and molecular pathogenic findings of metabolic-associated hepatocellular carcinoma (HCC). Its increasing prevalence is a significant concern and reflects the growing burden of obesity and metabolic diseases, including metabolic dysfunction-associated steatotic liver disease, formerly known as nonalcoholic fatty liver disease, and type 2 diabetes. Metabolic-associated HCC has unique molecular abnormality and distinctive gene expression patterns implicating aberrations in bile acid, fatty acid metabolism, oxidative stress, and proinflammatory pathways. Furthermore, a notable frequency of single nucleotide polymorphisms in genes such as patatin-like phospholipase domain-containing 3, transmembrane 6 superfamily member 2, glucokinase regulator, and membrane-bound O-acyltransferase domain-containing 7 has been observed. The tumor immune microenvironment of metabolic-associated HCC is characterized by unique phenotypes of macrophages, neutrophils, and T lymphocytes. Additionally, the pathogenesis of metabolic-associated HCC is influenced by abnormal lipid metabolism, insulin resistance, and dysbiosis. In conclusion, deciphering the intricate interactions among metabolic processes, genetic predispositions, inflammatory responses, immune regulation, and microbial ecology is imperative for the development of novel therapeutic and preventative measures against metabolic-associated HCC.
Collapse
Affiliation(s)
- Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
34
|
Beton-Mysur K, Kopec M, Brozek-Pluska B. Raman Imaging-A Valuable Tool for Tracking Fatty Acid Metabolism-Normal and Cancer Human Colon Single-Cell Study. Int J Mol Sci 2024; 25:4508. [PMID: 38674093 PMCID: PMC11050638 DOI: 10.3390/ijms25084508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Altered metabolism of lipids is a key factor in many diseases including cancer. Therefore, investigations into the impact of unsaturated and saturated fatty acids (FAs) on human body homeostasis are crucial for understanding the development of lifestyle diseases. In this paper, we focus on the impact of palmitic (PA), linoleic (LA), and eicosapentaenoic (EPA) acids on human colon normal (CCD-18 Co) and cancer (Caco-2) single cells using Raman imaging and spectroscopy. The label-free nature of Raman imaging allowed us to evaluate FAs dynamics without modifying endogenous cellular metabolism. Thanks to the ability of Raman imaging to visualize single-cell substructures, we have analyzed the changes in chemical composition of endoplasmic reticulum (ER), mitochondria, lipid droplets (LDs), and nucleus upon FA supplementation. Analysis of Raman band intensity ratios typical for lipids, proteins, and nucleic acids (I1656/I1444, I1444/I1256, I1444/I750, I1304/I1256) proved that, using Raman mapping, we can observe the metabolic pathways of FAs in ER, which is responsible for the uptake of exogenous FAs, de novo synthesis, elongation, and desaturation of FAs, in mitochondria responsible for energy production via FA oxidation, in LDs specialized in cellular fat storage, and in the nucleus, where FAs are transported via fatty-acid-binding proteins, biomarkers of human colon cancerogenesis. Analysis for membranes showed that the uptake of FAs effectively changed the chemical composition of this organelle, and the strongest effect was noticed for LA. The spectroscopy studies have been completed using XTT tests, which showed that the addition of LA or EPA for Caco-2 cells decreases their viability with a stronger effect observed for LA and the opposite effect observed for PA. For normal cells, CCD-18 Co supplementation using LA or EPA stimulated cells for growing, while PA had the opposite impact.
Collapse
Affiliation(s)
| | | | - Beata Brozek-Pluska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland; (K.B.-M.); (M.K.)
| |
Collapse
|
35
|
Lei X, Li Z, Huang M, Huang L, Huang Y, Lv S, Zhang W, Chen Z, Ke Y, Li S, Chen J, Yang X, Deng Q, Liu J, Yu X. Gli1-mediated tumor cell-derived bFGF promotes tumor angiogenesis and pericyte coverage in non-small cell lung cancer. J Exp Clin Cancer Res 2024; 43:83. [PMID: 38493151 PMCID: PMC10944600 DOI: 10.1186/s13046-024-03003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Tumor angiogenesis inhibitors have been applied for non-small cell lung cancer (NSCLC) therapy. However, the drug resistance hinders their further development. Intercellular crosstalk between lung cancer cells and vascular cells was crucial for anti-angiogenenic resistance (AAD). However, the understanding of this crosstalk is still rudimentary. Our previous study showed that Glioma-associated oncogene 1 (Gli1) is a driver of NSCLC metastasis, but its role in lung cancer cell-vascular cell crosstalk remains unclear. METHODS Conditioned medium (CM) from Gli1-overexpressing or Gli1-knockdown NSCLC cells was used to educate endothelia cells and pericytes, and the effects of these media on angiogenesis and the maturation of new blood vessels were evaluated via wound healing assays, Transwell migration and invasion assays, tube formation assays and 3D coculture assays. The xenograft model was conducted to establish the effect of Gli1 on tumor angiogenesis and growth. Angiogenic antibody microarray analysis, ELISA, luciferase reporte, chromatin immunoprecipitation (ChIP), bFGF protein stability and ubiquitination assay were performed to explore how Gli1 regulate bFGF expression. RESULTS Gli1 overexpression in NSCLC cells enhanced the endothelial cell and pericyte motility required for angiogenesis required for angiogenesis. However, Gli1 knockout in NSCLC cells had opposite effect on this process. bFGF was critical for the enhancement effect on tumor angiogenesis. bFGF treatment reversed the Gli1 knockdown-mediated inhibition of angiogenesis. Mechanistically, Gli1 increased the bFGF protein level by promoting bFGF transcriptional activity and protein stability. Importantly, suppressing Gli1 with GANT-61 obviously inhibited angiogenesis. CONCLUSION The Gli1-bFGF axis is crucial for the crosstalk between lung cancer cells and vascular cells. Targeting Gli1 is a potential therapeutic approach for NSCLC angiogenesis.
Collapse
Affiliation(s)
- Xueping Lei
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Zhan Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Manting Huang
- Zhongshan Hospital of Traditional Chinese Medicine, Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, 528400, PR, China
| | - Lijuan Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yong Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Sha Lv
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Weisong Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Zhuowen Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yuanyu Ke
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Songpei Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jingfei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Xiangyu Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Qiudi Deng
- GMU-GIBH Joint School of Life Sciences, Joint Laboratory for Cell Fate Regulation and Diseases, The Guangdong-Hong Kong-Macau, Guangzhou Medical University, Guangzhou, 511436, PR, China.
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, People's Republic of China.
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
36
|
Lu S, Sun X, Zhang W, Li X, Zhou Z, Xiao R, Lv Q, Tang H, Wang B, Qu J, Cao R, He J, Wang S, Yang P, Yang Z, Rao B. Effects of the Mediterranean Diet on metabolic indices and quality of life in cancer patients: A systematic review and meta-analysis of randomized controlled trials. J Funct Foods 2024; 114:106074. [DOI: 10.1016/j.jff.2024.106074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
37
|
Ye C, Sun Q, Yan J, Xue D, Xu J, Ma H, Li F. Development of fatty acid metabolism score based on gene signature for predicting prognosis and immunotherapy response in colon cancer. Clin Transl Oncol 2024; 26:630-643. [PMID: 37480430 DOI: 10.1007/s12094-023-03282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE Metabolic reprogramming is a novel hallmark and therapeutic target of cancer. Our study aimed to establish fatty acid metabolism-associated scores based on gene signature and investigated its effects on immunotherapy in colon cancer. METHODS Gene expression and clinical information were collected from Gene Expression Omnibus (GEO) database to identify a gene signature by non-negative matrix factorization (NMF) clustering and Cox regression analysis. Subsequently, we constructed the fatty acid metabolism score (FA-score) model by principal component analysis (PCA) and explored its relativity of prognosis and the response to immunotherapy in colon cancer. Finally, the Cancer Genome Atlas (TCGA) database was introduced and in vitro study was performed for verification. RESULTS The FA-score-high group had a higher level of fatty acid metabolism and was associated with worse patient overall survival. Significantly, FA-score correlated closely with the biomarkers of immunotherapy, and the FA-score-high group had a poorer therapeutic efficacy of immune checkpoint blockade. In vitro experiments demonstrated that ACSL5 may be a critical metabolic regulatory target. CONCLUSIONS Our study provided a comprehensive analysis of the heterogeneity of fatty acid metabolism in colon cancer. We highlighted the potential clinical utility of fatty acid metabolism-related genes to be biomarkers of colon cancer prognosis and targets to improve the effect of immunotherapy.
Collapse
Affiliation(s)
- Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jun Yan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dong Xue
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiarui Xu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Haiyun Ma
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
38
|
Wang H, Ülgen M, Trajkovski M. Importance of temperature on immuno-metabolic regulation and cancer progression. FEBS J 2024; 291:832-845. [PMID: 36152006 DOI: 10.1111/febs.16632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
Cancer immunotherapies emerge as promising strategies for restricting tumour growth. The tumour microenvironment (TME) has a major impact on the anti-tumour immune response and on the efficacy of the immunotherapies. Recent studies have linked changes in the ambient temperature with particular immuno-metabolic reprogramming and anti-cancer immune response in laboratory animals. Here, we describe the energetic balance of the organism during change in temperature, and link this to the immune alterations that could be of relevance for cancer, as well as for other human diseases. We highlight the contribution of the gut microbiota in modifying this interaction. We describe the overall metabolic response and underlying mechanisms of tumourigenesis in mouse models at varying ambient temperatures and shed light on their potential importance in developing therapeutics against cancer.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Melis Ülgen
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Li R, Liu X, Huang X, Zhang D, Chen Z, Zhang J, Bai R, Zhang S, Zhao H, Xu Z, Zeng L, Zhuang L, Wen S, Wu S, Li M, Zuo Z, Lin J, Lin D, Zheng J. Single-cell transcriptomic analysis deciphers heterogenous cancer stem-like cells in colorectal cancer and their organ-specific metastasis. Gut 2024; 73:470-484. [PMID: 38050068 PMCID: PMC10894846 DOI: 10.1136/gutjnl-2023-330243] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Metastasis is the major cause of cancer death. However, what types of heterogenous cancer cells in primary tumour and how they metastasise to the target organs remain largely undiscovered. DESIGN We performed single-cell RNA sequencing and spatial transcriptomic analysis in primary colorectal cancer (CRC) and metastases in the liver (lCRC) or ovary (oCRC). We also conducted immunofluorescence staining and functional experiments to examine the mechanism. RESULTS Integrative analyses of epithelial cells reveal a stem-like cell cluster with high protein tyrosine phosphatase receptor type O (PTPRO) and achaete scute-like 2 (ASCL2) expression as the metastatic culprit. This cell cluster comprising distinct subpopulations shows distinct liver or ovary metastatic preference. Population 1 (P1) cells with high delta-like ligand 4 (DLL4) and MAF bZIP transcription factor A (MAFA) expression are enriched in primary CRC and oCRC, thus may be associated with ovarian metastasis. P3 cells having a similar expression pattern as cholangiocytes are found mainly in primary CRC and lCRC, presuming to be likely the culprits that specifically metastasise to the liver. Stem-like cells interacted with cancer-associated fibroblasts and endothelial cells via the DLL4-NOTCH signalling pathway to metastasise from primary CRC to the ovary. In the oCRC microenvironment, myofibroblasts provide cancer cells with glutamine and perform a metabolic reprogramming, which may be essential for cancer cells to localise and develop in the ovary. CONCLUSION We uncover a mechanism for organ-specific CRC metastasis.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuefei Liu
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
| | - Xudong Huang
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Di Zhang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziming Chen
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jialiang Zhang
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruihong Bai
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaoping Zhang
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongzhe Zhao
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zilan Xu
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lingxing Zeng
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lisha Zhuang
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shujuan Wen
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaojia Wu
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junzhong Lin
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongxin Lin
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
40
|
Iwamoto H, Suzuki H, Masuda A, Sakaue T, Nakamura T, Tanaka T, Sakai M, Imamura Y, Yano H, Torimura T, Koga H, Yasuda K, Tsurusaki M, Seki T, Kawaguchi T. A tumor endothelial cell-specific microRNA replacement therapy for hepatocellular carcinoma. iScience 2024; 27:108797. [PMID: 38303694 PMCID: PMC10831275 DOI: 10.1016/j.isci.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Current approved anti-angiogenic drugs (AAD) for hepatocellular carcinoma (HCC) inhibit tumor angiogenesis, but affect the hepatic vasculature resulting in adverse effects. Tumor endothelial cells (TECs) differ from normal endothelial cells. In this study, we aimed to detect TEC-specific miRNAs and develop an anti-angiogenic treatment specific for TECs. We established HCC orthotopic mouse models. TEC-specific miRNAs were detected using a microRNA array. Finally, we evaluated the therapeutic effects of the TEC-specific miRNA agonist cocktail. In total, 260 TEC-specific genes were detected. Among the top ten downregulated TEC-specific miRNAs, miR-139-3p and 214-3p were important for the TEC phenotype. The TEC-specific microRNA agonist cocktail showed significant anti-tumor effects by inhibiting tumor angiogenesis without affecting hepatic vasculatures in HCC orthotopic mouse models. Moreover, it significantly downregulated tip-cell sprouting-related genes. We identified two downregulated TEC-specific miRNAs; microRNA replacement therapy, which targets the downregulated TEC-specific miRNAs, is an effective and promising treatment for HCC.
Collapse
Affiliation(s)
- Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
- Department of Medicine, Iwamoto Internal Medicine Clinic, Kitakyushu 802 0832, Japan
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Miwa Sakai
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Yasuko Imamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Kaori Yasuda
- Cell Innovator, Inc., Venture Business Laboratory of Kyushu University, Fukuoka 812-8582, Japan
| | - Masakatsu Tsurusaki
- Department of Radiology, Kindai University Faculty of Medicine, Osaka-Sayama 589 8511, Japan
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| |
Collapse
|
41
|
Wang H, Liu F, Wu X, Zhu G, Tang Z, Qu W, Zhao Q, Huang R, Tian M, Fang Y, Jiang X, Tao C, Gao J, Liu W, Zhou J, Fan J, Wu D, Shi Y. Cancer-associated fibroblasts contributed to hepatocellular carcinoma recurrence and metastasis via CD36-mediated fatty-acid metabolic reprogramming. Exp Cell Res 2024; 435:113947. [PMID: 38301989 DOI: 10.1016/j.yexcr.2024.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are the main components in the tumor microenvironment. Tumors activate fibroblasts from quiescent state into activated state by secreting cytokines, and activated CAFs may in turn promote tumor progression and metastasis. Therefore, studies targeting CAFs could enrich the therapeutic options for tumor treatment. In this study, we demonstrate that the content of lipid droplets and the expression of autophagosomes were higher in CAFs than in peri-tumor fibroblasts (PTFs), which was inhibited by 5-(tetradecyloxy)-2-furoic acid(TOFA). The expression of CD36 in CAFs was higher than that in PTFs at both mRNA and protein levels. Inhibition of CD36 activity using either the CD36 inhibitor SSO or siRNA had a significant negative impact on the proliferation and migration abilities of CAFs, which was associated with reduced levels of relevant activated genes (α-SMA, FAP, Vimentin) and cytokines (IL-6, TGF-β and VEGF-α). SSO also inhibited HCC growth and tumorigenesis in nude mice orthotopically implanted with CAFs and HCC cells. Our data further show that CD36+CAFs affected the expression of PD-1 in CTLs leading to CTL exhaustion, and that patients with high CD36 expression in CAFs were correlated with shorter overall survival (OS). Together, our data demonstrate that CAFs were active in lipid metabolism with increased lipid content and lipophagy activity. CD36 may play a key role in the regulation of the biological behaviors of CAFs, which may influence the proliferation and migration of tumor cells by reprograming the lipid metabolism in tumor cells. Thus, CD36 could be an effective therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Han Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Fangming Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xiaoling Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Guiqi Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Weifeng Qu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianfu Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Run Huang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxin Tian
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Fang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Xifei Jiang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenyang Tao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| | - Duojiao Wu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yinghong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
42
|
Li C, Xiong Z, Han J, Nian W, Wang Z, Cai K, Gao J, Wang G, Tao K, Cai M. Identification of a lipid homeostasis-related gene signature for predicting prognosis, immunity, and chemotherapeutic effect in patients with gastric cancer. Sci Rep 2024; 14:2895. [PMID: 38316848 PMCID: PMC10844315 DOI: 10.1038/s41598-024-52647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Gastric cancer (GC) is one of the most common and deadliest cancers worldwide. Lipid homeostasis is essential for tumour development because lipid metabolism is one of the most important metabolic reprogramming pathways within tumours. Elucidating the mechanism of lipid homeostasis in GC might significantly improve treatment strategies and patient prognosis. GSE62254 was applied to construct a lipid homeostasis-related gene signature score (HGSscore) by multiple bioinformatic algorithms including weighted gene coexpression network analysis (WGCNA) and LASSO-Cox regression. A nomogram based on HGSscore and relevant clinical characteristics was constructed to predict the survival of patients with GC. TIMER and xCell were used to evaluate immune and stromal cell infiltration in the tumour microenvironment. Correlations between lipid homeostasis-related genes and chemotherapeutic efficacy were analysed in GSCAlite. RT‒qPCR and cell viability assays were applied to verify the findings in this study. HGSscore was constructed based on eighteen lipid homeostasis-related genes that were selected by WGCNA and LASSO-Cox regression. HGSscore was strongly associated with advanced TNM stage and showed satisfactory value in predicting GC prognosis in three independent cohorts. Furthermore, we found that HGSscore was associated with the tumour mutation burden (TMB) and immune/stromal cell infiltration, which are related to GC prognosis, indicating that lipid homeostasis impacts the formation of the tumour microenvironment (TME). With respect to the GSCAlite platform, PLOD2 and TGFB2 were shown to be positively related to chemotherapeutic resistance, while SLC10A7 was a favourable factor for chemotherapy efficacy. Cell viability assays showed that disrupted lipid homeostasis could attenuate GC cell viability. Moreover, RT‒qPCR revealed that lipid homeostasis could influence expression of specific genes. We identified a lipid homeostasis-related gene signature that correlated with survival, clinical characteristics, the TME, and chemotherapeutic efficacy in GC patients. This research provides a new perspective for improving prognosis and guiding individualized chemotherapy for patients with GC.
Collapse
Affiliation(s)
- Chao Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Xiong
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Nian
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
43
|
Sun X, Zhang Y, Xin S, Jin L, Cao Q, Wang H, Wang K, Liu X, Tang C, Li W, Li Z, Wen X, Yang G, Guo C, Liu Z, Ye L. NOTCH3 promotes docetaxel resistance of prostate cancer cells through regulating TUBB3 and MAPK signaling pathway. Cancer Sci 2024; 115:412-426. [PMID: 38115797 PMCID: PMC10859609 DOI: 10.1111/cas.16040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Docetaxel is the preferred chemotherapeutic agent in patients with castrate-resistant prostate cancer (CRPC). However, patients eventually develop docetaxel resistance and in the absence of effective treatment options. Consequently, it is essential to investigate the mechanisms generating docetaxel resistance and develop novel alternative therapeutic targets. RNA sequencing was undertaken on docetaxel-sensitive and docetaxel-resistant prostate cancer (PCa) cells. Subsequently, chemoresistance, cancer stemness, and lipid metabolism were investigated. To obtain insight into the precise activities and action mechanisms of NOTCH3 in docetaxel-resistant PCa, immunoprecipitation, mass spectrometry, ChIP, luciferase reporter assay, cell metabolism, and animal experiments were performed. Through RNA sequencing analysis, we found that NOTCH3 expression was markedly higher in docetaxel-resistant cells relative to parental cells, and that this trend was continued in docetaxel-resistant PCa tissues. Experiments in vitro and in vivo revealed that NOTCH3 enhanced stemness, lipid metabolism, and docetaxel resistance in PCa. Mechanistically, NOTCH3 is bound to TUBB3 and activates the MAPK signaling pathway. Moreover, NOTCH3 was directly regulated by MEF2A in docetaxel-resistant cells. Notably, targeting NOTCH3 and the MEF2A/TUBB3 signaling axis was related to docetaxel chemoresistance in PCa. Overall, these results demonstrated that NOTCH3 fostered stemness, lipid metabolism, and docetaxel resistance in PCa via the TUBB3 and MAPK signaling pathways. Therefore, NOTCH3 may be employed as a prognostic biomarker in PCa patients. NOTCH3 could be a therapeutic target for PCa patients, particularly those who have developed docetaxel resistance.
Collapse
Affiliation(s)
- Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of UrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ying Zhang
- Department of UrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Liang Jin
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qiong Cao
- Department of PathologyThe Third Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Hong Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiang Liu
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chaozhi Tang
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Weiyi Li
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ziyao Li
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaofei Wen
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhiyu Liu
- Department of UrologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
44
|
Che G, Wang W, Wang J, He C, Yin J, Chen Z, He C, Wang X, Yang Y, Liu J. Sulfotransferase SULT2B1 facilitates colon cancer metastasis by promoting SCD1-mediated lipid metabolism. Clin Transl Med 2024; 14:e1587. [PMID: 38372484 PMCID: PMC10875708 DOI: 10.1002/ctm2.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Metastasis is responsible for at least 90% of colon cancer (CC)-related deaths. Lipid metabolism is a critical factor in cancer metastasis, yet the underlying mechanism requires further investigation. Herein, through the utilisation of single-cell sequencing and proteomics, we identified sulfotransferase SULT2B1 as a novel metastatic tumour marker of CC, which was associated with poor prognosis. CC orthotopic model and in vitro assays showed that SULT2B1 promoted lipid metabolism and metastasis. Moreover, SULT2B1 directly interacted with SCD1 to facilitate lipid metabolism and promoted metastasis of CC cells. And the combined application of SCD1 inhibitor CAY with SULT2B1- konockout (KO) demonstrated a more robust inhibitory effect on lipid metabolism and metastasis of CC cells in comparison to sole application of SULT2B1-KO. Notably, we revealed that lovastatin can block the SULT2B1-induced promotion of lipid metabolism and distant metastasis in vivo. Further evidence showed that SMC1A transcriptionally upregulated the expression of SULT2B1. Our findings unveiled the critical role of SULT2B1 in CC metastasis and provided a new perspective for the treatment of CC patients with distant metastasis.
Collapse
Affiliation(s)
- Gang Che
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Wankun Wang
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jiawei Wang
- Department of Colorectal SurgerySir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Cheng He
- Department of Thoracic SurgeryThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jie Yin
- Department of Colorectal MedicineZhejiang Cancer HospitalHangzhouZhejiangChina
| | - Zhendong Chen
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Chao He
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Xujing Wang
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Yan Yang
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jian Liu
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
45
|
Liu W, Wang S, Lin L, Zou R, Sun H, Zeng K, Wu Y, Li Y, Shigeaki K, Wang X, Wang C, Zhao Y. BAP18 acting as a novel peroxisome proliferator-activated receptor α co-regulator contributes to hepatocellular carcinoma progression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166974. [PMID: 38042310 DOI: 10.1016/j.bbadis.2023.166974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide with a poor prognosis. The therapeutic outcomes of HCC patients are urgently needed to be improved, and predictive biomarkers for the optimal treatment selection remains to be further defined. In the present study, our results showed that BPTF-associated protein of 18 KDa (BAP18) was highly expressed in HCC tissues. In cultured HCC cells, BAP18 regulated a subset of down-stream genes involved in different functions, particularly including peroxisome proliferator-activated receptor (PPAR) pathway and lipid metabolism. Furthermore, BAP18 co-activated PPARα-mediated transactivation and facilitated the recruitment of nucleosome acetyltransferase of H4 (NuA4)/tat interacting protein 60 (TIP60) complex, thereby increasing histone H4 acetylation on stearoyl-CoA desaturase 1 (SCD1) loci. In addition, BAP18 promoted HCC cell proliferation, increased intracellular lipid levels and enhanced cell survival under the metabolic stress conditions, such as glucose limitation or tyrosine kinase inhibitors (TKIs) treatment. Importantly, higher BAP18 expression was positively correlated with the postoperative recurrence and the poor disease-free survival in clinical patients receiving sorafenib treatment. Altogether, we discovered that BAP18 plays an oncogenic role in the survival and proliferation of HCC cells, and BAP18 may serve as a predictive biomarker for adjunct TKIs treatment in patients with HCC, and further facilitate the precise treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China; Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province 110004, China
| | - Shengli Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Lin Lin
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Renlong Zou
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Hongmiao Sun
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Kai Zeng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Yi Wu
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China; Department of Pathogenic Biology, Shenyang Medical College, Shenyang City, Liaoning Province 110034, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province 110001, China
| | - Kato Shigeaki
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima 9708551, Japan
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province 110004, China.
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China.
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China.
| |
Collapse
|
46
|
Huang X, Wang Y, Huang Z, Chen X, Lin Q, Huang H, Fan L. Low serum apolipoprotein A1 level predicts poor prognosis of patients with diffuse large B-cell lymphoma in the real world: a retrospective study. BMC Cancer 2024; 24:62. [PMID: 38212711 PMCID: PMC10785512 DOI: 10.1186/s12885-024-11818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Apolipoprotein A1 (ApoA1) is a member of the apolipoprotein family with diverse functions. It is associated with the pathogenesis and prognosis of several types of tumors. However, the role of serum apolipoprotein A1 (ApoA1) in the prognosis of patients with diffuse large B-cell lymphoma (DLBCL) remains unclear. This study aimed to elucidate its influence on clinical outcomes in patients with DLBCL. METHODS We retrospectively analyzed a cohort of 1583 consecutive DLBCL patients admitted to the Fujian Medical University Union Hospital between January 2011 and December 2021. 949 newly diagnosed DLBCL patients who met the inclusion criteria were enrolled for statistical analysis. Receiver operating characteristic curve analysis was performed to determine the optimal cut-off value for serum ApoA1 levels for prognostic prediction among patients with DLBCL. The correlations between serum ApoA1 levels and clinical and laboratory parameters were analyzed. Prognostic significance was analyzed using univariate and multivariate Cox proportional hazards models. RESULTS Newly diagnosed patients with DLBCL demonstrated low serum ApoA1 levels (< 0.925 g/L), had more B symptoms, higher levels of serum lactate dehydrogenase (LDH) (>upper limit of normal), poorer performance status (Eastern Cooperative Oncology Group score of 2-4), higher percentage of advanced stage and non-germinal center B-cell (non-GCB) subtype, more cases of > 1 extranodal site, higher International Prognostic Index (IPI) score (3-5), and higher incidence of relapse or refractory diseases compared with those with high serum ApoA1 levels (≥ 0.925 g/L). Low serum ApoA1 levels were an independent adverse prognostic factor for overall survival (OS) but not progression-free survival (PFS). CONCLUSIONS Low serum ApoA1 levels were associated with poor treatment response and inferior survival in newly diagnosed patients with DLBCL.
Collapse
Affiliation(s)
- Xiaoling Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Ying Wang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Zhenyu Huang
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing County, Fuzhou City, 350300, Fujian Province, China
| | - Xuzheng Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou City, 350122, Fujian Province, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou City, 350122, Fujian Province, China
| | - Qiuyan Lin
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Haobo Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Liping Fan
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
47
|
Zhang W, Xu X, Zhang R, Tian Y, Ma X, Wang X, Jiang Y, Man C. Stress-Induced Immunosuppression Inhibits Regional Immune Responses in Chicken Adipose Tissue Partially through Suppressing T Cells by Up-Regulating Steroid Metabolism. Animals (Basel) 2024; 14:225. [PMID: 38254394 PMCID: PMC10812502 DOI: 10.3390/ani14020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Lipid metabolism plays an important role in maintaining lipid homeostasis and regulating immune functions. However, the regulations and mechanisms of lipid metabolism on the regional immune function of avian adipose tissue (AT) have not been reported. In this study, qRT-PCR was used to investigate the changes and relationships of different lipid metabolism pathways in chicken AT during stress-induced immunosuppression (SIIS) inhibiting immune response to Newcastle disease virus vaccine, then the miRNA regulation patterns of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) gene and its potential applications were further identified. The results showed that AT actively responded to SIIS, and ATGL, CPT1A and HMGCR were all the key genes involved in the processes of SIIS inhibiting the immune responses. SIIS significantly inhibited the natural and specific immune phases of the primary immune response and the initiation phase of the secondary immune response in AT by suppressing T cells by up-regulating steroid anabolism. Moreover, steroid metabolism could play dual roles in regulating the regional immune functions of AT. The miR-29a/c-3p-HMGCR network was a potential regulation mechanism of steroid metabolism in AT, and serum circulating miR-29a/c-3p had the potential as molecular markers. The study can provide valuable references for an in-depth investigation of the regional immune functions regulated by lipid metabolism in AT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (W.Z.); (X.X.); (R.Z.); (Y.T.); (X.M.); (X.W.); (Y.J.)
| |
Collapse
|
48
|
Engin AB, Engin A. Next-Cell Hypothesis: Mechanism of Obesity-Associated Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:727-766. [PMID: 39287871 DOI: 10.1007/978-3-031-63657-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Higher body fat content is related to a higher risk of mortality, and obesity-related cancer represents approximately 40% of all cancer patients diagnosed each year. Furthermore, epigenetic mechanisms are involved in cellular metabolic memory and can determine one's predisposition to being overweight. Low-grade chronic inflammation, a well-established characteristic of obesity, is a central component of tumor development and progression. Cancer-associated adipocytes (CAA), which enhance inflammation- and metastasis-related gene sets within the cancer microenvironment, have pro-tumoral effects. Adipose tissue is a major source of the exosomal micro ribonucleic acids (miRNAs), which modulate pathways involved in the development of obesity and obesity-related comorbidities. Owing to their composition of cargo, exosomes can activate receptors at the target cell or transfer molecules to the target cells and thereby change the phenotype of these cells. Exosomes that are released into the extracellular environment are internalized with their cargo by neighboring cells. The tumor-secreted exosomes promote organ-specific metastasis of tumor cells that normally lack the capacity to metastasize to a specific organ. Therefore, the communication between neighboring cells via exosomes is defined as the "next-cell hypothesis." The reciprocal interaction between the adipocyte and tumor cell is realized through the adipocyte-derived exosomal miRNAs and tumor cell-derived oncogenic miRNAs. The cargo molecules of adipocyte-derived exosomes are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. RNA-induced silencing regulates gene expression through various mechanisms. Destabilization of DICER enzyme, which catalyzes the conversion of primary miRNA (pri-miRNA) to precursor miRNA (pre-miRNA), is an important checkpoint in cancer development and progression. Interestingly, adipose tissue in obesity and tumors share similar pathogenic features, and the local hypoxia progress in both. While hypoxia in obesity leads to the adipocyte dysfunction and metabolic abnormalities, in obesity-related cancer cases, it is associated with worsened prognosis, increased metastatic potential, and resistance to chemotherapy. Notch-interleukin-1 (IL-1)-Leptin crosstalk outcome is referred to as "NILCO effect." In this chapter, obesity-related cancer development is discussed in the context of "next-cell hypothesis," miRNA biogenesis, and "NILCO effect."
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
49
|
Demicco M, Liu XZ, Leithner K, Fendt SM. Metabolic heterogeneity in cancer. Nat Metab 2024; 6:18-38. [PMID: 38267631 DOI: 10.1038/s42255-023-00963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Cancer cells rewire their metabolism to survive during cancer progression. In this context, tumour metabolic heterogeneity arises and develops in response to diverse environmental factors. This metabolic heterogeneity contributes to cancer aggressiveness and impacts therapeutic opportunities. In recent years, technical advances allowed direct characterisation of metabolic heterogeneity in tumours. In addition to the metabolic heterogeneity observed in primary tumours, metabolic heterogeneity temporally evolves along with tumour progression. In this Review, we summarize the mechanisms of environment-induced metabolic heterogeneity. In addition, we discuss how cancer metabolism and the key metabolites and enzymes temporally and functionally evolve during the metastatic cascade and treatment.
Collapse
Affiliation(s)
- Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
50
|
Zhang F, Wang B, Zhang W, Xu Y, Zhang C, Xue X. Transcription Factor MAZ Potentiates the Upregulated NEIL3-mediated Aerobic Glycolysis, thereby Promoting Angiogenesis in Hepatocellular Carcinoma. Curr Cancer Drug Targets 2024; 24:1235-1249. [PMID: 38347781 DOI: 10.2174/0115680096265896231226062212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 09/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is characterized by high vascularity and notable abnormality of blood vessels, where angiogenesis is a key process in tumorigenesis and metastasis. The main functions of Nei Like DNA Glycosylase 3 (NEIL3) include DNA alcoholization repair, immune response regulation, nervous system development and function, and DNA damage signal transduction. However, the underlying mechanism of high expression NEIL3 in the development and progression of HCC and whether the absence or silencing of NEIL3 inhibits the development of cancer remain unclear. Therefore, a deeper understanding of the mechanisms by which increased NEIL3 expression promotes cancer development is needed. METHODS Expression of NEIL3 and its upstream transcription factor MAZ in HCC tumor tissues was analyzed in bioinformatics efforts, while validation was done by qRT-PCR and western blot in HCC cell lines. The migration and tube formation capacity of HUVEC cells were analyzed by Transwell and tube formation assays. Glycolytic capacity was analyzed by extracellular acidification rate, glucose uptake, and lactate production levels. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter gene assays were utilized to investigate specific interactions between MAZ and NEIL3. RESULTS NEIL3 and MAZ were substantially upregulated in HCC tissues and cells. NEIL3 was involved in modulating the glycolysis pathway, suppression of which reversed the stimulative impact of NEIL3 overexpression on migration and angiogenesis in HUVEC cells. MAZ bound to the promoter of NEIL3 to facilitate NEIL3 transcription. Silencing MAZ reduced NEIL3 expression and suppressed the glycolysis pathway, HUVEC cell migration, and angiogenesis. CONCLUSION MAZ potentiated the upregulated NEIL3-mediated glycolysis pathway and HCC angiogenesis. This study provided a rationale for the MAZ/NEIL3/glycolysis pathway as a possible option for anti-angiogenesis therapy in HCC.
Collapse
Affiliation(s)
- Fabiao Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Binfeng Wang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Wenlong Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yongfu Xu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Caiming Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Xiangyang Xue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|