1
|
Mansouri M, Fussenegger M. Engineering electrogenetic interfaces for mammalian cell control. Cell Chem Biol 2025; 32:521-528. [PMID: 39879984 DOI: 10.1016/j.chembiol.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Human body cells and our daily electronic devices both communicate information within their distinct worlds by regulating the flow of electrons across specified membranes. While electronic devices depend on the flow of electrons generated by conductive materials to communicate within a digital network, biological systems use ion gradients, created in analog biochemical reactions, to trigger biological data transmission throughout multicellular systems. Electrogenetics is an emerging concept in synthetic biology in which electrons generated by digital electronic devices program customized electron-responsive biological units within living cells. In this paper, we outline endeavors to design direct electrogenetic interfaces to control cell behaviors in therapeutically engineered mammalian cells. We also discuss prospects for the world of electrogenetics, focusing on how to engineer the next generation of therapeutic cells controlled by electronic devices and the internet of the body.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
2
|
Chen X, Wang R, Wang X, Liu M, Liu Z, Yin T, Li C. Repetitive transcranial magnetic stimulation elicits weight loss and improved insulin sensitivity in type 2 diabetic rats. Animal Model Exp Med 2025; 8:739-749. [PMID: 39439134 PMCID: PMC12008436 DOI: 10.1002/ame2.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/19/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) accounts for the majority of diabetes incidences and remains a widespread global chronic disorder. Apart from early lifestyle changes, intervention options for T2D are mainly pharmaceutical. METHODS Repetitive transcranial magnetic stimulation (rTMS) has been approved by the FDA as a therapeutic intervention option for major depressive disorders, with further studies also indicating its role in energy metabolism and appetite. Considering its safe and non-invasive properties, we evaluated the effects of rTMS on systemic metabolism using T2D rats. RESULTS We observed that rTMS improved glucose tolerance and insulin sensitivity in T2D rats after a 10-day exposure. Improved systemic insulin sensitivity was maintained after a 21-day treatment period, accompanied by modest yet significant weight loss. Circulating serum lipid levels, including those of cholesteryl ester, tryglyceride and ceramides, were also reduced following rTMS application. RNA-seq analyses further revealed a changed expression profile of hepatic genes that are related to sterol production and fatty acid metabolism. Altered expression of hypothalamic genes that are related to appetite regulation, neural activity and ether lipid metabolism were also implicated. CONCLUSION In summary, our data report a positive impact of rTMS on systemic insulin sensitivity and weight management of T2D rats. The underlying mechanisms via which rTMS regulates systemic metabolic parameters partially involve lipid utilization in the periphery as well as central regulation of energy intake and lipid metabolism.
Collapse
Affiliation(s)
- Xuanjin Chen
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Ruru Wang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Xin Wang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Ming Liu
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Zhipeng Liu
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Tao Yin
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Chen Li
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| |
Collapse
|
3
|
Yan Z, Sun T, Zeng J, He T, He Y, Xu D, Liu R, Tan W, Zang X, Yan J, Deng Y. Enhanced Immune Modulation and Bone Tissue Regeneration through an Intelligent Magnetic Scaffold Targeting Macrophage Mitochondria. Adv Healthc Mater 2025; 14:e2500163. [PMID: 40095440 DOI: 10.1002/adhm.202500163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Indexed: 03/19/2025]
Abstract
During the bone tissue repair process, the highly dynamic interactions between the host and materials hinder precise, stable, and sustained immune modulation. Regulating the immune response based on potential mechanisms of macrophage phenotypic changes may represent an effective strategy for promoting bone healing. This study successfully constructs a co-dispersed pFe₃O₄-MXene nanosystem by loading positively charged magnetite (pFe₃O₄) nanoparticles onto MXene nanosheets using electrostatic self-assembly. Subsequently, this work fabricates a biomimetic porous bone scaffold (PFM) via selective laser sintering, which exhibit superior magnetic properties, mechanical performance, hydrophilicity, and biocompatibility. Further investigations demonstrate that the PFM scaffold could precisely and remotely modulate macrophage polarization toward the M2 phenotype under a static magnetic field, significantly enhancing osteogenesis and angiogenesis. Proteomic analysis reveal that the scaffold upregulates Arg2 expression, enhancing mitochondrial function and accelerating oxidative phosphorylation, thereby inducing the M2 transition. In vivo experiments validated the scaffold's immune regulatory capacity in subcutaneous and cranial defect repairs in rats, effectively promoting new bone formation. Overall, this strategy of immune modulation targeting macrophage metabolism and mitochondrial function offers novel insights for material design in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zuyun Yan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Tianshi Sun
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Jin Zeng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Tao He
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yiwen He
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Dongcheng Xu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Renfeng Liu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Xiaofang Zang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410017, P. R. China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
4
|
Mao K, Yue M, Ma H, Li Z, Liu Y. Electro- and Magneto-Active Biomaterials for Diabetic Tissue Repair: Advantages and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501817. [PMID: 40159915 DOI: 10.1002/adma.202501817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Indexed: 04/02/2025]
Abstract
The diabetic tissue repair process is frequently hindered by persistent inflammation, infection risks, and a compromised tissue microenvironment, which lead to delayed wound healing and significantly impact the quality of life for diabetic patients. Electromagnetic biomaterials offer a promising solution by enabling the intelligent detection of diabetic wounds through electric and magnetic effects, while simultaneously improving the pathological microenvironment by reducing oxidative stress, modulating immune responses, and exhibiting antibacterial action. Additionally, these materials inherently promote tissue regeneration by regulating cellular behavior and facilitating vascular and neural repair. Compared to traditional biomaterials, electromagnetic biomaterials provide advantages such as noninvasiveness, deep tissue penetration, intelligent responsiveness, and multi-stimuli synergy, demonstrating significant potential to overcome the challenges of diabetic tissue repair. This review comprehensively examines the superiority of electromagnetic biomaterials in diabetic tissue repair, elucidates the underlying biological mechanisms, and discusses specific design strategies and applications tailored to the pathological characteristics of diabetic wounds, with a focus on skin wound healing and bone defect repair. By addressing current limitations and pursuing multi-faceted strategies, electromagnetic biomaterials hold significant potential to improve clinical outcomes and enhance the quality of life for diabetic patients.
Collapse
Affiliation(s)
- Kai Mao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Huiping Ma
- Department of Stomatology, Zhengzhou Shuqing Medical College, 6 Gongming Road, Erqi District, Zhengzhou, 450064, P. R. China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| |
Collapse
|
5
|
Chen W, Wang Y, Xie W, Wang J, Ji X, Feng C, Zhang X. Static magnetic fields alleviate diabetic nephropathy by reducing renal cell inflammation and promoting M2 macrophage polarization. FASEB J 2025; 39:e70424. [PMID: 40013926 DOI: 10.1096/fj.202500061r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Diabetic nephropathy (DN) is one of the most severe diabetic complications, which can easily progress into irreversible and detrimental end-stage renal disease if not properly controlled. However, the effective prevention of DN progression has always remained a huge challenge. Moderate intensity static magnetic fields (SMFs), which have the advantages of non-invasive and high penetration, have shown beneficial effects in reducing blood glucose in type 2 diabetes mice in recent years. In this study, by using both db/db severe diabetic mice and high-fat diet and streptozotocin-induced moderate diabetic mice, we found that SMFs have significant effects on reducing DN compared to blood glucose control. Further analyzing the db/db mice with severe diabetes, we found that kidney inflammation, vascular abnormalities, and fibrosis were all greatly reduced. Moreover, SMFs can promote macrophages polarized into M2. In vitro cellular experiments also demonstrate the positive effects of SMFs in reducing kidney cell inflammation, as well as increasing M2 macrophage polarization by promoting F-actin assembly. Therefore, our results show that moderate intensity SMFs have great potential to be developed as a new physical modality to be used in the treatment of DN, and possibly other types of chronic kidney diseases.
Collapse
Affiliation(s)
- Weili Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Ying Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Wenjing Xie
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Junjun Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xin Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Egg M, Kietzmann T. Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer. Redox Biol 2025; 79:103483. [PMID: 39729909 PMCID: PMC11733197 DOI: 10.1016/j.redox.2024.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024] Open
Abstract
The increase in early-stage cancers, particularly gastrointestinal, breast and kidney cancers, has been linked to lifestyle changes such as consumption of processed foods and physical inactivity, which contribute to obesity and diabetes - major cancer risk factors. Conventional treatments such as chemotherapy and radiation often lead to severe long-term side effects, including secondary cancers and tissue damage, highlighting the need for new, safer and more effective therapies, especially for young patients. Weak electromagnetic fields (WEMF) offer a promising non-invasive approach to cancer treatment. While WEMF have been used therapeutically for musculoskeletal disorders for decades, their role in oncology is still emerging. WEMFs affect multiple cellular processes through mechanisms such as the radical pair mechanism (RPM), which alters reactive oxygen species (ROS) levels, mitochondrial function, and glycolysis, among others. This review explores the potential of WEMF in conjunction with reactive oxygen species as a cancer therapy, highlighting WEMFs selective targeting of cancer cells and its non-ionizing nature, which could reduce collateral damage compared to conventional treatments. In addition, synchronization of WEMF with circadian rhythms may further enhance its therapeutic efficacy, as has been demonstrated in other cancer therapies.
Collapse
Affiliation(s)
- Margit Egg
- Institute of Zoology, University Innsbruck, Technikerstraße 25, 6020, Innsbruck, Tyrol, A-6020, Austria.
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| |
Collapse
|
7
|
Lewandoski LT, Grymuza de Souza V, Cannan Kiekiss G, Soares F, Buzanello MR, Bertolini GRF. Static magnetic field on wound healing in rodents: a systematic review and meta-analysis. Electromagn Biol Med 2025; 44:107-118. [PMID: 39760456 DOI: 10.1080/15368378.2024.2448186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE The aim of this study was to systematically review the preclinical studies that have applied the static magnetic field to wound healing. METHODS The search strategy was performed in databases: PubMed, Embase, Scopus, Web of Science, LILACS, CINAHL and Cochrane Database, and in gray literature. The inclusion criteria were: Pre-clinical studies, either with a separate control/sham parallel-group or cross-over design in rodents that used magnets to treat skin injuries anywhere on the body. The risk of bias tool was the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). RESULTS Eight randomized clinical trials were included. Wound rate area DM experimental vs DM sham [MD = 2.19, 95% CI, (-0.61, 4.99), I2 25%, p = 0.13] and wound rate area - DM experimental vs non-DM control [MD = 3.33, 95% CI, (-1.86, 8.55), I2 63%, p = 0.21] were not statistically significant. A significant improvement in gross healing time in the experimental group DM compared to the DM sham [MD = -4.48, IC 95%, (-7.88, -1.07), I2 38%, p = 0.010]. The same way tensile strength - DM and non DM subgroup analysis showed improved tensile strength in both the non-diabetic and diabetic experiment groups [SMD = 1.36, 95% CI, (0.60, 2.12), I2 0%, p = 0.0005]. CONCLUSIONS Although not statistically significant, the static magnetic field had a positive effect on wound healing in rodents compared to the sham or control group. There was a significant improvement in the assessment of healing time and skin tensile strength.
Collapse
Affiliation(s)
| | - Vanessa Grymuza de Souza
- Graduate Program in Biosciences and Health, Centro de atenção e Pesquisa em anomalias Craniofaciais, Cascavel, Brazil
| | | | - Franciele Soares
- Departamento de Fisioterapia, Curso de Graduação em Fisioterapia, UNIOESTE, Cascavel, Brazil
| | | | | |
Collapse
|
8
|
Chen Y. Applying auricular magnetic therapy to decrease blood glucose levels and promote the healing of gangrene in diabetes patients: a case report. J Med Case Rep 2024; 18:636. [PMID: 39716230 DOI: 10.1186/s13256-024-04994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Magnetic therapy has demonstrated beneficial effects for reducing pain, nausea, neuropathy, and various other health concerns in the human body. To our knowledge, limited research has documented the use of auricular static magnetic therapy as a potential treatment for diabetes. This report presents the first evidence of using magnetic discs placed at acupuncture points on the human ear to decrease blood glucose levels and promote the healing of gangrene in diabetic patients. When a magnetic disc was placed at an acupuncture point on the ear, elevated blood glucose levels were reduced, blood circulation improved, and gangrene eventually resolved. This case report presents a new development in auricular acupuncture, providing a novel method for treating diabetes and its complications. CASE PRESENTATION A 59-year-old white male who was diagnosed with type II diabetes and had suffered from this condition for 20 years developed gangrene in his left leg, necessitating amputation. Despite insulin therapy, the patient's blood glucose level remained elevated, and gangrene subsequently manifested in his right leg. The patient was diagnosed with severe end-stage peripheral arterial occlusive disease, and a second amputation became necessary. The patient sought acupuncture treatment to avoid amputation. A magnetic disc was applied to the patient's left ear at the pancreas point. Within 2 days, the patient's blood glucose level decreased from 240 to 120 mg/dl, while the blood flow in his leg increased by 30%. Consequently, the patient was able to reduce the insulin dosage. Over time, the gangrene resolved, and new tissue regenerated in place of the gangrenous tissue. Another case study involved a 33-year-old white female with type I diabetes who used an insulin pump prior to magnetic therapy. Magnetic discs were applied to auricular acupuncture points, resulting in a 30% reduction in insulin dosage, while maintaining the same caloric intake. CONCLUSION Auricular static magnetic therapy has demonstrated efficacy as a beneficial treatment for diabetes. This therapeutic approach has been shown to reduce blood glucose levels, increase blood circulation, and promote gangrene healing. Its noninvasive nature, rapid onset of action, and cost-effectiveness are notable attributes. The novel contribution of this case report resides in its potential application as a complementary therapy for diabetes utilized in conjunction with conventional Western medical practices.
Collapse
Affiliation(s)
- Yu Chen
- Beijing Acupuncture and Chinese Herbology, 19 Edgemoor Road, Lutherville-Timonium, MD, 21093, USA.
| |
Collapse
|
9
|
Wang Y, Feng C, Yu B, Wang J, Chen W, Song C, Ji X, Guo R, Cheng G, Chen H, Wang X, Zhang L, Li Z, Jiang J, Xie C, Du H, Zhang X. Enhanced Effects of Intermittent Fasting by Magnetic Fields in Severe Diabetes. RESEARCH (WASHINGTON, D.C.) 2024; 7:0468. [PMID: 39238846 PMCID: PMC11376831 DOI: 10.34133/research.0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Intermittent fasting (IF) is a convenient dietary intervention for multiple diseases, including type 2 diabetes. However, whether it can be used as a long-term antidiabetic approach is still unknown. Here, we confirm that IF alone is beneficial for both moderate and severe diabetic mice, but its antidiabetic effects clearly diminish at later stages, especially for severe diabetic db/db mice, which have obviously impaired autophagy. We found that static magnetic fields can directly promote actin assembly and boost IF-induced autophagy. Consequently, the pancreatic islet and liver were improved, and the antidiabetic effects of IF were boosted. In fact, at later stages, combined static magnetic field and IF could reduce the blood glucose level of moderate type 2 diabetic mice by 40.5% (P < 0.001) and severe type 2 diabetes by 34.4% (P < 0.05), when IF alone no longer has significant blood glucose reduction effects. Therefore, although IF is generally beneficial for diabetes, our data reveal its insufficiency for late-stage diabetes, which can be compensated by a simple, noninvasive, long-lasting, and nonpharmacological strategy for effective long-term diabetic control.
Collapse
Affiliation(s)
- Ying Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Biao Yu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Junjun Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Weili Chen
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Chao Song
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Ruowen Guo
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Guofeng Cheng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Hanxiao Chen
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinyu Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Lei Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Zhiyuan Li
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jialiang Jiang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Can Xie
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Haifeng Du
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xin Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| |
Collapse
|
10
|
Thoeni V, Dimova EY, Kietzmann T, Usselman RJ, Egg M. Therapeutic nuclear magnetic resonance and intermittent hypoxia trigger time dependent on/off effects in circadian clocks and confirm a central role of superoxide in cellular magnetic field effects. Redox Biol 2024; 72:103152. [PMID: 38593630 PMCID: PMC11016797 DOI: 10.1016/j.redox.2024.103152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Cellular magnetic field effects are assumed to base on coherent singlet-triplet interconversion of radical pairs that are sensitive to applied radiofrequency (RF) and weak magnetic fields (WEMFs), known as radical pair mechanism (RPM). As a leading model, the RPM explains how quantum effects can influence biochemical and cellular signalling. Consequently, radical pairs generate reactive oxygen species (ROS) that link the RPM to redox processes, such as the response to hypoxia and the circadian clock. Therapeutic nuclear magnetic resonance (tNMR) occupies a unique position in the RPM paradigm because of the used frequencies, which are far below the range of 0.1-100 MHz postulated for the RPM to occur. Nonetheless, tNMR was shown to induce RPM like effects, such as increased extracellular H2O2 levels and altered cellular bioenergetics. In this study we compared the impact of tNMR and intermittent hypoxia on the circadian clock, as well as the role of superoxide in tNMR induced ROS partitioning. We show that both, tNMR and intermittent hypoxia, exert on/off effects on cellular clocks that are dependent on the time of application (day versus night). In addition, our data provide further evidence that superoxide plays a central role in magnetic signal transduction. tNMR used in combination with scavengers, such as Vitamin C, led to strong ROS product redistributions. This discovery might represent the first indication of radical triads in biological systems.
Collapse
Affiliation(s)
- Viktoria Thoeni
- Institute of Zoology, University Innsbruck, Technikerstraße 25, 6020, Innsbruck, Tyrol, A-6020, Austria
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| | - Robert J Usselman
- Faculty of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 W University Blvd, Melbourne, FL, 32901, USA
| | - Margit Egg
- Institute of Zoology, University Innsbruck, Technikerstraße 25, 6020, Innsbruck, Tyrol, A-6020, Austria.
| |
Collapse
|
11
|
Austvold CK, Keable SM, Procopio M, Usselman RJ. Quantitative measurements of reactive oxygen species partitioning in electron transfer flavoenzyme magnetic field sensing. Front Physiol 2024; 15:1348395. [PMID: 38370016 PMCID: PMC10869518 DOI: 10.3389/fphys.2024.1348395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Biological magnetic field sensing that gives rise to physiological responses is of considerable importance in quantum biology. The radical pair mechanism (RPM) is a fundamental quantum process that can explain some of the observed biological magnetic effects. In magnetically sensitive radical pair (RP) reactions, coherent spin dynamics between singlet and triplet pairs are modulated by weak magnetic fields. The resulting singlet and triplet reaction products lead to distinct biological signaling channels and cellular outcomes. A prevalent RP in biology is between flavin semiquinone and superoxide (O2 •-) in the biological activation of molecular oxygen. This RP can result in a partitioning of reactive oxygen species (ROS) products to form either O2 •- or hydrogen peroxide (H2O2). Here, we examine magnetic sensing of recombinant human electron transfer flavoenzyme (ETF) reoxidation by selectively measuring O2 •- and H2O2 product distributions. ROS partitioning was observed between two static magnetic fields at 20 nT and 50 μT, with a 13% decrease in H2O2 singlet products and a 10% increase in O2 •- triplet products relative to 50 µT. RPM product yields were calculated for a realistic flavin/superoxide RP across the range of static magnetic fields, in agreement with experimental results. For a triplet born RP, the RPM also predicts about three times more O2 •- than H2O2, with experimental results exhibiting about four time more O2 •- produced by ETF. The method presented here illustrates the potential of a novel magnetic flavoprotein biological sensor that is directly linked to mitochondria bioenergetics and can be used as a target to study cell physiology.
Collapse
Affiliation(s)
- Chase K. Austvold
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Stephen M. Keable
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Maria Procopio
- Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J. Usselman
- Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
- Computational Research At Florida Tech, Melbourne, FL, United States
| |
Collapse
|
12
|
刘 洪, 王 卫. [Research advances in neuromodulation techniques for blood glucose regulation and diabetes intervention]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:1227-1234. [PMID: 38151947 PMCID: PMC10753312 DOI: 10.7507/1001-5515.202307019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/03/2023] [Indexed: 12/29/2023]
Abstract
Diabetes and its complications that seriously threaten the health and life of human, has become a public health problem of global concern. Glycemic control remains a major focus in the treatment and management of patients with diabetes. The traditional lifestyle interventions, drug therapies, and surgeries have benefited many patients with diabetes. However, due to problems such as poor patient compliance, drug side effects, and limited surgical indications, there are still patients who fail to effectively control their blood glucose levels. With the development of bioelectronic medicine, neuromodulation techniques have shown great potential in the field of glycemic control and diabetes intervention with its unique advantages. This paper mainly reviewed the research advances and latest achievements of neuromodulation technologies such as peripheral nerve electrical stimulation, ultrasound neuromodulation, and optogenetics in blood glucose regulation and diabetes intervention, analyzed the existing problems and presented prospects for the future development trend to promote clinical research and application of neuromodulation technologies in the treatment of diabetes.
Collapse
Affiliation(s)
- 洪运 刘
- 中国人民解放军总医院 医学创新研究部 生物工程研究中心(北京 100853)Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing 100853, P. R. China
- 工业和信息化部生物医学工程与转化医学重点实验室(北京 100853)Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing 100853, P. R. China
| | - 卫东 王
- 中国人民解放军总医院 医学创新研究部 生物工程研究中心(北京 100853)Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing 100853, P. R. China
- 工业和信息化部生物医学工程与转化医学重点实验室(北京 100853)Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing 100853, P. R. China
| |
Collapse
|
13
|
Vecheck AM, McNamee CM, Reijo Pera R, Usselman RJ. Magnetic Field Intervention Enhances Cellular Migration Rates in Biological Scaffolds. Bioengineering (Basel) 2023; 11:9. [PMID: 38247887 PMCID: PMC10813414 DOI: 10.3390/bioengineering11010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The impact of magnetic fields on cellular function is diverse but can be described at least in part by the radical pair mechanism (RPM), where magnetic field intervention alters reactive oxygen species (ROS) populations and downstream cellular signaling. Here, cellular migration within three-dimensional scaffolds was monitored in an applied oscillating 1.4 MHz radiofrequency (RF) magnetic field with an amplitude of 10 µT and a static 50 µT magnetic field. Given that cellular bioenergetics can be altered based on applied RF magnetic fields, this study focused on a magnetic field configuration that increased cellular respiration. Results suggest that RF accelerated cell clustering and elongation after 1 day, with increased levels of clustering and cellular linkage after 7 days. Cell distribution analysis within the scaffolds revealed that the clustering rate during the first day was increased nearly five times in the RF environment. Electron microscopy provided additional topological information and verified the development of fibrous networks, with a cell-derived matrix (CDM) visualized after 7 days in samples maintained in RF. This work demonstrates time-dependent cellular migration that may be influenced by quantum biology (QB) processes and downstream oxidative signaling, enhancing cellular migration behavior.
Collapse
Affiliation(s)
- Amy M. Vecheck
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Cameron M. McNamee
- Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | | | - Robert J. Usselman
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
- Computational Research At Florida Tech (CRAFT), Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
14
|
Greatorex S, Kaur S, Xirouchaki CE, Goh PK, Wiede F, Genders AJ, Tran M, Jia Y, Raajendiran A, Brown WA, McLean CA, Sadoshima J, Watt MJ, Tiganis T. Mitochondria- and NOX4-dependent antioxidant defense mitigates progression to nonalcoholic steatohepatitis in obesity. J Clin Invest 2023; 134:e162533. [PMID: 38060313 PMCID: PMC10849767 DOI: 10.1172/jci162533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/21/2023] [Indexed: 02/02/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is prevalent in the majority of individuals with obesity, but in a subset of these individuals, it progresses to nonalcoholic steatohepatitis (0NASH) and fibrosis. The mechanisms that prevent NASH and fibrosis in the majority of patients with NAFLD remain unclear. Here, we report that NAD(P)H oxidase 4 (NOX4) and nuclear factor erythroid 2-related factor 2 (NFE2L2) were elevated in hepatocytes early in disease progression to prevent NASH and fibrosis. Mitochondria-derived ROS activated NFE2L2 to induce the expression of NOX4, which in turn generated H2O2 to exacerbate the NFE2L2 antioxidant defense response. The deletion or inhibition of NOX4 in hepatocytes decreased ROS and attenuated antioxidant defense to promote mitochondrial oxidative stress, damage proteins and lipids, diminish insulin signaling, and promote cell death upon oxidant challenge. Hepatocyte NOX4 deletion in high-fat diet-fed obese mice, which otherwise develop steatosis, but not NASH, resulted in hepatic oxidative damage, inflammation, and T cell recruitment to drive NASH and fibrosis, whereas NOX4 overexpression tempered the development of NASH and fibrosis in mice fed a NASH-promoting diet. Thus, mitochondria- and NOX4-derived ROS function in concert to drive a NFE2L2 antioxidant defense response to attenuate oxidative liver damage and progression to NASH and fibrosis in obesity.
Collapse
Affiliation(s)
- Spencer Greatorex
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Supreet Kaur
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | | | - Pei K. Goh
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Florian Wiede
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Amanda J. Genders
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Melanie Tran
- Department of Biochemistry and Molecular Biology
| | - YaoYao Jia
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Arthe Raajendiran
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Wendy A. Brown
- Department of Surgery, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | | | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Matthew J. Watt
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
15
|
Dutta S, Noh S, Gual RS, Chen X, Pané S, Nelson BJ, Choi H. Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental Remediation Applications. NANO-MICRO LETTERS 2023; 16:41. [PMID: 38032424 PMCID: PMC10689718 DOI: 10.1007/s40820-023-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation. Metal-based degradable micromotor composed of magnesium (Mg), zinc (Zn), and iron (Fe) have promise due to their nontoxic fuel-free propulsion, favorable biocompatibility, and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media, efficient cargo delivery and favorable biocompatibility. A noteworthy number of degradable metal-based micromotors employ bubble propulsion, utilizing water as fuel to generate hydrogen bubbles. This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications. In addition, understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance. Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor. Here we review the design and recent advancements of metallic degradable micromotors. Furthermore, we describe the controlled degradation, efficient in vivo drug delivery, and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications. Moreover, we discuss micromotors' efficacy in detecting and destroying environmental pollutants. Finally, we address the limitations and future research directions of degradable metallic micromotors.
Collapse
Affiliation(s)
- Sourav Dutta
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Seungmin Noh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Roger Sanchis Gual
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, People's Republic of China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Hongsoo Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
16
|
Guo Z, Zhu J, Qin G, Jia Y, Liu Z, Yang N, Guo R. Static Magnetic Fields Promote Generation of Muscle Lineage Cells from Pluripotent Stem Cells and Myoblasts. Stem Cell Rev Rep 2023; 19:1402-1414. [PMID: 37000377 DOI: 10.1007/s12015-023-10535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Static magnetic fields (SMFs) exhibit numerous biological effects and regulate the proliferation and differentiation of several adult stem cells. However, the role of SMFs in the self-renewal maintenance and developmental potential of pluripotent embryonic stem cells (ESCs) remains largely uninvestigated. Here, we show that SMFs promote the expression of the core pluripotent markers Sox2 and SSEA-1. Furthermore, SMFs facilitate the differentiation of ESCs into cardiomyocytes and skeletal muscle cells. Consistently, transcriptome analysis reveals that muscle lineage differentiation and skeletal system specification of ESCs are remarkably strengthened by SMF stimuli. Additionally, when treated with SMFs, C2C12 myoblasts exhibit an increased proliferation rate, improved expression of skeletal muscle markers and elevated myogenic differentiation capacity compared with control cells. Together, our data show that SMFs effectively promote muscle cell generation from pluripotent stem cells and myoblasts. The noninvasive and convenient physical stimuli can be used to increase the production of muscle cells in regenerative medicine and the manufacture of cultured meat in cellular agriculture.
Collapse
Affiliation(s)
- Zhaoyuan Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanyu Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yumei Jia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- INDUC Scientific Co., Ltd, No. 28-132 Jinshan North Photoelectric Science and Technology Park, Wuxi, 214000, China
| | - Renpeng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Li Q, Jiang X, Zhou Y, Gu Y, Ding Y, Luo J, Pang N, Sun Y, Pei L, Pan J, Gao M, Ma S, Xiao Y, Hu D, Wu F, Yang L. Improving Mitochondrial Function in Skeletal Muscle Contributes to the Amelioration of Insulin Resistance by Nicotinamide Riboside. Int J Mol Sci 2023; 24:10015. [PMID: 37373163 DOI: 10.3390/ijms241210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
High-fat diet (HFD)-induced insulin resistance (IR) in skeletal muscle is often accompanied by mitochondrial dysfunction and oxidative stress. Boosting nicotinamide adenine dinucleotide (NAD) using nicotinamide riboside (NR) can effectively decrease oxidative stress and increase mitochondrial function. However, whether NR can ameliorate IR in skeletal muscle is still inconclusive. We fed male C57BL/6J mice with an HFD (60% fat) ± 400 mg/kg·bw NR for 24 weeks. C2C12 myotube cells were treated with 0.25 mM palmitic acid (PA) ± 0.5 mM NR for 24 h. Indicators for IR and mitochondrial dysfunction were analyzed. NR treatment alleviated IR in HFD-fed mice with regard to improved glucose tolerance and a remarkable decrease in the levels of fasting blood glucose, fasting insulin and HOMA-IR index. NR-treated HFD-fed mice also showed improved metabolic status regarding a significant reduction in body weight and lipid contents in serum and the liver. NR activated AMPK in the skeletal muscle of HFD-fed mice and PA-treated C2C12 myotube cells and upregulated the expression of mitochondria-related transcriptional factors and coactivators, thereby improving mitochondrial function and alleviating oxidative stress. Upon inhibiting AMPK using Compound C, NR lost its ability in enhancing mitochondrial function and protection against IR induced by PA. In summary, improving mitochondrial function through the activation of AMPK pathway in skeletal muscle may play an important role in the amelioration of IR using NR.
Collapse
Affiliation(s)
- Qiuyan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuye Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Yujia Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingying Gu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yijie Ding
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Nengzhi Pang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Sun
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lei Pei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Pan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengqi Gao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Sixi Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - De Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Feilong Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lili Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
18
|
Zhai M, Zhang C, Cui J, Liu J, Li Y, Xie K, Luo E, Tang C. Electromagnetic fields ameliorate hepatic lipid accumulation and oxidative stress: potential role of CaMKKβ/AMPK/SREBP-1c and Nrf2 pathways. Biomed Eng Online 2023; 22:51. [PMID: 37217972 DOI: 10.1186/s12938-023-01114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, and is related to disturbed lipid metabolism and redox homeostasis. However, a definitive drug treatment has not been approved for this disease. Studies have found that electromagnetic fields (EMF) can ameliorate hepatic steatosis and oxidative stress. Nevertheless, the mechanism remains unclear. METHODS NAFLD models were established by feeding mice a high-fat diet. Simultaneously, EMF exposure is performed. The effects of the EMF on hepatic lipid deposition and oxidative stress were investigated. Additionally, the AMPK and Nrf2 pathways were analysed to confirm whether they were activated by the EMF. RESULTS Exposure to EMF decreased the body weight, liver weight and serum triglyceride (TG) levels and restrained the excessive hepatic lipid accumulation caused by feeding the HFD. The EMF boosted CaMKKβ protein expression, activated AMPK phosphorylation and suppressed mature SREBP-1c protein expression. Meanwhile, the activity of GSH-Px was enhanced following an increase in nuclear Nrf2 protein expression by PEMF. However, no change was observed in the activities of SOD and CAT. Consequently, EMF reduced hepatic reactive oxygen species (ROS) and MDA levels, which means that EMF relieved liver damage caused by oxidative stress in HFD-fed mice. CONCLUSIONS EMF may activate the CaMKKβ/AMPK/SREBP-1c and Nrf2 pathways to control hepatic lipid deposition and oxidative stress. This investigation indicates that EMF may be a novel therapeutic method for NAFLD.
Collapse
Affiliation(s)
- Mingming Zhai
- Department of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
| | - Chenxu Zhang
- Department of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Jinxiu Cui
- Department of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Juan Liu
- Department of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Yuanzhe Li
- Department of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Kangning Xie
- Department of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China.
| | - Chi Tang
- Department of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China.
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China.
| |
Collapse
|
19
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
20
|
Lv H, Wang Y, Liu J, Zhen C, Zhang X, Liu Y, Lou C, Guo H, Wei Y. Exposure to a static magnetic field attenuates hepatic damage and function abnormality in obese and diabetic mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166719. [PMID: 37116230 DOI: 10.1016/j.bbadis.2023.166719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023]
Abstract
Static magnetic fields (SMFs) exhibit significant effect on health care. However, the effect of SMF on hepatic metabolism and function in obesity and diabetes are still unknown. Liver is not only the main site for glucolipid metabolism but also the core part for iron metabolism regulation. Dysregulations of iron metabolism and redox status are risk factors for the development of hepatic injury and affect glucolipid metabolism in obesity and diabetes. Mice of HFD-induced obesity and HFD/streptozocin-induced diabetes were exposed to a moderate-intensity SMF (0.4-0.7 T, direction: upward, 4 h/day, 8 weeks). Results showed that SMF attenuated hepatic damage by decreasing inflammation and fibrosis in obese and diabetic mice. SMF had no effects on improving glucose/insulin tolerance but regulated proteins (GLUT1 and GLUT4) and genes (G6pc, Pdk4, Gys2 and Pkl) participating in glucose metabolism with phosphorylation of Akt/AMPK/GSK3β. SMF also reduced lipid droplets accumulation through decreasing Plin2 and Plin5 and regulated lipid metabolism with elevated hepatic expressions of PPARγ and C/EBPα in obese mice. In addition, SMF decreased hepatic iron deposition with lower FTH1 expression and modulated systematic iron homeostasis via BMP6-mediated regulation of hepcidin. Moreover, SMF balanced hepatic redox status with regulation on mitochondrial function and MAPKs/Nrf2/HO-1 pathway. Finally, we found that SMF activated hepatic autophagy and enhanced lipophagy by upregulating PNPLA2 expression in obese and diabetic mice. Our results demonstrated that SMF significantly ameliorated the development of hepatic injury in obese and diabetic mice by inhibiting inflammatory level, improving glycolipid metabolism, regulating iron metabolism, balancing redox level and activating autophagy.
Collapse
Affiliation(s)
- Huanhuan Lv
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China.
| | - Yijia Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Junyu Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Xinyi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuetong Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Chenge Lou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Huijie Guo
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Yunpeng Wei
- School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
21
|
Yu B, Song C, Feng CL, Zhang J, Wang Y, Zhu YM, Zhang L, Ji XM, Tian XF, Cheng GF, Chen WL, Zablotskii V, Wang H, Zhang X. Effects of gradient high-field static magnetic fields on diabetic mice. Zool Res 2023; 44:249-258. [PMID: 36650064 PMCID: PMC10083230 DOI: 10.24272/j.issn.2095-8137.2022.460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Although 9.4 T magnetic resonance imaging (MRI) has been tested in healthy volunteers, its safety in diabetic patients is unclear. Furthermore, the effects of high static magnetic fields (SMFs), especially gradient vs. uniform fields, have not been investigated in diabetics. Here, we investigated the consequences of exposure to 1.0-9.4 T high SMFs of different gradients (>10 T/m vs. 0-10 T/m) on type 1 diabetic (T1D) and type 2 diabetic (T2D) mice. We found that 14 h of prolonged treatment of gradient (as high as 55.5 T/m) high SMFs (1.0-8.6 T) had negative effects on T1D and T2D mice, including spleen, hepatic, and renal tissue impairment and elevated glycosylated serum protein, blood glucose, inflammation, and anxiety, while 9.4 T quasi-uniform SMFs at 0-10 T/m did not induce the same effects. In regular T1D mice (blood glucose ≥16.7 mmol/L), the >10 T/m gradient high SMFs increased malondialdehyde ( P<0.01) and decreased superoxide dismutase ( P<0.05). However, in the severe T1D mice (blood glucose ≥30.0 mmol/L), the >10 T/m gradient high SMFs significantly increased tissue damage and reduced survival rate. In vitro cellular studies showed that gradient high SMFs increased cellular reactive oxygen species and apoptosis and reduced MS-1 cell number and proliferation. Therefore, this study showed that prolonged exposure to high-field (1.0-8.6 T) >10 T/m gradient SMFs (35-1 380 times higher than that of current clinical MRI) can have negative effects on diabetic mice, especially mice with severe T1D, whereas 9.4 T high SMFs at 0-10 T/m did not produce the same effects, providing important information for the future development and clinical application of SMFs, especially high-field MRI.
Collapse
Affiliation(s)
- Biao Yu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chao Song
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chuan-Lin Feng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Ming Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Lei Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xin-Miao Ji
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xiao-Fei Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Guo-Feng Cheng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei-Li Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Vitalii Zablotskii
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
| | - Hua Wang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xin Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China. E-mail:
| |
Collapse
|
22
|
Highly efficient fabrication of functional hepatocyte spheroids by a magnetic system for the rescue of acute liver failure. Biomaterials 2023; 294:122014. [PMID: 36709644 DOI: 10.1016/j.biomaterials.2023.122014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
Engineering hepatocytes as multicellular cell spheroids can improve their viability after implantation in vivo for effective rescue of the devastating acute liver failure (ALF). However, there is still a lack of straightforward methods for efficient generation of functional hepatocyte spheroids. In this study, a magnetic system, consisting of magnetic microwell arrays and magnet blocks, is developed to realize magnetically controlled 3D cell capture and spatial confinement-mediated cell aggregation. The cell spheroids with smaller size show superior hepatic functions than the larger-sized counterparts. Notably, the intrinsic magnetism of magnetic microwell arrays can regulate superoxide anions in hepatocyte spheroids and herein promote various biological processes, including antioxidation, hepatocyte-related functions, and pro-angiogenic potential. Ectopic implantation of the functional cell spheroids in ALF-challenged mice significantly prolongs the animal survival, ameliorates inflammation, and promotes liver regeneration. Hence, application of the magnetic system for generation of functionally enhanced hepatocyte spheroids holds great potential for clinical translation in the future.
Collapse
|
23
|
Lv H, Yang J, Xue Y. Impacts of Static Magnetic Field on Bone Health. BIOLOGICAL EFFECTS OF STATIC MAGNETIC FIELDS 2023:321-336. [DOI: 10.1007/978-981-19-8869-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
24
|
Zhang B, Yuan X, Lv H, Che J, Wang S, Shang P. Biophysical mechanisms underlying the effects of static magnetic fields on biological systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:14-23. [PMID: 36240898 DOI: 10.1016/j.pbiomolbio.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 02/04/2023]
Abstract
With the widespread use of static magnetic fields (SMFs) in medicine, it is imperative to explore the biological effects of SMFs and the mechanisms underlying their effects on biological systems. The presence of magnetic materials within cells and organisms could affect various biological metabolism and processes, including stress responses, proliferation, and structural alignment. SMFs were generally found to be safe at the organ and organism levels. However. human subjects exposed to strong SMFs have reported side effects. In this review, we combined the magnetic properties of biological samples to illustrate the mechanism of action of SMFs on biological systems from a biophysical point of view. We suggest that the mechanisms of action of SMFs on biological systems mainly include the induction of electric fields and currents, generation of magnetic effects, and influence of electron spins. An electrolyte flowing in a static magnetic field generates an induced current and an electric field. Magnetomechanical effects include orientation effects upon subjecting biological samples to SMFs and movement of biological samples in strong field gradients. SMFs are thought to affect biochemical reaction rates and yields by influencing electron spin. This paper helps people how can harness the favorable biological effects of SMFs.
Collapse
Affiliation(s)
- Bin Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xichen Yuan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China; Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, 215400, China
| | - Huanhuan Lv
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shenghang Wang
- School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Spine Surgery, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, 518057, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
25
|
Ji X, Tian X, Feng S, Zhang L, Wang J, Guo R, Zhu Y, Yu X, Zhang Y, Du H, Zablotskii V, Zhang X. Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis. RESEARCH (WASHINGTON, D.C.) 2023; 6:0080. [PMID: 36939445 PMCID: PMC10017101 DOI: 10.34133/research.0080] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
F-actin (filamentous actin) has been shown to be sensitive to mechanical stimuli and play critical roles in cell attachment, migration, and cancer metastasis, but there are very limited ways to perturb F-actin dynamics with low cell toxicity. Magnetic field is a noninvasive and reversible physical tool that can easily penetrate cells and human bodies. Here, we show that 0.1/0.4-T 4.2-Hz moderate-intensity low-frequency rotating magnetic field-induced electric field could directly decrease F-actin formation in vitro and in vivo, which results in decreased breast cancer cell migration, invasion, and attachment. Moreover, low-frequency rotating magnetic fields generated significantly different effects on F-actin in breast cancer vs. noncancerous cells, including F-actin number and their recovery after magnetic field retrieval. Using an intermittent treatment modality, low-frequency rotating magnetic fields could significantly reduce mouse breast cancer metastasis, prolong mouse survival by 31.5 to 46.0% (P < 0.0001), and improve their overall physical condition. Therefore, our work demonstrates that low-frequency rotating magnetic fields not only can be used as a research tool to perturb F-actin but also can inhibit breast cancer metastasis through F-actin modulation while having minimum effects on normal cells, which reveals their potential to be developed as temporal-controlled, noninvasive, and high-penetration physical treatments for metastatic cancer.
Collapse
Affiliation(s)
- Xinmiao Ji
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
| | - Xiaofei Tian
- Institutes of Physical Science and Information Technology,
Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Shuang Feng
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
| | - Lei Zhang
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
| | - Junjun Wang
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
| | - Ruowen Guo
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
- Science Island Branch of Graduate School,
University of Science and Technology of China, Hefei, Anhui 230031, P.R China
| | - Yiming Zhu
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
- Science Island Branch of Graduate School,
University of Science and Technology of China, Hefei, Anhui 230031, P.R China
| | - Xin Yu
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
- Science Island Branch of Graduate School,
University of Science and Technology of China, Hefei, Anhui 230031, P.R China
| | - Yongsen Zhang
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
| | - Haifeng Du
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
| | - Vitalii Zablotskii
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Xin Zhang
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology,
HFIPS, Hefei, Anhui 230031, P.R China
- Institutes of Physical Science and Information Technology,
Anhui University, Hefei, Anhui, 230601, P. R. China
- Science Island Branch of Graduate School,
University of Science and Technology of China, Hefei, Anhui 230031, P.R China
- International Magnetobiology Frontier Research Center, Science Island, Hefei 230031, P.R. China
- Address correspondence to:
| |
Collapse
|
26
|
Yu X, Ji X, Fan Y, Yu B, Wang X, Feng C, Zhang L, Song C, Zhang X. Static Magnetic Fields Protect against Cisplatin-Induced Kidney Toxicity. Antioxidants (Basel) 2022; 12:73. [PMID: 36670933 PMCID: PMC9854588 DOI: 10.3390/antiox12010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Cisplatin is one of the most widely used anti-cancer drugs that can effectively inhibit the growth of multiple types of cancer. However, its clinical application is limited by its severe side effects, especially kidney toxicity, caused by cisplatin-induced oxidative stress, inflammation and kidney cell apoptosis. Here, we found that moderate (a few hundred mT) quasi-uniform static magnetic fields (SMFs) could inhibit cisplatin-induced renal proximal tubular cell death, especially the vertically downward direction SMF. RNA-seq experiments demonstrate that SMFs induced differential gene expressions that are closely associated with oxidative stress, apoptosis, cytokine production, transmembrane transport and DNA repair. In vivo experiments show that SMFs can reduce cisplatin-induced kidney injury in cisplatin-administrated tumor-bearing mice by reducing oxidative stress, inflammation and cell apoptosis. Furthermore, high-dose cisplatin-induced acute nephrotoxicity can be effectively alleviated by SMF treatment of as little as one day, which significantly reduced the reactive oxygen species levels in kidneys and prolonged the mice's survival. Moreover, the concentration of cisplatin in the kidney was significantly attenuated in SMF-treated mice. Therefore, our study demonstrates the effects of moderate SMFs as a novel physical method to reduce oxidative stress, and revealed their future potential to be used against cisplatin-induced kidney toxicity in cancer treatment.
Collapse
Affiliation(s)
- Xin Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230036, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yixiang Fan
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230036, China
| | - Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xinyu Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230036, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Chao Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230036, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei 230036, China
| |
Collapse
|
27
|
Diamanti K, Cavalli M, Pereira MJ, Pan G, Castillejo-López C, Kumar C, Mundt F, Komorowski J, Deshmukh AS, Mann M, Korsgren O, Eriksson JW, Wadelius C. Organ-specific metabolic pathways distinguish prediabetes, type 2 diabetes, and normal tissues. Cell Rep Med 2022; 3:100763. [PMID: 36198307 PMCID: PMC9589007 DOI: 10.1016/j.xcrm.2022.100763] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Environmental and genetic factors cause defects in pancreatic islets driving type 2 diabetes (T2D) together with the progression of multi-tissue insulin resistance. Mass spectrometry proteomics on samples from five key metabolic tissues of a cross-sectional cohort of 43 multi-organ donors provides deep coverage of their proteomes. Enrichment analysis of Gene Ontology terms provides a tissue-specific map of altered biological processes across healthy, prediabetes (PD), and T2D subjects. We find widespread alterations in several relevant biological pathways, including increase in hemostasis in pancreatic islets of PD, increase in the complement cascade in liver and pancreatic islets of PD, and elevation in cholesterol biosynthesis in liver of T2D. Our findings point to inflammatory, immune, and vascular alterations in pancreatic islets in PD that are hypotheses to be tested for potential contributions to hormonal perturbations such as impaired insulin and increased glucagon production. This multi-tissue proteomic map suggests tissue-specific metabolic dysregulations in T2D.
Collapse
Affiliation(s)
- Klev Diamanti
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marco Cavalli
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Gang Pan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Casimiro Castillejo-López
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Chanchal Kumar
- Translational Science & Experimental Medicine, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Karolinska Institutet/AstraZeneca Integrated CardioMetabolic Center (KI/AZ ICMC), Department of Medicine, Novum, Huddinge, Sweden
| | - Filip Mundt
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Jan Komorowski
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden; Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland; Washington National Primate Research Center, Seattle, WA, USA; Swedish Collegium for Advanced Study, Uppsala, Sweden
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Claes Wadelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
Wu R, Ou X, Zhang L, Song X, Wang Z, Dong M, Liu L. Electric Field Effect on Inhibiting the Co-fibrillation of Amyloid Peptides by Modulating the Aggregation Pathway. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12346-12355. [PMID: 36173231 DOI: 10.1021/acs.langmuir.2c02055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the revelation of the close link between Alzheimer's disease (AD) and type II diabetes (T2D) and the possible assembly of multiple amyloid peptides therein, it is critical to understand and regulate the co-fibrillation pathway between related amyloid peptides. Here, we show experimentally and theoretically that electric field (EF) inhibited hybrid amyloid fibrillation of β-amyloid peptide (Aβ) and human islet amyloid peptide (hIAPP) by modulating the hetero-aggregation pathway. Experimental results confirm that the β-sheet secondary structure of amyloid peptides would be disrupted under small static EF and accompanied by transforming fibril aggregates into amorphous particles in vitro. Molecular dynamics simulations further demonstrate that even with the transformation of the secondary structure from β-sheet to random coil, the strong interaction between Aβ and hIAPP peptides would remain largely unaffected under the small static EF, leading to the formation of amorphous nanoparticles observed in the experiments. This inhibitory effect of EF on the co-fibrillation of multiple amyloid peptides might contribute to reducing the mutual deterioration of different degenerative diseases and show great potential for the noninvasive treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Rongrong Wu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Xinwen Ou
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Liwei Zhang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolu Song
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Zengkai Wang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C DK-8000, Denmark
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
29
|
Henriksson A, Neubauer P, Birkholz M. Dielectrophoresis: An Approach to Increase Sensitivity, Reduce Response Time and to Suppress Nonspecific Binding in Biosensors? BIOSENSORS 2022; 12:784. [PMID: 36290922 PMCID: PMC9599301 DOI: 10.3390/bios12100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The performance of receptor-based biosensors is often limited by either diffusion of the analyte causing unreasonable long assay times or a lack of specificity limiting the sensitivity due to the noise of nonspecific binding. Alternating current (AC) electrokinetics and its effect on biosensing is an increasing field of research dedicated to address this issue and can improve mass transfer of the analyte by electrothermal effects, electroosmosis, or dielectrophoresis (DEP). Accordingly, several works have shown improved sensitivity and lowered assay times by order of magnitude thanks to the improved mass transfer with these techniques. To realize high sensitivity in real samples with realistic sample matrix avoiding nonspecific binding is critical and the improved mass transfer should ideally be specific to the target analyte. In this paper we cover recent approaches to combine biosensors with DEP, which is the AC kinetic approach with the highest selectivity. We conclude that while associated with many challenges, for several applications the approach could be beneficial, especially if more work is dedicated to minimizing nonspecific bindings, for which DEP offers interesting perspectives.
Collapse
Affiliation(s)
- Anders Henriksson
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Mario Birkholz
- IHP—Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| |
Collapse
|
30
|
Ozdemir-Kumral ZN, Sen E, Yapici HB, Atakul N, Domruk OF, Aldag Y, Sen LS, Kanpalta Mustafaoğlu F, Yuksel M, Akakin D, Erzik C, Haklar G, Imeryuz N. Phoenixin 14 ameloriates pancreatic injury in streptozotocin-induced diabetic rats by alleviating oxidative burden. J Pharm Pharmacol 2022; 74:1651-1659. [PMID: 36130115 DOI: 10.1093/jpp/rgac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023]
Abstract
Phoenixin-14 (PNX) is a neuropeptide that has been shown to prevent oxidative damage and stimulates insulin secretion. We investigated the effects of PNX on pancreatic injury induced by streptozotocin (STZ), and nicotinamide (NAD). Male Sprague-Dawley rats, in control (C) and diabetic (STZ) groups, were treated with either saline, or PNX (0.45 nmol/kg, or 45 nmol/kg) daily for 3 days 1 week after STZ injection. Fasting blood glucose (FBG) and gastric emptying rate (GER) were measured. Tissue and blood samples were collected. PNX treatments prevented pancreatic damage and β cell loss. Increased luminol and lucigenin levels in the pancreas, ileum and liver tissues of STZ groups were alleviated by PNX treatment in pancreatic and ileal tissues. PNX0.45 decreased FBG without any change in insulin blood level and pancreatic mRNA. GER increased in all diabetic rats while PNX0.45 delayed GER only in the C group. PNX diminishes pancreatic damage and lowers FBG by reducing oxidative load.
Collapse
Affiliation(s)
| | - Eminenur Sen
- Marmara University School of Medicine, Istanbul, Turkey
| | | | | | | | - Yusra Aldag
- Marmara University School of Medicine, Istanbul, Turkey
| | - Leyla Semiha Sen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey.,Department of General Surgery, Marmara University School of Medicine, Istanbul, Turkey
| | | | - Meral Yuksel
- Department of Medical Laboratory Technics, Marmara University Vocational School of Health Services, Istanbul, Turkey
| | - Dilek Akakin
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology, Marmara University School of Medicine, Istanbul, Turkey
| | - Goncagul Haklar
- Department of Biochemistry, Marmara University School of Medicine, Istanbul, Turkey
| | - Neşe Imeryuz
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
31
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
32
|
Song C, Yu B, Wang J, Zhu Y, Zhang X. Effects of Moderate to High Static Magnetic Fields on Reproduction. Bioelectromagnetics 2022; 43:278-291. [PMID: 35485707 DOI: 10.1002/bem.22404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/09/2022] [Accepted: 04/09/2022] [Indexed: 11/08/2022]
Abstract
With the wide application of magnetic resonance imaging in hospitals and permanent magnets in household items, people have increased exposure to various types of static magnetic fields (SMFs) with moderate and high intensities, which has caused a considerable amount of public concern. Studies have shown that some aspects of gametogenesis and early embryonic development can be significantly affected by SMFs, while others have shown no effects. This review summarizes the experimental results of moderate to high-intensity SMFs (1 mT-16.7 T) on the reproductive development of different model animals, and we find that the effects of SMFs are variable depending on experimental conditions. In general, the effects of inhomogeneous SMFs seem to be more significant compared to that of homogeneous SMFs, which is likely due to magnetic forces generated by the magnetic field gradient. Moreover, some electromagnetic fields may have induced bioeffects because of nonnegligible gradient and heat effect, which are much reduced in superconducting magnets. We hope this review can provide a starting point for more in-depth analysis of various SMFs on reproduction, which is indispensable for evaluating the safety and potential applications of SMFs on living organisms in the future. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Chao Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Junjun Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yiming Zhu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China.,International Magnetobiology Frontier Research Center (iMFRC), Science Island, Hefei, China
| |
Collapse
|
33
|
Mansouri M, Fussenegger M. Electrogenetics: Bridging synthetic biology and electronics to remotely control the behavior of mammalian designer cells. Curr Opin Chem Biol 2022; 68:102151. [PMID: 35483127 DOI: 10.1016/j.cbpa.2022.102151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/03/2022]
Abstract
Electrogenetics, the combination of electronics and genetics, is an emerging field of mammalian synthetic biology in which electrostimulation is used to remotely program user-designed genetic elements within designer cells to generate desired outputs. Here, we describe recent advances in electro-induced therapeutic gene expression and therapeutic protein secretion in engineered mammalian cells. We also review available tools and strategies to engineer electro-sensitive therapeutic designer cells that are able to sense electrical pulses and produce appropriate clinically relevant outputs in response. We highlight current limitations facing mammalian electrogenetics and suggest potential future directions for research.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland.
| |
Collapse
|
34
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
35
|
Static Magnetic Fields Reduce Oxidative Stress to Improve Wound Healing and Alleviate Diabetic Complications. Cells 2022; 11:cells11030443. [PMID: 35159252 PMCID: PMC8834397 DOI: 10.3390/cells11030443] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Although some studies have shown that some static magnetic fields (SMFs) can promote wound healing in diabetic mice, it is not clear whether the other diabetes complications, such as liver disease and diabetic nephropathy, can also be alleviated. Here, we constructed two simple magnetic plates using neodymium permanent magnets to examine the comprehensive effects of moderate SMFs on genetically obese leptin receptor-deficient db/db diabetic mice. We found that although the blood glucose was not obviously reduced by these two SMF settings, both of the glycated serum protein (GSP) and malondialdehyde (MDA) levels were significantly decreased (Cohen’s d = 2.57–3.04). Moreover, the wound healing, liver lipid accumulation, and renal defects were all significantly improved by SMF treatment (Cohen’s d = 0.91–2.05). Wound tissue examination showed obvious nuclear factor erythroid 2-related factor 2 (NRF2) level decrease (Cohen’s d = 2.49–5.40) and Ki-67 level increase (Cohen’s d = 2.30–3.40), indicating decreased oxidative stress and increased cell proliferation. In vitro cellular studies with fibroblast NIH3T3 cells showed that SMFs could reduce high glucose-induced NRF2 nucleus translocation (Cohen’s d = 0.87–1.15) and cellular reactive oxygen species (ROS) elevation (Cohen’s d = 0.92), indicating decreased oxidative stress. Consequently, high glucose-induced impairments in cell vitality, proliferation, and migration were all improved by SMF treatment. Therefore, our results demonstrate that these simple SMF devices could effectively reduce oxidative stress in diabetic mice and may provide a cost-effective physical therapy strategy to alleviate multiple diabetic complications in the future.
Collapse
|
36
|
Wang X, Zhao R, Wang J, Li X, Jin L, Liu W, Yang L, Zhu Y, Tan Z. 3D-printed tissue repair patch combining mechanical support and magnetism for controlled skeletal muscle regeneration. Biodes Manuf 2022. [DOI: 10.1007/s42242-021-00180-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7103345. [PMID: 34917231 PMCID: PMC8670934 DOI: 10.1155/2021/7103345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
Metastasis is the leading cause of cancer patient death, which is closely correlated with reactive oxygen species (ROS) levels. It is well known that the effects of ROS on tumors are diverse, depending on ROS concentration and cell type. We found that ovarian cancer cells have significantly lower levels of ROS than normal ovarian cells. Moreover, increased ROS levels in ovarian cancer cells can substantially inhibit their migration and invasion ability. Furthermore, the results show that moderate static magnetic field (SMF) can inhibit ovarian cancer cell migration, invasion, and stemness in a ROS-dependent manner. RNA sequencing results confirm that SMFs increased the oxidative stress level and reduced the stemness of ovarian cancer cells. Consistently, the expressions of stemness-related genes were significantly decreased, including hyaluronan receptor (CD44), SRY-box transcription factor 2 (Sox2), and cell myc proto-oncogene protein (C-myc). Furthermore, moderate SMFs provided by a superconducting magnet and permanent magnet have good biosafety and can both inhibit ovarian cancer metastasis in mice. Therefore, our study demonstrates the effects of SMFs on oxidative stress and metastasis in the ovarian cancer cells, which reveals the potential of applying SMF as a physical method in cancer therapy in the future.
Collapse
|
38
|
The SARS-CoV-2 spike protein is vulnerable to moderate electric fields. Nat Commun 2021; 12:5407. [PMID: 34518528 PMCID: PMC8437970 DOI: 10.1038/s41467-021-25478-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
Most of the ongoing projects aimed at the development of specific therapies and vaccines against COVID-19 use the SARS-CoV-2 spike (S) protein as the main target. The binding of the spike protein with the ACE2 receptor (ACE2) of the host cell constitutes the first and key step for virus entry. During this process, the receptor binding domain (RBD) of the S protein plays an essential role, since it contains the receptor binding motif (RBM), responsible for the docking to the receptor. So far, mostly biochemical methods are being tested in order to prevent binding of the virus to ACE2. Here we show, with the help of atomistic simulations, that external electric fields of easily achievable and moderate strengths can dramatically destabilise the S protein, inducing long-lasting structural damage. One striking field-induced conformational change occurs at the level of the recognition loop L3 of the RBD where two parallel beta sheets, believed to be responsible for a high affinity to ACE2, undergo a change into an unstructured coil, which exhibits almost no binding possibilities to the ACE2 receptor. We also show that these severe structural changes upon electric-field application also occur in the mutant RBDs corresponding to the variants of concern (VOC) B.1.1.7 (UK), B.1.351 (South Africa) and P.1 (Brazil). Remarkably, while the structural flexibility of S allows the virus to improve its probability of entering the cell, it is also the origin of the surprising vulnerability of S upon application of electric fields of strengths at least two orders of magnitude smaller than those required for damaging most proteins. Our findings suggest the existence of a clean physical method to weaken the SARS-CoV-2 virus without further biochemical processing. Moreover, the effect could be used for infection prevention purposes and also to develop technologies for in-vitro structural manipulation of S. Since the method is largely unspecific, it can be suitable for application to other mutations in S, to other proteins of SARS-CoV-2 and in general to membrane proteins of other virus types. The SARS-CoV-2 Spike protein is essential for viral infectivity and binds to the host receptor ACE2. Here, the authors present MD simulations of the Spike protein and its variants of concern and observe that the Spike protein is destabilised by moderate static electric fields, and undergoes field-induced conformational changes that hinder binding to ACE2.
Collapse
|
39
|
Anti-Oxidative and Immune Regulatory Responses of THP-1 and PBMC to Pulsed EMF Are Field-Strength Dependent. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189519. [PMID: 34574442 PMCID: PMC8471206 DOI: 10.3390/ijerph18189519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022]
Abstract
Innate immune cells react to electromagnetic fields (EMF) by generating reactive oxygen species (ROS), crucial intracellular messengers. Discrepancies in applied parameters of EMF studies, e.g., flux densities, complicate direct comparison of downstream anti-oxidative responses and immune regulatory signaling. We therefore compared the impact of different EMF flux densities in human leukemic THP1 cells and peripheral blood mononuclear cells (PBMC) of healthy donors to additionally consider a potential disparate receptivity based on medical origin. ROS levels increased in THP1 cells stimulated with lipopolysaccharide (LPS) after one hour of EMF exposure. Moreover, weak EMF mitigated the depletion of the reducing agent NAD(P)H in THP1. Neither of these effects occurred in PBMC. Landscaping transcriptional responses to varied EMF revealed elevation of the anti-oxidative enzymes PRDX6 (2-fold) and DHCR24 (6-fold) in THP1, implying involvement in lipid metabolism. Furthermore, our study confirmed anti-inflammatory effects of EMF by 6-fold increased expression of IL10. Strikingly, THP1 responded to weak EMF, while PBMC were primarily affected by strong EMF, yet with severe cellular stress and enhanced rates of apoptosis, indicated by HSP70 and caspase 3 (CASP3). Taken together, our results emphasize an altered susceptibility of immune cells of different origin and associate EMF-related effects with anti-inflammatory signaling and lipid metabolism.
Collapse
|
40
|
Lam J, Katti P, Biete M, Mungai M, AshShareef S, Neikirk K, Garza Lopez E, Vue Z, Christensen TA, Beasley HK, Rodman TA, Murray SA, Salisbury JL, Glancy B, Shao J, Pereira RO, Abel ED, Hinton A. A Universal Approach to Analyzing Transmission Electron Microscopy with ImageJ. Cells 2021; 10:2177. [PMID: 34571826 PMCID: PMC8465115 DOI: 10.3390/cells10092177] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Transmission electron microscopy (TEM) is widely used as an imaging modality to provide high-resolution details of subcellular components within cells and tissues. Mitochondria and endoplasmic reticulum (ER) are organelles of particular interest to those investigating metabolic disorders. A straightforward method for quantifying and characterizing particular aspects of these organelles would be a useful tool. In this protocol, we outline how to accurately assess the morphology of these important subcellular structures using open source software ImageJ, originally developed by the National Institutes of Health (NIH). Specifically, we detail how to obtain mitochondrial length, width, area, and circularity, in addition to assessing cristae morphology and measuring mito/endoplasmic reticulum (ER) interactions. These procedures provide useful tools for quantifying and characterizing key features of sub-cellular morphology, leading to accurate and reproducible measurements and visualizations of mitochondria and ER.
Collapse
Affiliation(s)
- Jacob Lam
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA; (J.L.); (S.A.); (R.O.P.); (E.D.A.)
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; (P.K.); (B.G.)
| | - Michelle Biete
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili St, Hilo, HI 96720, USA; (M.B.); (K.N.)
| | - Margaret Mungai
- Department of Molecular and Cell Biology, University of California Berkeley, 142 Weill Hall, Berkeley, CA 94720, USA;
| | - Salma AshShareef
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA; (J.L.); (S.A.); (R.O.P.); (E.D.A.)
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
| | - Kit Neikirk
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili St, Hilo, HI 96720, USA; (M.B.); (K.N.)
| | - Edgar Garza Lopez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (E.G.L.); (Z.V.); (H.K.B.); (T.A.R.)
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (E.G.L.); (Z.V.); (H.K.B.); (T.A.R.)
| | - Trace A. Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (T.A.C.); (J.L.S.)
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (E.G.L.); (Z.V.); (H.K.B.); (T.A.R.)
| | - Taylor A. Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (E.G.L.); (Z.V.); (H.K.B.); (T.A.R.)
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, 3550 Terrace St., Pittsburgh, PA 15213, USA;
| | - Jeffrey L. Salisbury
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (T.A.C.); (J.L.S.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; (P.K.); (B.G.)
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA 52242, USA;
| | - Renata O. Pereira
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA; (J.L.); (S.A.); (R.O.P.); (E.D.A.)
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
| | - E. Dale Abel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA; (J.L.); (S.A.); (R.O.P.); (E.D.A.)
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (E.G.L.); (Z.V.); (H.K.B.); (T.A.R.)
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (T.A.C.); (J.L.S.)
| |
Collapse
|
41
|
Uche UI, Naidenko OV. Development of health-based exposure limits for radiofrequency radiation from wireless devices using a benchmark dose approach. Environ Health 2021; 20:84. [PMID: 34273995 PMCID: PMC8286570 DOI: 10.1186/s12940-021-00768-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/01/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Epidemiological studies and research on laboratory animals link radiofrequency radiation (RFR) with impacts on the heart, brain, and other organs. Data from the large-scale animal studies conducted by the U.S. National Toxicology Program (NTP) and the Ramazzini Institute support the need for updated health-based guidelines for general population RFR exposure. OBJECTIVES The development of RFR exposure limits expressed in whole-body Specific Absorption Rate (SAR), a metric of RFR energy absorbed by biological tissues. METHODS Using frequentist and Bayesian averaging modeling of non-neoplastic lesion incidence data from the NTP study, we calculated the benchmark doses (BMD) that elicited a 10% response above background (BMD10) and the lower confidence limits on the BMD at 10% extra risk (BMDL10). Incidence data for individual neoplasms and combined tumor incidence were modeled for 5% and 10% response above background. RESULTS Cardiomyopathy and increased risk of neoplasms in male rats were the most sensitive health outcomes following RFR exposures at 900 MHz frequency with Code Division Multiple Access (CDMA) and Global System for Mobile Communications (GSM) modulations. BMDL10 for all sites cardiomyopathy in male rats following 19 weeks of exposure, calculated with Bayesian model averaging, corresponded to 0.27-0.42 W/kg whole-body SAR for CDMA and 0.20-0.29 W/kg for GSM modulation. BMDL10 for right ventricle cardiomyopathy in female rats following 2 years of exposure corresponded to 2.7-5.16 W/kg whole-body SAR for CDMA and 1.91-2.18 W/kg for GSM modulation. For multi-site tumor modeling using the multistage cancer model with a 5% extra risk, BMDL5 in male rats corresponded to 0.31 W/kg for CDMA and 0.21 W/kg for GSM modulation. CONCLUSION BMDL10 range of 0.2-0.4 W/kg for all sites cardiomyopathy in male rats was selected as a point of departure. Applying two ten-fold safety factors for interspecies and intraspecies variability, we derived a whole-body SAR limit of 2 to 4 mW/kg, an exposure level that is 20-40-fold lower than the legally permissible level of 0.08 W/kg for whole-body SAR under the current U.S. regulations. Use of an additional ten-fold children's health safety factor points to a whole-body SAR limit of 0.2-0.4 mW/kg for young children.
Collapse
Affiliation(s)
- Uloma Igara Uche
- Environmental Working Group, 1250 I Street NW, Suite 1000, Washington, DC, 20005, USA.
| | - Olga V Naidenko
- Environmental Working Group, 1250 I Street NW, Suite 1000, Washington, DC, 20005, USA
| |
Collapse
|
42
|
Madderson O, Teixeira AP, Fussenegger M. Emerging mammalian gene switches for controlling implantable cell therapies. Curr Opin Chem Biol 2021; 64:98-105. [PMID: 34216875 DOI: 10.1016/j.cbpa.2021.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Engineered cell-based therapies have emerged as a new paradigm in modern medicine, with several engineered T cell therapies currently approved to treat blood cancers and many more in clinical development. Tremendous progress in synthetic biology over the past two decades has allowed us to program cells with sophisticated sense-and-response modules that can effectively control therapeutic functions. In this review, we highlight recent advances in mammalian synthetic gene switches, focusing on devices designed for therapeutic applications. Although many gene switches responding to endogenous or exogenous molecular signals have been developed, the focus is shifting towards achieving remote-controlled production of therapeutic effectors by stimulating implanted engineered cells with traceless physical signals, such as light, electrical signals, magnetic fields, heat or ultrasound.
Collapse
Affiliation(s)
- Oliver Madderson
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Ana Palma Teixeira
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin Fussenegger
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland; University of Basel, Faculty of Life Science, Basel, Switzerland.
| |
Collapse
|
43
|
Petersen KF, Rothman DL, Shulman GI. Reply to Carter et al.: An alternative hypothesis for why exposure to static magnetic and electric fields treats type 2 diabetes. Am J Physiol Endocrinol Metab 2021; 320:E1003. [PMID: 33843277 DOI: 10.1152/ajpendo.00120.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Douglas L Rothman
- Department of Radiology & Bioengineering, Yale School of Medicine, New Haven, Connecticut
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
44
|
Petersen KF, Rothman DL, Shulman GI. Point: An alternative hypothesis for why exposure to static magnetic and electric fields treats type 2 diabetes. Am J Physiol Endocrinol Metab 2021; 320:E999-E1000. [PMID: 33843279 DOI: 10.1152/ajpendo.00657.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Douglas L Rothman
- Department of Radiology & Bioengineering, Yale School of Medicine, New Haven, Connecticut
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
45
|
Carter CS, Huang SC, Searby CC, Cassaidy B, Miller MJ, Grzesik WJ, Piorczynski TB, Pak TK, Walsh SA, Acevedo M, Zhang Q, Mapuskar KA, Milne GL, Hinton AO, Guo DF, Weiss R, Bradberry K, Taylor EB, Rauckhorst AJ, Dick DW, Akurathi V, Falls-Hubert KC, Wagner BA, Carter WA, Wang K, Norris AW, Rahmouni K, Buettner GR, Hansen JM, Spitz DR, Abel ED, Sheffield VC. Reply to Petersen et al.: An alternative hypothesis for why exposure to static magnetic and electric fields treats type 2 diabetes. Am J Physiol Endocrinol Metab 2021; 320:E1004-E1005. [PMID: 33843283 PMCID: PMC8238129 DOI: 10.1152/ajpendo.00119.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Calvin S Carter
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Sunny C Huang
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Charles C Searby
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Benjamin Cassaidy
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Michael J Miller
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa
| | - Wojciech J Grzesik
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Thomas K Pak
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Susan A Walsh
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Michael Acevedo
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Qihong Zhang
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Ginger L Milne
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Antentor O Hinton
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Robert Weiss
- Division of Cardiology, Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Kyle Bradberry
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Eric B Taylor
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Molecular Physiology and Biophysics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Adam J Rauckhorst
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Molecular Physiology and Biophysics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - David W Dick
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Vamsidhar Akurathi
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Kelly C Falls-Hubert
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Walter A Carter
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Kai Wang
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Andrew W Norris
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Jason M Hansen
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Val C Sheffield
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| |
Collapse
|
46
|
Carter CS, Huang SC, Searby CC, Cassaidy B, Miller MJ, Grzesik WJ, Piorczynski TB, Pak TK, Walsh SA, Acevedo M, Zhang Q, Mapuskar KA, Milne GL, Hinton AO, Guo DF, Weiss R, Bradberry K, Taylor EB, Rauckhorst AJ, Dick DW, Akurathi V, Falls-Hubert KC, Wagner BA, Carter WA, Wang K, Norris AW, Rahmouni K, Buettner GR, Hansen JM, Spitz DR, Abel ED, Sheffield VC. Counterpoint: An alternative hypothesis for why exposure to static magnetic and electric fields treats type 2 diabetes. Am J Physiol Endocrinol Metab 2021; 320:E1001-E1002. [PMID: 33843282 PMCID: PMC8238130 DOI: 10.1152/ajpendo.00110.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Calvin S Carter
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Sunny C Huang
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Charles C Searby
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Benjamin Cassaidy
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Michael J Miller
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa
| | - Wojciech J Grzesik
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Thomas K Pak
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Susan A Walsh
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Michael Acevedo
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Qihong Zhang
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Ginger L Milne
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Antentor O Hinton
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Robert Weiss
- Division of Cardiology, Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Kyle Bradberry
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Eric B Taylor
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Molecular Physiology and Biophysics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Adam J Rauckhorst
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Molecular Physiology and Biophysics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - David W Dick
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Vamsidhar Akurathi
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Kelly C Falls-Hubert
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Walter A Carter
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Kai Wang
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Andrew W Norris
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Jason M Hansen
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Val C Sheffield
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| |
Collapse
|
47
|
Thöni V, Oliva R, Mauracher D, Egg M. Therapeutic Nuclear Magnetic Resonance affects the core clock mechanism and associated Hypoxia-inducible factor-1. Chronobiol Int 2021; 38:1120-1134. [PMID: 33847185 DOI: 10.1080/07420528.2021.1910288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The influence of low intensity electromagnetic fields on circadian clocks of cells and tissues has gained increasing scientific interest, either as a therapeutic tool or as a potential environmental hazard. Nuclear Magnetic Resonance (NMR) refers to the property of certain atomic nuclei to absorb the energy of radio waves under a corresponding magnetic field. NMR forms the basis for Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy and, in a low-intensity form, for NMR therapy (tNMR). Since the circadian clock is bi-directionally intertwined with hypoxic signaling in vertebrates and mammals, we hypothesized that low intensity electromagnetic fields, such as tNMR, might not only affect circadian clocks but also Hypoxia-Inducible Factor-1α (HIF-1α). As master regulator of the hypoxic signaling pathway, HIF-1α is known to dampen the circadian amplitude under reduced oxygen availability, while the hypoxic response of cells and organisms, itself, is tightly clock controlled. In a first experiment, we investigated if tNMR is able to act as Zeitgeber for the core clock mechanism of unsynchronized zebrafish and mouse fibroblast cells, using direct light irradiation and treatment with the glucocorticoid Dexamethasone as references. tNMR significantly affected the cell autonomous clocks of unsynchronized mouse fibroblast cells NIH3-T3, but did not act as a Zeitgeber. Similar to light irradiation and in contrast to treatment with Dexamethasone, tNMR did not synchronize expression profiles of murine clock genes. However, irradiation with tNMR as well as light significantly altered mRNA and protein expression levels of Cryptochrome1, Cryptochrome2 and Clock1 for more than 24 h. Changes in mRNA and protein after different treatment durations, namely 6 and 12 h, appeared to be nonlinear. A nonlinear dose-response relationship is known as hallmark of electromagnetic field induced effects on biological systems. The most prominent alterations were detected in murine HIF-1α protein, again in a nonlinear dose-response. In contrast to murine cells, zebrafish fibroblasts did not respond to tNMR at all. Light, a potent Zeitgeber for the peripheral clocks of fish, led to the expected synchronized clock gene oscillations of high amplitude, as did Dexamethasone. Hence, we conclude, mammalian peripheral clocks are more susceptible to tNMR than the direct light entrainable fish fibroblasts. Although light and tNMR did not act as Zeitgebers for the circadian clocks of unsynchronized murine cells, the significant observed effects might indicate downstream cell-physiological ramifications, which are worth future investigation. However, beside the effects tNMR exerts on the core clock mechanism of mammalian cells, the technology might be the first non-pharmacological approach to modify HIF-1α protein in cells and tissues. HIF-1α and the associated circadian clock play key roles in diseases with underlying ischemic background, such as infarct, stroke, and cancer and, also infectious diseases, such as Covid-19. Hence, low intensity magnetic fields such as tNMR might be of significant medical interest.
Collapse
Affiliation(s)
- Viktoria Thöni
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| | - Regina Oliva
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| | - David Mauracher
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| | - Margit Egg
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| |
Collapse
|
48
|
Moghram WI, Kruger A, Sander EA, Selby JC. Magnetic tweezers with magnetic flux density feedback control. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:034101. [PMID: 33820004 DOI: 10.1063/5.0039696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
In this work, we present a single-pole magnetic tweezers (MT) device designed for integration with substrate deformation tracking microscopy and/or traction force microscopy experiments intended to explore extracellular matrix rheology and human epidermal keratinocyte mechanobiology. Assembled from commercially available off-the-shelf electronics hardware and software, the MT device is amenable to replication in the basic biology laboratory. In contrast to conventional solenoid current-controlled MT devices, operation of this instrument is based on real-time feedback control of the magnetic flux density emanating from the blunt end of the needle core using a cascade control scheme and a digital proportional-integral-derivative (PID) controller. Algorithms that compensate for a spatially non-uniform remnant magnetization of the needle core that develops during actuation are implemented into the feedback control scheme. Through optimization of PID gain scheduling, the MT device exhibits magnetization and demagnetization response times of less than 100 ms without overshoot over a wide range of magnetic flux density setpoints. Compared to current-based control, magnetic flux density-based control allows for more accurate and precise magnetic actuation forces by compensating for temperature increases within the needle core due to heat generated by the applied solenoid currents. Near field calibrations validate the ability of the MT device to actuate 4.5 μm-diameter superparamagnetic beads with forces up to 25 nN with maximum relative uncertainties of ±30% for beads positioned between 2.5 and 40 µm from the needle tip.
Collapse
Affiliation(s)
- Waddah I Moghram
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Anton Kruger
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Edward A Sander
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - John C Selby
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
49
|
Yu B, Liu J, Cheng J, Zhang L, Song C, Tian X, Fan Y, Lv Y, Zhang X. A Static Magnetic Field Improves Iron Metabolism and Prevents High-Fat-Diet/Streptozocin-Induced Diabetes. ACTA ACUST UNITED AC 2021; 2:100077. [PMID: 34557734 PMCID: PMC8454665 DOI: 10.1016/j.xinn.2021.100077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/03/2021] [Indexed: 11/16/2022]
Abstract
Type 2 diabetes (T2D) is a metabolic disorder with high prevalence and severe complications that has recently been indicated to be treatable by a combined static magnetic field (SMF) and electric field. We systematically compared four types of SMFs and found that a downward SMF of ∼100 mT could effectively reduce the development of hyperglycemia, fatty liver, weight gain, and tissue injury in high-fat-diet (HFD)/streptozocin-induced T2D mice, but not the upward SMF. The downward SMF markedly restored the Bacteroidetes population and reversed the iron complex outer membrane receptor gene reduction in the mice gut microbiota, and reduced iron deposition in the pancreas. SMF also reduced the labile iron and reactive oxygen species level in pancreatic Min6 cells in vitro and prevented palmitate-induced Min6 cell number reduction. Therefore, this simple SMF setting could partially prevent HFD-induced T2D development and ameliorate related symptoms, which could provide a low-cost and non-invasive physical method to prevent and/or treat T2D in the future.
Collapse
Affiliation(s)
- Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Jing Cheng
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Lei Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Chao Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Xiaofei Tian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Yixiang Fan
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Yue Lv
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, P.R. China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
50
|
Ma L. Industry news: 2020 high-impact publications in the BDM area. Biodes Manuf 2021; 4:154-156. [PMID: 33425461 PMCID: PMC7781648 DOI: 10.1007/s42242-020-00123-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058 People's Republic of China.,School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058 People's Republic of China
| |
Collapse
|