1
|
Khalaf A, Lopez E, Li J, Horn A, Edlow BL, Blumenfeld H. Shared subcortical arousal systems across sensory modalities during transient modulation of attention. Neuroimage 2025; 312:121224. [PMID: 40250641 DOI: 10.1016/j.neuroimage.2025.121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025] Open
Abstract
Subcortical arousal systems are known to play a key role in controlling sustained changes in attention and conscious awareness. Recent studies indicate that these systems have a major influence on short-term dynamic modulation of visual attention, but their role across sensory modalities is not fully understood. In this study, we investigated shared subcortical arousal systems across sensory modalities during transient changes in attention using block and event-related fMRI paradigms. We analyzed massive publicly available fMRI datasets collected while 1561 participants performed visual, auditory, tactile, and taste perception tasks. Our analyses revealed a shared circuit of subcortical arousal systems exhibiting early transient increases in activity in midbrain reticular formation and central thalamus across perceptual modalities, as well as less consistent increases in pons, hypothalamus, basal forebrain, and basal ganglia. Identifying these networks is critical for understanding mechanisms of normal attention and consciousness and may help facilitate subcortical targeting for therapeutic neuromodulation.
Collapse
Affiliation(s)
- Aya Khalaf
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Erick Lopez
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Jian Li
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Andreas Horn
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Center for Brain Circuit Therapeutics, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Movement Disorders & Neuromodulation Section, Department of Neurology, Charité - Universitätsmedizin, Berlin, Germany
| | - Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Hu J, Feng J, Bai Y, Yao ZS, Wu XY, Hong XY, Lu GD, Xue K. Sucralose Promotes Benzo(a)Pyrene-Induced Renal Toxicity in Mice by Regulating P-glycoprotein. Antioxidants (Basel) 2025; 14:474. [PMID: 40298799 PMCID: PMC12024012 DOI: 10.3390/antiox14040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/12/2025] [Accepted: 04/13/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Sucralose and benzo(a)pyrene (B[a]P) are widespread foodborne substances known to harm human health. However, the effects of their combined exposure on kidney function remain unclear. This study aimed to investigate the mechanisms by which sucralose and B[a]P induce kidney injury through P-glycoprotein (PGP/ABCB1), a crucial protein involved in cellular detoxification. METHODS C57BL/6N mice were co-treated with sucralose and B[a]P for 90 days to evaluate their impact on kidney histopathology and function. In vitro experiments assessed cell viability, reactive oxygen species (ROS) levels, and B[a]P accumulation by flow cytometry. Molecular docking and cellular thermal shift assay (CETSA) were used to determine the binding affinity of sucralose to PGP. Furthermore, PCR, Western blotting, and immunohistochemistry were performed to analyze the expression of PGP and its upstream transcription factors. RESULTS Ninety days of co-exposure to sucralose and B[a]P significantly exacerbated renal dysfunction in mice, as evidenced by the elevated level of serum creatinine and urea nitrogen, which could be reverted by ROS scavenger N-acetyl cysteine (NAC). In vitro, sucralose promoted cellular accumulation of B[a]P, consequently enhancing B[a]P-induced cell growth inhibition and ROS production. Consistently, B[a]P accumulation was enhanced by PGP knockdown in both HK2 and HEK-293 cells. Mechanistically, sucralose can directly bind to PGP, competitively inhibiting its efflux capacity and increasing intracellular B[a]P retention. Prolonged co-exposure further downregulated PGP expression, possibly through the reductions of its transcriptional regulators (PXR, NRF2, and NF-κB). CONCLUSIONS Co-exposure to sucralose and B[a]P exacerbates renal injury by impairing PGP function. Mechanistically, sucralose inhibits PGP activity, resulting in the accumulation of B[a]P within renal cells. This accumulation triggers oxidative stress and inhibits cell growth, which demonstrates that sucralose potentiates B[a]P-induced nephrotoxicity by directly inhibiting PGP-mediated detoxification pathways, thus underscoring the critical need to evaluate toxicity risks associated with combined exposure to these compounds.
Collapse
Affiliation(s)
- Jun Hu
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| | - Ji Feng
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| | - Yan Bai
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| | - Zhi-Sheng Yao
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| | - Xiao-Yu Wu
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| | - Xin-Yu Hong
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Guo-Dong Lu
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| | - Kun Xue
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| |
Collapse
|
3
|
Jung JY, Ahn Y, Park JW, Jung K, Kim S, Lim S, Jung SH, Kim H, Kim B, Hwang MY, Kim YJ, Park WY, Okbay A, O'Connell KS, Andreassen OA, Myung W, Won HH. Polygenic overlap between subjective well-being and psychiatric disorders and cross-ancestry validation. Nat Hum Behav 2025:10.1038/s41562-025-02155-z. [PMID: 40229577 DOI: 10.1038/s41562-025-02155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/24/2025] [Indexed: 04/16/2025]
Abstract
Subjective well-being (SWB) is important for understanding human behaviour and health. Although the connection between SWB and psychiatric disorders has been studied, common genetic mechanisms remain unclear. This study aimed to explore the genetic relationship between SWB and psychiatric disorders. Bivariate causal mixture modelling (MiXeR), polygenic risk score (PRS) and Mendelian randomization (MR) analyses showed substantial polygenic overlap and associations between SWB and the psychiatric disorders. Subsequent replication studies in East Asian populations confirmed the polygenic overlap between schizophrenia and SWB. The conditional and conjunctional false discovery rate analyses identified additional or shared genetic loci associated with SWB or psychiatric disorders. Functional annotation revealed enrichment of specific brain tissues and genes associated with SWB. The identified genetic loci showed cross-ancestry transferability between the European and Korean populations. Our findings provide valuable insights into the common genetic mechanisms underlying SWB and psychiatric disorders.
Collapse
Affiliation(s)
- Jin Young Jung
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Yeeun Ahn
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Jung-Wook Park
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Kyeongmin Jung
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Soyeon Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Soohyun Lim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Sang-Hyuk Jung
- Department of Medical Informatics, Kangwon National University College of Medicine, Chuncheon, South Korea
| | - Hyejin Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Beomsu Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Aysu Okbay
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Kevin S O'Connell
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea.
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea.
| | - Hong-Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea.
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea.
| |
Collapse
|
4
|
Yuan M, Jin L, Fang Y. Disease Burden, Temporal Trends, and Cross-Country Inequality Associated with Sociodemographic Indicators in Alzheimer's Disease and Other Dementias. Am J Prev Med 2025; 68:682-694. [PMID: 40072379 DOI: 10.1016/j.amepre.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 03/22/2025]
Abstract
INTRODUCTION The purpose of this article is to describe the global burden and temporal trends of Alzheimer's disease and other dementias from 1990 to 2021 and explore cross-country inequality associated with sociodemographic development-related factors. METHODS The disability-adjusted life years of Alzheimer's disease and other dementias and sociodemographic index were extracted from the Global Burden of Disease 2021 study, and other sociodemographic development-related factors, including government expenditure on education (% of GDP), net national income per capita, health expenditure per capita, and fertility rate, were sourced from World Bank Data. Disability-adjusted life years of Alzheimer's disease and other dementias across 204 countries/territories and global age-sex distribution in 2021 were illustrated. The Joinpoint regression model was used to analyze the temporal trends of disease burden, and the slope index of inequality and concentration index were calculated to quantify cross-country inequalities. Analyses were conducted in 2024. RESULTS Significant disparities were observed in the numbers, rates, and age-standardized rates of disability-adjusted life years across 204 countries/territories. Females demonstrated higher disability-adjusted life year numbers (rates) for all age groups. Age-standardized disability-adjusted life year rate increased worldwide and was high in high-middle and middle sociodemographic index regions but increased faster in low (average annual percentage change=0.227%) and low-middle (average annual percentage change=0.244%) sociodemographic index regions. Cross-country inequality analyses indicated that disability-adjusted life years of Alzheimer's disease and other dementias were skewed and higher in countries with higher sociodemographic development, and the inequality increased with time except for education expenditure-related inequality. CONCLUSIONS The burden of Alzheimer's disease and other dementias has risen globally over the past 3 decades, accompanied by increasing cross-country inequalities, which disproportionately affects countries with high sociodemographic development. Boosting expenditure on education may narrow this inequality.
Collapse
Affiliation(s)
- Manqiong Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China; Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Lifen Jin
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China; Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Ya Fang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China; Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Crakes KR, Questell L, Soni S, Suez J. Impacts of non-nutritive sweeteners on the human microbiome. IMMUNOMETABOLISM (COBHAM, SURREY) 2025; 7:e00060. [PMID: 40291991 PMCID: PMC12020452 DOI: 10.1097/in9.0000000000000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/12/2025] [Indexed: 04/30/2025]
Abstract
Replacing sugar with non-nutritive sweeteners (NNS) is a common dietary strategy for reducing the caloric content and glycemic index of foods and beverages. However, the efficacy of this strategy in preventing and managing metabolic syndrome and its associated comorbidities remains uncertain. Human cohort studies suggest that NNS contribute to, rather than prevent, metabolic syndrome, whereas randomized controlled trials yield heterogeneous outcomes, ranging from beneficial to detrimental impacts on cardiometabolic health. The World Health Organization recently issued a conditional recommendation against using NNS, citing the need for additional evidence causally linking sweeteners to health effects. One proposed mechanism through which NNS induce metabolic derangements is through disruption of the gut microbiome, a link strongly supported by evidence in preclinical models. This review summarizes the evidence for similar effects in interventional and observational trials in humans. The limited available data highlight heterogeneity between trials, as some, but not all, find NNS consumption associated with microbiome modulation as well as metabolic effects independent of sweetener type. In other trials, the lack of microbiome changes coincides with the absence of metabolic effects. We discuss the hypothesis that the impacts of NNS on health are personalized and microbiome dependent. Thus, a precision nutrition approach may help resolve the conflicting reports regarding NNS impacts on the microbiome and health. This review also discusses additional factors contributing to study heterogeneity that should be addressed in future clinical trials to clarify the relationship between NNS, the microbiome, and health to better inform dietary guidelines and public health policies.
Collapse
Affiliation(s)
- Katti R. Crakes
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lauren Questell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Subah Soni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
6
|
Sylvetsky AC, Wang Y, Reddy AG, Um CY, Hodge RA, Lichtman C, Mitchell D, Nanavati A, Pollak M, Wang Y, Patel AV, McCullough ML. Nonnutritive sweetener consumption, metabolic risk factors, and inflammatory biomarkers among Adults in the Cancer Prevention Study-3 Diet Assessment Sub-Study. J Nutr 2025:S0022-3166(25)00172-5. [PMID: 40127735 DOI: 10.1016/j.tjnut.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Nonnutritive sweeteners (NNSs) are widely used to replace added sugars, yet their role in metabolic health and chronic disease prevention is debated. OBJECTIVE The objective of this study was to examine associations between NNS consumption, metabolic risk factors, and inflammatory biomarkers. METHODS This cross-sectional analysis included 624 adults in the American Cancer Society's Cancer Prevention Study-3 Diet Assessment Substudy (DAS). Consumption of NNS, including aspartame, saccharin, sucralose, and acesulfame-potassium, was estimated using the mean quantities reported in 6 24-h dietary recalls over 1 y. Fasting insulin, C-peptide, hemoglobin A1c (HbA1c), leptin, adiponectin, C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) were measured in fasting blood samples collected twice, 6 mo apart. Multivariable linear regression was used to examine associations between NNS consumption and the mean levels of each metabolic or inflammatory biomarker. Base models were adjusted for age, sex, race, education, smoking, and physical activity; full models were further adjusted for body mass index (BMI), diet quality (Healthy Eating Index 2020), and energy intake. RESULTS More than half (55%) of participants reported consuming NNS (mean daily NNS consumption 7, 38, and 221 mg across tertiles). NNS consumption was positively associated with leptin (P-trend = 0.0006) and CRP (P-trend = 0.02), but associations were attenuated after adjustment for BMI, diet quality, and energy intake. NNS consumption was not associated with insulin, C-peptide, HbA1c, adiponectin, TNF-α, or IL-10. In analyses stratified by BMI, NNS consumption was positively associated with IL-6 among participants with BMI ≥25kg/m2 but not BMI <25kg/m2. CONCLUSIONS Findings in the full sample were null after adjustment for energy intake and BMI, but NNS consumption was positively associated with IL-6 among participants with overweight or obesity. Investigation of mechanisms through which NNS consumption may impact inflammatory pathways is warranted.
Collapse
Affiliation(s)
- Allison C Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States.
| | - Ying Wang
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Ananya G Reddy
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Rebecca A Hodge
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Cari Lichtman
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Diane Mitchell
- Institute for Advancing Health through Agriculture, Texas A & M University, College Station, TX, United States
| | - Anuj Nanavati
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Michael Pollak
- Pollak Assay Lab, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Ye Wang
- Pollak Assay Lab, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Marjorie L McCullough
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| |
Collapse
|
7
|
Barra NG, Fang H, Bhatwa A, Schmidt AM, Syed SA, Steinberg GR, Morrison KM, Surette MG, Wade MG, Holloway AC, Schertzer JD. Food supply toxicants and additives alter the gut microbiota and risk of metabolic disease. Am J Physiol Endocrinol Metab 2025; 328:E337-E353. [PMID: 39871724 DOI: 10.1152/ajpendo.00364.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025]
Abstract
Metabolic disease is rising along with both global industrialization and the use of new commercial, agricultural, and industrial chemicals and food additives. Exposure to these compounds may contribute to aspects of metabolic diseases such as obesity, diabetes, and fatty liver disease. Ingesting compounds in the food supply is a key route of human exposure, resulting in the interaction between toxicants or additives and the intestinal microbiota. Toxicants can influence the composition and function of the gut microbiota, and these microbes can metabolize and transform toxicants and food additives. Microbe-toxicant interactions in the intestine can alter host mucosal barrier function, immunity, and metabolism, which may contribute to the risk or severity of metabolic disease development. Targeting the connection between toxicants, food, and immunity in the gut using strategies such as fermentable fiber (i.e., inulin) may mitigate some of the effects of these compounds on host metabolism. Understanding causative factors in the microbe-host relationship that promote toxicant-induced dysmetabolism is an important goal. This review highlights the role of common toxicants (i.e., persistent organic pollutants, pesticides, and fungicides) and food additives (emulsifiers and artificial sweeteners) found in our food supply that alter the gut microbiota and promote metabolic disease development.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Han Fang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Arshpreet Bhatwa
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Angela M Schmidt
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Saad A Syed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Chakravartti SP, Jann K, Veit R, Liu H, Yunker AG, Angelo B, Monterosso JR, Xiang AH, Kullmann S, Page KA. Non-caloric sweetener effects on brain appetite regulation in individuals across varying body weights. Nat Metab 2025; 7:574-585. [PMID: 40140714 DOI: 10.1038/s42255-025-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/31/2025] [Indexed: 03/28/2025]
Abstract
Sucralose, a widely used non-caloric sweetener, provides sweet taste without calories. Some studies suggest that non-caloric sweeteners stimulate appetite, possibly owing to the delivery of a sweet taste without the post-ingestive metabolic signals that normally communicate with the hypothalamus to suppress hunger. In a randomized crossover trial (ClinicalTrials.gov identifier: NCT02945475 ), 75 young adults (healthy weight, overweight or with obesity) consumed a drink containing sucralose, sweetness-matched sucrose or water. We show that acute consumption of sucralose versus sucrose stimulates hypothalamic blood flow (P < 0.018) and greater hunger responses (P < 0.001). Sucralose versus water also increases hypothalamic blood flow (P < 0.019) but produces no difference in hunger ratings. Sucrose, but not sucralose, increases peripheral glucose levels, which are associated with reductions in medial hypothalamic blood flow (P < 0.007). Sucralose, compared to sucrose and water, results in increased functional connections between the hypothalamus and brain regions involved in motivation and somatosensory processing. These findings suggest that non-caloric sweeteners could affect key mechanisms in the hypothalamus responsible for appetite regulation.
Collapse
Affiliation(s)
- Sandhya P Chakravartti
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Division of Endocrinology and Diabetes, Department of Medicine & Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kay Jann
- Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Hanyang Liu
- Division of Endocrinology and Diabetes, Department of Medicine & Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexandra G Yunker
- Division of Endocrinology and Diabetes, Department of Medicine & Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan Angelo
- Division of Endocrinology and Diabetes, Department of Medicine & Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John R Monterosso
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Kathleen A Page
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
- Division of Endocrinology and Diabetes, Department of Medicine & Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Sievenpiper JL, Purkayastha S, Grotz VL, Mora M, Zhou J, Hennings K, Goody CM, Germana K. Dietary Guidance, Sensory, Health and Safety Considerations When Choosing Low and No-Calorie Sweeteners. Nutrients 2025; 17:793. [PMID: 40077663 PMCID: PMC11902030 DOI: 10.3390/nu17050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 03/14/2025] Open
Abstract
The growing global focus on the adverse health conditions associated with excessive sugar consumption has prompted health and policy organizations as well as the public to take a more mindful approach to health and wellness. In response, food and beverage companies have proactively innovated and reformulated their product portfolios to incorporate low and no-calorie sweeteners (LNCSs) as viable alternatives to sugar. LNCSs offer an effective and safe approach to delivering sweetness to foods and beverages and reducing calories and sugar intake while contributing to the enjoyment of eating. The objective of this paper is to enhance the understanding of LNCSs segmentation and definitions, dietary consumption and reduction guidance, front-of-package labeling, taste and sensory perception and physiology, metabolic efficacy and impact, as well as the overall safety of LNCSs and sugar.
Collapse
Affiliation(s)
- John L. Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Sidd Purkayastha
- SP Advisors Inc., Chicago, IL 60605, USA;
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - V. Lee Grotz
- ToxInsight, LLC, Fort Washington, PA 19034, USA;
| | - Margaux Mora
- Ingredion Inc., Bridgewater, NJ 08807, USA; (M.M.); (K.G.)
| | - Jing Zhou
- Ingredion Inc., Bridgewater, NJ 08807, USA; (M.M.); (K.G.)
| | | | | | | |
Collapse
|
10
|
Micarelli A, Mrakic-Sposta S, Vezzoli A, Malacrida S, Caputo S, Micarelli B, Misici I, Carbini V, Iennaco I, Granito I, Longo VD, Alessandrini M. Chemosensory and cardiometabolic improvements after a fasting-mimicking diet: A randomized cross-over clinical trial. Cell Rep Med 2025; 6:101971. [PMID: 39970875 PMCID: PMC11866515 DOI: 10.1016/j.xcrm.2025.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/26/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
Obesity is associated with a decrease in chemosensory perception acuity and increased disease risk, pointing to the need for feasible interventions that affect smell, taste, and cardiometabolic markers. Here, subjects with overweight/obesity are treated with six monthly cycles of a fasting-mimicking diet (FMD) lasting 5 days followed by a normal diet for the rest of the month to determine their effects on chemosensory function and cardiometabolic risk factors. Both arms of the 102 randomized cross-over trial participants indicate FMD-dependent improvements in a wide range of taste and smell chemosensory functions. The portion of hyposmic subjects is reduced from 38.1% at baseline to 6.4% at the end of 6 FMD cycles. FMD cycles also reduce cardiometabolic and inflammatory markers and drug use in diabetic patients. This trial provides evidence for the effect of periodic FMD cycles in improving chemosensory function while reducing cardiometabolic risk factors without requiring long-term lifestyle changes. The trial is registered at ClinicalTrials.gov (NCT04529161).
Collapse
Affiliation(s)
- Alessandro Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy.
| | | | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), Milan, Italy
| | - Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | | | - Beatrice Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Ilaria Misici
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Valentina Carbini
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Ilaria Iennaco
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Ivan Granito
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Valter D Longo
- Longevity Institute, Leonard Davis School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Marco Alessandrini
- University of Rome Tor Vergata - Department of Clinical Sciences and Translational Medicine - Ear-Nose-Throat Unit, Rome, Italy
| |
Collapse
|
11
|
Kelly AL, Baugh ME, Ahrens ML, Valle AN, Sullivan RM, Oster ME, Fowler ME, Carter BE, Davy BM, Hanlon AL, DiFeliceantonio AG. Neural and metabolic factors in carbohydrate reward: Rationale, design, and methods for a flavor-nutrient learning paradigm in humans. Contemp Clin Trials 2024; 147:107717. [PMID: 39413990 PMCID: PMC11688656 DOI: 10.1016/j.cct.2024.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Overconsumption of ultra-processed foods (UPFs), which are linked with adverse health outcomes, is a growing public health concern. UPFs deliver highly bioavailable calories rapidly, which may contribute to their reinforcing potential and drive overconsumption. Our primary aim is to test the role of speed of nutrient availability on reward learning. We hypothesize that brain activity in reward related areas and behavioral preferences will be greater to a flavored drink predicting rapidly available calories (CS + Fast) compared with a flavored drink predicting more slowly available (CS + Slow) or no (CS-) calories. Participants (n = 64, aged 18-45 years, will consume 3 novel flavored, isosweet beverages containing 110 kcal of sucrose (CS + Fast), 110 kcal of maltodextrin (CS + Slow), or 0-kcal sucralose (CS-) 6 times in randomized, crossover order. Blood metabolites and indirect calorimetry measures, including metabolic rate and carbohydrate oxidation, will be assessed before and for 1 h after beverage consumption. Behavioral preference for beverages will be assessed in a pre- and post-test. Brain response to each flavor without calories will be assessed via functional magnetic resonance imaging in a post-test. Findings from this study will contribute to the understanding of basic mechanisms that may drive overconsumption of UPFs. Trial registration:clinicaltrials.gov registration #NCT06053294.
Collapse
Affiliation(s)
- Amber L Kelly
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Translational Biology, Medicine, and Health, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Mary Elizabeth Baugh
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Monica L Ahrens
- Center for Biostatistics and Health Data Science, Department of Statistics, Blacksburg, VA, USA
| | - Abigail N Valle
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Mary E Oster
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Mary E Fowler
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Bridget E Carter
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Brenda M Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Alexandra L Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Blacksburg, VA, USA
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
12
|
Zhu X, Sylvetsky AC, Luo H, Hartman TJ, Welsh JA. Consumption of Low-Calorie Sweeteners among Children Aged 6 Months to 5 Years in the United States, NHANES 2017-2020. J Nutr 2024; 154:3416-3423. [PMID: 39245181 DOI: 10.1016/j.tjnut.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Although the American Academy of Pediatrics advises against low-calorie sweeteners (LCS) consumption by children <5 y due to potential health and development concerns, the extent of this consumption among these children is unknown. OBJECTIVES The objective of this study was to describe the intake, sources, and dietary patterns associated with LCS consumption among United States infants and preschoolers. METHODS We used cross-sectional 24-h dietary recall data (day 1) among 1497 children aged 6 mo to 5 y from the National Health and Nutrition Examination Survey 2017-2020 prepandemic. Complex survey procedures and sampling weights were applied to compare LCS consumption patterns (prevalence and frequency [times/day] of any LCS, any LCS-containing beverages [LCSBs], and any LCS-containing foods [LCSFs], with each occurrence of consumption = 1 "serving") across demographic subgroups and to assess the associated nutrients and % of total energy intake (TEI). RESULTS Thirty-one percent of children aged 6 mo to 5 y consumed ≥1 LCSB and/or LCSF on a given day. The prevalence of LCS consumption increased with age, 10.5% (6 to <12 mo) to 34.3% (2-5 y). Among LCS consumers, mean serving frequency was 1.4 times/d, with no differences by age or sex. Of all LCSBs servings consumed, 64.0% were fruit drinks; 57.8% of all LCSFs servings were non-Greek yogurt. As consumption levels increased from no LCS to >1 serving/d, intake of the following also increased: total sugar (+1.8% TEI, P-trend = 0.04), added sugar (+1.1%, P-trend = 0.048), sodium (+304 mg, P-trend = 0.04), and fiber (+0.8 g, P-trend = 0.01). In contrast, protein intake was lower (-0.7% TEI, P-trend = 0.02). Those consuming 1 LCS serving/d consumed more total energy than LCS nonconsumers (1606 compared with 1401 kcal), but TEI did not increase further with >1 LCS serving/d (1607 kcal). LCS consumption was not associated with carbohydrate or fat intake. CONCLUSIONS LCS consumption, primarily from fruit drinks and non-Greek yogurt, is prevalent among United States preschoolers, and this consumption is associated with greater intake of total sugar, added sugar, and sodium.
Collapse
Affiliation(s)
- Xinyu Zhu
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Allison C Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Hanqi Luo
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Terryl J Hartman
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, United States; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States; Cancer Prevention and Control Program, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Jean A Welsh
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, United States; Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, United States; Department of Child Advocacy, Children's Healthcare of Atlanta, Atlanta, GA, United States.
| |
Collapse
|
13
|
Liu Q, Wang M, Hou Y, Chen R, Liu H, Han T, Liu D. Deciphering the multifaceted effects of artificial sweeteners on body health and metabolic functions: a comprehensive review and future perspectives. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39368060 DOI: 10.1080/10408398.2024.2411410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
As the rates of chronic diseases such as obesity and diabetes rise worldwide, there is a growing demand for low-calorie or no-calorie sweeteners to reduce sugar intake without sacrificing the sweetness of foods and beverages. Artificial sweeteners have become indispensable as substitutes for sugar due to their high sweetening power and low impact on blood sugar levels and are used in a variety of low-calorie foods and beverages. Although artificial sweeteners offer an alternative for reducing sugar intake while maintaining sweetness, research into their long-term health effects, particularly at high doses, is ongoing, further scientific research and regulatory review are needed to clarify these potential health risks. This article reviews the latest research on the health effects of artificial sweeteners, based on recent studies, introduces the classification, performance, and safety standards for artificial sweeteners, analyses their potential harms to the nervous, immune, and circulatory systems, reproductive system, as well as their effects on gut microbiota, liver function, cancer, diabetes, and obesity. In addition, consumer perceptions of artificial sweeteners and future research directions are discussed, providing insights into current research controversies and knowledge gaps, as well as the health research and market application of artificial sweeteners.
Collapse
Affiliation(s)
- Qiang Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Min Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Yuting Hou
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- Meat Innovation Center of Liaoning Province, Jinzhou, China
- Liaoning Kazuo Hybrid Wild Boar Science and Technology Backyard, Chaoyang, China
| | - Rui Chen
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Haixia Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Tianlong Han
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- Liaoning Kazuo Hybrid Wild Boar Science and Technology Backyard, Chaoyang, China
| | - Dengyong Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- Meat Innovation Center of Liaoning Province, Jinzhou, China
| |
Collapse
|
14
|
Khalaf A, Lopez E, Li J, Horn A, Edlow BL, Blumenfeld H. Shared subcortical arousal systems across sensory modalities during transient modulation of attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613316. [PMID: 39345640 PMCID: PMC11429725 DOI: 10.1101/2024.09.16.613316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Subcortical arousal systems are known to play a key role in controlling sustained changes in attention and conscious awareness. Recent studies indicate that these systems have a major influence on short-term dynamic modulation of visual attention, but their role across sensory modalities is not fully understood. In this study, we investigated shared subcortical arousal systems across sensory modalities during transient changes in attention using block and event-related fMRI paradigms. We analyzed massive publicly available fMRI datasets collected while 1,561 participants performed visual, auditory, tactile, and taste perception tasks. Our analyses revealed a shared circuit of subcortical arousal systems exhibiting early transient increases in activity in midbrain reticular formation and central thalamus across perceptual modalities, as well as less consistent increases in pons, hypothalamus, basal forebrain, and basal ganglia. Identifying these networks is critical for understanding mechanisms of normal attention and consciousness and may help facilitate subcortical targeting for therapeutic neuromodulation.
Collapse
Affiliation(s)
- Aya Khalaf
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Erick Lopez
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Jian Li
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Andreas Horn
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Movement Disorders & Neuromodulation Section, Department of Neurology, Charité – Universitätsmedizin, Berlin, Germany
| | - Brian L. Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Zare M, Zeinalabedini M, Ebrahimpour-Koujan S, Bellissimo N, Azadbakht L. Effect of stevia on blood glucose and HbA1C: A meta-analysis. Diabetes Metab Syndr 2024; 18:103092. [PMID: 39098209 DOI: 10.1016/j.dsx.2024.103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND The study investigates substituting non-nutritive sweeteners (NNS) for sugar to address health concerns related to excess sugar intake. It specifically examines how stevia affects insulin and blood glucose levels. The systematic review and meta-analysis aim to evaluate stevia's impact on glycemic indices. METHODS We conducted a systematic review and meta-analysis following PRISMA guidelines, including 26 studies with 1439 participants. The PROSPERO registration number for this research is CRD42023414411. We systematically searched PubMed (MEDLINE), Scopus, Web of Science, and Google Scholar. Additionally, we thoroughly reviewed the reference lists of the articles we extracted and relevant reviews. Two evaluators independently carried out screening, quality assessment, and data extraction. The GRADE (grading of recommendations, assessment, development, and evaluation) approach was utilized to evaluate the certainty of the evidence. RESULTS Stevia consumption was associated with significantly reducing blood glucose levels (WMD: -3.84; 95 % CI: -7.15, -0.53; P = 0.02, low certainty), especially in individuals with higher BMI, diabetes, and hypertension. Dose-response analysis revealed a decrease in blood glucose for ≥3342 mg/day of stevia consumption. Stevia consumption has been shown to reduce blood glucose levels within 1-4 months, as evidenced by dose-response analysis (less than 120 days) and subgroup analysis (more than four weeks). However, stevia did not significantly affect insulin concentration or HbA1C levels (very low and low certainty, respectively). CONCLUSIONS Low certainty evidence showed that stevia improved blood glucose control, especially when consumed for less than 120 days. However, more randomized trials with higher stevia dosages are required.
Collapse
Affiliation(s)
- Marzieh Zare
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mobina Zeinalabedini
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soraiya Ebrahimpour-Koujan
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nick Bellissimo
- School of Nutrition, Toronto Metropolitan University, Toronto, ON, Canada.
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
16
|
Hutelin Z, Ahrens M, Baugh ME, Oster ME, Hanlon AL, DiFeliceantonio AG. Creation and validation of a NOVA scored picture set to evaluate ultra-processed foods. Appetite 2024; 198:107358. [PMID: 38621591 PMCID: PMC11092385 DOI: 10.1016/j.appet.2024.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
There has been a rapid shift in the modern food environment towards increased processing in foods consumed in the United States (US) and globally. The NOVA system (not an acronym) for classifying food on degree of processing currently has the most empirical support. Consumption of foods in the NOVA 4 category, ultra-processed foods (UPF), is a risk factor for a host of poor health outcomes including heart disease, stroke, and cancer. Despite these poor health outcomes, UPF make up 58% of calories consumed in the US. Methodologies for assessing the reinforcing and rewarding properties of these foods are necessary tools. The Becker-DeGroot-Marschak auction paradigm (BDM) is a well validated tool for measuring value and is amenable to neuromonitoring environments. To allow for the testing of hypotheses based on level of food processing, we present a picture set of 14 UPF and 14 minimally-processed foods (MPF) matched on visual properties, food characteristics (fat, carbohydrate, cost, etc.), and rated perceptual properties. Further, we report our scoring of these foods using the NOVA classification system and provide additional data from credentialed nutrition professionals and on inter-rater reliability using NOVA, a critique of the system. Finally, we provide all pictures, data, and code used to create this picture set as a tool for researchers.
Collapse
Affiliation(s)
- Zach Hutelin
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States; Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, United States.
| | - Monica Ahrens
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Roanoke, VA, United States
| | | | - Mary E Oster
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, United States
| | - Alexandra L Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Roanoke, VA, United States
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, United States; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
17
|
Naia Fioretto M, Colombelli KT, da Silva CLF, Dos Santos SAA, Camargo ACL, Constantino FB, Portela LMF, Aquino AMD, Barata LA, Mattos R, Scarano WR, Zambrano E, Justulin LA. Maternal malnutrition associated with postnatal sugar consumption increases inflammatory response and prostate disorders in rat offspring. Mol Cell Endocrinol 2024; 588:112223. [PMID: 38556160 DOI: 10.1016/j.mce.2024.112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Maternal malnutrition can alter developmental biology, programming health and disease in offspring. The increase in sugar consumption during the peripubertal period, a worldwide concern, also affects health through adulthood. Studies have shown that maternal exposure to a low protein diet (LPD) is associated with an increase in prostate disease with aging. However, the combined effects of maternal LPD and early postnatal sugar consumption on offspring prostate disorders were not investigated. The effects on aging were evaluated using a maternal gestational model with lactational LPD (6% protein) and sugar consumption (10%) from postnatal day (PND) 21-90, associating the consequences on ventral prostate (VP) rats morphophysiology on PND540. An increase was shown in mast cells and in the VP of the CTR + SUG and Gestational and Lactational Low Protein (GLLP) groups. In GLLP + SUG, a significant increase was shown in TGF-β1 expression in both the systemic and intra-prostatic forms, and SMAD2/3p had increased. The study identified maternal LPD and sugar consumption as risk factors for prostatic homeostasis in senility, activating the TGFβ1-SMAD2/3 pathway, a signaling pathway with potential markers for prostatic disorders.
Collapse
Affiliation(s)
- Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Ketlin Thassiani Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | | | - Sérgio Alexandre Alcantara Dos Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil; Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Flávia Bessi Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luiz Marcos Frediani Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Ariana Musa de Aquino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luisa Annibal Barata
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
18
|
Mela DJ, Risso D. Does sweetness exposure drive 'sweet tooth'? Br J Nutr 2024; 131:1934-1944. [PMID: 38403648 DOI: 10.1017/s0007114524000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
It is widely believed that exposure to sweetened foods and beverages stimulates the liking and desire for sweetness. Here we provide an updated review of the empirical evidence from human research examining whether exposure to sweet foods or beverages influences subsequent general liking for sweetness (‘sweet tooth’), based on the conclusions of existing systematic reviews and more recent research identified from a structured search of literature. Prior reviews have concluded that the evidence for a relationship between sweet taste exposure and measures of sweet taste liking is equivocal, and more recent primary research generally does not support the view that exposure drives increased liking for sweetness, in adults or children. In intervention trials using a range of designs, acute exposure to sweetness usually has the opposite effect (reducing subsequent liking and desire for sweet taste), while sustained exposures have no significant effects or inconsistent effects. Recent longitudinal observational studies in infants and children also report no significant associations between exposures to sweet foods and beverages with measures of sweet taste preferences. Overall, while it is widely assumed that exposure to sweetness stimulates a greater liking and desire for sweetness, this is not borne out by the balance of empirical evidence. While new research may provide a more robust evidence base, there are also a number of methodological, biological and behavioural considerations that may underpin the apparent absence of a positive relationship between sweetness exposure and liking.
Collapse
|
19
|
Antasouras G, Dakanalis A, Chrysafi M, Papadopoulou SK, Trifonidi I, Spanoudaki M, Alexatou O, Pritsa A, Louka A, Giaginis C. Could Insulin Be a Better Regulator of Appetite/Satiety Balance and Body Weight Maintenance in Response to Glucose Exposure Compared to Sucrose Substitutes? Unraveling Current Knowledge and Searching for More Appropriate Choices. Med Sci (Basel) 2024; 12:29. [PMID: 38921683 PMCID: PMC11205552 DOI: 10.3390/medsci12020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Insulin exerts a crucial impact on glucose control, cellular growing, function, and metabolism. It is partially modulated by nutrients, especially as a response to the intake of foods, including carbohydrates. Moreover, insulin can exert an anorexigenic effect when inserted into the hypothalamus of the brain, in which a complex network of an appetite/hunger control system occurs. The current literature review aims at thoroughly summarizing and scrutinizing whether insulin release in response to glucose exposure may be a better choice to control body weight gain and related diseases compared to the use of sucrose substitutes (SSs) in combination with a long-term, well-balanced diet. METHODS This is a comprehensive literature review, which was performed through searching in-depth for the most accurate scientific databases and applying effective and relevant keywords. RESULTS The insulin action can be inserted into the hypothalamic orexigenic/anorexigenic complex system, activating several anorexigenic peptides, increasing the hedonic aspect of food intake, and effectively controlling the human body weight. In contrast, SSs appear not to affect the orexigenic/anorexigenic complex system, resulting in more cases of uncontrolled body weight maintenance while also increasing the risk of developing related diseases. CONCLUSIONS Most evidence, mainly derived from in vitro and in vivo animal studies, has reinforced the insulin anorexigenic action in the hypothalamus of the brain. Simultaneously, most available clinical studies showed that SSs during a well-balanced diet either maintain or even increase body weight, which may indirectly be ascribed to the fact that they cannot cover the hedonic aspect of food intake. However, there is a strong demand for long-term longitudinal surveys to effectively specify the impact of SSs on human metabolic health.
Collapse
Affiliation(s)
- Georgios Antasouras
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (M.C.); (O.A.); (A.L.)
| | - Antonios Dakanalis
- Department of Mental Health, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, Italy;
- Department of Medicine and Surgery, University of Milan Bicocca, Via Cadore 38, 20900 Monza, Italy
| | - Maria Chrysafi
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (M.C.); (O.A.); (A.L.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (M.S.); (A.P.)
| | - Ioulia Trifonidi
- Department of Clinical Biochemistry, KAT General Hospital, 14561 Athens, Greece;
| | - Maria Spanoudaki
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (M.S.); (A.P.)
| | - Olga Alexatou
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (M.C.); (O.A.); (A.L.)
| | - Agathi Pritsa
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (M.S.); (A.P.)
| | - Aikaterini Louka
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (M.C.); (O.A.); (A.L.)
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (M.C.); (O.A.); (A.L.)
| |
Collapse
|
20
|
Egan JM. Physiological Integration of Taste and Metabolism. N Engl J Med 2024; 390:1699-1710. [PMID: 38718360 PMCID: PMC12076092 DOI: 10.1056/nejmra2304578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Affiliation(s)
- Josephine M Egan
- From the Diabetes Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore
| |
Collapse
|
21
|
Kochem MC, Hanselman EC, Breslin PAS. Activation and inhibition of the sweet taste receptor TAS1R2-TAS1R3 differentially affect glucose tolerance in humans. PLoS One 2024; 19:e0298239. [PMID: 38691547 PMCID: PMC11062524 DOI: 10.1371/journal.pone.0298239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/19/2024] [Indexed: 05/03/2024] Open
Abstract
The sweet taste receptor, TAS1R2-TAS1R3, is expressed in taste bud cells, where it conveys sweetness, and also in intestinal enteroendocrine cells, where it may facilitate glucose absorption and assimilation. In the present study, our objective was to determine whether TAS1R2-TAS1R3 influences glucose metabolism bidirectionally via hyperactivation with 5 mM sucralose (n = 12) and inhibition with 2 mM sodium lactisole (n = 10) in mixture with 75 g glucose loads during oral glucose tolerance tests (OGTTs) in healthy humans. Plasma glucose, insulin, and glucagon were measured before, during, and after OGTTs up to 120 minutes post-prandially. We also assessed individual participants' sweet taste responses to sucralose and their sensitivities to lactisole sweetness inhibition. The addition of sucralose to glucose elevated plasma insulin responses to the OGTT (F(1, 11) = 4.55, p = 0.056). Sucralose sweetness ratings were correlated with early increases in plasma glucose (R2 = 0.41, p<0.05), as well as increases in plasma insulin (R2 = 0.38, p<0.05) when sucralose was added to the OGTT (15 minute AUC). Sensitivity to lactisole sweetness inhibition was correlated with decreased plasma glucose (R2 = 0.84, p<0.01) when lactisole was added to the OGTT over the whole test (120 minute AUC). In summary, stimulation and inhibition of the TAS1R2-TAS1R3 receptor demonstrates that TAS1R2-TAS1R3 helps regulate glucose metabolism in humans and may have translational implications for metabolic disease risk.
Collapse
Affiliation(s)
- Matthew C. Kochem
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States of America
| | - Emily C. Hanselman
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States of America
| | - Paul A. S. Breslin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States of America
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| |
Collapse
|
22
|
Bellanco A, Celcar Š, Martínez-Cuesta MC, Requena T. The food additive xylitol enhances the butyrate formation by the child gut microbiota developed in a dynamic colonic simulator. Food Chem Toxicol 2024; 187:114605. [PMID: 38537869 DOI: 10.1016/j.fct.2024.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/01/2024]
Abstract
The gut microbiota should be included in the scientific processes of risk assessment of food additives. Xylitol is a sweetener that shows low digestibility and intestinal absorption, implying that a high proportion of consumed xylitol could reach the colonic microbiota. The present study has evaluated the dose-dependent effects of xylitol intake on the composition and the metabolic activity of the child gut-microbiota. The study was conducted in a dynamic simulator of the colonic microbiota (BFBL Gut Simulator) inoculated with a child pooled faecal sample and supplemented three times per day, for 7 days, with increasing xylitol concentrations (1 g/L, 3 g/L and 5 g/L). Sequencing of 16S rRNA gene amplicons and group-specific quantitative PCR indicated a xylitol dose-response effect on the abundance of Lachnospiraceae, particularly the genera Blautia, Anaerostipes and Roseburia. The microbial changes observed with xylitol corresponded with a dose-dependant effect on the butyrate concentration that, in parallel, favoured an increase in epithelial integrity of Caco-2 cells. The study represents a detailed observation of the bacterial taxa that are the main contributors to the metabolism of xylitol by the child gut microbiota and the results could be relevant in the risk assessment re-evaluation of xylitol as a sweetener.
Collapse
Affiliation(s)
- Alicia Bellanco
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - Špela Celcar
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - Teresa Requena
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain.
| |
Collapse
|
23
|
Juul F, Bere E. Ultra-processed foods - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:10616. [PMID: 38720949 PMCID: PMC11077402 DOI: 10.29219/fnr.v68.10616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 05/12/2024] Open
Abstract
Ultra-processed foods (UPFs) are increasingly consumed worldwide and have been linked to several chronic diseases. This paper aims to describe the totality of the available evidence regarding UPFs in relation to health-related outcomes as a basis for setting food-based dietary guidelines for the Nordic Nutrition Recommendations 2023. Systematic literature searches were conducted to identify systematic reviews, meta-analyses, randomized controlled trials (RCTs), and prospective cohort studies examining the association between UPF intake and non-communicable diseases or mortality. A total of 12 systematic reviews (including five meta-analyses) and 44 original research studies (43 prospective cohort studies and one RCT) were included. All original research studies were deemed to be of good methodological quality. The current evidence supports that greater consumption of UPFs is associated with weight gain and increased risk of obesity, cardiovascular disease, type 2 diabetes, and all-cause mortality. The available literature also supports an association between UPFs and hypertension, cancer, and depression; however, the limited number of studies and subjects investigated preclude strong conclusions. Due to the highly diverse nature of UPFs, additional studies are warranted, with special emphasis on disentangling mediating mechanisms, whether nutritional or non-nutrient based. Nevertheless, the available evidence regarding UPFs in relation to weight gain, CVD, type 2 diabetes, and all-cause mortality is considered strong enough to support dietary recommendations to limit their consumption.
Collapse
Affiliation(s)
- Filippa Juul
- School of Global Public Health, New York University, New York, NY, USA
- Center for Epidemiological Studies in Health and Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Elling Bere
- Department of Sports Science and Physical Education, University of Agder, Kristiansand, Norway
| |
Collapse
|
24
|
Xie Y, Wu Z, Qian Q, Yang H, Ma J, Luan W, Shang S, Li X. Apple polyphenol extract ameliorates sugary-diet-induced depression-like behaviors in male C57BL/6 mice by inhibiting the inflammation of the gut-brain axis. Food Funct 2024; 15:2939-2959. [PMID: 38406886 DOI: 10.1039/d3fo04606k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
To explore whether apple polyphenol extract (APE) ameliorates sugary-diet-induced depression-like behaviors, thirty male C57BL/6 mice (3-4 weeks old) were assigned to three groups randomly to receive different treatments for 8 consecutive weeks: (1) control group (CON), (2) S-HSD group (60% high sucrose diet feeding with 0.1 mg mL-1 sucralose solution as drinking water), and (3) S-APE group (S-HSD feeding with 500 mg per (kg bw day) APE solution gavage). The S-HSD group showed significant depression-like behaviors compared with the CON group, which was manifested by an increased number of buried marbles in the marble burying test, prolonged immobility time in both the tail suspension test and forced swimming test, and cognitive impairment based on the Morris water maze test. However, APE intervention significantly improved the depression-like behaviors by reducing serum levels of corticosterone and adrenocorticotropic hormone, and increasing the serum level of IL-10. Moreover, APE intervention inhibited the activation of the NF-κB inflammatory pathway, elevated colonic MUC-2 protein expression, and elevated the colonic and hippocampal tight junction proteins of occludin and ZO-1. Furthermore, APE intervention increased the richness and diversity of gut microbiota by regulating the composition of microbiota, with increased relative abundance of Firmicutes and Bacteroidota, decreased relative abundance of Verrucomicrobiota at the phylum level, significantly lowered relative abundance of Akkermansia at the genus level, and rebalanced abnormal relative abundance of Muribaculaceae_unclassified, Coriobacteriaceae_UCG-002, and Lachnoclostridium induced by S-HSD feeding. Thus, our study supports the potential application of APE as a dietary intervention for ameliorating depression-like behavioral disorders.
Collapse
Affiliation(s)
- Yisha Xie
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Zhengli Wu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Qingfan Qian
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Hao Yang
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Jieyu Ma
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Wenxue Luan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Siyuan Shang
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Xinli Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, PR China
| |
Collapse
|
25
|
Aguayo-Guerrero JA, Méndez-García LA, Solleiro-Villavicencio H, Viurcos-Sanabria R, Escobedo G. Sucralose: From Sweet Success to Metabolic Controversies-Unraveling the Global Health Implications of a Pervasive Non-Caloric Artificial Sweetener. Life (Basel) 2024; 14:323. [PMID: 38541649 PMCID: PMC10971371 DOI: 10.3390/life14030323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 01/04/2025] Open
Abstract
Sucralose is a food additive initially used to mitigate glycemic peaks and calorie intake in patients with diabetes and obesity. Although sucralose has been considered safe for human consumption, the World Health Organization (WHO) issued a global alert in 2023 concerning the potential health implications of this artificial sweetener. This review aims to comprehensively explore the effects of sucralose intake on human health by understanding sucralose absorption, metabolism, and excretion. We also outline the role of the sweet taste 1 receptor 3 (T1R3) in mediating sucralose-dependent signaling pathways that regulate satiety, incretin release, and insulin response. Finally, we discuss the impact of sucralose on microbiome dysbiosis, inflammatory response origin, liver damage, and toxicity. Gaining a deeper understanding of the manifold effects of sucralose on human physiology will help promote further studies to ensure its consumption is deemed safe for a broader population, including children, adolescents, and pregnant women.
Collapse
Affiliation(s)
- José Alfredo Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (J.A.A.-G.)
| | - Lucía Angélica Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (J.A.A.-G.)
| | | | - Rebeca Viurcos-Sanabria
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (J.A.A.-G.)
| |
Collapse
|
26
|
Teysseire F, Bordier V, Beglinger C, Wölnerhanssen BK, Meyer-Gerspach AC. Metabolic Effects of Selected Conventional and Alternative Sweeteners: A Narrative Review. Nutrients 2024; 16:622. [PMID: 38474749 PMCID: PMC10933973 DOI: 10.3390/nu16050622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Sugar consumption is known to be associated with a whole range of adverse health effects, including overweight status and type II diabetes mellitus. In 2015, the World Health Organization issued a guideline recommending the reduction of sugar intake. In this context, alternative sweeteners have gained interest as sugar substitutes to achieve this goal without loss of the sweet taste. This review aims to provide an overview of the scientific literature and establish a reference tool for selected conventional sweeteners (sucrose, glucose, and fructose) and alternative sweeteners (sucralose, xylitol, erythritol, and D-allulose), specifically focusing on their important metabolic effects. The results show that alternative sweeteners constitute a diverse group, and each substance exhibits one or more metabolic effects. Therefore, no sweetener can be considered to be inert. Additionally, xylitol, erythritol, and D-allulose seem promising as alternative sweeteners due to favorable metabolic outcomes. These alternative sweeteners replicate the benefits of sugars (e.g., sweetness and gastrointestinal hormone release) while circumventing the detrimental effects of these substances on human health.
Collapse
Affiliation(s)
- Fabienne Teysseire
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (F.T.); (V.B.); (B.K.W.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland;
| | - Valentine Bordier
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (F.T.); (V.B.); (B.K.W.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland;
| | | | - Bettina K. Wölnerhanssen
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (F.T.); (V.B.); (B.K.W.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland;
| | - Anne Christin Meyer-Gerspach
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (F.T.); (V.B.); (B.K.W.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland;
| |
Collapse
|
27
|
Power ME, Fernandez NR, Oni OP, Kalia A, Rourke JL. The non-nutritive sweetener sucralose increases β-arrestin signaling at the constitutively active orphan G protein-coupled receptor GPR52. Can J Physiol Pharmacol 2024; 102:116-127. [PMID: 37748201 DOI: 10.1139/cjpp-2023-0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Non-nutritive sweeteners are popular food additives owing to their low caloric density and powerful sweetness relative to natural sugars. Their lack of metabolism contributes to evidence proclaiming their safety, yet several studies contradict this, demonstrating that sweeteners activate sweet taste G protein-coupled receptors (GPCRs) and elicit deleterious metabolic functions through unknown mechanisms. We hypothesize that activation of GPCRs, particularly orphan receptors due to their abundance in metabolically active tissues, contributes to the biological activity of sweeteners. We quantified the response of 64 orphans to the sweeteners saccharin and sucralose using a high-throughput β-arrestin-2 recruitment assay (PRESTO-Tango). GPR52 was the sole receptor that significantly responded to a mixture of sucralose and saccharin. Subsequent experiments revealed sucralose as the activating sweetener. Activation of GPR52 was concentration-dependent, with an EC50 of 0.23 mmol/L and an Emax of 3.43 ± 0.24 fold change at 4 mmol/L. GPR52 constitutively activates CRE pathways; however, we show that sucralose-induced activation of GPR52 does not further activate this pathway. Identification of this novel sucralose-GPCR interaction supports the notion that sucralose elicits off-target signaling through the activation of GPR52, calling into question sucralose's assumed lack of bioactivity.
Collapse
Affiliation(s)
- Madeline E Power
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Nicholas R Fernandez
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Olaiya Peter Oni
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Aditaya Kalia
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Jillian L Rourke
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| |
Collapse
|
28
|
Claudino PA, Bueno NB, Piloneto S, Halaiko D, Azevedo de Sousa LP, Barroso Jara Maia CH, Netto BDM. Consumption of ultra-processed foods and risk for Alzheimer's disease: a systematic review. Front Nutr 2024; 10:1288749. [PMID: 38288062 PMCID: PMC10822898 DOI: 10.3389/fnut.2023.1288749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Objective To investigate the association of the consumption of ultra-processed foods with the risk of developing Alzheimer's disease in adults and the elderly. The review protocol was registered on PROSPERO (CRD42022375944). Methods This is a systematic review reported according to PRISMA guidelines. Observational studies were included without language or publication year restrictions. Studies assessing only other types of dementia as outcomes, not considering Alzheimer's disease, were excluded. The research was carried out in the Medline, Embase, Lilacs databases, and a survey of the gray literature between April and November 2023, in addition to citation search in the included studies. Data extraction was performed by two independent reviewers. The risk of bias and methodological quality of the included studies were assessed using the Joanna Briggs Institute checklist for cohort studies. Results A total of 5 studies involving 617,502 adults and elderly people were included. All studies had a cohort design and were considered of high methodological quality. Of the included studies, 4 demonstrated a risk association between the consumption of ultra-processed foods and the development of Alzheimer's disease, while 1 study showed a risk association only with the development of cognitive decline. Discussion The association between ultra-processed foods consumption and the risk of developing Alzheimer's disease is a recent topic in scientific studies, given that the oldest study identified by our review dates back to 2017. Of the four included studies, three showed a significant association between ultra-processed foods consumption and the risk of developing Alzheimer's disease.
Collapse
Affiliation(s)
- Paola Alves Claudino
- Postgraduation Program in Food and Nutrition, Federal University of Paraná, Curitiba, Brazil
| | - Nassib Bezerra Bueno
- Postgraduation Program in Nutrition, Federal University of Alagoas, Maceió, Brazil
| | | | | | | | | | - Bárbara Dal Molin Netto
- Postgraduation Program in Food and Nutrition, Department of Nutrition, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
29
|
Micarelli A, Malacrida S, Vezzoli A, Micarelli B, Misici I, Carbini V, Caputo S, Mrakic-Sposta S, Alessandrini M. Smell, taste and food habits changes along body mass index increase: an observational study. Eur Arch Otorhinolaryngol 2023; 280:5595-5606. [PMID: 37642711 DOI: 10.1007/s00405-023-08204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE To evaluate the changes in gustatory and olfactory sensitivity and dietary habits between healthy lean subjects (LS) and participants affected by overweight (OW), stage I and II obesity and to estimate possible impact of these factors on body mass index (BMI). METHODS After a general and ear-nose-throat evaluation, taste and olfactory function testing by means of taste strips and sniffin' stick tests, respectively, and food habits analysis by means of food frequency questionnaire (FFQ), 221 participants (68 LS [33 female; mean age = 53.01 ± 7.54 years]; 51 OW [26 female; mean age = 51.5 ± 12.16 years]; 50 stage I obesity [24 female; mean age = 50.78 ± 13.71 years] and 52 stage II obesity [24 female; mean age = 52.21 ± 13.35 years]) were enrolled in the study. RESULTS Significant (p < 0.008) reductions in total and subtest taste and smell scores were found in stage I and II obesity when compared to LS and OW participants. FFQ depicted a progressive intake increase of nutrients along the BMI stages. Significant associations were found between BMI and taste/smell subtests sugar taste carbs, saturated, monounsaturated and polyunsaturated fatty acids. CONCLUSIONS These data demonstrated for the first time a parallel impairment in smell and taste in a large sample size of participants from lean to stage II obesity and could reinforce those previous theories claiming that the greater the ability in taste or smell qualities perception, the lower the preference for them, resulting in a lower intake of specific foods.
Collapse
Affiliation(s)
- Alessandro Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy.
| | - Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), Milan, Italy
| | - Beatrice Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Ilaria Misici
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Valentina Carbini
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | | | | | - Marco Alessandrini
- Department of Clinical Sciences and Translational Medicine, ENT Unit, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
30
|
Rego MLM, Leslie E, Capra BT, Helder M, Yu W, Katz B, Davy KP, Hedrick VE, Davy BM, DiFeliceantonio AG. The influence of ultra-processed food consumption on reward processing and energy intake: Background, design, and methods of a controlled feeding trial in adolescents and young adults. Contemp Clin Trials 2023; 135:107381. [PMID: 37935307 PMCID: PMC10872704 DOI: 10.1016/j.cct.2023.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND The greatest age-related weight gain occurs in the early/mid-20s. Overall dietary quality among adolescents and emerging adults (age 18-25) is poor, with ultra-processed foods (UPF) representing more than two-thirds of adolescents' total energy intake (i.e., 68%). UPF consumption may impact cognitive and neurobiological factors that influence dietary decision-making and energy intake (EI). To date, no research has addressed this in this population. METHODS Participants aged 18-25 will undergo two 14-day controlled feeding periods (81% UPF, 0% UPF) using a randomly assigned crossover design, with a 4-week washout between conditions. Brain response to a UPF-rich milkshake, as well as behavioral measures of executive function, will be evaluated before and after each diet. Following each diet, measurements include ad libitum buffet meal EI, food selection, eating rate, and eating in the absence of hunger (EAH). Prior to initiating recruitment, controlled diet menus, buffet, and EAH snacks were developed and evaluated for palatability. Sensory and texture attributes of buffet and EAH snack foods were also evaluated. RESULTS Overall diet palatability was rated "like very much" (8)/"like moderately"(7) (UPF: 7.6 ± 1.0; Non-UPF: 6.8 ± 1.5). Subjective hardness rating (range = 1-9 [1 = soft, 9 = hard] was similar between UPF and Non-UPF buffet and snack items (UPF:4.22 ± 2.19, Non-UPF: 4.70 ± 2.03), as was the objective measure of hardness (UPF: 2874.33 ± 2497.06 g, Non-UPF: 2243.32 ± 1700.51 g). CONCLUSIONS Findings could contribute to an emerging neurobiological understanding of the effects of UPF consumption including energy overconsumption and weight gain among individuals at a critical developmental stage.
Collapse
Affiliation(s)
- Maria L M Rego
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, USA.
| | - Emma Leslie
- Fralin Biomedical Research Institute, Virginia Tech, USA
| | - Bailey T Capra
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, USA
| | - Mckenna Helder
- Department of Food Science and Technology, Virginia Tech, USA
| | - Wenjing Yu
- Fralin Biomedical Research Institute, Virginia Tech, USA
| | - Benjamin Katz
- Department of Human Development and Family Science, Virginia Tech, USA
| | - Kevin P Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, USA
| | - Valisa E Hedrick
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, USA
| | - Brenda M Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, USA
| | - Alexandra G DiFeliceantonio
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, USA; Fralin Biomedical Research Institute, Virginia Tech, USA
| |
Collapse
|
31
|
Abubakar IN, Essabbar M, Saikouk H. Analysis of the performances of various controllers adopted in the biomedical field for blood glucose regulation: a case study of the type-1 diabetes. J Med Eng Technol 2023; 47:376-388. [PMID: 38757394 DOI: 10.1080/03091902.2024.2353036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Diabetes remains a critical global health concern that necessitates urgent attention. The contemporary clinical approach to closed-loop care, specifically tailored for insulin-dependent patients, aims to precisely monitor blood glucose levels while mitigating the risks of hyperglycaemia and hypoglycaemia due to erroneous insulin dosing. This study seeks to address this life-threatening issue by assessing and comparing the performance of different controllers to achieve quicker settling and convergence rates with reduced steady-state errors, particularly in scenarios involving meal interruptions. The methodology involves the detection of plasma blood glucose levels, delivery of precise insulin doses to the actuator through a control architecture, and subsequent administration of the calculated insulin dosage to patients based on the control signal. Glucose-insulin dynamics were modelled using kinetics and mass balance equations from the Bergman minimal model. The simulation results revealed that the PID controller exhibited superior performance, maintaining blood glucose concentration around the preferred threshold ∼98.8% of the time, with a standard deviation of 2.50. This was followed by RST with a success rate of 98.5% and standard deviation of 5.00, SPC with a success rate of 58% and standard deviation of 2.99, SFC with a success rate of 55% and standard deviation of 10.08, and finally LCFB with a rate of 10% and significantly higher standard deviation of 64.55.
Collapse
Affiliation(s)
| | - Moad Essabbar
- Euromed Research Center, Euromed University of Fes, Fez, Morocco
| | - Hajar Saikouk
- Euromed Research Center, Euromed University of Fes, Fez, Morocco
| |
Collapse
|
32
|
Buso MEC, Brouwer-Brolsma EM, Naomi ND, Ngo J, Soedamah-Muthu SS, Mavrogianni C, Harrold JA, Halford JCG, Raben A, Geleijnse JM, Manios Y, Serra-Majem L, Feskens EJM. Sugar and low/no-calorie-sweetened beverage consumption and associations with body weight and waist circumference changes in five European cohort studies: the SWEET project. Eur J Nutr 2023; 62:2905-2918. [PMID: 37407857 PMCID: PMC10468933 DOI: 10.1007/s00394-023-03192-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE Results of prospective studies investigating associations between low/no-calorie sweeteners (LNCS) and body weight-related outcomes are inconclusive. We conducted dose-response and theoretical replacement individual patient data meta-analyses using harmonised prospective data to evaluate associations between sugar-sweetened beverage (SSB) consumption, low/no-calorie sweetened beverage (LNCB) consumption, and changes in body weight and waist circumference. METHODS Individual participant data were obtained from five European studies, i.e., Lifelines Cohort Study, NQplus study, Alpha Omega Cohort, Predimed-Plus study, and Feel4diabetes study, including 82,719 adults aged 18-89 with follow-up between 1 and 9 years. Consumption of SSB and LNCB was assessed using food-frequency questionnaires. Multiple regression analyses adjusting for major confounders and including substitution models were conducted to quantify associations in individual cohorts; random-effects meta-analyses were performed to pool individual estimates. RESULTS Overall, pooled results showed weak adverse associations between SSB consumption and changes in body weight (+ 0.02 kg/y, 95%CI 0.00; 0.04) and waist circumference (+ 0.03 cm/y, 95%CI 0.01; 0.05). LNCB consumption was associated with higher weight gain (+ 0.06 kg/y, 95%CI 0.04; 0.08) but not with waist circumference. No clear associations were observed for any theoretical replacements, i.e., LNCB or water for SSB or water for LNCB. CONCLUSION In conclusion, this analysis of five European studies found a weak positive association between SSB consumption and weight and waist change, whilst LNCB consumption was associated with weight change only. Theoretical substitutions did not show any clear association. Thus, the benefit of LNCBs as an alternative to SSBs remains unclear.
Collapse
Affiliation(s)
- Marion E C Buso
- Division of Human Nutrition and Health, Wageningen University and Research, BP 17, 6700AA, Wageningen, The Netherlands
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Wageningen University and Research, BP 17, 6700AA, Wageningen, The Netherlands
| | - Novita D Naomi
- Division of Human Nutrition and Health, Wageningen University and Research, BP 17, 6700AA, Wageningen, The Netherlands
| | - Joy Ngo
- Nutrition Research Foundation - Fundación para la Investigación Nutricional, Barcelona, Spain
| | - Sabita S Soedamah-Muthu
- Department of Medical and Clinical Psychology, Center of Research on Psychological and Somatic Disorders (CORPS), Tilburg University, Tilburg, The Netherlands
- Institute for Food, Nutrition and Health, University of Reading, Reading, UK
| | - Christina Mavrogianni
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, Heraklion, Greece
| | - Joanne A Harrold
- Department of Psychology, University of Liverpool, Liverpool, UK
| | - Jason C G Halford
- Department of Psychology, University of Liverpool, Liverpool, UK
- School of Psychology, University of Leeds, Leeds, UK
| | - Anne Raben
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Johanna M Geleijnse
- Division of Human Nutrition and Health, Wageningen University and Research, BP 17, 6700AA, Wageningen, The Netherlands
| | - Yannis Manios
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, Heraklion, Greece
| | - Luis Serra-Majem
- Nutrition Research Foundation - Fundación para la Investigación Nutricional, Barcelona, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), Preventive Medicine Service, Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, University of Las Palmas de Gran Canaria, Las Palmas, Spain
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University and Research, BP 17, 6700AA, Wageningen, The Netherlands.
| |
Collapse
|
33
|
Sylvetsky AC, Moore HR, Zhu X, Kaidbey JH, Kang L, Saeed A, Khattak S, Grilo MF, Vallone N, Kuttamperoor J, Cogen FR, Elmi A, Walter PJ, Cai H, DiPietro L, Goran MI, Streisand R. Effects of Low-Calorie Sweetener Restriction on Glycemic Variability and Cardiometabolic Health in Children with Type 1 Diabetes: Findings of a Pilot and Feasibility Study. Nutrients 2023; 15:3867. [PMID: 37764650 PMCID: PMC10534616 DOI: 10.3390/nu15183867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Low-calorie sweeteners (LCS) are commonly consumed by children with type 1 diabetes (T1D), yet their role in cardiometabolic health is unclear. This study examined the feasibility, acceptability, and preliminary effects of 12 weeks of LCS restriction among children with T1D. Children (n = 31) with T1D completed a two-week run-in (n = 28) and were randomly assigned to avoid LCS (LCS restriction, n = 15) or continue their usual LCS intake (n = 13). Feasibility was assessed using recruitment, retention, and adherence rates percentages. Acceptability was assessed through parents completing a qualitative interview (subset, n = 15) and a satisfaction survey at follow-up. Preliminary outcomes were between-group differences in change in average daily time-in-range (TIR) over 12 weeks (primary), and other measures of glycemic variability, lipids, inflammatory biomarkers, visceral adiposity, and dietary intake (secondary). Linear regression, unadjusted and adjusted for age, sex, race, and change in BMI, was used to compare mean changes in all outcomes between groups. LCS restriction was feasible and acceptable. No between-group differences in change in TIR or other measures of glycemic variability were observed. However, significant decreases in TNF-alpha (-0.23 ± 0.08 pg/mL) and improvements in cholesterol (-0.31 ± 0.18 mmol/L) and LDL (-0.60 ± 0.39 mmol/L) were observed with usual LCS intake, compared with LCS restriction. Those randomized to LCS restriction did not report increases in total or added sugar intake, and lower energy intake was reported in both groups (-190.8 ± 106.40 kcal LCS restriction, -245.3 ± 112.90 kcal usual LCS intake group). Decreases in percent energy from carbohydrates (-8.5 ± 2.61) and increases in percent energy from protein (3.2 ± 1.16) and fat (5.2 ± 2.02) were reported with usual LCS intake compared with LCS restriction. Twelve weeks of LCS restriction did not compromise glycemic variability or cardiometabolic outcomes in this small sample of youth with T1D. Further examination of LCS restriction among children with T1D is warranted.
Collapse
Affiliation(s)
- Allison C. Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Hailey R. Moore
- Division of Psychology & Behavioral Health, Children’s National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA; (H.R.M.); (L.K.); (R.S.)
| | - Xinyu Zhu
- Nutrition and Health Sciences Program, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA;
| | - Jasmine H. Kaidbey
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Leyi Kang
- Division of Psychology & Behavioral Health, Children’s National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA; (H.R.M.); (L.K.); (R.S.)
| | - Abbas Saeed
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Shazmeena Khattak
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Mariana F. Grilo
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Natalie Vallone
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Janae Kuttamperoor
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Fran R. Cogen
- Division of Endocrinology, Children’s National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA;
- School of Medicine and Health Sciences, The George Washington University, 2300 I St. NW, Washington, DC 20052, USA
| | - Angelo Elmi
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA;
| | - Peter J. Walter
- Clinical Mass Spectrometry Lab, National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, USA; (P.J.W.); (H.C.)
| | - Hongyi Cai
- Clinical Mass Spectrometry Lab, National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, USA; (P.J.W.); (H.C.)
| | - Loretta DiPietro
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Michael I. Goran
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA;
| | - Randi Streisand
- Division of Psychology & Behavioral Health, Children’s National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA; (H.R.M.); (L.K.); (R.S.)
- School of Medicine and Health Sciences, The George Washington University, 2300 I St. NW, Washington, DC 20052, USA
| |
Collapse
|
34
|
Schiffman SS, Scholl EH, Furey TS, Nagle HT. Toxicological and pharmacokinetic properties of sucralose-6-acetate and its parent sucralose: in vitro screening assays. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:307-341. [PMID: 37246822 DOI: 10.1080/10937404.2023.2213903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to determine the toxicological and pharmacokinetic properties of sucralose-6-acetate, a structural analog of the artificial sweetener sucralose. Sucralose-6-acetate is an intermediate and impurity in the manufacture of sucralose, and recent commercial sucralose samples were found to contain up to 0.67% sucralose-6-acetate. Studies in a rodent model found that sucralose-6-acetate is also present in fecal samples with levels up to 10% relative to sucralose which suggest that sucralose is also acetylated in the intestines. A MultiFlow® assay, a high-throughput genotoxicity screening tool, and a micronucleus (MN) test that detects cytogenetic damage both indicated that sucralose-6-acetate is genotoxic. The mechanism of action was classified as clastogenic (produces DNA strand breaks) using the MultiFlow® assay. The amount of sucralose-6-acetate in a single daily sucralose-sweetened drink might far exceed the threshold of toxicological concern for genotoxicity (TTCgenotox) of 0.15 µg/person/day. The RepliGut® System was employed to expose human intestinal epithelium to sucralose-6-acetate and sucralose, and an RNA-seq analysis was performed to determine gene expression induced by these exposures. Sucralose-6-acetate significantly increased the expression of genes associated with inflammation, oxidative stress, and cancer with greatest expression for the metallothionein 1 G gene (MT1G). Measurements of transepithelial electrical resistance (TEER) and permeability in human transverse colon epithelium indicated that sucralose-6-acetate and sucralose both impaired intestinal barrier integrity. Sucralose-6-acetate also inhibited two members of the cytochrome P450 family (CYP1A2 and CYP2C19). Overall, the toxicological and pharmacokinetic findings for sucralose-6-acetate raise significant health concerns regarding the safety and regulatory status of sucralose itself.
Collapse
Affiliation(s)
- Susan S Schiffman
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
| | | | - Terrence S Furey
- Departments of Genetics and Biology, University of North Carolina, Chapel Hill, NC, USA
| | - H Troy Nagle
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
35
|
Almiron-Roig E, Navas-Carretero S, Castelnuovo G, Kjølbæk L, Romo-Hualde A, Normand M, Maloney N, Hardman CA, Hodgkins CE, Moshoyiannis H, Finlayson G, Scott C, Raats MM, Harrold JA, Raben A, Halford JCG, Martínez JA. Impact of acute consumption of beverages containing plant-based or alternative sweetener blends on postprandial appetite, food intake, metabolism, and gastro-intestinal symptoms: Results of the SWEET beverages trial. Appetite 2023; 184:106515. [PMID: 36849009 DOI: 10.1016/j.appet.2023.106515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Project SWEET examined the barriers and facilitators to the use of non-nutritive sweeteners and sweetness enhancers (hereafter "S&SE") alongside potential risks/benefits for health and sustainability. The Beverages trial was a double-blind multi-centre, randomised crossover trial within SWEET evaluating the acute impact of three S&SE blends (plant-based and alternatives) vs. a sucrose control on glycaemic response, food intake, appetite sensations and safety after a carbohydrate-rich breakfast meal. The blends were: mogroside V and stevia RebM; stevia RebA and thaumatin; and sucralose and acesulfame-potassium (ace-K). At each 4 h visit, 60 healthy volunteers (53% male; all with overweight/obesity) consumed a 330 mL beverage with either an S&SE blend (0 kJ) or 8% sucrose (26 g, 442 kJ), shortly followed by a standardised breakfast (∼2600 or 1800 kJ with 77 or 51 g carbohydrates, depending on sex). All blends reduced the 2-h incremental area-under-the-curve (iAUC) for blood insulin (p < 0.001 in mixed-effects models), while the stevia RebA and sucralose blends reduced the glucose iAUC (p < 0.05) compared with sucrose. Post-prandial levels of triglycerides plus hepatic transaminases did not differ across conditions (p > 0.05 for all). Compared with sucrose, there was a 3% increase in LDL-cholesterol after stevia RebA-thaumatin (p < 0.001 in adjusted models); and a 2% decrease in HDL-cholesterol after sucralose-ace-K (p < 0.01). There was an impact of blend on fullness and desire to eat ratings (both p < 0.05) and sucralose-acesulfame K induced higher prospective intake vs sucrose (p < 0.001 in adjusted models), but changes were of a small magnitude and did not translate into energy intake differences over the next 24 h. Gastro-intestinal symptoms for all beverages were mostly mild. In general, responses to a carbohydrate-rich meal following consumption of S&SE blends with stevia or sucralose were similar to sucrose.
Collapse
Affiliation(s)
- Eva Almiron-Roig
- University of Navarra, Faculty of Pharmacy and Nutrition, Dept. of Food Science and Physiology, Pamplona, Spain; University of Navarra, Center for Nutrition Research, Pamplona, Spain; Navarra Institute for Health Research (IdiSNa), Pamplona, Spain.
| | - Santiago Navas-Carretero
- University of Navarra, Faculty of Pharmacy and Nutrition, Dept. of Food Science and Physiology, Pamplona, Spain; University of Navarra, Center for Nutrition Research, Pamplona, Spain; Navarra Institute for Health Research (IdiSNa), Pamplona, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.
| | | | - Louise Kjølbæk
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| | - Ana Romo-Hualde
- University of Navarra, Faculty of Pharmacy and Nutrition, Dept. of Food Science and Physiology, Pamplona, Spain; University of Navarra, Center for Nutrition Research, Pamplona, Spain.
| | - Mie Normand
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| | - Niamh Maloney
- Department of Psychology, University of Liverpool, Liverpool, UK.
| | | | - Charo E Hodgkins
- Food Consumer Behaviour and Health Research Centre, School of Psychology, University of Surrey, Guildford, UK.
| | | | | | - Corey Scott
- Cargill R&D Centre Europe, Vilvoorde, Belgium.
| | - Monique M Raats
- Food Consumer Behaviour and Health Research Centre, School of Psychology, University of Surrey, Guildford, UK.
| | - Joanne A Harrold
- Department of Psychology, University of Liverpool, Liverpool, UK.
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
| | - Jason C G Halford
- Department of Psychology, University of Liverpool, Liverpool, UK; School of Psychology, University of Leeds, Leeds, UK.
| | - J Alfredo Martínez
- University of Navarra, Faculty of Pharmacy and Nutrition, Dept. of Food Science and Physiology, Pamplona, Spain.
| |
Collapse
|
36
|
Prilutski Y, Livneh Y. Physiological Needs: Sensations and Predictions in the Insular Cortex. Physiology (Bethesda) 2023; 38:0. [PMID: 36040864 DOI: 10.1152/physiol.00019.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Physiological needs create powerful motivations (e.g., thirst and hunger). Studies in humans and animal models have implicated the insular cortex in the neural regulation of physiological needs and need-driven behavior. We review prominent mechanistic models of how the insular cortex might achieve this regulation and present a conceptual and analytical framework for testing these models in healthy and pathological conditions.
Collapse
Affiliation(s)
- Yael Prilutski
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
37
|
Newborns from Mothers Who Intensely Consumed Sucralose during Pregnancy Are Heavier and Exhibit Markers of Metabolic Alteration and Low-Grade Systemic Inflammation: A Cross-Sectional, Prospective Study. Biomedicines 2023; 11:biomedicines11030650. [PMID: 36979631 PMCID: PMC10045555 DOI: 10.3390/biomedicines11030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Robust data in animals show that sucralose intake during gestation can predispose the offspring to weight gain, metabolic disturbances, and low-grade systemic inflammation; however, concluding information remains elusive in humans. In this cross-sectional, prospective study, we examined the birth weight, glucose and insulin cord blood levels, monocyte subsets, and inflammatory cytokine profile in 292 neonates at term from mothers with light sucralose ingestion (LSI) of less than 60 mg sucralose/week or heavy sucralose intake (HSI) of more than 36 mg sucralose/day during pregnancy. Mothers in the LSI (n = 205) or HSI (n = 87) groups showed no differences in age, pregestational body mass index, blood pressure, and glucose tolerance. Although there were no differences in glucose, infants from HSI mothers displayed significant increases in birth weight and insulin compared to newborns from LSI mothers. Newborns from HSI mothers showed a substantial increase in the percentage of inflammatory nonclassical monocytes compared to neonates from LSI mothers. Umbilical cord tissue of infants from HSI mothers exhibited higher IL-1 beta and TNF-alpha with lower IL-10 expression than that found in newborns from LSI mothers. Present results demonstrate that heavy sucralose ingestion during pregnancy affects neonates’ anthropometric, metabolic, and inflammatory features.
Collapse
|
38
|
Zhang R, Noronha JC, Khan TA, McGlynn N, Back S, Grant SM, Kendall CWC, Sievenpiper JL. The Effect of Non-Nutritive Sweetened Beverages on Postprandial Glycemic and Endocrine Responses: A Systematic Review and Network Meta-Analysis. Nutrients 2023; 15:1050. [PMID: 36839408 PMCID: PMC9965414 DOI: 10.3390/nu15041050] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 02/22/2023] Open
Abstract
Background: There has been an emerging concern that non-nutritive sweeteners (NNS) can increase the risk of cardiometabolic disease. Much of the attention has focused on acute metabolic and endocrine responses to NNS. To examine whether these mechanisms are operational under real-world scenarios, we conducted a systematic review and network meta-analysis of acute trials comparing the effects of non-nutritive sweetened beverages (NNS beverages) with water and sugar-sweetened beverages (SSBs) in humans. Methods: MEDLINE, EMBASE, and The Cochrane Library were searched through to January 15, 2022. We included acute, single-exposure, randomized, and non-randomized, clinical trials in humans, regardless of health status. Three patterns of intake were examined: (1) uncoupling interventions, where NNS beverages were consumed alone without added energy or nutrients; (2) coupling interventions, where NNS beverages were consumed together with added energy and nutrients as carbohydrates; and (3) delayed coupling interventions, where NNS beverages were consumed as a preload prior to added energy and nutrients as carbohydrates. The primary outcome was a 2 h incremental area under the curve (iAUC) for blood glucose concentration. Secondary outcomes included 2 h iAUC for insulin, glucagon-like peptide 1 (GLP-1), gastric inhibitory polypeptide (GIP), peptide YY (PYY), ghrelin, leptin, and glucagon concentrations. Network meta-analysis and confidence in the network meta-analysis (CINeMA) were conducted in R-studio and CINeMA, respectively. Results: Thirty-six trials involving 472 predominantly healthy participants were included. Trials examined a variety of single NNS (acesulfame potassium, aspartame, cyclamate, saccharin, stevia, and sucralose) and NNS blends (acesulfame potassium + aspartame, acesulfame potassium + sucralose, acesulfame potassium + aspartame + cyclamate, and acesulfame potassium + aspartame + sucralose), along with matched water/unsweetened controls and SSBs sweetened with various caloric sugars (glucose, sucrose, and fructose). In uncoupling interventions, NNS beverages (single or blends) had no effect on postprandial glucose, insulin, GLP-1, GIP, PYY, ghrelin, and glucagon responses similar to water controls (generally, low to moderate confidence), whereas SSBs sweetened with caloric sugars (glucose and sucrose) increased postprandial glucose, insulin, GLP-1, and GIP responses with no differences in postprandial ghrelin and glucagon responses (generally, low to moderate confidence). In coupling and delayed coupling interventions, NNS beverages had no postprandial glucose and endocrine effects similar to controls (generally, low to moderate confidence). Conclusions: The available evidence suggests that NNS beverages sweetened with single or blends of NNS have no acute metabolic and endocrine effects, similar to water. These findings provide support for NNS beverages as an alternative replacement strategy for SSBs in the acute postprandial setting.
Collapse
Affiliation(s)
- Roselyn Zhang
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Applied Human Nutrition, Mount Saint Vincent University, Halifax, NS B3M 2J6, Canada
- Department of Applied Health Sciences, University of Waterloo, Waterloo, ON N2L 3G5, Canada
| | - Jarvis C. Noronha
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- School of Medicine, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Tauseef A. Khan
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Néma McGlynn
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Songhee Back
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shannan M. Grant
- Department of Applied Human Nutrition, Mount Saint Vincent University, Halifax, NS B3M 2J6, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Obstetrics and Gynecology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Obstetrics & Gynecology and Department of Pediatrics, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Cyril W. C. Kendall
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - John L. Sievenpiper
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
39
|
Rebolledo N, Bercholz M, Adair L, Corvalán C, Ng SW, Taillie LS. Sweetener Purchases in Chile before and after Implementing a Policy for Food Labeling, Marketing, and Sales in Schools. Curr Dev Nutr 2023; 7:100016. [PMID: 37180088 PMCID: PMC10111599 DOI: 10.1016/j.cdnut.2022.100016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background Chile's landmark food labeling and advertising policy led to major reductions in sugar purchases. However, it is unclear whether this led to increases in the purchases of nonnutritive sweeteners (NNS). Objectives The objective of this study was to assess the changes in NNS and caloric-sweetened (CS) products purchased after the law's first phase. Methods Longitudinal data on food and beverage purchases from 2,381 households collected from January 1, 2015 to December 31, 2017, were linked to nutritional information and categorized into added sweetener groups (unsweetened, NNS-only, CS-only, or NNS with CS). Logistic random-effects models and fixed-effects models were used to compare the percentage of households purchasing products and the mean volume purchased by sweetener category to a counterfactual based on pre-regulation trends. Results Compared with the counterfactual, the percentage of households purchasing any NNS beverages (NNS-only or NNS with CS) increased by 4.2 percentage points (pp) (95% CI: 2.8, 5.7; P < 0.01). This increase was driven by households purchasing NNS-only beverages (12.1 pp, 95% CI: 10.0, 14.2; P < 0.01). The purchased volume of beverages with any NNS increased by 25.4 mL/person/d (95% CI: 20.1, 30.7; P < 0.01) or 26.5%. Relative to the counterfactual, there were declines of -5.9 pp in households purchasing CS-only beverages (95% CI: -7.0, -4.7; P < 0.01). Regarding the types of sweeteners purchased, we found significant increases in the amounts of sucralose, aspartame, acesulfame K, and steviol glycosides purchased from beverages. Among foods, differences were minimal. Conclusions The first phase of Chile's law was associated with an increase in the purchases of beverages containing NNS and decreases in beverages containing CS, but virtually no changes in foods.
Collapse
Affiliation(s)
- Natalia Rebolledo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maxime Bercholz
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Linda Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Camila Corvalán
- Institute of Nutrition and Food Technology (INTA), University of Chile, Macul, Chile
| | - Shu Wen Ng
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lindsey Smith Taillie
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
40
|
Pardo-Garcia TR, Gu K, Woerner RKR, Dus M. Food memory circuits regulate eating and energy balance. Curr Biol 2023; 33:215-227.e3. [PMID: 36528025 PMCID: PMC9877168 DOI: 10.1016/j.cub.2022.11.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
In mammals, learning circuits play an essential role in energy balance by creating associations between sensory cues and the rewarding qualities of food. This process is altered by diet-induced obesity, but the causes and mechanisms are poorly understood. Here, we exploited the relative simplicity and wealth of knowledge about the D. melanogaster reinforcement learning network, the mushroom body, in order to study the relationship between the dietary environment, dopamine-induced plasticity, and food associations. We show flies that are fed a high-sugar diet cannot make associations between sensory cues and the rewarding properties of sugar. This deficit was caused by diet exposure, not fat accumulation, and specifically by lower dopamine-induced plasticity onto mushroom body output neurons (MBONs) during learning. Importantly, food memories dynamically tune the output of MBONs during eating, which instead remains fixed in sugar-diet animals. Interestingly, manipulating the activity of MBONs influenced eating and fat mass, depending on the diet. Altogether, this work advances our fundamental understanding of the mechanisms, causes, and consequences of the dietary environment on reinforcement learning and ingestive behavior.
Collapse
Affiliation(s)
- Thibaut R Pardo-Garcia
- The Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; The Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathleen Gu
- The Undergraduate Program in Neuroscience, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Riley K R Woerner
- The Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica Dus
- The Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; The Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA; The Undergraduate Program in Neuroscience, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
41
|
Muacevic A, Adler JR. Artificially Sweetened Beverages Beyond the Metabolic Risks: A Systematic Review of the Literature. Cureus 2023; 15:e33231. [PMID: 36741610 PMCID: PMC9891650 DOI: 10.7759/cureus.33231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2023] [Indexed: 01/04/2023] Open
Abstract
We carried out a review of the available literature on the effects that artificially sweetened beverages (ASBs) such as diet soda (DS) have on health, particularly those not related to incident diabetes mellitus, obesity, and metabolic syndrome. A search of scientific articles was carried out using 11 different databases: PubMed, Cochrane, LILACS, MEDLINE Ovid, JAMA Network, IBECS, Cumed, Scopus, SciELO, MEDLINE-EBSCO, and Taylor & Francis Online. Articles published in the last 10 years were considered, considering cross-sectional studies, retrospective or prospective cohort studies, case-control studies, and randomized controlled clinical trials. Only articles in Spanish or English were considered using the MeSH (Medical Subject Heading) and DeCS (Descriptores en Ciencias de la Salud) terms, including "Diet soda," "Health," "Artificial sweetener," "Gaseosa sin azúcar," "Refresco sin azúcar," and "Salud." Additionally, Boolean operators "AND" and "Y" were used. A total of 1,323 articles were obtained in the initial search, of which 21 main ones were selected for review, which included the topic of DS consumption and explored the health consequences that it poses on different organs. The question of whether ASBs such as DS are a preferred substitute is becoming more and more important in terms of public policy due to mounting evidence of the potential negative health effects of their excessive consumption. This systematic review, the first of its kind to our knowledge, sheds light on how excessive DS consumption can affect multiple organ systems, and associations have been made to mental health burden, delays in child neurodevelopment, cardiac remodeling, worsening retinopathy in diabetics, incidental end-stage renal disease, non-Hodgkin's lymphoma and multiple myeloma in men, rheumatoid arthritis in women, hip fractures, dental erosion, increases in breath alcohol concentration when used in alcoholic beverages, and accelerated cell aging. Further studies should delve further to understand the pathophysiologic mechanisms of these associations.
Collapse
|
42
|
Kelly AL, Baugh ME, Oster ME, DiFeliceantonio AG. The impact of caloric availability on eating behavior and ultra-processed food reward. Appetite 2022; 178:106274. [PMID: 35963586 PMCID: PMC9749763 DOI: 10.1016/j.appet.2022.106274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/07/2022] [Accepted: 08/07/2022] [Indexed: 12/19/2022]
Abstract
The food environment has changed rapidly and dramatically in the last 50 years. While industrial food processing has increased the safety and stability of the food supply, a rapid expansion in the scope and scale of food processing in the 1980's has resulted in a market dominated by ultra-processed foods. Here, we use the NOVA definition of category 4 ultra-processed foods (UPFs) as they make up around 58% of total calories consumed in the US and 66% of calories in US children. UPFs are formulated from ingredients with no or infrequent culinary use, contain additives, and have a long shelf-life, spending long periods in contact with packaging materials, allowing for the absorption of compounds from those materials. The full implications of this dietary shift to UPFs on human health and disease outcomes are difficult, if not impossible, to quantify. However, UPF consumption is linked with various forms of cancer, increased cardiovascular disease, and increased all-cause mortality. Understanding food choice is, therefore, a critical problem in health research. Although many factors influence food choice, here we focus on the properties of the foods themselves. UPFs are generally treated as food, not as the highly refined, industrialized substances that they are, whose properties and components must be studied. Here, we examine one property of UPFs, that they deliver useable calories rapidly as a potential factor driving UPF overconsumption. First, we explore evidence that UPFs deliver calories more rapidly. Next, we examine the role of the gut-brain axis and its interplay with canonical reward systems, and last, we describe how speed affects both basic learning processes and drugs of abuse.
Collapse
Affiliation(s)
- Amber L Kelly
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA
| | | | - Mary E Oster
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA; Center for Health Behaviors Research; Department of Human Nutrition Foods and Exercise at Virginia Tech, USA.
| |
Collapse
|
43
|
Teysseire F, Flad E, Bordier V, Budzinska A, Weltens N, Rehfeld JF, Beglinger C, Van Oudenhove L, Wölnerhanssen BK, Meyer-Gerspach AC. Oral Erythritol Reduces Energy Intake during a Subsequent ad libitum Test Meal: A Randomized, Controlled, Crossover Trial in Healthy Humans. Nutrients 2022; 14:nu14193918. [PMID: 36235571 PMCID: PMC9571225 DOI: 10.3390/nu14193918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The impact of oral erythritol on subsequent energy intake is unknown. The aim was to assess the effect of oral erythritol compared to sucrose, sucralose, or tap water on energy intake during a subsequent ad libitum test meal and to examine the release of cholecystokinin (CCK) in response to these substances. In this randomized, crossover trial, 20 healthy volunteers received 50 g erythritol, 33.5 g sucrose, or 0.0558 g sucralose dissolved in tap water, or tap water as an oral preload in four different sessions. Fifteen minutes later, a test meal was served and energy intake was assessed. At set time points, blood samples were collected to quantify CCK concentrations. The energy intake (ad libitum test meal) was significantly lower after erythritol compared to sucrose, sucralose, or tap water (p < 0.05). Before the start of the ad libitum test meal, erythritol led to a significant increase in CCK compared to sucrose, sucralose, or tap water (p < 0.001). Oral erythritol given alone induced the release of CCK before the start of the ad libitum test meal and reduced subsequent energy intake compared to sucrose, sucralose, or tap water. These properties make erythritol a useful sugar alternative.
Collapse
Affiliation(s)
- Fabienne Teysseire
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Emilie Flad
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Valentine Bordier
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Aleksandra Budzinska
- Translational Research Center for Gastrointestinal Disorders, Laboratory for Brain-Gut Axis Studies, Department of Chronic Diseases and Metabolism, Catholic University of Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Nathalie Weltens
- Translational Research Center for Gastrointestinal Disorders, Laboratory for Brain-Gut Axis Studies, Department of Chronic Diseases and Metabolism, Catholic University of Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Jens F. Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 1172 Copenhagen, Denmark
| | | | - Lukas Van Oudenhove
- Translational Research Center for Gastrointestinal Disorders, Laboratory for Brain-Gut Axis Studies, Department of Chronic Diseases and Metabolism, Catholic University of Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, Catholic University of Leuven, 3000 Leuven, Belgium
- Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Bettina K. Wölnerhanssen
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Anne Christin Meyer-Gerspach
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-685-85
| |
Collapse
|
44
|
Page KA. A gut reaction: Microbiome-driven glycemic effects of non-nutritive sweeteners. Cell 2022; 185:3282-3284. [DOI: 10.1016/j.cell.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 10/14/2022]
|
45
|
Suez J, Cohen Y, Valdés-Mas R, Mor U, Dori-Bachash M, Federici S, Zmora N, Leshem A, Heinemann M, Linevsky R, Zur M, Ben-Zeev Brik R, Bukimer A, Eliyahu-Miller S, Metz A, Fischbein R, Sharov O, Malitsky S, Itkin M, Stettner N, Harmelin A, Shapiro H, Stein-Thoeringer CK, Segal E, Elinav E. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022; 185:3307-3328.e19. [PMID: 35987213 DOI: 10.1016/j.cell.2022.07.016] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
Non-nutritive sweeteners (NNS) are commonly integrated into human diet and presumed to be inert; however, animal studies suggest that they may impact the microbiome and downstream glycemic responses. We causally assessed NNS impacts in humans and their microbiomes in a randomized-controlled trial encompassing 120 healthy adults, administered saccharin, sucralose, aspartame, and stevia sachets for 2 weeks in doses lower than the acceptable daily intake, compared with controls receiving sachet-contained vehicle glucose or no supplement. As groups, each administered NNS distinctly altered stool and oral microbiome and plasma metabolome, whereas saccharin and sucralose significantly impaired glycemic responses. Importantly, gnotobiotic mice conventionalized with microbiomes from multiple top and bottom responders of each of the four NNS-supplemented groups featured glycemic responses largely reflecting those noted in respective human donors, which were preempted by distinct microbial signals, as exemplified by sucralose. Collectively, human NNS consumption may induce person-specific, microbiome-dependent glycemic alterations, necessitating future assessment of clinical implications.
Collapse
Affiliation(s)
- Jotham Suez
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Yotam Cohen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rafael Valdés-Mas
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uria Mor
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mally Dori-Bachash
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sara Federici
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Niv Zmora
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; Internal Medicine Department, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Avner Leshem
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Melina Heinemann
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Raquel Linevsky
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Zur
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rotem Ben-Zeev Brik
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aurelie Bukimer
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shimrit Eliyahu-Miller
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alona Metz
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruthy Fischbein
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Olga Sharov
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Department of Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maxim Itkin
- Department of Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa Stettner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hagit Shapiro
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Christoph K Stein-Thoeringer
- Microbiome & Cancer Division, DKFZ, Heidelberg, Germany; National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Microbiome & Cancer Division, DKFZ, Heidelberg, Germany.
| |
Collapse
|
46
|
Fang X, Davis X, Flack KD, Duncan C, Li F, White M, Grilo C, Small DM. Dietary adaptation for weight loss maintenance at Yale (DAWLY): Protocol and predictions for a randomized controlled trial. Front Nutr 2022; 9:940064. [PMID: 35967820 PMCID: PMC9369668 DOI: 10.3389/fnut.2022.940064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Current therapies for obesity treatment are effective at producing short-term weight loss, but weight loss maintenance remains a significant challenge. Here we investigate the impact of pre-intervention dietary fat intake on the efficacy of a dietary supplement to support weight loss maintenance. Preclinical work demonstrates that a vagal afferent pathway critical for sensing dietary lipids is blunted by a high-fat diet (HFD), resulting in a reduced preference for a low-fat emulsion and severe blunting of the dopamine (DA) response to the gastric infusion of lipids. Infusion of the gut lipid messenger oleoylethanolamide (OEA), which is also depleted by HFD, immediately reverses this DA blunting and restores preference for the low-fat emulsion. Studies of OEA supplementation for weight loss in humans have had limited success. Given the strong effect of HFD on this pathway, we designed a study to test whether the efficacy of OEA as a weight loss treatment is related to pre-intervention habitual intake of dietary fat. Methods/Design We employed a randomized, double-blind, placebo-controlled trial in which 100 adults with overweight/obesity (OW/OB) were randomized to receive either OEA or placebo daily for 16 months. Following a baseline evaluation of diet, metabolic health, adiposity, and brain response to a palatable an energy dense food, participants in both groups underwent a 4-month behavioral weight loss intervention (LEARN®) followed by a 1-year maintenance period. The study aims are to (1) determine if pre-intervention dietary fat intake moderates the ability of OEA to improve weight loss and weight loss maintenance after a gold standard behavioral weight loss treatment; (2) identify biomarkers that predict outcome and optimize a stratification strategy; and (3) test a model underlying OEA's effectiveness. Discussion Focusing on interventions that target the gut-brain axis is supported by mounting evidence for the role of gut-brain signaling in food choice and the modulation of this circuit by diet. If successful, this work will provide support for targeting the gut-brain pathway for weight loss maintenance using a precision medicine approach that is easy and inexpensive to implement. Clinical Trial Registration [www.ClinicalTrials.gov], identifier [NCT04614233].
Collapse
Affiliation(s)
- Xi Fang
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Xue Davis
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Kyle D. Flack
- Department of Dietetics and Human Nutrition, College of Agriculture, Foods, and Environment, University of Kentucky, Lexington, KY, United States
| | - Chavonn Duncan
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Marney White
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Social and Behavioral Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Carlos Grilo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dana M. Small
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
47
|
Phenylalanine impairs insulin signaling and inhibits glucose uptake through modification of IRβ. Nat Commun 2022; 13:4291. [PMID: 35879296 PMCID: PMC9314339 DOI: 10.1038/s41467-022-32000-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Whether amino acids act on cellular insulin signaling remains unclear, given that increased circulating amino acid levels are associated with the onset of type 2 diabetes (T2D). Here, we report that phenylalanine modifies insulin receptor beta (IRβ) and inactivates insulin signaling and glucose uptake. Mice fed phenylalanine-rich chow or phenylalanine-producing aspartame or overexpressing human phenylalanyl-tRNA synthetase (hFARS) develop insulin resistance and T2D symptoms. Mechanistically, FARS phenylalanylate lysine 1057/1079 of IRβ (F-K1057/1079), inactivating IRβ and preventing insulin from promoting glucose uptake by cells. SIRT1 reverse F-K1057/1079 and counteract the insulin-inactivating effects of hFARS and phenylalanine. F-K1057/1079 and SIRT1 levels in white blood cells from T2D patients are positively and negatively correlated with T2D onset, respectively. Blocking F-K1057/1079 with phenylalaninol sensitizes insulin signaling and relieves T2D symptoms in hFARS-transgenic and db/db mice. These findings shed light on the activation of insulin signaling and T2D progression through inhibition of phenylalanylation. Whether amino acids act on cellular insulin signaling remains unclear. Here, the authors find that phenylalanine modifies insulin receptor beta (IRβ) and inactivates insulin signaling and glucose uptake and positively correlated with T2D onset.
Collapse
|
48
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
49
|
Guru SK, Li Y, Savinova OV, Zhang Y. Long-term consumption of artificial sweeteners does not affect cardiovascular health and survival in rats. PeerJ 2022; 10:e13071. [PMID: 35287353 PMCID: PMC8917806 DOI: 10.7717/peerj.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/15/2022] [Indexed: 01/12/2023] Open
Abstract
Background Recent epidemiological cohort studies have suggested that consumption of artificial sweeteners (AS) is associated with adverse cardiovascular events and mortality. However, these population association studies cannot establish a causal relationship. In this study we investigated the effect of long-term (1-year) consumption of AS (Equal and Splenda, two commonly used AS) on cardiovascular health and survival in rats. Methods Adult Sprague-Dawley rats (both sexes, 4-5 months old) were randomized into the following 3 groups: control (n = 21), AS Equal (n = 21) and Splenda (n = 18). In the AS groups, Equal or Splenda was added to the drinking water (2-packets/250 ml), while drinking water alone was used in the control rats. The treatment was administered for 12 months. Cardiovascular function and survival were monitored in all animals. Results It was found that rats in the AS groups consistently consumed more sweetened water than those in the control group. AS did not affect body weight, non-fasting blood cholesterol, triglycerides, blood pressure or pulse wave velocity. There were no significant differences in left ventricular wall thicknesses, chamber dimension, cardiac function or survival. AS did not affect heart rate or atrial effective refractory period. However, rats in both Equal and Splenda groups had prolonged PR intervals (63 ± 5ms in Equal, 68 ± 6 ms in Splenda, vs 56 ± 8 ms in control, p < 0.05) and a tendency of increased atrial fibrillation inducibility. Conclusion Long-term consumption of AS does not affect cardiovascular structure, function or survival but may cause some electrophysiological abnormalities with prolonged PR intervals and a tendency of increased atrial fibrillation inducibility in rats.
Collapse
Affiliation(s)
- Satvinder K. Guru
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States of America
| | - Ying Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States of America
| | - Olga V. Savinova
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States of America
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States of America
| |
Collapse
|
50
|
Zhang M, Chen J, Yang M, Qian C, Liu Y, Qi Y, Feng R, Yang M, Liu W, Ma J. Low Doses of Sucralose Alter Fecal Microbiota in High-Fat Diet-Induced Obese Rats. Front Nutr 2022; 8:787055. [PMID: 35028307 PMCID: PMC8751733 DOI: 10.3389/fnut.2021.787055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
Artificial sweeteners (AS) have been widely used as sugar substitutes to reduce calorie intake. However, it was reported that high doses of AS induced glucose intolerance via modulating gut microbiota. The objective of this study was to investigate the effects of lower doses of sucralose on fecal microbiota in obesity. Eight weeks after high-fat diet (HFD), the male Sprague Dawley rats were randomly divided into four groups (6 in each group) and administrated by a daily gavage of 2 ml normal saline (CON), 0.54 mM sucralose (N054), 0.78 mM sucralose (N078), and 324 mM sucrose (S324), respectively. After 4 weeks, fecal samples were obtained and analyzed by 16S ribosomal RNA gene sequencing. The richness and diversity of fecal microbiota were not changed by sucralose or sucrose. Both 0.54 mM (0.43 mg) and 0.78 mM (0.62 mg) sucralose tended to reduce the beneficial bacteria, Lactobacillaceae and Akkermansiaceae. The relative abundance of family Acidaminoccaceae and its genus Phascolarctobacteriam were increased after 0.54 mM sucralose. In functional prediction, 0.54 mM sucralose increased profiles of carbohydrate metabolism, whereas 0.78 mM sucralose enhanced those of amino acid metabolism. The lower doses of sucralose might alter the compositions of fecal microbiota. The effects of sucralose in different dosages should be considered in the future study.
Collapse
Affiliation(s)
- Minchun Zhang
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minglan Yang
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Qian
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yicheng Qi
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rilu Feng
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Yang
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ma
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|