1
|
Li M, Liu F, Guo L, Fan W, Wang J, Lu B, Hong G, Zhang W, Tian S, Mao J, Xie J. Distribution and Pharmacokinetic Characteristics of Cordycepin in Rat: Investigated by UHPLC-HRMS/MS and Blood-Brain Synchronous Microdialysis. Biomed Chromatogr 2025; 39:e70038. [PMID: 40071940 DOI: 10.1002/bmc.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/11/2025] [Accepted: 02/12/2025] [Indexed: 05/14/2025]
Abstract
Cordycepin, a natural adenosine derivative, exhibits multiple pharmacological effects on organisms. However, its distribution and metabolic characteristics have not been fully elucidated in vivo. In this study, ultra-high liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HRMS/MS) was used to investigate the pharmacokinetic characteristics and effects of cordycepin on endogenous adenosine and inosine. Microdialysis was used for real-time monitoring of unbound drug in brain and blood, whereas conventional tissue homogenate methods assessed distribution in various tissues. Results showed that the distribution pattern of cordycepin was as follows: kidney > liver > heart > lung > spleen > brain. Cordycepin administration significantly altered the levels of adenosine and inosine in heart and liver. Synchronous microdialysis sampling for the pharmacokinetic profile indicated that cordycepin was rapidly consumed and 3'-deoxyinosine was generated as the main metabolite. The Cmax values of cordycepin in the rat blood and brain after exposure (10 mg/kg, i.p.) were 7.8 and 5.4 ng/mL, respectively. Mean residence time in blood and brain was 102.2 and 137.0 min, respectively. Inhibition of adenosine deaminase by racemic 9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA) enhanced cordycepin levels in the blood. This work provides a solid basis for understanding the metabolism of cordycepin and its pharmacological effects.
Collapse
Affiliation(s)
- Mengjiao Li
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Fuqiang Liu
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Lulu Guo
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Wu Fan
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou, China
| | | | - Binbin Lu
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou, China
| | - Guangfeng Hong
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou, China
| | - Wenjuan Zhang
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou, China
| | - Shu Tian
- Inner Mongolia Kunming Cigarette Limited Liability Company, Huhhot, China
| | - Jian Mao
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
- Beijing Life Science Academy (BLSA), Beijing, China
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou, China
| | - Jianping Xie
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
- Beijing Life Science Academy (BLSA), Beijing, China
| |
Collapse
|
2
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
3
|
Montalban E, Giralt A, Taing L, Nakamura Y, Pelosi A, Brown M, de Pins B, Valjent E, Martin M, Nairn AC, Greengard P, Flajolet M, Hervé D, Gambardella N, Roussarie JP, Girault JA. Operant Training for Highly Palatable Food Alters Translating Messenger RNA in Nucleus Accumbens D 2 Neurons and Reveals a Modulatory Role of Ncdn. Biol Psychiatry 2024; 95:926-937. [PMID: 37579933 PMCID: PMC11059129 DOI: 10.1016/j.biopsych.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Highly palatable food triggers behavioral responses including strong motivation. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the long-lasting effects of highly palatable food on feeding behavior are poorly understood. METHODS We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral responses and dendritic spine modifications in the NAc. We compared the translating messenger RNA in NAc neurons identified by the type of dopamine receptors they express, depending on the kind of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn. RESULTS Operant conditioning for highly palatable food increased motivation for food even in well-fed mice. In wild-type mice, free choice between regular and highly palatable food increased weight compared with access to regular food only. Highly palatable food increased spine density in the NAc. In animals trained for highly palatable food, translating messenger RNAs were modified in NAc neurons expressing dopamine D2 receptors, mostly corresponding to striatal projection neurons, but not in neurons expressing D1 receptors. Knockout of Ncdn, an abundant downregulated gene, opposed the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting that downregulation may be a compensatory mechanism. CONCLUSIONS Our results emphasize the importance of messenger RNA alterations in D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.
Collapse
Affiliation(s)
- Enrica Montalban
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France.
| | - Albert Giralt
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Lieng Taing
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Yuki Nakamura
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Assunta Pelosi
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Mallory Brown
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Benoit de Pins
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Miquel Martin
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain; Instituto de investigaciones médicas Hospital del Mar, Barcelona, Spain
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Denis Hervé
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | | | - Jean-Pierre Roussarie
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Jean-Antoine Girault
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
4
|
Walle R, Petitbon A, Fois GR, Varin C, Montalban E, Hardt L, Contini A, Angelo MF, Potier M, Ortole R, Oummadi A, De Smedt-Peyrusse V, Adan RA, Giros B, Chaouloff F, Ferreira G, de Kerchove d'Exaerde A, Ducrocq F, Georges F, Trifilieff P. Nucleus accumbens D1- and D2-expressing neurons control the balance between feeding and activity-mediated energy expenditure. Nat Commun 2024; 15:2543. [PMID: 38514654 PMCID: PMC10958053 DOI: 10.1038/s41467-024-46874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.
Collapse
Affiliation(s)
- Roman Walle
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| | - Anna Petitbon
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Giulia R Fois
- Univ. Bordeaux, CNRS, IMN, UMR5293 F-33000, Bordeaux, France
| | - Christophe Varin
- Laboratory of Neurophysiology, ULB Neuroscience Institute, WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Enrica Montalban
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Lola Hardt
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Andrea Contini
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Mylène Potier
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
- Bordeaux Sciences Agro, F-, 33175, Gradignan, France
| | - Rodrigue Ortole
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Asma Oummadi
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Roger A Adan
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, the Netherlands
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
- Université de Paris Cité, INCC UMR 8002, CNRS; F-75006, Paris, France
| | - Francis Chaouloff
- Endocannabinoids and NeuroAdaptation, NeuroCentre INSERM U1215, 33077, Bordeaux, France
- Université de Bordeaux, 33077, Bordeaux, France
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fabien Ducrocq
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Pierre Trifilieff
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| |
Collapse
|
5
|
Bakoyiannis I, Ducourneau EG, N'diaye M, Fermigier A, Ducroix-Crepy C, Bosch-Bouju C, Coutureau E, Trifilieff P, Ferreira G. Obesogenic diet induces circuit-specific memory deficits in mice. eLife 2024; 13:e80388. [PMID: 38436653 PMCID: PMC10911750 DOI: 10.7554/elife.80388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Obesity is associated with neurocognitive dysfunction, including memory deficits. This is particularly worrisome when obesity occurs during adolescence, a maturational period for brain structures critical for cognition. In rodent models, we recently reported that memory impairments induced by obesogenic high-fat diet (HFD) intake during the periadolescent period can be reversed by chemogenetic manipulation of the ventral hippocampus (vHPC). Here, we used an intersectional viral approach in HFD-fed male mice to chemogenetically inactivate specific vHPC efferent pathways to nucleus accumbens (NAc) or medial prefrontal cortex (mPFC) during memory tasks. We first demonstrated that HFD enhanced activation of both pathways after training and that our chemogenetic approach was effective in normalizing this activation. Inactivation of the vHPC-NAc pathway rescued HFD-induced deficits in recognition but not location memory. Conversely, inactivation of the vHPC-mPFC pathway restored location but not recognition memory impairments produced by HFD. Either pathway manipulation did not affect exploration or anxiety-like behaviour. These findings suggest that HFD intake throughout adolescence impairs different types of memory through overactivation of specific hippocampal efferent pathways and that targeting these overactive pathways has therapeutic potential.
Collapse
Affiliation(s)
- Ioannis Bakoyiannis
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Eva Gunnel Ducourneau
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Mateo N'diaye
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Alice Fermigier
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Celine Ducroix-Crepy
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Clementine Bosch-Bouju
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | | | - Pierre Trifilieff
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Guillaume Ferreira
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| |
Collapse
|
6
|
Guerri L, Dobbs LK, da Silva e Silva DA, Meyers A, Ge A, Lecaj L, Djakuduel C, Islek D, Hipolito D, Martinez AB, Shen PH, Marietta CA, Garamszegi SP, Capobianco E, Jiang Z, Schwandt M, Mash DC, Alvarez VA, Goldman D. Low Dopamine D2 Receptor Expression Drives Gene Networks Related to GABA, cAMP, Growth and Neuroinflammation in Striatal Indirect Pathway Neurons. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1104-1115. [PMID: 37881572 PMCID: PMC10593893 DOI: 10.1016/j.bpsgos.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background A salient effect of addictive drugs is to hijack the dopamine reward system, an evolutionarily conserved driver of goal-directed behavior and learning. Reduced dopamine type 2 receptor availability in the striatum is an important pathophysiological mechanism for addiction that is both consequential and causal for other molecular, cellular, and neuronal network differences etiologic for this disorder. Here, we sought to identify gene expression changes attributable to innate low expression of the Drd2 gene in the striatum and specific to striatal indirect medium spiny neurons (iMSNs). Methods Cre-conditional, translating ribosome affinity purification (TRAP) was used to purify and analyze the translatome (ribosome-bound messenger RNA) of iMSNs from mice with low/heterozygous or wild-type Drd2 expression in iMSNs. Complementary electrophysiological recordings and gene expression analysis of postmortem brain tissue from human cocaine users were performed. Results Innate low expression of Drd2 in iMSNs led to differential expression of genes involved in GABA (gamma-aminobutyric acid) and cAMP (cyclic adenosine monophosphate) signaling, neural growth, lipid metabolism, neural excitability, and inflammation. Creb1 was identified as a likely upstream regulator, among others. In human brain, expression of FXYD2, a modulatory subunit of the Na/K pump, was negatively correlated with DRD2 messenger RNA expression. In iMSN-TRAP-Drd2HET mice, increased Cartpt and reduced S100a10 (p11) expression recapitulated previous observations in cocaine paradigms. Electrophysiology experiments supported a higher GABA tone in iMSN-Drd2HET mice. Conclusions This study provides strong molecular evidence that, in addiction, inhibition by the indirect pathway is constitutively enhanced through neural growth and increased GABA signaling.
Collapse
Affiliation(s)
- Lucia Guerri
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Lauren K. Dobbs
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
- Department of Neurology, University of Texas at Austin, Austin, Texas
| | - Daniel A. da Silva e Silva
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
| | - Allen Meyers
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Aaron Ge
- University of Maryland, College Park, Maryland
| | - Lea Lecaj
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Caroline Djakuduel
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Damien Islek
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Dionisio Hipolito
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Abdiel Badillo Martinez
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Pei-Hong Shen
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Cheryl A. Marietta
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Susanna P. Garamszegi
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Enrico Capobianco
- Institute for Data Science and Computing, University of Miami, Miami, Florida
| | - Zhijie Jiang
- Institute for Data Science and Computing, University of Miami, Miami, Florida
| | - Melanie Schwandt
- Office of the Clinical Director, NIAAA, National Institutes of Health, Bethesda, Maryland
| | - Deborah C. Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
- Institute for Data Science and Computing, University of Miami, Miami, Florida
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Veronica A. Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
- Office of the Clinical Director, NIAAA, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Montalban E, Walle R, Castel J, Ansoult A, Hassouna R, Foppen E, Fang X, Hutelin Z, Mickus S, Perszyk E, Petitbon A, Berthelet J, Rodrigues-Lima F, Cebrian-Serrano A, Gangarossa G, Martin C, Trifilieff P, Bosch-Bouju C, Small DM, Luquet S. The Addiction-Susceptibility TaqIA/Ankk1 Controls Reward and Metabolism Through D 2 Receptor-Expressing Neurons. Biol Psychiatry 2023; 94:424-436. [PMID: 36805080 DOI: 10.1016/j.biopsych.2023.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/21/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND A large body of evidence highlights the importance of genetic variants in the development of psychiatric and metabolic conditions. Among these, the TaqIA polymorphism is one of the most commonly studied in psychiatry. TaqIA is located in the gene that codes for the ankyrin repeat and kinase domain containing 1 kinase (Ankk1) near the dopamine D2 receptor (D2R) gene. Homozygous expression of the A1 allele correlates with a 30% to 40% reduction of striatal D2R, a typical feature of addiction, overeating, and other psychiatric pathologies. The mechanisms by which the variant influences dopamine signaling and behavior are unknown. METHODS Here, we used transgenic and viral-mediated strategies to reveal the role of Ankk1 in the regulation of activity and functions of the striatum. RESULTS We found that Ankk1 is preferentially enriched in striatal D2R-expressing neurons and that Ankk1 loss of function in the dorsal and ventral striatum leads to alteration in learning, impulsivity, and flexibility resembling endophenotypes described in A1 carriers. We also observed an unsuspected role of Ankk1 in striatal D2R-expressing neurons of the ventral striatum in the regulation of energy homeostasis and documented differential nutrient partitioning in humans with or without the A1 allele. CONCLUSIONS Overall, our data demonstrate that the Ankk1 gene is necessary for the integrity of striatal functions and reveal a new role for Ankk1 in the regulation of body metabolism.
Collapse
Affiliation(s)
- Enrica Montalban
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France.
| | - Roman Walle
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Anthony Ansoult
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Rim Hassouna
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Ewout Foppen
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Xi Fang
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Zach Hutelin
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Sophie Mickus
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Emily Perszyk
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Anna Petitbon
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, Unité Epigenetique et Destin Cellulaire, Paris, France
| | | | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Claire Martin
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Pierre Trifilieff
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | | | - Dana M Small
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France; Modern Diet and Physiology Research Center, New Haven, Connecticut.
| |
Collapse
|
8
|
van der Heijden AR, Houben T. Lipids in major depressive disorder: new kids on the block or old friends revisited? Front Psychiatry 2023; 14:1213011. [PMID: 37663599 PMCID: PMC10469871 DOI: 10.3389/fpsyt.2023.1213011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Major depressive disorder (MDD) is a psychiatric mood disorder that results in substantial functional impairment and is characterized by symptoms such as depressed mood, diminished interest, impaired cognitive function, and vegetative symptoms such as disturbed sleep. Although the exact etiology of MDD is unclear, several underlying mechanisms (disturbances in immune response and/or stress response) have been associated with its development, with no single mechanism able to account for all aspects of the disorder. Currently, about 1 in 3 patients are resistant to current antidepressant therapies. Providing an alternative perspective on MDD could therefore pave the way for new, unexplored diagnostic and therapeutic solutions. The central nervous system harbors an enormous pool of lipids and lipid intermediates that have been linked to a plethora of its physiological functions. The aim of this review is therefore to provide an overview of the implications of lipids in MDD and highlight certain MDD-related underlying mechanisms that involve lipids and/or their intermediates. Furthermore, we will also focus on the bidirectional relationship between MDD and the lipid-related disorders obesity and type 2 diabetes.
Collapse
Affiliation(s)
| | - Tom Houben
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
9
|
Le ATP, Higuchi Y, Sumiyoshi T, Itoh H, Sasabayashi D, Takahashi T, Suzuki M. Analysis of polyunsaturated fatty acids in antipsychotic-free individuals with at-risk mental state and patients with first-episode schizophrenia. Front Psychiatry 2023; 14:1188452. [PMID: 37564244 PMCID: PMC10410072 DOI: 10.3389/fpsyt.2023.1188452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Abnormalities in membrane phospholipids are considered one of the pathophysiological backgrounds for schizophrenia. This study, explores the fatty acid composition of erythrocyte membranes and its association with clinical characteristics in two groups: individuals with an at-risk mental state (ARMS) and patients experiencing their first-episode of schizophrenia (FES). Materials and methods This study measured erythrocyte membrane fatty acids in 72 antipsychotic-free individuals with ARMS, 18 antipsychotic-free patients with FES, and 39 healthy volunteers. Clinical symptoms and cognitive and social functions were assessed using the Positive and Negative Syndrome Scale (PANSS), Brief Assessment of Cognition in Schizophrenia (BACS), Schizophrenia Cognition Rating Scale (SCoRS), and Social and Occupational Functioning Assessment Scale (SOFAS). Results Eicosapentaenoic and docosapentaenoic acid levels were lower in the ARMS and FES groups than in the healthy control group. In contrast, nervonic acid (NA) levels were markedly higher in the ARMS and FES groups than in the controls, while only the FES group showed higher levels of arachidonic acid. Oleic acid and NA levels were significantly associated with PANSS scores in both the FES and ARMS groups, particularly for the negative and general subscores. However, the patient groups had no significant associations between the fatty acid composition and the BACS, SCoRS, and SOFAS scores. Furthermore, the baseline fatty acid composition did not differ between the ARMS individuals who later developed psychosis (N = 6) and those who were followed for more than 2 years without developing psychosis onset (N = 30). Discussion The findings suggest that abnormal fatty acid compositions may be shared in the early stages of schizophrenia and the clinical high-risk state for psychosis and may serve as vulnerability markers of psychopathology.
Collapse
Affiliation(s)
- Anh Thi Phuong Le
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, National Center of Neurology and Psychiatry Hospital, Tokyo, Japan
| | - Hiroko Itoh
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
10
|
Benoit S, Henry M, Fneich S, Mathou A, Xia L, Foury A, Jouin M, Junien C, Capuron L, Jouneau L, Moisan MP, Delpierre C, Gabory A, Darnaudéry M. Strain-specific changes in nucleus accumbens transcriptome and motivation for palatable food reward in mice exposed to maternal separation. Front Nutr 2023; 10:1190392. [PMID: 37565037 PMCID: PMC10411197 DOI: 10.3389/fnut.2023.1190392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction In humans, adversity in childhood exerts enduring effects on brain and increases the vulnerability to psychiatric diseases. It also leads to a higher risk of eating disorders and obesity. Maternal separation (MS) in mice has been used as a proxy of stress during infancy. We hypothesized that MS in mice affects motivation to obtain palatable food in adulthood and changes gene expression in reward system. Methods Male and female pups from C57Bl/6J and C3H/HeN mice strains were subjected to a daily MS protocol from postnatal day (PND) 2 to PND14. At adulthood, their motivation for palatable food reward was assessed in operant cages. Results Compared to control mice, male and female C3H/HeN mice exposed to MS increased their instrumental response for palatable food, especially when the effort required to obtain the reward was high. Importantly, this effect is shown in animals fed ad libitum. Transcriptional analysis revealed 375 genes differentially expressed in the nucleus accumbens of male MS C3H/HeN mice compared to the control group, some of these being associated with the regulation of the reward system (e.g., Gnas, Pnoc). Interestingly, C57Bl/6J mice exposed to MS did not show alterations in their motivation to obtain a palatable reward, nor significant changes in gene expression in the nucleus accumbens. Conclusion MS produces long-lasting changes in motivation for palatable food in C3H/HeN mice, but has no impact in C57Bl/6J mice. These behavioral alterations are accompanied by drastic changes in gene expression in the nucleus accumbens, a key structure in the regulation of motivational processes.
Collapse
Affiliation(s)
- Simon Benoit
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
| | - Mathilde Henry
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
| | - Sara Fneich
- Univ. Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Alexia Mathou
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
| | - Lin Xia
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
| | - Aline Foury
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
| | - Mélanie Jouin
- Univ. Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Claudine Junien
- Univ. Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
| | - Luc Jouneau
- Univ. Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | | | - Cyrille Delpierre
- CERPOP, UMR1295, Inserm, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Anne Gabory
- Univ. Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Muriel Darnaudéry
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
| |
Collapse
|
11
|
Jobin ML, De Smedt-Peyrusse V, Ducrocq F, Baccouch R, Oummadi A, Pedersen MH, Medel-Lacruz B, Angelo MF, Villette S, Van Delft P, Fouillen L, Mongrand S, Selent J, Tolentino-Cortez T, Barreda-Gómez G, Grégoire S, Masson E, Durroux T, Javitch JA, Guixà-González R, Alves ID, Trifilieff P. Impact of membrane lipid polyunsaturation on dopamine D2 receptor ligand binding and signaling. Mol Psychiatry 2023; 28:1960-1969. [PMID: 36604603 DOI: 10.1038/s41380-022-01928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023]
Abstract
Increasing evidence supports a relationship between lipid metabolism and mental health. In particular, the biostatus of polyunsaturated fatty acids (PUFAs) correlates with some symptoms of psychiatric disorders, as well as the efficacy of pharmacological treatments. Recent findings highlight a direct association between brain PUFA levels and dopamine transmission, a major neuromodulatory system implicated in the etiology of psychiatric symptoms. However, the mechanisms underlying this relationship are still unknown. Here we demonstrate that membrane enrichment in the n-3 PUFA docosahexaenoic acid (DHA), potentiates ligand binding to the dopamine D2 receptor (D2R), suggesting that DHA acts as an allosteric modulator of this receptor. Molecular dynamics simulations confirm that DHA has a high preference for interaction with the D2R and show that membrane unsaturation selectively enhances the conformational dynamics of the receptor around its second intracellular loop. We find that membrane unsaturation spares G protein activity but potentiates the recruitment of β-arrestin in cells. Furthermore, in vivo n-3 PUFA deficiency blunts the behavioral effects of two D2R ligands, quinpirole and aripiprazole. These results highlight the importance of membrane unsaturation for D2R activity and provide a putative mechanism for the ability of PUFAs to enhance antipsychotic efficacy.
Collapse
Affiliation(s)
- Marie-Lise Jobin
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Fabien Ducrocq
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Rim Baccouch
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS UMR 5248, Université de Bordeaux, Bordeaux INP, 33600, Pessac, France
| | - Asma Oummadi
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Maria Hauge Pedersen
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)-Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003, Barcelona, Spain
| | | | - Sandrine Villette
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS UMR 5248, Université de Bordeaux, Bordeaux INP, 33600, Pessac, France
| | - Pierre Van Delft
- Laboratory of Membrane Biogenesis (LBM), Research Mix Unity (UMR) 5200, National Scientific Research Center (CNRS), University of Bordeaux, Bordeaux, France
| | - Laetitia Fouillen
- Laboratory of Membrane Biogenesis (LBM), Research Mix Unity (UMR) 5200, National Scientific Research Center (CNRS), University of Bordeaux, Bordeaux, France
| | - Sébastien Mongrand
- Laboratory of Membrane Biogenesis (LBM), Research Mix Unity (UMR) 5200, National Scientific Research Center (CNRS), University of Bordeaux, Bordeaux, France
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)-Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003, Barcelona, Spain
| | | | - Gabriel Barreda-Gómez
- Research Department, IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160, Derio, Spain
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute (PSI), 5232, Villigen, PSI, Switzerland.
| | - Isabel D Alves
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS UMR 5248, Université de Bordeaux, Bordeaux INP, 33600, Pessac, France.
| | - Pierre Trifilieff
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| |
Collapse
|
12
|
Srinivas V, Varma S, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Dietary omega-3 fatty acid deficiency from pre-pregnancy to lactation affects expression of genes involved in hippocampal neurogenesis of the offspring. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102566. [PMID: 36924605 DOI: 10.1016/j.plefa.2023.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Maternal n-3 PUFA (omega-3) deficiency can affect brain development in utero and postnatally. Despite the evidence, the impacts of n-3 PUFA deficiency on the expression of neurogenesis genes in the postnatal hippocampus remained elusive. Since postnatal brain development requires PUFAs via breast milk, we examined the fatty acid composition of breast milk and hippocampal expression of neurogenesis genes in n-3 PUFA deficient 21d mice. In addition, the expression of fatty acid desaturases, elongases, free fatty acids signaling receptors, insulin and leptin, and glucose transporters were measured. Among the genes involved in neurogenesis, the expression of brain-specific tenascin-R (TNR) was downregulated to a greater extent (∼31 fold), followed by adenosine A2A receptor (A2AAR), dopamine receptor D2 (DRD2), glial cell line-derived neurotrophic factor (GDNF) expression in the n-3 PUFA deficient hippocampus. Increasing dietary LA to ALA (50:1) elevated the ARA to DHA ratio by ∼8 fold in the n-3 PUFA deficient breast milk, with an overall increase of total n-6/n-3 PUFAs by ∼15:1 (p<0.05) compared to n-3 PUFA sufficient (LA to ALA: 2:1) diet. The n-3 PUFA deficient mice exhibited upregulation of FADS1, FADS2, ELOVL2, ELOVL5, ELOVL6, GPR40, GPR120, LEPR, IGF1 and downregulation of GLUT1, GLUT3, and GLUT4 mRNA expression in hippocampus (p<0.05). Maternal n-3 PUFA deficiency affects the hippocampal expression of key neurogenesis genes in the offspring with concomitant expression of desaturase and elongase genes, suggesting the importance of dietary n-3 PUFA for neurodevelopment.
Collapse
Affiliation(s)
- Vilasagaram Srinivas
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Saikanth Varma
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Suryam Reddy Kona
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Ahamed Ibrahim
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India.
| |
Collapse
|
13
|
Montalban E, Giralt A, Taing L, Nakamura Y, Pelosi A, Brown M, de Pins B, Valjent E, Martin M, Nairn AC, Greengard P, Flajolet M, Herv D, Gambardella N, Roussarie JP, Girault JA. Operant training for highly palatable food alters translating mRNA in nucleus accumbens D2 neurons and reveals a modulatory role of Neurochondrin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531496. [PMID: 36945487 PMCID: PMC10028890 DOI: 10.1101/2023.03.07.531496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND Highly palatable food triggers behavioral alterations reminiscent of those induced by addictive drugs. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the effects of highly palatable food on feeding behavior are poorly understood. METHODS We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral effects and dendritic spine modifications in the NAc. We compared the translating mRNA in NAc neurons identified by the type of dopamine receptors they express, depending on the type of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn (Neurochondrin). RESULTS Operant conditioning for highly palatable food increases motivation for food even in well-fed mice. In control mice, free access to regular or highly palatable food results in increased weight as compared to regular food only. Highly palatable food increases spine density in the NAc. In animals trained for highly palatable food, translating mRNAs are modified in NAc dopamine D2-receptor-expressing neurons, mostly corresponding to striatal projection neurons, but not in those expressing D1-receptors. Knock-out of Ncdn, an abundant down-regulated gene, opposes the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting down-regulation may be a compensatory mechanism. CONCLUSIONS Our results emphasize the importance of mRNA alterations D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.
Collapse
|
14
|
Basak S, Duttaroy AK. Maternal PUFAs, Placental Epigenetics, and Their Relevance to Fetal Growth and Brain Development. Reprod Sci 2023; 30:408-427. [PMID: 35676498 DOI: 10.1007/s43032-022-00989-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022]
Abstract
Dietary polyunsaturated fatty acids (PUFAs), especially omega-3 (n-3) and n-6 long-chain (LC) PUFAs, are indispensable for the fetus' brain supplied by the placenta. Despite being highly unsaturated, n-3 LCPUFA-docosahexaenoic acid (DHA) plays a protective role as an antioxidant in the brain. Deficiency of DHA during fetal development may cause irreversible damages in neurodevelopment programming. Dietary PUFAs can impact placental structure and functions by regulating early placentation processes, such as angiogenesis. They promote remodeling of uteroplacental architecture to facilitate increased blood flow and surface area for nutrient exchange. The placenta's fatty acid transfer depends on the uteroplacental vascular development, ensuring adequate maternal circulatory fatty acids transport to fulfill the fetus' rapid growth and development requirements. Maternal n-3 PUFA deficiency predominantly leads to placental epigenetic changes than other fetal developing organs. A global shift in DNA methylation possibly transmits epigenetic instability in developing fetuses due to n-3 PUFA deficiency. Thus, an optimal level of maternal omega-3 (n-3) PUFAs may protect the placenta's structural and functional integrity and allow fetal growth by controlling the aberrant placental epigenetic changes. This narrative review summarizes the recent advances and underpins the roles of maternal PUFAs on the structure and functions of the placenta and their relevance to fetal growth and brain development.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Baccouch R, Shi Y, Vernay E, Mathelié-Guinlet M, Taib-Maamar N, Villette S, Feuillie C, Rascol E, Nuss P, Lecomte S, Molinari M, Staneva G, Alves ID. The impact of lipid polyunsaturation on the physical and mechanical properties of lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184084. [PMID: 36368636 DOI: 10.1016/j.bbamem.2022.184084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
The lipid composition of cellular membranes and the balance between the different lipid components can be impacted by aging, certain pathologies, specific diets and other factors. This is the case in a subgroup of individuals with psychiatric disorders, such as schizophrenia, where cell membranes of patients have been shown to be deprived in polyunsaturated fatty acids (PUFAs), not only in brain areas where the target receptors are expressed but also in peripheral tissues. This PUFA deprivation thus represents a biomarker of such disorders that might impact not only the interaction of antipsychotic medications with these membranes but also the activation and signaling of the targeted receptors embedded in the lipid membrane. Therefore, it is crucial to understand how PUFAs levels alterations modulate the different physical properties of membranes. In this paper, several biophysical approaches were combined (Laurdan fluorescence spectroscopy, atomic force microscopy, differential scanning calorimetry, molecular modeling) to characterize membrane properties such as fluidity, elasticity and thickness in PUFA-enriched cell membranes and lipid model systems reflecting the PUFA imbalance observed in some diseases. The impact of both the number of unsaturations and their position along the chain on the above properties was investigated. Briefly, data revealed that PUFA presence in membranes increases membrane fluidity, elasticity and flexibility and decreases its thickness and order parameter. Both the level of unsaturation and their position affect these membrane properties.
Collapse
Affiliation(s)
- Rim Baccouch
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Yarong Shi
- Laboratoire de Recherche en Nanosciences, LRN EA4682, University of Reims Champagne Ardenne, France
| | - Emilie Vernay
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Marion Mathelié-Guinlet
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Nada Taib-Maamar
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Sandrine Villette
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Cécile Feuillie
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Estelle Rascol
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Philippe Nuss
- Centre de Recherche Saint-Antoine, INSERM UMRS 938, Sorbonne Université, Paris, France; Service de psychiatrie et de psychologie médicale, Sorbonne Université, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Michael Molinari
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - Isabel D Alves
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France.
| |
Collapse
|
16
|
Garro-Aguilar Y, Fernández R, Calero S, Noskova E, Gulak M, de la Fuente M, Adell A, Simón E, Muzquiz U, Rodríguez-Piñón D, Astigarraga E, Barreda-Gómez G. Acute Stress-Induced Changes in the Lipid Composition of Cow's Milk in Healthy and Pathological Animals. Molecules 2023; 28:molecules28030980. [PMID: 36770644 PMCID: PMC9921061 DOI: 10.3390/molecules28030980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
Producers of milk and dairy products have been faced with the challenge of responding to European society's demand for guaranteed animal welfare production. In recent years, measures have been taken to improve animal welfare conditions on farms and evaluation systems have been developed to certify them, such as the Welfare Quality® protocol. Among the markers used for this purpose, acute phase proteins stand out, with haptoglobin being one of the most relevant. However, the diagnostic power of these tools is limited and more sensitive and specific technologies are required to monitor animal health status. Different factors such as diet, stress, and diseases modify the metabolism of the animals, altering the composition of the milk in terms of oligosaccharides, proteins, and lipids. Thus, in order to study oxidative-stress-associated lipids, a collection of well-characterized milk samples, both by veterinary diagnosis and by content of the acute stress biomarker haptoglobin, was analyzed by mass spectrometry and artificial intelligence. Two lipid species (sphingomyelin and phosphatidylcholine) were identified as potential biomarkers of health status in dairy cows. Both lipids allow for the discrimination of milk from sick animals and also milk from those with stress. Moreover, lipidomics revealed specific lipid profiles depending on the origin of the samples and the degree of freedom of the animals on the farm. These data provide evidence for specific lipid changes in stressed animals and open up the possibility that haptoglobin could also affect lipid metabolism in cow's milk.
Collapse
Affiliation(s)
- Yaiza Garro-Aguilar
- Research and Development Department, Amaltea Research, 48940 Leioa, Spain
- Department of Pharmacy and Food Sciences, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Roberto Fernández
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain
| | - Silvia Calero
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain
| | - Ekaterina Noskova
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC-CSIC, 39011 Santander, Spain
| | | | - Miguel de la Fuente
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Albert Adell
- Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC-CSIC, 39011 Santander, Spain
| | - Edurne Simón
- Department of Pharmacy and Food Sciences, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | | | | | - Egoitz Astigarraga
- Research and Development Department, Amaltea Research, 48940 Leioa, Spain
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain
| | - Gabriel Barreda-Gómez
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain
- Correspondence: ; Tel.: +34-94-4316-577; Fax: +34-94-6013-455
| |
Collapse
|
17
|
Adrien V, Bosc N, Fumat H, Tessier C, Ferreri F, Mouchabac S, Tareste D, Nuss P. Higher stress response and altered quality of life in schizophrenia patients with low membrane levels of docosahexaenoic acid. Front Psychiatry 2023; 14:1089724. [PMID: 36816405 PMCID: PMC9937080 DOI: 10.3389/fpsyt.2023.1089724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia is a severe, chronic, and heterogeneous mental disorder that affects approximately 1% of the world population. Ongoing research aims at clustering schizophrenia heterogeneity into various "biotypes" to identify subgroups of individuals displaying homogeneous symptoms, etiopathogenesis, prognosis, and treatment response. The present study is in line with this approach and focuses on a biotype partly characterized by a specific membrane lipid composition. We have examined clinical and biological data of patients with stabilized schizophrenia, including the fatty acid content of their erythrocyte membranes, in particular the omega-3 docosahexaenoic acid (DHA). Two groups of patients of similar size were identified: the DHA- group (N = 19) with a lower proportion of membrane DHA as compared to the norm in the general population, and the DHAn group (N = 18) with a normal proportion of DHA. Compared to DHAn, DHA- patients had a higher number of hospitalizations and a lower quality of life in terms of perceived health and physical health. They also exhibited significant higher interleukin-6 and cortisol blood levels. These results emphasize the importance of measuring membrane lipid and immunoinflammatory biomarkers in stabilized patients to identify a specific subgroup and optimize non-pharmacological interventions. It could also guide future research aimed at proposing specific pharmacological treatments.
Collapse
Affiliation(s)
- Vladimir Adrien
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Infrastructure for Clinical Research in Neurosciences (iCRIN), Paris Brain Institute, Sorbonne Université, INSERM, CNRS, Paris, France.,Université Paris Cité, INSERM UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Nicolas Bosc
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France
| | - Hugo Fumat
- Université Paris Cité, INSERM UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Cédric Tessier
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France
| | - Florian Ferreri
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Infrastructure for Clinical Research in Neurosciences (iCRIN), Paris Brain Institute, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Stéphane Mouchabac
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Infrastructure for Clinical Research in Neurosciences (iCRIN), Paris Brain Institute, Sorbonne Université, INSERM, CNRS, Paris, France
| | - David Tareste
- Université Paris Cité, INSERM UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Philippe Nuss
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Centre de Recherche Saint-Antoine, INSERM UMR S938, Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Zalachoras I, Ramos-Fernández E, Hollis F, Trovo L, Rodrigues J, Strasser A, Zanoletti O, Steiner P, Preitner N, Xin L, Astori S, Sandi C. Glutathione in the nucleus accumbens regulates motivation to exert reward-incentivized effort. eLife 2022; 11:77791. [DOI: 10.7554/elife.77791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Emerging evidence is implicating mitochondrial function and metabolism in the nucleus accumbens in motivated performance. However, the brain is vulnerable to excessive oxidative insults resulting from neurometabolic processes, and whether antioxidant levels in the nucleus accumbens contribute to motivated performance is not known. Here, we identify a critical role for glutathione (GSH), the most important endogenous antioxidant in the brain, in motivation. Using proton magnetic resonance spectroscopy at ultra-high field in both male humans and rodent populations, we establish that higher accumbal GSH levels are highly predictive of better, and particularly, steady performance over time in effort-related tasks. Causality was established in in vivo experiments in rats that, first, showed that downregulating GSH levels through micro-injections of the GSH synthesis inhibitor buthionine sulfoximine in the nucleus accumbens impaired effort-based reward-incentivized performance. In addition, systemic treatment with the GSH precursor N-acetyl-cysteine increased accumbal GSH levels in rats and led to improved performance, potentially mediated by a cell-type-specific shift in glutamatergic inputs to accumbal medium spiny neurons. Our data indicate a close association between accumbal GSH levels and an individual’s capacity to exert reward-incentivized effort over time. They also suggest that improvement of accumbal antioxidant function may be a feasible approach to boost motivation.
Collapse
Affiliation(s)
- Ioannis Zalachoras
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Eva Ramos-Fernández
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Fiona Hollis
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine
| | - Laura Trovo
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - João Rodrigues
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Alina Strasser
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Pascal Steiner
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - Nicolas Preitner
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), EPFL
| | - Simone Astori
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Carmen Sandi
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| |
Collapse
|
19
|
Kadyrov M, Whiley L, Brown B, Erickson KI, Holmes E. Associations of the Lipidome with Ageing, Cognitive Decline and Exercise Behaviours. Metabolites 2022; 12:metabo12090822. [PMID: 36144226 PMCID: PMC9505967 DOI: 10.3390/metabo12090822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most recognisable features of ageing is a decline in brain health and cognitive dysfunction, which is associated with perturbations to regular lipid homeostasis. Although ageing is the largest risk factor for several neurodegenerative diseases such as dementia, a loss in cognitive function is commonly observed in adults over the age of 65. Despite the prevalence of normal age-related cognitive decline, there is a lack of effective methods to improve the health of the ageing brain. In light of this, exercise has shown promise for positively influencing neurocognitive health and associated lipid profiles. This review summarises age-related changes in several lipid classes that are found in the brain, including fatty acyls, glycerolipids, phospholipids, sphingolipids and sterols, and explores the consequences of age-associated pathological cognitive decline on these lipid classes. Evidence of the positive effects of exercise on the affected lipid profiles are also discussed to highlight the potential for exercise to be used therapeutically to mitigate age-related changes to lipid metabolism and prevent cognitive decline in later life.
Collapse
Affiliation(s)
- Maria Kadyrov
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Belinda Brown
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA 6009, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- AdventHealth Research Institute, Neuroscience Institute, Orlando, FL 32804, USA
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Correspondence: (M.K.); (B.B.); (E.H.)
| |
Collapse
|
20
|
Joshi A, Schott M, la Fleur SE, Barrot M. Role of the striatal dopamine, GABA and opioid systems in mediating feeding and fat intake. Neurosci Biobehav Rev 2022; 139:104726. [PMID: 35691472 DOI: 10.1016/j.neubiorev.2022.104726] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/08/2021] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Food intake, which is a highly reinforcing behavior, provides nutrients required for survival in all animals. However, when fat and sugar consumption goes beyond the daily needs, it can favor obesity. The prevalence and severity of this health problem has been increasing with time. Besides covering nutrient and energy needs, food and in particular its highly palatable components, such as fats, also induce feelings of joy and pleasure. Experimental evidence supports a role of the striatal complex and of the mesolimbic dopamine system in both feeding and food-related reward processing, with the nucleus accumbens as a key target for reward or reinforcing-associated signaling during food intake behavior. In this review, we provide insights concerning the impact of feeding, including fat intake, on different types of receptors and neurotransmitters present in the striatal complex. Reciprocally, we also cover the evidence for a modulation of palatable food intake by different neurochemical systems in the striatal complex and in particular the nucleus accumbens, with a focus on dopamine, GABA and the opioid system.
Collapse
Affiliation(s)
- Anil Joshi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Marion Schott
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Susanne Eva la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
21
|
Leyrolle Q, Decoeur F, Dejean C, Brière G, Leon S, Bakoyiannis I, Baroux E, Sterley TL, Bosch-Bouju C, Morel L, Amadieu C, Lecours C, St-Pierre MK, Bordeleau M, De Smedt-Peyrusse V, Séré A, Schwendimann L, Grégoire S, Bretillon L, Acar N, Joffre C, Ferreira G, Uricaru R, Thebault P, Gressens P, Tremblay ME, Layé S, Nadjar A. N-3 PUFA deficiency disrupts oligodendrocyte maturation and myelin integrity during brain development. Glia 2022; 70:50-70. [PMID: 34519378 DOI: 10.1002/glia.24088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Westernization of dietary habits has led to a progressive reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental disorders, conditions in which myelination processes are abnormal, leading to defects in brain functional connectivity. Only little is known about the role of n-3 PUFAs in oligodendrocyte physiology and white matter development. Here, we show that lifelong n-3 PUFA deficiency disrupts oligodendrocytes maturation and myelination processes during the postnatal period in mice. This has long-term deleterious consequences on white matter organization and hippocampus-prefrontal functional connectivity in adults, associated with cognitive and emotional disorders. Promoting developmental myelination with clemastine, a first-generation histamine antagonist and enhancer of oligodendrocyte precursor cell differentiation, rescues memory deficits in n-3 PUFA deficient animals. Our findings identify a novel mechanism through which n-3 PUFA deficiency alters brain functions by disrupting oligodendrocyte maturation and brain myelination during the neurodevelopmental period.
Collapse
Affiliation(s)
- Quentin Leyrolle
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Fanny Decoeur
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Cyril Dejean
- Université de Bordeaux, INSERM, Magendie, U1215, F-3300, Bordeaux, France
| | | | - Stephane Leon
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | - Emilie Baroux
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Tony-Lee Sterley
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - Lydie Morel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Camille Amadieu
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Cynthia Lecours
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Maude Bordeleau
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec City, Québec, Canada
| | | | - Alexandran Séré
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | - Stephane Grégoire
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Lionel Bretillon
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Raluca Uricaru
- CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
| | | | | | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, Québec City, Québec, Canada.,Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Agnes Nadjar
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Université de Bordeaux, INSERM, Magendie, U1215, F-3300, Bordeaux, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
22
|
Prevention of Stress-Induced Depressive-like Behavior by Saffron Extract Is Associated with Modulation of Kynurenine Pathway and Monoamine Neurotransmission. Pharmaceutics 2021; 13:pharmaceutics13122155. [PMID: 34959434 PMCID: PMC8709346 DOI: 10.3390/pharmaceutics13122155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
Depressive disorders are a major public health concern. Despite currently available treatment options, their prevalence steadily increases, and a high rate of therapeutic failure is often reported, together with important antidepressant-related side effects. This highlights the need to improve existing therapeutic strategies, including by using nutritional interventions. In that context, saffron recently received particular attention for its beneficial effects on mood, although the underlying mechanisms are poorly understood. This study investigated in mice the impact of a saffron extract (Safr’Inside™; 6.25 mg/kg, per os) on acute restraint stress (ARS)-induced depressive-like behavior and related neurobiological alterations, by focusing on hypothalamic–pituitary–adrenal axis, inflammation-related metabolic pathways, and monoaminergic systems, all known to be altered by stress and involved in depressive disorder pathophysiology. When given before stress onset, Safr’Inside administration attenuated ARS-induced depressive-like behavior in the forced swim test. Importantly, it concomitantly reversed several stress-induced monoamine dysregulations and modulated the expression of key enzymes of the kynurenine pathway, likely reducing kynurenine-related neurotoxicity. These results show that saffron pretreatment prevents the development of stress-induced depressive symptoms and improves our understanding about the underlying mechanisms, which is a central issue to validate the therapeutic relevance of nutritional interventions with saffron in depressed patients.
Collapse
|
23
|
Berland C, Small DM, Luquet S, Gangarossa G. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends Endocrinol Metab 2021; 32:693-705. [PMID: 34148784 DOI: 10.1016/j.tem.2021.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 02/03/2023]
Abstract
The abundance of energy-dense and palatable diets in the modern food environment tightly contributes to the obesity pandemic. The reward circuit participates to the regulation of body homeostasis by integrating energy-related signals with neural substrates encoding cognitive and motivational components of feeding behaviors. Obesity and lipid-rich diets alter dopamine (DA) transmission leading to reward dysfunctions and food overconsumption. Recent reports indicate that dietary lipids can act, directly and indirectly, as functional modulators of the DA circuit. This raises the possibility that nutritional or genetic conditions affecting 'lipid sensing' mechanisms might lead to maladaptations of the DA system. Here, we discuss the most recent findings connecting dietary lipid sensing with DA signaling and its multimodal influence on circuits regulating food-reward processes.
Collapse
Affiliation(s)
- Chloé Berland
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France; Department of Medicine, The Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Dana M Small
- Department of Psychiatry, and the Modern Diet and Physiology Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.
| | | |
Collapse
|
24
|
Prado-Cabrero A, Nolan JM. Omega-3 nutraceuticals, climate change and threats to the environment: The cases of Antarctic krill and Calanus finmarchicus. AMBIO 2021; 50:1184-1199. [PMID: 33502683 PMCID: PMC8068752 DOI: 10.1007/s13280-020-01472-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The nutraceutical market for EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) is promoting fishing for Euphasia superba (Antarctic krill) in the Southern Ocean and Calanus finmarchicus in Norwegian waters. This industry argues that these species are underexploited, but they are essential in their ecosystems, and climate change is altering their geographical distribution. In this perspective, we advocate the cessation of fishing for these species to produce nutraceuticals with EPA and DHA. We argue that this is possible because, contrary to what this industry promotes, the benefits of these fatty acids only seem significant to specific population groups, and not for the general population. Next, we explain that this is desirable because there is evidence that these fisheries may interact with the impact of climate change. Greener sources of EPA and DHA are already available on the market, and their reasonable use would ease pressure on the Arctic and Antarctic ecosystems.
Collapse
Affiliation(s)
- Alfonso Prado-Cabrero
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Carriganore, Waterford, Ireland
| | - John M. Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Carriganore, Waterford, Ireland
| |
Collapse
|
25
|
Martinat M, Rossitto M, Di Miceli M, Layé S. Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 2021; 13:1185. [PMID: 33918517 PMCID: PMC8065891 DOI: 10.3390/nu13041185] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
n-3 and n-6 polyunsaturated fatty acids (PUFAs) are essential fatty acids that are provided by dietary intake. Growing evidence suggests that n-3 and n-6 PUFAs are paramount for brain functions. They constitute crucial elements of cellular membranes, especially in the brain. They are the precursors of several metabolites with different effects on inflammation and neuron outgrowth. Overall, long-chain PUFAs accumulate in the offspring brain during the embryonic and post-natal periods. In this review, we discuss how they accumulate in the developing brain, considering the maternal dietary supply, the polymorphisms of genes involved in their metabolism, and the differences linked to gender. We also report the mechanisms linking their bioavailability in the developing brain, their transfer from the mother to the embryo through the placenta, and their role in brain development. In addition, data on the potential role of altered bioavailability of long-chain n-3 PUFAs in the etiologies of neurodevelopmental diseases, such as autism, attention deficit and hyperactivity disorder, and schizophrenia, are reviewed.
Collapse
|
26
|
Yasumoto Y, Horvath TL. Crosstalk between maternal perinatal obesity and offspring dopaminergic circuitry. J Clin Invest 2021; 130:3416-3418. [PMID: 32510474 DOI: 10.1172/jci138123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mechanism by which maternal obesity influences fetal brain development and behavior is not well understood. In this issue of the JCI, Lippert et al. showed that feeding maternal mice a high-fat diet (HFD) during lactation attenuated the activity of dopamine (DA) midbrain neurons and altered the DA-related behavioral phenotype seen in the offspring. The authors further suggested that the altered excitatory and inhibitory balance between D1 medium spiny neurons (MSN) and D2 MSN mediates this behavioral phenotype. These mechanisms may provide strategies for preventing the negative effects of maternal obesity on offspring development and adult health.
Collapse
|
27
|
Ducrocq F, Trifilieff P. [Motivational deficits and polyunsaturated fatty acids]. Med Sci (Paris) 2021; 37:15-18. [PMID: 33492212 DOI: 10.1051/medsci/2020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Fabien Ducrocq
- Université de Bordeaux, INRAE, Bordeaux INP Aquitaine, NutriNeuro, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Pierre Trifilieff
- Université de Bordeaux, INRAE, Bordeaux INP Aquitaine, NutriNeuro, 146 rue Léo Saignat, 33000 Bordeaux, France
| |
Collapse
|
28
|
Roy J, Vigor C, Vercauteren J, Reversat G, Zhou B, Surget A, Larroquet L, Lanuque A, Sandres F, Terrier F, Oger C, Galano JM, Corraze G, Durand T. Characterization and modulation of brain lipids content of rainbow trout fed with 100% plant based diet rich in omega-3 long chain polyunsaturated fatty acids DHA and EPA. Biochimie 2020; 178:137-147. [PMID: 32623048 DOI: 10.1016/j.biochi.2020.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
Brain functions are known to be mainly modulated by adequate dietary intake. Inadequate intake as can be an excess or significant deficiency affect cognitive processes, behavior, neuroendocrine functions and synaptic plasticity with protective or harmful effects on neuronal physiology. Lipids, in particular, ω-6 and ω-3 long chain polyunsaturated fatty acids (LC-PUFAs) play structural roles and govern the different functions of the brain. Hence, the goal of this study was to characterize the whole brain fatty acid composition (precursors, enzymatic and non-enzymatic oxidation metabolites) of fish model of rainbow trout fed with three experimental plant-based diet containing distinct levels of eicosapentaenoic acid (EPA, 20:5 ω-3) and docosahexaenoic acid (DHA, 22:6 ω-3) (0% for low, 15.7% for medium and 33.4% for high, total fatty acid content) during nine weeks. Trout fed with the diet devoid of DHA and EPA showed reduced brain content of total ω-3 LC-PUFAs, with diminution of EPA and DHA. Selected enzymatic (cyclooxygenases and lipoxygenases) oxidation metabolites of arachidonic acid (AA, 20:4 ω-6) decrease in medium and high ω-3 LC-PUFAs diets. On the contrary, total selected enzymatic oxidation metabolites of DHA and EPA increased in high ω-3 LC-PUFAs diet. Total selected non-enzymatic oxidation metabolites of DHA (not detected for EPA) increased in medium and high ω-3 LC-PUFAs diets. In conclusion, this work revealed for the first time in fish model the presence of some selected enzymatic and non-enzymatic oxidation metabolites in brain and the modulation of brain lipid content by dietary DHA and EPA levels.
Collapse
Affiliation(s)
- Jérôme Roy
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France.
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Bingqing Zhou
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Anne Surget
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Laurence Larroquet
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Franck Sandres
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Frederic Terrier
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Geneviève Corraze
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| |
Collapse
|