1
|
Peng X, Li L, Peng Y, Zhou G, An Z. Bioengineering and omics approaches for Type 1 diabetes practical research: advancements and constraints. Ann Med 2025; 57:2322047. [PMID: 39704022 DOI: 10.1080/07853890.2024.2322047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 12/21/2024] Open
Abstract
Insulin dependency arises from autoimmunity that targets the β cells of the pancreas, resulting in Type 1 diabetes (T1D). Despite the fact that T1D patients require insulin for survival, insulin does not provide a cure for this disease or prevent its complications. Despite extensive genetic, molecular, and cellular research on T1D over the years, the translation of this understanding into effective clinical therapies continues to pose a significant obstacle. It is therefore difficult to develop effective clinical treatment strategies without a thorough understanding of disease pathophysiology. Pancreatic tissue bioengineering models of human T1D offer a valuable approach to examining and controlling islet function while tackling various facets of the condition. And in recent years, due to advances in high-throughput omics analysis, the genotypic and molecular profiles of T1D have become finer tuned. The present article will examine recent progress in these areas, along with their utilization and constraints in the realm of T1D.
Collapse
Affiliation(s)
- Xi Peng
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yihua Peng
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guangju Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Ramalingam AR, Kucera C, Srivastava S, Paily R, Stephens D, Lorkiewicz P, Wilkey DW, Merchant M, Bhatnagar A, Carll AP. Acute and Persistent Cardiovascular Effects of Menthol E-Cigarettes in Mice. J Am Heart Assoc 2025; 14:e037420. [PMID: 40281649 DOI: 10.1161/jaha.124.037420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/11/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Although e-cigarettes provide an alternative to conventional smoking, the cardiovascular impacts of e-cigarette use are unresolved. The popularity of menthol e-cigarettes has surged recently and may escalate further with bans on combustible menthol cigarettes and e-cigarette flavors other than menthol and tobacco. Despite recent evidence in mice that menthol e-cigarettes acutely induce cardiac arrhythmias, the impacts of repeated menthol e-cigarette use on cardiovascular function and the cardiac proteome remain unclear. We therefore investigated the acute and persistent cardiovascular effects of menthol e-cigarettes in a mouse model. METHODS AND RESULTS Adult C57BL/6J mice with ECG and blood pressure radiotransmitters were exposed to e-cigarette aerosols (180-270 puffs/day; n=4-8/group). One-day exposures to nicotine-containing e-cigarette aerosols depressed heart rate variability regardless of flavor, but menthol e-cigarette aerosols uniquely increased heart rate and urine epinephrine and elicited spontaneous ventricular premature beats. Menthol e-cigarette aerosols consistently increased blood pressure acutely, and this effect recurred throughout the 20-day regimen. Pretreatment with atenolol abolished e-cigarette-induced arrhythmias, suggesting the involvement of β1-adrenoceptors. After 4 weeks of exposure to JUUL Menthol aerosol, mice had basal sinus bradycardia that persisted up to 3 weeks after exposure cessation. After cessation, e-cigarette-exposed mice also exhibited an altered chronotropic response to restraint stress and prolonged ventricular repolarization (corrected QT interval). Integrated proteomic and phosphoproteomic analysis of cardiac tissue harvested from mice exposed to menthol e-cigarette aerosols for 5 and 20 days revealed molecular signatures of dilated and arrhythmogenic cardiomyopathy. CONCLUSIONS Exposure to menthol e-cigarette aerosols induces persistent cardiovascular autonomic imbalance in vivo. These findings raise the possibility of similar effects in humans using mentholated e-cigarettes.
Collapse
Affiliation(s)
- Anand R Ramalingam
- Center for Cardiometabolic Science, School of Medicine University of Louisville KY USA
- American Heart Association Tobacco Regulation and Addiction Center Dallas TX USA
- Christina Lee Brown Envirome Institute, School of Medicine University of Louisville KY USA
| | - Cory Kucera
- Center for Cardiometabolic Science, School of Medicine University of Louisville KY USA
- Christina Lee Brown Envirome Institute, School of Medicine University of Louisville KY USA
- Department of Physiology, School of Medicine University of Louisville KY USA
| | - Shweta Srivastava
- Christina Lee Brown Envirome Institute, School of Medicine University of Louisville KY USA
| | - Romith Paily
- Center for Cardiometabolic Science, School of Medicine University of Louisville KY USA
- Christina Lee Brown Envirome Institute, School of Medicine University of Louisville KY USA
| | - Dawson Stephens
- Center for Cardiometabolic Science, School of Medicine University of Louisville KY USA
| | - Pawel Lorkiewicz
- American Heart Association Tobacco Regulation and Addiction Center Dallas TX USA
- Christina Lee Brown Envirome Institute, School of Medicine University of Louisville KY USA
| | - Daniel W Wilkey
- Division of Nephrology & Hypertension, School of Medicine University of Louisville KY USA
| | - Michael Merchant
- Division of Nephrology & Hypertension, School of Medicine University of Louisville KY USA
- Center for Integrative Environmental Health Sciences, School of Medicine University of Louisville KY USA
| | - Aruni Bhatnagar
- Center for Cardiometabolic Science, School of Medicine University of Louisville KY USA
- American Heart Association Tobacco Regulation and Addiction Center Dallas TX USA
- Christina Lee Brown Envirome Institute, School of Medicine University of Louisville KY USA
- Center for Integrative Environmental Health Sciences, School of Medicine University of Louisville KY USA
| | - Alex P Carll
- Center for Cardiometabolic Science, School of Medicine University of Louisville KY USA
- American Heart Association Tobacco Regulation and Addiction Center Dallas TX USA
- Christina Lee Brown Envirome Institute, School of Medicine University of Louisville KY USA
- Department of Physiology, School of Medicine University of Louisville KY USA
- Center for Integrative Environmental Health Sciences, School of Medicine University of Louisville KY USA
| |
Collapse
|
3
|
Zhao C, Liu X, Zhou A, Ji J, Wang Y, Zhuang M, Zhang Y, Yang L, Ma L, Chellappan BV, Artemyeva AM, Lv H. Transcriptome Analysis of Cabbage Near-Isogenic Lines Reveals the Involvement of the Plant Defensin Gene PDF1.2 in Fusarium Wilt Resistance. Int J Mol Sci 2025; 26:3770. [PMID: 40332410 PMCID: PMC12028332 DOI: 10.3390/ijms26083770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Fusarium wilt of cabbage (Brassica oleracea var. capitata), caused by Fusarium oxysporum f. sp. conglutinans (Foc), poses a significant threat to global cabbage production. Although resistance screening and the initial cloning of resistance genes in cabbage have been previously reported, the specific molecular mechanisms underlying cabbage resistance to Foc remain largely unknown. To elucidate the underlying mechanisms, we performed RNA sequencing analysis on a near-isogenic resistant line YR01_20 and a susceptible NIL line S01_20 by comparing both Foc-inoculated and mock-inoculated conditions. A total of 508.6 million sequencing raw reads (76.8 Gb data volume) were generated across all samples. Bioinformatics analysis of differentially expressed genes (DEGs) between S01_20 and YR01_20 revealed significant enrichment in plant hormone signaling and mitogen-activated protein kinase (MAPK) pathways. Notably, BolC06g030650.2J, encoding the plant defensin protein PDF1.2, was significantly upregulated in both pathways. Real-time quantitative PCR (RT-qPCR) analysis confirmed that PDF1.2 was significantly upregulated in the resistant line at 12 h post-inoculation and remained elevated for up to 144 h. Furthermore, transgenic cabbage overexpressing PDF1.2 exhibited significantly enhanced resistance to Foc. Taken together, these findings advance our understanding of the molecular mechanisms governing cabbage resistance to Fusarium wilt and identify PDF1.2 as a genetic target for breeding Foc-resistant cabbage cultivars through molecular approaches.
Collapse
Affiliation(s)
- Cunbao Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Xing Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Ailing Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Biju V. Chellappan
- Department of Biological Science, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia;
| | - Anna M. Artemyeva
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia;
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| |
Collapse
|
4
|
Yu F, Deng Y, Nesvizhskii AI. MSFragger-DDA+ enhances peptide identification sensitivity with full isolation window search. Nat Commun 2025; 16:3329. [PMID: 40199897 PMCID: PMC11978857 DOI: 10.1038/s41467-025-58728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Liquid chromatography-mass spectrometry based proteomics, particularly in the bottom-up approach, relies on the digestion of proteins into peptides for subsequent separation and analysis. The most prevalent method for identifying peptides from data-dependent acquisition mass spectrometry data is database search. Traditional tools typically focus on identifying a single peptide per tandem mass spectrum, often neglecting the frequent occurrence of peptide co-fragmentations leading to chimeric spectra. Here, we introduce MSFragger-DDA+, a database search algorithm that enhances peptide identification by detecting co-fragmented peptides with high sensitivity and speed. Utilizing MSFragger's fragment ion indexing algorithm, MSFragger-DDA+ performs a comprehensive search within the full isolation window for each tandem mass spectrum, followed by robust feature detection, filtering, and rescoring procedures to refine search results. Evaluation against established tools across diverse datasets demonstrated that, integrated within the FragPipe computational platform, MSFragger-DDA+ significantly increases identification sensitivity while maintaining stringent false discovery rate control. It is also uniquely suited for wide-window acquisition data. MSFragger-DDA+ provides an efficient and accurate solution for peptide identification, enhancing the detection of low-abundance co-fragmented peptides. Coupled with the FragPipe platform, MSFragger-DDA+ enables more comprehensive and accurate analysis of proteomics data.
Collapse
Affiliation(s)
- Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Yamei Deng
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
El-Kurjieh A, Al-Arab R, Hachem QA, Ibrahim JN, Kobeissy PH. ACSS2 and metabolic diseases: from lipid metabolism to therapeutic target. Lipids Health Dis 2025; 24:74. [PMID: 40001058 PMCID: PMC11853604 DOI: 10.1186/s12944-025-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Elevated incidence of metabolic disorders has been reported worldwide in the recent decade, highlighting the need for developing efficient therapies. These diseases result from a complex interplay of various factors that contribute to disease progression, complications, and resistance to current treatment options. Acetyl-CoA Synthetase Short Chain Family Member 2 (ACSS2) is a nucleo-cytosolic enzyme with both lipogenic and metabolic regulatory roles. Studies on ACSS2 have shown that it is involved in pathways commonly dysregulated in metabolic disorders, leading to fat deposition and disrupted cellular signaling. Although multiple studies have suggested a role of ACSS2 in the metabolic rewiring during tumorigenesis, few studies have examined its involvement in the pathophysiology of metabolic diseases. Recent evidence indicates that ACSS2 may contribute to the pathogenesis of various metabolic disorders making its examination of great interest and potentially aiding in the development of new therapeutic strategies. The objective of this review is to summarize the current understanding of ACSS2's role in metabolic disorders and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Alaa El-Kurjieh
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Reem Al-Arab
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Qamar Abou Hachem
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - José-Noel Ibrahim
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| | - Philippe Hussein Kobeissy
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| |
Collapse
|
6
|
Jiang M, Zhang C, Zhang Z, Duan Y, Qi S, Zeng Q, Wang J, Zhang J, Jiang Y, Wang Y, Chen Y, Liu J. Systematic Analysis of UFMylation Family Genes in Tissues of Mice with Metabolic Dysfunction-Associated Steatotic Liver Disease. Genes (Basel) 2024; 16:31. [PMID: 39858578 PMCID: PMC11765366 DOI: 10.3390/genes16010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES UFMylation, a newly identified ubiquitin-like modification, modulates a variety of physiological processes, including endoplasmic reticulum homeostasis maintenance, DNA damage response, embryonic development, and tumor progression. Recent reports showed that UFMylation plays a protective role in preventing liver steatosis and fibrosis, serving as a defender of liver homeostasis in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the regulation of UFMylation in MASLD remains unclear. This study aimed to determine the expressed patterns of UFMylation components in multiple tissues of leptin-deficient ob/ob mice and high-fat diet (HFD)-fed mice, which are mimicking the conditions of MASLD. METHODS The ob/ob mice and HFD-fed mice were sacrificed to collect tissues indicated in this study. Total RNA and proteins were extracted from tissues to examine the expressed patterns of UFMylation components, including UBA5, UFC1, UFL1, DDRGK1, UFSP1, UFSP2 and UFM1, by real-time PCR and western blot analysis. RESULTS The protein levels of UBA5, UFC1 and UFL1 were down-regulated in liver, brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT), whereas the messenger RNA (mRNA) levels of Ufl1 and Ufsp1 were both decreased in skeletal muscle, BAT, iWAT and epididymal white adipose tissue (eWAT) of ob/ob mice. In contrast, the mRNA levels of Ufsp1 in skeletal muscle, BAT, iWAT and heart, and the protein levels of UFL1 were decreased in BAT, iWAT, heart and cerebellum of HFD-fed mice. CONCLUSIONS Our findings established the expressed profiles of UFMylaiton in multiple tissues of mice mimicking MASLD, indicating an important regulation for UFMylation in these tissues' homeostasis maintenance.
Collapse
Affiliation(s)
- Mingdi Jiang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Chenlu Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Zhengyao Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (Y.W.)
| | - Yingying Duan
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Shuaiyong Qi
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Qingyu Zeng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Jiabao Wang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Jiawen Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Yu Jiang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China;
| | - Ying Wang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (Y.W.)
| | - Yi Chen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (Y.W.)
| | - Jiang Liu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| |
Collapse
|
7
|
Ma Y, Zhang F, Li J, Li J, Li Y. Diverse perspectives on proteomic posttranslational modifications to address EGFR-TKI resistance in non-small cell lung cancer. Front Cell Dev Biol 2024; 12:1436033. [PMID: 39777265 PMCID: PMC11703921 DOI: 10.3389/fcell.2024.1436033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is the main histological subtype of lung cancer. For locally advanced and advanced NSCLC, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-targeted therapy has been the first choice for NSCLC patients with EGFR mutations. TKIs, as targeted drugs, inhibit kinase activity and autophosphorylation by competitively binding to the ATP binding site of the EGFR tyrosine kinase domain, which blocks the signal transduction mediated by EGFR and thus inhibits the proliferation of tumor cells. However, drug resistance to TKIs is inevitable. EGFR is also a highly glycosylated receptor tyrosine kinase, and a wide range of crosstalk occurs between phosphorylation and glycosylation. Therefore, can the phosphorylation state be altered by glycosylation to improve drug resistance? In this review, we summarize phosphorylation, glycosylation and the crosstalk between these processes as well as the current research status and methods. We also summarize the autophosphorylation and glycosylation sites of the EGFR protein and their crosstalk. By exploring the relationship between EGFR glycosylation and autophosphorylation in targeted TKI therapy, we find that research on EGFR glycosylation is crucial for targeted NSCLC treatment and will become a research direction for identifying potential targets related to regulating TKI drug sensitivity.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Zhang
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanhua Li
- Department of International Medical Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Sakayanathan P, Loganathan C, Thayumanavan P. Astaxanthin-S-Allyl Cysteine Ester Protects Pancreatic β-Cell From Glucolipotoxicity by Suppressing Oxidative Stress, Endoplasmic Reticulum Stress and mTOR Pathway Dysregulation. J Biochem Mol Toxicol 2024; 38:e70058. [PMID: 39555722 DOI: 10.1002/jbt.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/14/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Glucolipotoxicity (GLT) has emerged as established mechanism in the progression of diabetes. Identifying compounds that mitigate GLT-induced deleterious effect on β-cells are considered important strategy to overcome diabetes. Hence, in the present study, astaxanthin-s-allyl cysteine (AST-SAC) diester was studied against GLT in β-cells. Mus musculus pancreatic β-cell line (βTC-tet) was treated with high glucose (25 mM; HG) and 95 μM palmitate (PA) for 24 h to induce GLT. AST-SAC at various concentrations (5, 10, and 15 μg/ml) were treated to understand the protective effect against HG + PA exposure in β-cells. Under HG + PA exposure conditions oxidative stress, deregulation of mTOR pathway and endoplasmic reticulum (ER) stress are witnessed. AST-SAC treatment eased oxidative stress, mitochondrial depolarization, DNA damage, calcium overload and accumulation of autophagosome against HG + PA exposure conditions thereby protected the cell viability of β-cells. AST-SAC maintained the level of proteins involved in mTOR pathway under HG + PA exposure conditions. Also, AST-SAC treatment has mitigated the increased expression of genes and proteins such as IRE1 and PERK involved in ER stress-mediated unfolded protein response (UPR) signaling pathways. In correspondence to it, the expression of genes involved in insulin secretion was preserved by AST-SAC. Due to these protective effects of AST-SAC the insulin secretion was well-maintained in β-cells under HG + PA exposure conditions. AST-SAC through normalizing antioxidant status and mTOR axis as well as preventing the harmful effect of ER-stress mediated UPR pathway has promoted the β-cell survival and insulin secretion against GLT. Simultaneously targeting oxidative stress/mTOR axis/ER stress is required to efficiently overcome GLT in β-cells.
Collapse
Affiliation(s)
- Penislusshiyan Sakayanathan
- Department of Biochemistry, Periyar University, Salem, India
- Bioinnov Solutions LLP, Research and Development Center, Salem, India
| | - Chitra Loganathan
- Department of Prosthodontics and Implantology, Saveetha Dental College and Hospital, Saveetha Institute of Medical And Technical Sciences (SIMATS), Chennai, India
| | | |
Collapse
|
9
|
Yu CC, Yang CY, Chang TY, Lan KC, Liu SH. A negative regulatory role of β-cell-derived exosomes in the glucose-stimulated insulin secretion of recipient β-cells. Arch Toxicol 2024; 98:3885-3896. [PMID: 39127846 DOI: 10.1007/s00204-024-03838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Exosomes are extracellular vesicles that play a role in intercellular communication through the transportation of their cargo including mRNAs, microRNAs, proteins, and nucleic acids. Exosomes can also regulate glucose homeostasis and insulin secretion under diabetic conditions. However, the role of exosomes in insulin secretion in islet β-cells under physiological conditions remains to be clarified. The aim of this study was to investigate whether exosomes derived from pancreatic islet β-cells could affect insulin secretion in naïve β-cells. We first confirmed that exosomes derived from the RIN-m5f β-cell line interfered with the glucose-stimulated insulin secretion (GSIS) of recipient β-cells without affecting cell viability. The exosomes significantly reduced the protein expression levels of phosphorylated Akt, phosphorylated GSK3α/β, CaMKII, and GLUT2 (insulin-related signaling molecules), and they increased the protein expression levels of phosphorylated NFκB-p65 and Cox-2 (inflammation-related signaling molecules), as determined by a Western blot analysis. A bioinformatics analysis of Next-Generation Sequencing data suggested that exosome-carried microRNAs, such as miR-1224, -122-5p, -133a-3p, -10b-5p, and -423-5p, may affect GSIS in recipient β-cells. Taken together, these findings suggest that β-cell-derived exosomes may upregulate exosomal microRNA-associated signals to dysregulate glucose-stimulated insulin secretion in naïve β-cells.
Collapse
Affiliation(s)
- Chia-Ching Yu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Chang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Pediatrics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Zhang J, Wang E, Li Q, Peng Y, Jin H, Naseem S, Sun B, Park S, Choi S, Li X. GSK3 regulation Wnt/β-catenin signaling affects adipogenesis in bovine skeletal muscle fibro/adipogenic progenitors. Int J Biol Macromol 2024; 275:133639. [PMID: 38969042 DOI: 10.1016/j.ijbiomac.2024.133639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Clarifying the cellular origin and regulatory mechanisms of intramuscular fat (IMF) deposition is crucial for improving beef quality. Here, we used single-nucleus RNA sequencing to analyze the structure and heterogeneity of skeletal muscle cell populations in different developmental stages of Yanbian cattle and identified eight cell types in two developmental stages of calves and adults. Among them, fibro/adipogenic progenitors (FAPs) expressing CD29 (ITGA7)pos and CD56 (NCAM1)neg surface markers were committed to IMF deposition in beef cattle and expressed major Wnt ligands and receptors. LY2090314/XAV-939 was used to activate/inhibit Wnt/β-catenin signal. The results showed that the blockade of Glycogen Synthase Kinase 3 (GSK3) by LY2090314 promoted the stabilization of β-catenin and reduced the expression of genes related adipogenic differentiation (e.g., PPARγ and C/EBPα) in bovine FAPs, confirming the anti-adipogenic effect of GSK3. XAV-939 inhibition of the Wnt/β-catenin pathway promoted the lipid accumulation capacity of FAPs. Furthermore, we found that blocking GSK3 enhanced the paracrine effects of FAPs-MuSCs and increased myotube formation in muscle satellite cells (MuSCs). Overall, our results outline a single-cell atlas of skeletal muscle development in Yanbian cattle, revealed the role of Wnt/GSK3/β-catenin signaling in FAPs adipogenesis, and provide a theoretical basis for further regulation of bovine IMF deposition.
Collapse
Affiliation(s)
- Junfang Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Enze Wang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Qiang Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Huaina Jin
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Sajida Naseem
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Bin Sun
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Seongho Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Xiangzi Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China.
| |
Collapse
|
11
|
Tao S, Long X, Gong P, Yu X, Tian L. Phosphoproteomics Reveals Novel Insights into the Pathogenesis and Identifies New Therapeutic Kinase Targets of Ulcerative Colitis. Inflamm Bowel Dis 2024; 30:1367-1378. [PMID: 38085663 DOI: 10.1093/ibd/izad291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 08/02/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic recurrent inflammatory disease with unclear etiology. Currently, safe and effective treatment options for UC remain to be developed. Kinases, which catalyze the phosphorylation of substrates, have emerged as promising therapeutic targets for inflammatory diseases. We clarified the kinase activity profile and phosphorylation network in UC and aimed to reveal new pathogenic mechanisms and potential therapeutic targets. METHODS We first performed the phosphoproteomic analysis of rectal tissues from UC patients and healthy individuals. Further bioinformatic analyses revealed the remodeling of key kinases and signaling pathways. Then, we conducted a screening of kinases to identify new potential therapeutic targets through in vivo and in vitro experiments. RESULTS Phosphoproteomics revealed a drastic remodeling of signaling pathways in UC, such as pathways related to tight junction, adhesion junction, and necroptosis. Additionally, the activity of kinases such as CDK2, CLK1 and AURKB were significantly changed. Additional screening of these kinases identified CDK2 as a potential therapeutic target for UC, as inhibiting CDK2 effectively alleviated dextran sulfate sodium-induced colitis in mice. Further research revealed that suppressing CDK2 remarkably inhibited RIPK1, RIPK3, and MLKL phosphorylation, as well as MLKL oligomerization, thereby inhibiting epithelial necroptosis and protecting the intestinal barrier. CONCLUSIONS Our research deepened the understanding of UC pathogenesis through the lens of phosphorylation. Moreover, we identified CDK2 as a new potential therapeutic target for UC, revealing a novel role for CDK2 in necroptosis.
Collapse
Affiliation(s)
- Sifan Tao
- Department of Gastroenterology, The Third Xiangya Hospital, The Central South University, Changsha, China
- Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, China
| | - Xiuyan Long
- Department of Gastroenterology, The Third Xiangya Hospital, The Central South University, Changsha, China
| | - Pan Gong
- Department of Gastroenterology, The Third Xiangya Hospital, The Central South University, Changsha, China
| | - Xiaoyu Yu
- Department of Gastroenterology, The Third Xiangya Hospital, The Central South University, Changsha, China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital, The Central South University, Changsha, China
| |
Collapse
|
12
|
Achter JS, Vega ET, Sorrentino A, Kahnert K, Galsgaard KD, Hernandez-Varas P, Wierer M, Holst JJ, Wojtaszewski JFP, Mills RW, Kjøbsted R, Lundby A. In-depth phosphoproteomic profiling of the insulin signaling response in heart tissue and cardiomyocytes unveils canonical and specialized regulation. Cardiovasc Diabetol 2024; 23:258. [PMID: 39026321 PMCID: PMC11264841 DOI: 10.1186/s12933-024-02338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Insulin signaling regulates cardiac substrate utilization and is implicated in physiological adaptations of the heart. Alterations in the signaling response within the heart are believed to contribute to pathological conditions such as type-2 diabetes and heart failure. While extensively investigated in several metabolic organs using phosphoproteomic strategies, the signaling response elicited in cardiac tissue in general, and specifically in the specialized cardiomyocytes, has not yet been investigated to the same extent. METHODS Insulin or vehicle was administered to male C57BL6/JRj mice via intravenous injection into the vena cava. Ventricular tissue was extracted and subjected to quantitative phosphoproteomics analysis to evaluate the insulin signaling response. To delineate the cardiomyocyte-specific response and investigate the role of Tbc1d4 in insulin signal transduction, cardiomyocytes from the hearts of cardiac and skeletal muscle-specific Tbc1d4 knockout mice, as well as from wildtype littermates, were studied. The phosphoproteomic studies involved isobaric peptide labeling with Tandem Mass Tags (TMT), enrichment for phosphorylated peptides, fractionation via micro-flow reversed-phase liquid chromatography, and high-resolution mass spectrometry measurements. RESULTS We quantified 10,399 phosphorylated peptides from ventricular tissue and 12,739 from isolated cardiomyocytes, localizing to 3,232 and 3,128 unique proteins, respectively. In cardiac tissue, we identified 84 insulin-regulated phosphorylation events, including sites on the Insulin Receptor (InsrY1351, Y1175, Y1179, Y1180) itself as well as the Insulin receptor substrate protein 1 (Irs1S522, S526). Predicted kinases with increased activity in response to insulin stimulation included Rps6kb1, Akt1 and Mtor. Tbc1d4 emerged as a major phosphorylation target in cardiomyocytes. Despite limited impact on the global phosphorylation landscape, Tbc1d4 deficiency in cardiomyocytes attenuated insulin-induced Glut4 translocation and induced protein remodeling. We observed 15 proteins significantly regulated upon knockout of Tbc1d4. While Glut4 exhibited decreased protein abundance consequent to Tbc1d4-deficiency, Txnip levels were notably increased. Stimulation of wildtype cardiomyocytes with insulin led to the regulation of 262 significant phosphorylation events, predicted to be regulated by kinases such as Akt1, Mtor, Akt2, and Insr. In cardiomyocytes, the canonical insulin signaling response is elicited in addition to regulation on specialized cardiomyocyte proteins, such as Kcnj11Y12 and DspS2597. Details of all phosphorylation sites are provided. CONCLUSION We present a first global outline of the insulin-induced phosphorylation signaling response in heart tissue and in isolated adult cardiomyocytes, detailing the specific residues with changed phosphorylation abundances. Our study marks an important step towards understanding the role of insulin signaling in cardiac diseases linked to insulin resistance.
Collapse
Affiliation(s)
- Jonathan Samuel Achter
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Estefania Torres Vega
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Kahnert
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Douglas Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Hernandez-Varas
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Wierer
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Frank Pind Wojtaszewski
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Robert William Mills
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Zhao H, Cai Y, Pan J, Chen Q. Role of MicroRNA in linking diabetic retinal neurodegeneration and vascular degeneration. Front Endocrinol (Lausanne) 2024; 15:1412138. [PMID: 39027475 PMCID: PMC11254631 DOI: 10.3389/fendo.2024.1412138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Diabetic retinopathy is the major cause of blindness in diabetic patients, with limited treatment options that do not always restore optimal vision. Retinal nerve degeneration and vascular degeneration are two primary pathological processes of diabetic retinopathy. The retinal nervous system and vascular cells have a close coupling relationship. The connection between neurodegeneration and vascular degeneration is not yet fully understood. Recent studies have found that microRNA plays a role in regulating diabetic retinal neurovascular degeneration and can help delay the progression of the disease. This article will review how microRNA acts as a bridge connecting diabetic retinal neurodegeneration and vascular degeneration, focusing on the mechanisms of apoptosis, oxidative stress, inflammation, and endothelial factors. The aim is to identify valuable targets for new research and clinical treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Haiyan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | | | | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Dalle S. Targeting Protein Kinases to Protect Beta-Cell Function and Survival in Diabetes. Int J Mol Sci 2024; 25:6425. [PMID: 38928130 PMCID: PMC11203834 DOI: 10.3390/ijms25126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of diabetes is increasing worldwide. Massive death of pancreatic beta-cells causes type 1 diabetes. Progressive loss of beta-cell function and mass characterizes type 2 diabetes. To date, none of the available antidiabetic drugs promotes the maintenance of a functional mass of endogenous beta-cells, revealing an unmet medical need. Dysfunction and apoptotic death of beta-cells occur, in particular, through the activation of intracellular protein kinases. In recent years, protein kinases have become highly studied targets of the pharmaceutical industry for drug development. A number of drugs that inhibit protein kinases have been approved for the treatment of cancers. The question of whether safe drugs that inhibit protein kinase activity can be developed and used to protect the function and survival of beta-cells in diabetes is still unresolved. This review presents arguments suggesting that several protein kinases in beta-cells may represent targets of interest for the development of drugs to treat diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| |
Collapse
|
15
|
Ferreira CR, Lima Gomes PCFD, Robison KM, Cooper BR, Shannahan JH. Implementation of multiomic mass spectrometry approaches for the evaluation of human health following environmental exposure. Mol Omics 2024; 20:296-321. [PMID: 38623720 PMCID: PMC11163948 DOI: 10.1039/d3mo00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Omics analyses collectively refer to the possibility of profiling genetic variants, RNA, epigenetic markers, proteins, lipids, and metabolites. The most common analytical approaches used for detecting molecules present within biofluids related to metabolism are vibrational spectroscopy techniques, represented by infrared, Raman, and nuclear magnetic resonance (NMR) spectroscopies and mass spectrometry (MS). Omics-based assessments utilizing MS are rapidly expanding and being applied to various scientific disciplines and clinical settings. Most of the omics instruments are operated by specialists in dedicated laboratories; however, the development of miniature portable omics has made the technology more available to users for field applications. Variations in molecular information gained from omics approaches are useful for evaluating human health following environmental exposure and the development and progression of numerous diseases. As MS technology develops so do statistical and machine learning methods for the detection of molecular deviations from personalized metabolism, which are correlated to altered health conditions, and they are intended to provide a multi-disciplinary overview for researchers interested in adding multiomic analysis to their current efforts. This includes an introduction to mass spectrometry-based omics technologies, current state-of-the-art capabilities and their respective strengths and limitations for surveying molecular information. Furthermore, we describe how knowledge gained from these assessments can be applied to personalized medicine and diagnostic strategies.
Collapse
Affiliation(s)
- Christina R Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Kiley Marie Robison
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce R Cooper
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Wu C, Zhang S, Hou C, Byers S, Ma J. In-Depth Endogenous Phosphopeptidomics of Serum with Zirconium(IV)-Grafted Mesoporous Silica Enrichment. Anal Chem 2024; 96:8254-8262. [PMID: 38728223 PMCID: PMC11140682 DOI: 10.1021/acs.analchem.3c02150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Detection of endogenous peptides, especially those with modifications (such as phosphorylation) in biofluids, can serve as an indicator of intracellular pathophysiology. Although great progress has been made in phosphoproteomics in recent years, endogenous phosphopeptidomics has largely lagged behind. One main hurdle in endogenous phosphopeptidomics analysis is the coexistence of proteins and highly abundant nonmodified peptides in complex matrices. In this study, we developed an approach using zirconium(IV)-grafted mesoporous beads to enrich phosphopeptides, followed by analysis with a high resolution nanoRPLC-MS/MS system. The bifunctional material was first tested with digests of standard phosphoproteins and HeLa cell lysates, with excellent enrichment performance achieved. Given the size exclusion nature, the beads were directly applied for endogenous phosphopeptidomic analysis of serum samples from pancreatic ductal adenocarcinoma (PDAC) patients and controls. In total, 329 endogenous phosphopeptides (containing 113 high confidence sites) were identified across samples, by far the largest endogenous phosphopeptide data set cataloged to date. In addition, the method was readily applied for phosphoproteomics of the same set of samples, with 172 phosphopeptides identified and significant changes in dozens of phosphopeptides observed. Given the simplicity and robustness of the proposed method, we envision that it can be readily used for comprehensive phosphorylation studies of serum and other biofluid samples.
Collapse
Affiliation(s)
- Ci Wu
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington D.C. 20007, United States
- School
of Chemistry and Chemical Engineering, Liaoning
Normal University, Dalian 116029, China
| | - Shen Zhang
- Clinical
Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha 410000, China
| | - Chunyan Hou
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington D.C. 20007, United States
| | - Stephen Byers
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington D.C. 20007, United States
| | - Junfeng Ma
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington D.C. 20007, United States
| |
Collapse
|
17
|
Kurgan N, Kjærgaard Larsen J, Deshmukh AS. Harnessing the power of proteomics in precision diabetes medicine. Diabetologia 2024; 67:783-797. [PMID: 38345659 DOI: 10.1007/s00125-024-06097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 03/21/2024]
Abstract
Precision diabetes medicine (PDM) aims to reduce errors in prevention programmes, diagnosis thresholds, prognosis prediction and treatment strategies. However, its advancement and implementation are difficult due to the heterogeneity of complex molecular processes and environmental exposures that influence an individual's disease trajectory. To address this challenge, it is imperative to develop robust screening methods for all areas of PDM. Innovative proteomic technologies, alongside genomics, have proven effective in precision cancer medicine and are showing promise in diabetes research for potential translation. This narrative review highlights how proteomics is well-positioned to help improve PDM. Specifically, a critical assessment of widely adopted affinity-based proteomic technologies in large-scale clinical studies and evidence of the benefits and feasibility of using MS-based plasma proteomics is presented. We also present a case for the use of proteomics to identify predictive protein panels for type 2 diabetes subtyping and the development of clinical prediction models for prevention, diagnosis, prognosis and treatment strategies. Lastly, we discuss the importance of plasma and tissue proteomics and its integration with genomics (proteogenomics) for identifying unique type 2 diabetes intra- and inter-subtype aetiology. We conclude with a call for action formed on advancing proteomics technologies, benchmarking their performance and standardisation across sites, with an emphasis on data sharing and the inclusion of diverse ancestries in large cohort studies. These efforts should foster collaboration with key stakeholders and align with ongoing academic programmes such as the Precision Medicine in Diabetes Initiative consortium.
Collapse
Affiliation(s)
- Nigel Kurgan
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Kjærgaard Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Patibandla C, van Aalten L, Dinkova-Kostova AT, Honda T, Cuadrado A, Fernández-Ginés R, McNeilly AD, Hayes JD, Cantley J, Sutherland C. Inhibition of glycogen synthase kinase-3 enhances NRF2 protein stability, nuclear localisation and target gene transcription in pancreatic beta cells. Redox Biol 2024; 71:103117. [PMID: 38479223 PMCID: PMC10950707 DOI: 10.1016/j.redox.2024.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Accumulation of reactive oxygen species (i.e., oxidative stress) is a leading cause of beta cell dysfunction and apoptosis in diabetes. NRF2 (NF-E2 p45-related factor-2) regulates the adaptation to oxidative stress, and its activity is negatively regulated by the redox-sensitive CUL3 (cullin-3) ubiquitin ligase substrate adaptor KEAP1 (Kelch-like ECH-associated protein-1). Additionally, NRF2 is repressed by the insulin-regulated Glycogen Synthase Kinase-3 (GSK3). We have demonstrated that phosphorylation of NRF2 by GSK3 enhances β-TrCP (beta-transducin repeat-containing protein) binding and ubiquitylation by CUL1 (cullin-1), resulting in increased proteasomal degradation of NRF2. Thus, we hypothesise that inhibition of GSK3 activity or β-TrCP binding upregulates NRF2 and so protects beta cells against oxidative stress. We have found that treating the pancreatic beta cell line INS-1 832/13 with the KEAP1 inhibitor TBE31 significantly enhanced NRF2 protein levels. The presence of the GSK3 inhibitor CT99021 or the β-TrCP-NRF2 protein-protein interaction inhibitor PHAR, along with TBE31, resulted in prolonged NRF2 stability and enhanced nuclear localisation (P < 0.05). TBE31-mediated induction of NRF2-target genes encoding NAD(P)H quinone oxidoreductase 1 (Nqo1), glutamate-cysteine ligase modifier (Gclm) subunit and heme oxygenase (Hmox1) was significantly enhanced by the presence of CT99021 or PHAR (P < 0.05) in both INS-1 832/13 and in isolated mouse islets. Identical results were obtained using structurally distinct GSK3 inhibitors and inhibition of KEAP1 with sulforaphane. In summary, we demonstrate that GSK3 and β-TrCP/CUL1 regulate the proteasomal degradation of NRF2, enhancing the impact of KEAP1 regulation, and so contributes to the redox status of pancreatic beta cells. Inhibition of GSK3, or β-TrCP/CUL1 binding to NRF2 may represent a strategy to protect beta cells from oxidative stress.
Collapse
Affiliation(s)
- Chinmai Patibandla
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom.
| | - Lidy van Aalten
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Albena T Dinkova-Kostova
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Tadashi Honda
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas Sols-Morreale UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Raquel Fernández-Ginés
- Instituto de Investigaciones Biomédicas Sols-Morreale UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Alison D McNeilly
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - John D Hayes
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - James Cantley
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Calum Sutherland
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| |
Collapse
|
19
|
Zhang M, Zhao Y, Umar A, Zhang H, Yang L, Huang J, Long Y, Yu Z. Comparative analysis of microbial composition and functional characteristics in dental plaque and saliva of oral cancer patients. BMC Oral Health 2024; 24:411. [PMID: 38575895 PMCID: PMC10993480 DOI: 10.1186/s12903-024-04181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The oral cavity is home to various ecological niches, each with its own unique microbial composition. Understanding the microbial communities and gene composition in different ecological niches within the oral cavity of oral cancer (OC) patients is crucial for determining how these microbial populations contribute to disease progression. METHODS In this study, saliva and dental plaque samples were collected from patients with OC. Metagenomic sequencing was employed to analyze the microbial community classification and functional composition of the different sample groups. RESULTS The results of the study revealed significant differences in both the function and classification of microbial communities between saliva and dental plaque samples. The diversity of microbial species in saliva was found to be higher compared to that in plaque samples. Notably, Actinobacteria were enriched in the dental plaque of OC patients. Furthermore, the study identified several inter-group differential marker species, including Prevotella intermedia, Haemophilus parahaemolyticus, Actinomyces radius, Corynebacterium matruchitii, and Veillonella atypica. Additionally, 1,353 differential genes were annotated into 23 functional pathways. Interestingly, a significant correlation was observed between differentially labeled species and Herpes simplex virus 1 (HSV-1) infection, which may be related to the occurrence and development of cancer. CONCLUSIONS Significant differences in the microbial and genetic composition of saliva and dental plaque samples were observed in OC patients. Furthermore, pathogenic bacteria associated with oral diseases were predominantly enriched in saliva. The identification of inter-group differential biomarkers and pathways provide insights into the relationship between oral microbiota and the occurrence and development of OC.
Collapse
Affiliation(s)
- Man Zhang
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yiming Zhao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Abdulrahim Umar
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hailin Zhang
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lirong Yang
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ying Long
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Sharma C, Hamza A, Boyle E, Donu D, Cen Y. Post-Translational Modifications and Diabetes. Biomolecules 2024; 14:310. [PMID: 38540730 PMCID: PMC10968569 DOI: 10.3390/biom14030310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetes and its associated complications have increasingly become major challenges for global healthcare. The current therapeutic strategies involve insulin replacement therapy for type 1 diabetes (T1D) and small-molecule drugs for type 2 diabetes (T2D). Despite these advances, the complex nature of diabetes necessitates innovative clinical interventions for effective treatment and complication prevention. Accumulative evidence suggests that protein post-translational modifications (PTMs), including glycosylation, phosphorylation, acetylation, and SUMOylation, play important roles in diabetes and its pathological consequences. Therefore, the investigation of these PTMs not only sheds important light on the mechanistic regulation of diabetes but also opens new avenues for targeted therapies. Here, we offer a comprehensive overview of the role of several PTMs in diabetes, focusing on the most recent advances in understanding their functions and regulatory mechanisms. Additionally, we summarize the pharmacological interventions targeting PTMs that have advanced into clinical trials for the treatment of diabetes. Current challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Abu Hamza
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Emily Boyle
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
21
|
Park SH, Gye MC. Dibutyl phthalate disrupts glycogen synthase kinase 3α essential for sperm motility. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115977. [PMID: 38242044 DOI: 10.1016/j.ecoenv.2024.115977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
To unravel the toxic mechanism of phthalate ester plasticizer endocrine disruptor in spermatozoa, we examined the effect of dibutyl phthalate (DBP) on the stability and inhibitory phosphorylation of glycogen synthase kinase 3α (GSK3α), a protein kinase crucial for sperm motility in mice. In DBP-treated spermatozoa, reactive oxygen species (ROS) and lipid peroxide were significantly increased. In computer-assisted sperm analysis, DBP at concentrations of 10 - 100 μg/mL significantly decreased total motility and progressive motility of spermatozoa. On western blots, DBP decreased p-GSK3α(Ser21) and increased p-GSK3α(Tyr279) in spermatozoa. Similarly, hydrogen peroxide decreased p-GSK3α(Ser21) but not p-GSK3α(Tyr279) in spermatozoa. Immunofluorescent labeling demonstrated that DBP markedly decreased immunoreactivities of GSK3α and p-GSK3α(Ser21) but increased immunoreactivity of p-GSK3α(Tyr279) in spermatozoa. DBP at a concentration of 100 μg/mL significantly increased phosphatase activity in spermatozoa. Calyculin A, a protein phosphatase 1 and 2 A inhibitor, markedly increased p-GSK3α(Ser21) and sperm motility and attenuated a DBP-induced decrease of p-GSK3α(Ser21) and sperm motility. On western blot, 1-100 μg/mL DBP decreased GSK3α in spermatozoa. On immunoprecipitation western blot, DBP at 10 - 100 μg/mL increased polyubiquitinated sperm proteins including GSK3α. The MG115, proteasome inhibitor attenuated degradation of GSK3α in DBP-treated spermatozoa. Hydrogen peroxide at 10 μM increased polyubiquitinated sperm proteins, suggesting that DBP may increase ubiquitination of GSK3α via ROS induction. Together, DBP may decrease the cellular amount of GSK3α through the ubiquitin-proteasome pathway and p-GSK3α(Ser21) through ROS generation and activation of protein phosphatases, impairing sperm motility.
Collapse
Affiliation(s)
- Seung Hyun Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
22
|
Perrier J, Nawrot M, Madec AM, Chikh K, Chauvin MA, Damblon C, Sabatier J, Thivolet CH, Rieusset J, Rautureau GJP, Panthu B. Human Pancreatic Islets React to Glucolipotoxicity by Secreting Pyruvate and Citrate. Nutrients 2023; 15:4791. [PMID: 38004183 PMCID: PMC10674605 DOI: 10.3390/nu15224791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Progressive decline in pancreatic beta-cell function is central to the pathogenesis of type 2 diabetes (T2D). Here, we explore the relationship between the beta cell and its nutritional environment, asking how an excess of energy substrate leads to altered energy production and subsequent insulin secretion. Alterations in intracellular metabolic homeostasis are key markers of islets with T2D, but changes in cellular metabolite exchanges with their environment remain unknown. We answered this question using nuclear magnetic resonance-based quantitative metabolomics and evaluated the consumption or secretion of 31 extracellular metabolites from healthy and T2D human islets. Islets were also cultured under high levels of glucose and/or palmitate to induce gluco-, lipo-, and glucolipotoxicity. Biochemical analyses revealed drastic alterations in the pyruvate and citrate pathways, which appear to be associated with mitochondrial oxoglutarate dehydrogenase (OGDH) downregulation. We repeated these manipulations on the rat insulinoma-derived beta-pancreatic cell line (INS-1E). Our results highlight an OGDH downregulation with a clear effect on the pyruvate and citrate pathways. However, citrate is directed to lipogenesis in the INS-1E cells instead of being secreted as in human islets. Our results demonstrate the ability of metabolomic approaches performed on culture media to easily discriminate T2D from healthy and functional islets.
Collapse
Affiliation(s)
- Johan Perrier
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Margaux Nawrot
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Anne-Marie Madec
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Karim Chikh
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Hopital Lyon Sud, 69310 Pierre-Bénite, France
| | - Marie-Agnès Chauvin
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Christian Damblon
- Unité de Recherche MolSys, Faculté des Sciences, Université de Liège, 99131 Liège, Belgium
| | - Julia Sabatier
- Laboratory of Cell Therapy for Diabetes (LTCD), PRIMS Facility, Institute for Regenerative Medicine and Biotherapy (IRMB), University Hospital of Montpellier, 34295 Montpellier, France
| | - Charles H. Thivolet
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Hopital Lyon Sud, 69310 Pierre-Bénite, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Gilles J. P. Rautureau
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082 CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Baptiste Panthu
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| |
Collapse
|
23
|
Arumugam TV, Alli-Shaik A, Liehn EA, Selvaraji S, Poh L, Rajeev V, Cho Y, Cho Y, Kim J, Kim J, Swa HLF, Hao DTZ, Rattanasopa C, Fann DYW, Mayan DC, Ng GYQ, Baik SH, Mallilankaraman K, Gelderblom M, Drummond GR, Sobey CG, Kennedy BK, Singaraja RR, Mattson MP, Jo DG, Gunaratne J. Multiomics analyses reveal dynamic bioenergetic pathways and functional remodeling of the heart during intermittent fasting. eLife 2023; 12:RP89214. [PMID: 37769126 PMCID: PMC10538958 DOI: 10.7554/elife.89214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Intermittent fasting (IF) has been shown to reduce cardiovascular risk factors in both animals and humans, and can protect the heart against ischemic injury in models of myocardial infarction. However, the underlying molecular mechanisms behind these effects remain unclear. To shed light on the molecular and cellular adaptations of the heart to IF, we conducted comprehensive system-wide analyses of the proteome, phosphoproteome, and transcriptome, followed by functional analysis. Using advanced mass spectrometry, we profiled the proteome and phosphoproteome of heart tissues obtained from mice that were maintained on daily 12- or 16 hr fasting, every-other-day fasting, or ad libitum control feeding regimens for 6 months. We also performed RNA sequencing to evaluate whether the observed molecular responses to IF occur at the transcriptional or post-transcriptional levels. Our analyses revealed that IF significantly affected pathways that regulate cyclic GMP signaling, lipid and amino acid metabolism, cell adhesion, cell death, and inflammation. Furthermore, we found that the impact of IF on different metabolic processes varied depending on the length of the fasting regimen. Short IF regimens showed a higher correlation of pathway alteration, while longer IF regimens had an inverse correlation of metabolic processes such as fatty acid oxidation and immune processes. Additionally, functional echocardiographic analyses demonstrated that IF enhances stress-induced cardiac performance. Our systematic multi-omics study provides a molecular framework for understanding how IF impacts the heart's function and its vulnerability to injury and disease.
Collapse
Affiliation(s)
- Thiruma V Arumugam
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Asfa Alli-Shaik
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Elisa A Liehn
- National Heart Research Institute, National Heart Centre SingaporeSingaporeSingapore
- Institute for Molecular Medicine, University of Southern DenmarkOdenseDenmark
- National Institute of Pathology "Victor Babes"BucharestRomania
| | - Sharmelee Selvaraji
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of SingaporeSingaporeSingapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Vismitha Rajeev
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Yongeun Cho
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jongho Kim
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Joonki Kim
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- Natural Products Research Center, Korea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Hannah LF Swa
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - David Tan Zhi Hao
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Chutima Rattanasopa
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and ResearchSingaporeSingapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of SingaporeSingaporeSingapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - David Castano Mayan
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Sang-Ha Baik
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
| | - Brian K Kennedy
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Roshni R Singaraja
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| |
Collapse
|
24
|
Converti A, Bianchi MS, Martinez MD, Montaner AD, Lux‐Lantos V, Bonaventura MM. IMT504 protects beta cells against apoptosis and maintains beta cell identity, without modifying proliferation. Physiol Rep 2023; 11:e15790. [PMID: 37568265 PMCID: PMC10421975 DOI: 10.14814/phy2.15790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
We have demonstrated that oligodeoxynucleotide IMT504 promotes significant improvement in the diabetic condition in diverse animal models. Based on these results, here we evaluated whether these effects observed in vivo could be due to direct effects on β-cells. We demonstrate by immunofluorescence that IMT504 enters the cell and locates in cytoplasm where it induces GSK-3β phosphorylation that inactivates this kinase. As GSK-3β tags Pdx1 for proteasomal degradation, by inactivating GSK-3β, IMT504 induces an increase in Pdx1 protein levels, demonstrated by Western blotting. Concomitantly, an increase in Ins2 and Pdx1 gene transcription was observed, with no significant increase in insulin content or secretion. Enhanced Pdx1 is promising since it is a key transcription factor for insulin synthesis and is also described as an essential factor for the maintenance β-cell phenotype and function. Dose-dependent inhibition of H2 O2 -induced apoptosis determined by ELISA as well as decreased expression of Bax was also observed. These results were confirmed in another β-cell line, beta-TC-6 cells, in which a cytokine mix induced apoptosis that was reversed by IMT504. In addition, an inhibitor of IMT504 entrance into cells abrogated the effect IMT504. Based on these results we conclude that the β-cell recovery observed in vivo may include direct effects of IMT504 on β-cells, by maintaining their identity/phenotype and protecting them from oxidative stress and cytokine-induced apoptosis. Thus, this work positions IMT504 as a promising option in the framework of the search of new therapies for type I diabetes treatment.
Collapse
Affiliation(s)
- Ayelén Converti
- Instituto de Biología y Medicina Experimental (IBYME‐CONICET)Buenos AiresArgentina
| | - María Silvia Bianchi
- Instituto de Biología y Medicina Experimental (IBYME‐CONICET)Buenos AiresArgentina
| | - Mario D. Martinez
- CONICET‐Universidad de Buenos Aires, UMYMFORBuenos AiresArgentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| | | | - Victoria Lux‐Lantos
- Instituto de Biología y Medicina Experimental (IBYME‐CONICET)Buenos AiresArgentina
| | - María Marta Bonaventura
- Instituto de Biología y Medicina Experimental (IBYME‐CONICET)Buenos AiresArgentina
- Universidad Nacional de San Martin (UNSAM), ECyTBuenos AiresArgentina
| |
Collapse
|
25
|
Zhao S, Gu T, Weng K, Zhang Y, Cao Z, Zhang Y, Zhao W, Chen G, Xu Q. Phosphoproteome Reveals Extracellular Regulated Protein Kinase Phosphorylation Mediated by Mitogen-Activated Protein Kinase Kinase-Regulating Granulosa Cell Apoptosis in Broody Geese. Int J Mol Sci 2023; 24:12278. [PMID: 37569653 PMCID: PMC10418642 DOI: 10.3390/ijms241512278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Geese have strong brooding abilities, which severely affect their egg-laying performance. Phosphorylation is widely involved in regulating reproductive activities, but its role in goose brooding behavior is unclear. In this study, we investigated differences in the phosphoprotein composition of ovarian tissue between laying and brooding geese. Brooding geese exhibited ovarian and follicular atrophy, as well as significant oxidative stress and granulosa cell apoptosis. We identified 578 highly phosphorylated proteins and 281 lowly phosphorylated proteins, and a KEGG pathway analysis showed that these differentially phosphorylated proteins were mainly involved in cell apoptosis, adhesion junctions, and other signaling pathways related to goose brooding behavior. The extracellular regulated protein kinase (ERK)-B-Cell Lymphoma 2(BCL2) signaling pathway was identified as playing an important role in regulating cell apoptosis. The phosphorylation levels of ERK proteins were significantly lower in brooding geese than in laying geese, and the expression of mitogen-activated protein kinase kinase (MEK) was downregulated. Overexpression of MEK led to a significant increase in ERK phosphorylation and BCL2 transcription in H2O2-induced granulosa cells (p < 0.05), partially rescuing cell death. Conversely, granulosa cells receiving MEK siRNA exhibited the opposite trend. In conclusion, geese experience significant oxidative stress and granulosa cell apoptosis during brooding, with downregulated MEK expression, decreased phosphorylation of ERK protein, and inhibited expression of BCL2.
Collapse
Affiliation(s)
- Shuai Zhao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Tiantian Gu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Kaiqi Weng
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Yu Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Zhengfeng Cao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Yang Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Wenming Zhao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| |
Collapse
|
26
|
Cheng A, Xu T, You W, Wang T, Zhang D, Guo H, Zhang H, Pan X, Wang Y, Liu L, Zhang K, Shi J, Yao X, Guo J, Yang Z. A mitotic NADPH upsurge promotes chromosome segregation and tumour progression in aneuploid cancer cells. Nat Metab 2023; 5:1141-1158. [PMID: 37349486 DOI: 10.1038/s42255-023-00832-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Redox metabolites have been observed to fluctuate through the cell cycle in cancer cells, but the functional impacts of such metabolic oscillations remain unknown. Here, we uncover a mitosis-specific nicotinamide adenine dinucleotide phosphate (NADPH) upsurge that is essential for tumour progression. Specifically, NADPH is produced by glucose 6-phosphate dehydrogenase (G6PD) upon mitotic entry, which neutralizes elevated reactive oxygen species (ROS) and prevents ROS-mediated inactivation of mitotic kinases and chromosome missegregation. Mitotic activation of G6PD depends on the phosphorylation of its co-chaperone protein BAG3 at threonine 285, which results in dissociation of inhibitory BAG3. Blocking BAG3T285 phosphorylation induces tumour suppression. A mitotic NADPH upsurge is present in aneuploid cancer cells with high levels of ROS, while nearly unobservable in near-diploid cancer cells. High BAG3T285 phosphorylation is associated with worse prognosis in a cohort of patients with microsatellite-stable colorectal cancer. Our study reveals that aneuploid cancer cells with high levels of ROS depend on a G6PD-mediated NADPH upsurge in mitosis to protect them from ROS-induced chromosome missegregation.
Collapse
Affiliation(s)
- Aoxing Cheng
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tian Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiyi You
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ting Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dongming Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei, China
| | - Haiyan Zhang
- Core Facility Centre for Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Pan
- National Center of Biomedical Analysis of China, Beijing, China
| | - Yucai Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liu Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jue Shi
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Guo
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Zhenye Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
27
|
Nishiyama K, Ono M, Tsuno T, Inoue R, Fukunaka A, Okuyama T, Kyohara M, Togashi Y, Fukushima S, Atsumi T, Sato A, Tsurumoto A, Sakai C, Fujitani Y, Terauchi Y, Ito S, Shirakawa J. Protective Effects of Imeglimin and Metformin Combination Therapy on β-Cells in db/db Male Mice. Endocrinology 2023; 164:bqad095. [PMID: 37314160 DOI: 10.1210/endocr/bqad095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Imeglimin and metformin act in metabolic organs, including β-cells, via different mechanisms. In the present study, we investigated the impacts of imeglimin, metformin, or their combination (Imeg + Met) on β-cells, the liver, and adipose tissues in db/db mice. Imeglimin, metformin, or Imeg + Met treatment had no significant effects on glucose tolerance, insulin sensitivity, respiratory exchange ratio, or locomotor activity in db/db mice. The responsiveness of insulin secretion to glucose was recovered by Imeg + Met treatment. Furthermore, Imeg + Met treatment increased β-cell mass by enhancing β-cell proliferation and ameliorating β-cell apoptosis in db/db mice. Hepatic steatosis, the morphology of adipocytes, adiposity assessed by computed tomography, and the expression of genes related to glucose or lipid metabolism and inflammation in the liver and fat tissues showed no notable differences in db/db mice. Global gene expression analysis of isolated islets indicated that the genes related to regulation of cell population proliferation and negative regulation of cell death were enriched by Imeg + Met treatment in db/db islets. In vitro culture experiments confirmed the protective effects of Imeg + Met against β-cell apoptosis. The expression of Snai1, Tnfrsf18, Pdcd1, Mmp9, Ccr7, Egr3, and Cxcl12, some of which have been linked to apoptosis, in db/db islets was attenuated by Imeg + Met. Treatment of a β-cell line with Imeg + Met prevented apoptosis induced by hydrogen peroxide or palmitate. Thus, the combination of imeglimin and metformin is beneficial for the maintenance of β-cell mass in db/db mice, probably through direct action on β-cells, suggesting a potential strategy for protecting β-cells in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Kuniyuki Nishiyama
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masato Ono
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Takahiro Tsuno
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Tomoko Okuyama
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Mayu Kyohara
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Yu Togashi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Setsuko Fukushima
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Takuto Atsumi
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Aoi Sato
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Asuka Tsurumoto
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Chisato Sakai
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
28
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
29
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
30
|
Yan Z, Cao X, Sun S, Sun B, Gao J. Inhibition of GSK3B phosphorylation improves glucose and lipid metabolism disorder. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166726. [PMID: 37146915 DOI: 10.1016/j.bbadis.2023.166726] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Hepatic glycolipid metabolism disorder is considered as one of the key pathogenic factors for many chronic diseases. Revealing the molecular mechanism of metabolic disorder and exploring drug targets are crucial for the treatment of glucose and lipid metabolic diseases. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported to be associated with the pathogenesis of various metabolic diseases. Herein, GAPDH-knockdown ZFL cells and GAPDH-downregulation zebrafish exhibited significant lipid deposition increase and glycogen reduction, thus inducing glucose and lipid metabolism disorders. Using high-sensitivity mass spectrometry-based proteomic and phosphoproteomic analysis, we identified 6838 proteins and 3738 phosphorylated proteins in GAPDH-knockdown ZFL cells. The protein-protein interaction network and DEPPs analyses showed that gsk3baY216 were involved in lipid and glucose metabolism, which was verified by In vitro study. The enzyme activity analysis and cell staining results showed that HepG2 and NCTC-1469 cells transfected with GSK3BY216F plasmid had significantly lower glucose and insulin levels, the decreased lipid deposition, and the increased glycogen synthesis than those transfected with GSK3BY216E plasmid, suggesting that inhibition of GSK3B phosphorylation could significantly improve GSK3B hyperphosphorylation-induced glucose tolerance impairment and insulin sensitivity reduction. To our knowledge, this is the first multi-omic study of GAPDH-knockdown ZFL cells. This study provides insights into the molecular mechanism of glucose and lipid metabolic disorder, and provides potential targets (kinases) for the treatments of human glucose and lipid metabolic diseases.
Collapse
Affiliation(s)
- Ze Yan
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Shouxiang Sun
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Sun
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
31
|
Tanaka A, Kosuda M, Yamana M, Furukawa A, Nagasawa A, Fujishiro M, Kohno G, Ishihara H. A large-scale functional analysis of genes expressed differentially in insulin secreting MIN6 sublines with high versus mildly reduced glucose-responsiveness. Sci Rep 2023; 13:5654. [PMID: 37024560 PMCID: PMC10079668 DOI: 10.1038/s41598-023-32589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Molecular mechanisms of glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells are not fully understood. GSIS deteriorations are believed to underlie the pathogenesis of type 2 diabetes mellitus. By comparing transcript levels of 3 insulin secreting MIN6 cell sublines with strong glucose-responsiveness and 3 with mildly reduced responsiveness, we identified 630 differentially expressed genes. Using our recently developed system based on recombinase-mediated cassette exchange, we conducted large-scale generation of stable clones overexpressing such genes in the doxycycline-regulated manner. We found that overexpressions of 18, out of 83, genes altered GSIS. Sox11 ((sex determining region Y)-box 11) was selected to confirm its roles in regulating insulin secretion, and the gene was subjected to shRNA-mediated suppression. While Sox11 overexpression decreased GSIS, its suppression increased GSIS, confirming the role of Sox11 as a negative regulator of insulin secretion. Furthermore, metabolic experiments using radiolabelled glucose showed Sox11 to participate in regulating glucose metabolism. Our data suggested that overexpression screening is a feasible option for systemic functional testing to identify important genes in GSIS.
Collapse
Affiliation(s)
- Aya Tanaka
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Minami Kosuda
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Midori Yamana
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Asami Furukawa
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Akiko Nagasawa
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Midori Fujishiro
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Genta Kohno
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Hisamitsu Ishihara
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan.
| |
Collapse
|
32
|
Ding E, Deng F, Fang J, Li T, Hou M, Liu J, Miao K, Yan W, Fang K, Shi W, Fu Y, Liu Y, Dong H, Dong L, Ding C, Liu X, Pollitt KJG, Ji JS, Shi Y, Cai Y, Tang S, Shi X. Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47009. [PMID: 37042841 PMCID: PMC10094192 DOI: 10.1289/ehp11896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Organophosphate esters (OPEs) are common endocrine-disrupting chemicals, and OPE exposure may be associated with type 2 diabetes (T2D). However, greater knowledge regarding the biomolecular intermediators underlying the impact of OPEs on T2D in humans are needed to understand biological etiology. OBJECTIVES We explored the associations between OPE exposure and glycometabolic markers among older Chinese adults 60-69 years of age to elucidate the underlying mechanisms using a multi-omics approach. METHODS This was a longitudinal panel study comprising 76 healthy participants 60-69 years of age who lived in Jinan city of northern China. The study was conducted once every month for 5 months, from September 2018 to January 2019. We measured a total of 17 OPEs in the blood, 11 OPE metabolites in urine, and 4 glycometabolic markers (fasting plasma glucose, glycated serum protein, fasting insulin, and homeostatic model assessment for insulin resistance). The blood transcriptome and serum/urine metabolome were also evaluated. The associations between individual OPEs and glycometabolic markers were explored. An adverse outcome pathway (AOP) was established to determine the biomolecules mediating the associations. RESULTS Exposure to five OPEs and OPE metabolites (trimethylolpropane phosphate, triphenyl phosphate, tri-iso-butyl phosphate, dibutyl phosphate, and diphenyl phosphate) was associated with increased levels of glycometabolic markers. The mixture effect analysis further indicated the adverse effect of OPE mixtures. Multi-omics analyses revealed that the endogenous changes in the transcriptional and metabolic levels were associated with OPE exposure. The putative AOPs model suggested that triggers of molecular initiation events (e.g., insulin receptor and glucose transporter type 4) with subsequent key events, including disruptions in signal transduction pathways (e.g., phosphatidylinositol 3-kinase/protein kinase B and insulin secretion signaling) and biological functions (glucose uptake and insulin secretion), may constitute the diabetogenic effects of OPEs. DISCUSSION OPEs are associated with the elevated risk of T2D among older Chinese adults 60-69 years of age. Implementing OPE exposure reduction strategies may help reduce the T2D burden among these individuals, if the relationship is causal. https://doi.org/10.1289/EHP11896.
Collapse
Affiliation(s)
- Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ke Miao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenyan Yan
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanzheng Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changming Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaohui Liu
- National Protein Science Technology Center and School of Life Sciences, Tsinghua University, Beijing, China
| | - Krystal J. Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - John S. Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Tseng HJ, Chen WC, Kuo TF, Yang G, Feng CS, Chen HM, Chen TY, Lee TH, Yang WC, Tsai KC, Huang WJ. Pharmacological and mechanistic study of PS1, a Pdia4 inhibitor, in β-cell pathogenesis and diabetes in db/db mice. Cell Mol Life Sci 2023; 80:101. [PMID: 36935456 PMCID: PMC10025235 DOI: 10.1007/s00018-022-04677-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 03/21/2023]
Abstract
Pdia4 has been characterized as a key protein that positively regulates β-cell failure and diabetes via ROS regulation. Here, we investigated the function and mechanism of PS1, a Pdia4 inhibitor, in β-cells and diabetes. We found that PS1 had an IC50 of 4 μM for Pdia4. Furthermore, PS1 alone and in combination with metformin significantly reversed diabetes in db/db mice, 6 to 7 mice per group, as evidenced by blood glucose, glycosylated hemoglobin A1c (HbA1c), glucose tolerance test, diabetic incidence, survival and longevity (P < 0.05 or less). Accordingly, PS1 reduced cell death and dysfunction in the pancreatic β-islets of db/db mice as exemplified by serum insulin, serum c-peptide, reactive oxygen species (ROS), islet atrophy, and homeostatic model assessment (HOMA) indices (P < 0.05 or less). Moreover, PS1 decreased cell death in the β-islets of db/db mice. Mechanistic studies showed that PS1 significantly increased cell survival and insulin secretion in Min6 cells in response to high glucose (P < 0.05 or less). This increase could be attributed to a reduction in ROS production and the activity of electron transport chain complex 1 (ETC C1) and Nox in Min6 cells by PS1. Further, we found that PS1 inhibited the enzymatic activity of Pdia4 and mitigated the interaction between Pdia4 and Ndufs3 or p22 in Min6 cells (P < 0.01 or less). Taken together, this work demonstrates that PS1 negatively regulated β-cell pathogenesis and diabetes via reduction of ROS production involving the Pdia4/Ndufs3 and Pdia4/p22 cascades.
Collapse
Affiliation(s)
- Hui-Ju Tseng
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan
| | - Wen-Chu Chen
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan
| | - Tien-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan
| | - Greta Yang
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan
| | - Ching-Shan Feng
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Hui-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan
| | - Tzung-Yan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan
- Translational Biomedical Research Center, Academia Sinica, Taipei City, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Academia Rd. Section 2, Nankang, Taipei City, Taiwan.
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan.
- Translational Biomedical Research Center, Academia Sinica, Taipei City, Taiwan.
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan.
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei City, Taiwan.
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan.
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan.
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan.
- Program for the Clinical Drug Discovery From Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan.
- School of Pharmacy, National Defense Medical Center, Taipei City, Taiwan.
| |
Collapse
|
34
|
Dalle S, Abderrahmani A, Renard E. Pharmacological inhibitors of β-cell dysfunction and death as therapeutics for diabetes. Front Endocrinol (Lausanne) 2023; 14:1076343. [PMID: 37008937 PMCID: PMC10050720 DOI: 10.3389/fendo.2023.1076343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
More than 500 million adults suffer from diabetes worldwide, and this number is constantly increasing. Diabetes causes 5 million deaths per year and huge healthcare costs per year. β-cell death is the major cause of type 1 diabetes. β-cell secretory dysfunction plays a key role in the development of type 2 diabetes. A loss of β-cell mass due to apoptotic death has also been proposed as critical for the pathogenesis of type 2 diabetes. Death of β-cells is caused by multiple factors including pro-inflammatory cytokines, chronic hyperglycemia (glucotoxicity), certain fatty acids at high concentrations (lipotoxicity), reactive oxygen species, endoplasmic reticulum stress, and islet amyloid deposits. Unfortunately, none of the currently available antidiabetic drugs favor the maintenance of endogenous β-cell functional mass, indicating an unmet medical need. Here, we comprehensively review over the last ten years the investigation and identification of molecules of pharmacological interest for protecting β-cells against dysfunction and apoptotic death which could pave the way for the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, France
| | - Eric Renard
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
- Laboratoire de Thérapie Cellulaire du Diabète, Centre Hospitalier Universitaire, Montpellier, France
- Département d’Endocrinologie, Diabètologie, Centre Hospitalier Universitaire, Montpellier, France
| |
Collapse
|
35
|
Fazakerley DJ, van Gerwen J, Cooke KC, Duan X, Needham EJ, Díaz-Vegas A, Madsen S, Norris DM, Shun-Shion AS, Krycer JR, Burchfield JG, Yang P, Wade MR, Brozinick JT, James DE, Humphrey SJ. Phosphoproteomics reveals rewiring of the insulin signaling network and multi-nodal defects in insulin resistance. Nat Commun 2023; 14:923. [PMID: 36808134 PMCID: PMC9938909 DOI: 10.1038/s41467-023-36549-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
The failure of metabolic tissues to appropriately respond to insulin ("insulin resistance") is an early marker in the pathogenesis of type 2 diabetes. Protein phosphorylation is central to the adipocyte insulin response, but how adipocyte signaling networks are dysregulated upon insulin resistance is unknown. Here we employ phosphoproteomics to delineate insulin signal transduction in adipocyte cells and adipose tissue. Across a range of insults causing insulin resistance, we observe a marked rewiring of the insulin signaling network. This includes both attenuated insulin-responsive phosphorylation, and the emergence of phosphorylation uniquely insulin-regulated in insulin resistance. Identifying dysregulated phosphosites common to multiple insults reveals subnetworks containing non-canonical regulators of insulin action, such as MARK2/3, and causal drivers of insulin resistance. The presence of several bona fide GSK3 substrates among these phosphosites led us to establish a pipeline for identifying context-specific kinase substrates, revealing widespread dysregulation of GSK3 signaling. Pharmacological inhibition of GSK3 partially reverses insulin resistance in cells and tissue explants. These data highlight that insulin resistance is a multi-nodal signaling defect that includes dysregulated MARK2/3 and GSK3 activity.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Julian van Gerwen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Xiaowen Duan
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alexis Díaz-Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Søren Madsen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Dougall M Norris
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Amber S Shun-Shion
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QL, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QL, Australia
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Pengyi Yang
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW, 2006, Australia
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Mark R Wade
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Joseph T Brozinick
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Medical School, University of Sydney, Sydney, 2006, Australia.
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
36
|
Holubiec MI, Gellert M, Hanschmann EM. Redox signaling and metabolism in Alzheimer's disease. Front Aging Neurosci 2022; 14:1003721. [PMID: 36408110 PMCID: PMC9670316 DOI: 10.3389/fnagi.2022.1003721] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/14/2022] [Indexed: 08/11/2023] Open
Abstract
Reduction and oxidation reactions are essential for biochemical processes. They are part of metabolic pathways and signal transduction. Reactive oxygen species (ROS) as second messengers and oxidative modifications of cysteinyl (Cys) residues are key to transduce and translate intracellular and intercellular signals. Dysregulation of cellular redox signaling is known as oxidative distress, which has been linked to various pathologies, including neurodegeneration. Alzheimer's disease (AD) is a neurodegenerative pathology linked to both, abnormal amyloid precursor protein (APP) processing, generating Aβ peptide, and Tau hyperphosphorylation and aggregation. Signs of oxidative distress in AD include: increase of ROS (H2O2, O2 •-), decrease of the levels or activities of antioxidant enzymes, abnormal oxidation of macromolecules related to elevated Aβ production, and changes in mitochondrial homeostasis linked to Tau phosphorylation. Interestingly, Cys residues present in APP form disulfide bonds that are important for intermolecular interactions and might be involved in the aggregation of Aβ. Moreover, two Cys residues in some Tau isoforms have been shown to be essential for Tau stabilization and its interaction with microtubules. Future research will show the complexities of Tau, its interactome, and the role that Cys residues play in the progression of AD. The specific modification of cysteinyl residues in redox signaling is also tightly connected to the regulation of various metabolic pathways. Many of these pathways have been found to be altered in AD, even at very early stages. In order to analyze the complex changes and underlying mechanisms, several AD models have been developed, including animal models, 2D and 3D cell culture, and ex-vivo studies of patient samples. The use of these models along with innovative, new redox analysis techniques are key to further understand the importance of the redox component in Alzheimer's disease and the identification of new therapeutic targets in the future.
Collapse
Affiliation(s)
- M. I. Holubiec
- IBioBA-MPSP Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifwald, University Greifswald, Greifswald, Germany
| | | |
Collapse
|
37
|
Usher ET, Showalter SA. Biophysical insights into glucose-dependent transcriptional regulation by PDX1. J Biol Chem 2022; 298:102623. [PMID: 36272648 PMCID: PMC9691942 DOI: 10.1016/j.jbc.2022.102623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
The pancreatic and duodenal homeobox 1 (PDX1) is a central regulator of glucose-dependent transcription of insulin in pancreatic β cells. PDX1 transcription factor activity is integral to the development and sustained health of the pancreas; accordingly, deciphering the complex network of cellular cues that lead to PDX1 activation or inactivation is an important step toward understanding the etiopathologies of pancreatic diseases and the development of novel therapeutics. Despite nearly 3 decades of research into PDX1 control of Insulin expression, the molecular mechanisms that dictate the function of PDX1 in response to glucose are still elusive. The transcriptional activation functions of PDX1 are regulated, in part, by its two intrinsically disordered regions, which pose a barrier to its structural and biophysical characterization. Indeed, many studies of PDX1 interactions, clinical mutations, and posttranslational modifications lack molecular level detail. Emerging methods for the quantitative study of intrinsically disordered regions and refined models for transactivation now enable us to validate and interrogate the biochemical and biophysical features of PDX1 that dictate its function. The goal of this review is to summarize existing PDX1 studies and, further, to generate a comprehensive resource for future studies of transcriptional control via PDX1.
Collapse
Affiliation(s)
- Emery T Usher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
38
|
Xia Z, Li M, Hu M, Lin Y, Atteh LL, Fu W, Gao L, Bai M, Huang C, Yue P, Liu Y, Meng W. Phosphoproteomics reveals that cinobufotalin promotes intrahepatic cholangiocarcinoma cell apoptosis by activating the ATM/CHK2/p53 signaling pathway. Front Oncol 2022; 12:982961. [PMID: 36185307 PMCID: PMC9523695 DOI: 10.3389/fonc.2022.982961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor that originates from bile duct’s epithelial cells and is usually characterized by insidious symptoms and poor prognosis. Cinobufotalin (CB), an active ingredient obtained from the Traditional Chinese Medicine ChanSu, is purported to exhibit a wide range of antitumorigenic activities. However, the mechanism by which it achieves such pharmacological effects remains elusive. Here, we disclosed the mechanism of action by which CB inhibits ICC cells. Initial experiments revealed that the proliferation of RBE and HCCC-9810 cells was significantly inhibited by CB with IC50 values of 0.342 μM and 0.421 μM respectively. CB induced the expression of caspase-3 subsequently leading to the apoptosis of ICC cells. Phosphoproteomics revealed that the phosphorylation of many proteins associated with DNA damage response increased. Kinase-substrate enrichment analysis revealed that ATM was activated after CB treatment, while CDK1 was inactivated. Activated ATM increased p-CHK2-T68 and p-p53-S15, which promoted the expression of FAS, DR4 and DR5 and triggered cell apoptosis. In summary, this work reveals the role of CB in inducing DNA damage and cell apoptosis involved in the activation of the ATM/CHK2/p53 signaling pathway, and indicates that CB may serve as a chemotherapeutic drug candidate for ICC treatment.
Collapse
Affiliation(s)
- Zhili Xia
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Minzhen Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Meng Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yanyan Lin
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Institute of Hepatopancreatobiliary Surgery, Lanzhou, China
| | | | - Wenkang Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Long Gao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Mingzhen Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chongfei Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ping Yue
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Institute of Hepatopancreatobiliary Surgery, Lanzhou, China
| | - Yu Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Wenbo Meng, ; Yu Liu,
| | - Wenbo Meng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Institute of Hepatopancreatobiliary Surgery, Lanzhou, China
- *Correspondence: Wenbo Meng, ; Yu Liu,
| |
Collapse
|
39
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
40
|
McDonald S, Ray P, Bunn RC, Fowlkes JL, Thrailkill KM, Popescu I. Heterogeneity and altered β-cell identity in the TallyHo model of early-onset type 2 diabetes. Acta Histochem 2022; 124:151940. [PMID: 35969910 DOI: 10.1016/j.acthis.2022.151940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/01/2022]
Abstract
A primary underlying defect makes β-cells "susceptible" to no longer compensate for the peripheral insulin resistance and to trigger the onset of type 2 diabetes (T2D). New evidence suggests that in T2D, β-cells are not destroyed but experience a loss of identity, reverting to a progenitor-like state and largely losing the ability to sense glucose and produce insulin. We assessed (using fluorescence microscopy and histomorphometry correlated with the glycaemic status) the main β-cell identity modifications as diabetes progresses in the TallyHo/JngJ (TH) male mice, a polygenic model of spontaneous T2D, akin to the human phenotype. We found that: 1) conversion to overt diabetes is paralleled by a progressive reduction of insulin-expressing cells and expansion of a glucagon-positive population, together with alteration of islet size and shape; 2) the β-cell population is highly heterogeneous in terms of insulin content and specific transcription factors like PDX1 and NKX6.1, that are gradually lost during diabetes progression; 3) GLUT2 expression is altered early and strongly reduced at late stages of diabetes; 4) an endocrine developmental program dependent on NGN3-expressing progenitors is revived when hyperglycaemia becomes severe; and 5) the re-expression of the EMT-associated factor vimentin occurs as diabetes worsens, representing a possible regenerative response to β-cell loss. Based on these results, we formulated additional hypotheses for the β-cell identity alteration in the TH model, together with several limitations of the study, that constitute future research directions.
Collapse
Affiliation(s)
- Sarah McDonald
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA
| | - Phil Ray
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - Robert C Bunn
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - John L Fowlkes
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - Kathryn M Thrailkill
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - Iuliana Popescu
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA.
| |
Collapse
|
41
|
Giusti L, Tesi M, Ciregia F, Marselli L, Zallocco L, Suleiman M, De Luca C, Del Guerra S, Zuccarini M, Trerotola M, Eizirik DL, Cnop M, Mazzoni MR, Marchetti P, Lucacchini A, Ronci M. The Protective Action of Metformin against Pro-Inflammatory Cytokine-Induced Human Islet Cell Damage and the Mechanisms Involved. Cells 2022; 11:2465. [PMID: 35954309 PMCID: PMC9368307 DOI: 10.3390/cells11152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Metformin, a drug widely used in type 2 diabetes (T2D), has been shown to protect human β-cells exposed to gluco- and/or lipotoxic conditions and those in islets from T2D donors. We assessed whether metformin could relieve the human β-cell stress induced by pro-inflammatory cytokines (which mediate β-cells damage in type 1 diabetes, T1D) and investigated the underlying mechanisms using shotgun proteomics. Human islets were exposed to 50 U/mL interleukin-1β plus 1000 U/mL interferon-γ for 48 h, with or without 2.4 µg/mL metformin. Glucose-stimulated insulin secretion (GSIS) and caspase 3/7 activity were studied, and a shotgun label free proteomics analysis was performed. Metformin prevented the reduction of GSIS and the activation of caspase 3/7 induced by cytokines. Proteomics analysis identified more than 3000 proteins in human islets. Cytokines alone altered the expression of 244 proteins (145 up- and 99 down-regulated), while, in the presence of metformin, cytokine-exposure modified the expression of 231 proteins (128 up- and 103 downregulated). Among the proteins inversely regulated in the two conditions, we found proteins involved in vesicle motility, defense against oxidative stress (including peroxiredoxins), metabolism, protein synthesis, glycolysis and its regulation, and cytoskeletal proteins. Metformin inhibited pathways linked to inflammation, immune reactions, mammalian target of rapamycin (mTOR) signaling, and cell senescence. Some of the changes were confirmed by Western blot. Therefore, metformin prevented part of the deleterious actions of pro-inflammatory cytokines in human β-cells, which was accompanied by islet proteome modifications. This suggests that metformin, besides use in T2D, might be considered for β-cell protection in other types of diabetes, possibly including early T1D.
Collapse
Affiliation(s)
- Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Federica Ciregia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Guerra
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Mariachiara Zuccarini
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Trerotola
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Maurizio Ronci
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
42
|
Dar MA, Arafah A, Bhat KA, Khan A, Khan MS, Ali A, Ahmad SM, Rashid SM, Rehman MU. Multiomics technologies: role in disease biomarker discoveries and therapeutics. Brief Funct Genomics 2022; 22:76-96. [PMID: 35809340 DOI: 10.1093/bfgp/elac017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Medical research has been revolutionized after the publication of the full human genome. This was the major landmark that paved the way for understanding the biological functions of different macro and micro molecules. With the advent of different high-throughput technologies, biomedical research was further revolutionized. These technologies constitute genomics, transcriptomics, proteomics, metabolomics, etc. Collectively, these high-throughputs are referred to as multi-omics technologies. In the biomedical field, these omics technologies act as efficient and effective tools for disease diagnosis, management, monitoring, treatment and discovery of certain novel disease biomarkers. Genotyping arrays and other transcriptomic studies have helped us to elucidate the gene expression patterns in different biological states, i.e. healthy and diseased states. Further omics technologies such as proteomics and metabolomics have an important role in predicting the role of different biological molecules in an organism. It is because of these high throughput omics technologies that we have been able to fully understand the role of different genes, proteins, metabolites and biological pathways in a diseased condition. To understand a complex biological process, it is important to apply an integrative approach that analyses the multi-omics data in order to highlight the possible interrelationships of the involved biomolecules and their functions. Furthermore, these omics technologies offer an important opportunity to understand the information that underlies disease. In the current review, we will discuss the importance of omics technologies as promising tools to understand the role of different biomolecules in diseases such as cancer, cardiovascular diseases, neurodegenerative diseases and diabetes. SUMMARY POINTS
Collapse
|
43
|
Zeng X, Lan Y, Xiao J, Hu L, Tan L, Liang M, Wang X, Lu S, Peng T, Long F. Advances in phosphoproteomics and its application to COPD. Expert Rev Proteomics 2022; 19:311-324. [PMID: 36730079 DOI: 10.1080/14789450.2023.2176756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) was the third leading cause of global death in 2019, causing a huge economic burden to society. Therefore, it is urgent to identify specific phenotypes of COPD patients through early detection, and to promptly treat exacerbations. The field of phosphoproteomics has been a massive advancement, compelled by the developments in mass spectrometry, enrichment strategies, algorithms, and tools. Modern mass spectrometry-based phosphoproteomics allows understanding of disease pathobiology, biomarker discovery, and predicting new therapeutic modalities. AREAS COVERED In this article, we present an overview of phosphoproteomic research and strategies for enrichment and fractionation of phosphopeptides, identification of phosphorylation sites, chromatographic separation and mass spectrometry detection strategies, and the potential application of phosphorylated proteomic analysis in the diagnosis, treatment, and prognosis of COPD disease. EXPERT OPINION The role of phosphoproteomics in COPD is critical for understanding disease pathobiology, identifying potential biomarkers, and predicting new therapeutic approaches. However, the complexity of COPD requires the more comprehensive understanding that can be achieved through integrated multi-omics studies. Phosphoproteomics, as a part of these multi-omics approaches, can provide valuable insights into the underlying mechanisms of COPD.
Collapse
Affiliation(s)
- Xiaoyin Zeng
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Yanting Lan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jing Xiao
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Longbo Hu
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Long Tan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Mengdi Liang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xufei Wang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Shaohua Lu
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Guangdong South China Vaccine Co. Ltd, Guangzhou, China
| | - Fei Long
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
44
|
Maschio DA, Hernandes LHP, Alvares LE, Marques-Souza H, Collares-Buzato CB. Differential expression of regulators of the canonical Wnt pathway during the compensatory beta-cell hyperplasia in prediabetic mice. Biochem Biophys Res Commun 2022; 611:183-189. [DOI: 10.1016/j.bbrc.2022.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/02/2022]
|
45
|
Sorrentino A, Bagwan N, Linscheid N, Poulsen PC, Kahnert K, Thomsen MB, Delmar M, Lundby A. Beta-blocker/ACE inhibitor therapy differentially impacts the steady state signaling landscape of failing and non-failing hearts. Sci Rep 2022; 12:4760. [PMID: 35306519 PMCID: PMC8934364 DOI: 10.1038/s41598-022-08534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
Heart failure is a multifactorial disease that affects an estimated 38 million people worldwide. Current pharmacotherapy of heart failure with reduced ejection fraction (HFrEF) includes combination therapy with angiotensin-converting enzyme inhibitors (ACEi) and β-adrenergic receptor blockers (β-AR blockers), a therapy also used as treatment for non-cardiac conditions. Our knowledge of the molecular changes accompanying treatment with ACEi and β-AR blockers is limited. Here, we applied proteomics and phosphoproteomics approaches to profile the global changes in protein abundance and phosphorylation state in cardiac left ventricles consequent to combination therapy of β-AR blocker and ACE inhibitor in HFrEF and control hearts. The phosphorylation changes induced by treatment were profoundly different for failing than for non-failing hearts. HFrEF was characterized by profound downregulation of mitochondrial proteins coupled with derangement of β-adrenergic and pyruvate dehydrogenase signaling. Upon treatment, phosphorylation changes consequent to HFrEF were reversed. In control hearts, treatment mainly led to downregulation of canonical PKA signaling. The observation of divergent signaling outcomes depending on disease state underscores the importance of evaluating drug effects within the context of the specific conditions present in the recipient heart.
Collapse
Affiliation(s)
- Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Navratan Bagwan
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Nora Linscheid
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Pi C Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Konstantin Kahnert
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Morten B Thomsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Mario Delmar
- Leon H Charney Division of Cardiology, NYU School of Medicine, New York, NY, USA
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
46
|
Transcriptional control of pancreatic β-cell identity and plasticity during the pathogenesis of type 2 diabetes. J Genet Genomics 2022; 49:316-328. [DOI: 10.1016/j.jgg.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
|
47
|
Eguchi N, Toribio AJ, Alexander M, Xu I, Whaley DL, Hernandez LF, Dafoe D, Ichii H. Dysregulation of β-Cell Proliferation in Diabetes: Possibilities of Combination Therapy in the Development of a Comprehensive Treatment. Biomedicines 2022; 10:biomedicines10020472. [PMID: 35203680 PMCID: PMC8962301 DOI: 10.3390/biomedicines10020472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia as a result of insufficient insulin levels and/or impaired function as a result of autoimmune destruction or insulin resistance. While Type 1 DM (T1DM) and Type 2 DM (T2DM) occur through different pathological processes, both result in β-cell destruction and/or dysfunction, which ultimately lead to insufficient β-cell mass to maintain normoglycemia. Therefore, therapeutic agents capable of inducing β-cell proliferation is crucial in treating and reversing diabetes; unfortunately, adult human β-cell proliferation has been shown to be very limited (~0.2% of β-cells/24 h) and poorly responsive to many mitogens. Furthermore, diabetogenic insults result in damage to β cells, making it ever more difficult to induce proliferation. In this review, we discuss β-cell mass/proliferation pathways dysregulated in diabetes and current therapeutic agents studied to induce β-cell proliferation. Furthermore, we discuss possible combination therapies of proliferation agents with immunosuppressants and antioxidative therapy to improve overall long-term outcomes of diabetes.
Collapse
|
48
|
Baumel-Alterzon S, Scott DK. Regulation of Pdx1 by oxidative stress and Nrf2 in pancreatic beta-cells. Front Endocrinol (Lausanne) 2022; 13:1011187. [PMID: 36187092 PMCID: PMC9521308 DOI: 10.3389/fendo.2022.1011187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 01/05/2023] Open
Abstract
The beta-cell identity gene, pancreatic duodenal homeobox 1 (Pdx1), plays critical roles in many aspects of the life of beta-cells including differentiation, maturation, function, survival and proliferation. High levels of reactive oxygen species (ROS) are extremely toxic to cells and especially to beta-cells due to their relatively low expression of antioxidant enzymes. One of the major mechanisms for beta-cell dysfunction in type-2 diabetes results from oxidative stress-dependent inhibition of PDX1 levels and function. ROS inhibits Pdx1 by reducing Pdx1 mRNA and protein levels, inhibiting PDX1 nuclear localization, and suppressing PDX1 coactivator complexes. The nuclear factor erythroid 2-related factor (Nrf2) antioxidant pathway controls the redox balance and allows the maintenance of high Pdx1 levels. Therefore, pharmacological activation of the Nrf2 pathway may alleviate diabetes by preserving Pdx1 levels.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Sharon Baumel-Alterzon,
| | - Donald K. Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
49
|
Caliskan ÖS, Massacci G, Krahmer N, Sacco F. Phosphoproteomics and Organelle Proteomics in Pancreatic Islets. Methods Mol Biol 2022; 2456:123-140. [PMID: 35612739 DOI: 10.1007/978-1-0716-2124-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over the recent years, mass spectrometry (MS)-based proteomics has undergone dramatic advances in sample preparation, instrumentation, and computational methods. Here, we describe in detail, how a workflow quantifies global protein phosphorylation in pancreatic islets and characterizes intracellular organelle composition on protein level by MS-based proteomics.
Collapse
Affiliation(s)
- Özüm Sehnaz Caliskan
- Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Giorgia Massacci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Natalie Krahmer
- Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
50
|
Wei H, Huo P, Liu S, Huang H, Zhang S. Posttranslational modifications in pathogenesis of PCOS. Front Endocrinol (Lausanne) 2022; 13:1024320. [PMID: 36277727 PMCID: PMC9585718 DOI: 10.3389/fendo.2022.1024320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a lifelong reproductive, metabolic, and psychiatric disorder that affects 5-18% of women, which is associated with a significantly increased lifetime risk of concomitant diseases, including type 2 diabetes, psychiatric disorders, and gynecological cancers. Posttranslational modifications (PTMs) play an important role in changes in protein function and are necessary to maintain cellular viability and biological processes, thus their maladjustment can lead to disease. Growing evidence suggests the association between PCOS and posttranslational modifications. This article mainly reviews the research status of phosphorylation, methylation, acetylation, and ubiquitination, as well as their roles and molecular mechanisms in the development of PCOS. In addition, we briefly summarize research and clinical trials of PCOS therapy to advance our understanding of agents that can be used to target phosphorylated, methylated, acetylated, and ubiquitinated PTM types. It provides not only ideas for future research on the mechanism of PCOS but also ideas for PCOS treatments with therapeutic potential.
Collapse
Affiliation(s)
- Huimei Wei
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Peng Huo
- School of Public Health, Guilin Medical University, Guilin, China
| | - Shun Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, China
| | - Hua Huang
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- *Correspondence: Hua Huang, ; Shun Zhang,
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Hua Huang, ; Shun Zhang,
| |
Collapse
|