1
|
Xiao F, Yang M, Lv J, Li J, Guo M, Duan W, Li H, An Z, Su Z, Li A, Liu Y, Lu J, Guo H. Association between per- and polyfluoroalkyl substances with serum hepatobiliary system function biomarkers in patients with acute coronary syndrome. J Environ Sci (China) 2025; 155:773-785. [PMID: 40246507 DOI: 10.1016/j.jes.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 04/19/2025]
Abstract
Previous studies have suggested that abnormal hepatobiliary system function may contribute to poor prognosis in patients with acute coronary syndrome (ACS) and that abnormal hepatobiliary system function may be associated with per- and polyfluoroalkyl substances (PFAS) exposure. However, there is limited evidence for this association in cardiovascular subpopulations, particularly in the ACS patients. Therefore, we performed this study to evaluate the association between plasma PFAS exposure and hepatobiliary system function biomarkers in patients with ACS. This study included 546 newly diagnosed ACS patients at the Second Hospital of Hebei Medical University, and data on 15 hepatobiliary system function biomarkers were obtained from medical records. Associations between single PFAS and hepatobiliary system function biomarkers were assessed using multiple linear regression models and restricted cubic spline model (RCS), and mixture effects were assessed using the Quantile g-computation model. The results showed that total bile acids (TBA) was negative associated with perfluorohexane sulfonic acid (PFHxS) (-7.69 %, 95 % CI: -12.15 %, -3.01 %). According to the RCS model, linear associations were found between TBA and PFHxS (P for overall = 0.003, P for non-linear = 0.234). We also have observed the association between between PFAS congeners and liver enzyme such as aspartate aminotransferase (AST) and α-l-Fucosidase (AFU), but it was not statistically significant after correction. In addition, Our results also revealed an association between prealbumin (PA) and PFAS congeners as well as mixtures. Our findings have provided a piece of epidemiological evidence on associations between PFAS congeners or mixture, and serum hepatobiliary system function biomarkers in ACS patients, which could be a basis for subsequent mechanism studies.
Collapse
Affiliation(s)
- Fang Xiao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Junli Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - WenJing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Haoran Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhengyi Su
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Jingchao Lu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology Ministry of Education, Shijiazhuang 050017, China.
| |
Collapse
|
2
|
Wu X, Yu Q, Hou Y, Zhang X, Ocholi SS, Wang L, Yan Z, Li J, Han L. Emodin-8-O-β-D-glucopyranoside alleviates cholestasis by maintaining intestinal homeostasis and regulating lipids and bile acids metabolism in mice. J Pharm Biomed Anal 2025; 258:116734. [PMID: 39933397 DOI: 10.1016/j.jpba.2025.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/12/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Cholestatic liver disease(CLD) is caused by impaired bile flow due to obstruction of the biliary tract, and long-term exposure to bile acids in the liver triggers inflammation, eventually leading to liver toxicity and liver fibrosis. Emodin-8-O-β-D-glucopyranoside(EG) is anthraquinone compound that is widely found in traditional Chinese medicine. It possessed antioxidative and anti-inflammatory activities. However, the effect of EG on cholestatic liver injury(CLI) has not been explored. In this study, Alpha-naphthyl isothiocyanate(ANIT)-induced CLI mice were used to investigate the anti-cholestasis and hepatoprotective effects of EG through serum biochemical index detection, non-targeted metabolomics, lipidomics, and intestinal flora 16S rRNA sequencing. The results suggested that EG restores homeostasis of the gut microbiome while regulating bile acids metabolism and lipid-related metabolic pathways to reduce liver damage in ANIT-induced cholestasis. This study provides a new perspective on the mechanism of EG, and help offer a more natural approach to managing liver damage.
Collapse
Affiliation(s)
- Xiaolin Wu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Qiao Yu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yuzhao Hou
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Xuemei Zhang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Simon Sani Ocholi
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Ziping Yan
- Tianjin Armed Police Corps Hospital, Tianjin 300162, China
| | - Jie Li
- Tianjin Key Laboratory of Clinical Multi-omics, Airport Economy Zone, Tianjin, China.
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
3
|
Wu D, Liu J, Guo Z, Wang L, Yao Z, Wu Q, Lu Y, Lv W. Natural bioactive compounds reprogram bile acid metabolism in MAFLD: Multi-target mechanisms and therapeutic implications. Int Immunopharmacol 2025; 157:114708. [PMID: 40306110 DOI: 10.1016/j.intimp.2025.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/20/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has become an increasingly prevalent liver disorder worldwide, being closely associated with obesity, metabolic syndrome, and insulin resistance. Bile acids (BAs), beyond their traditional role in lipid digestion, play a pivotal part in regulating lipid and glucose metabolism as well as inflammatory responses. Recent investigations have recognized BAs as key factors in the onset and progression of MAFLD, mainly via their interactions with nuclear receptors such as the farnesoid X receptor (FXR) and the G protein-coupled bile acid receptor (TGR5). Additionally, active compounds derived from traditional Chinese medicine (TCM) have shown promising potential in the treatment of MAFLD. This study systematically reviews and analyzes the molecular mechanisms and recent progress in the application of TCM active ingredients for MAFLD treatment, with a focus on their regulation of BAs. These active ingredients, including saponins, flavonoids, polysaccharides, and sterols, exert therapeutic effects through diverse mechanisms, such as modulating BA synthesis and mediating receptor-signaling pathways, and are expected to restore metabolic homeostasis.
Collapse
Affiliation(s)
- Dongjie Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jing Liu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ziwei Guo
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Liang Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Ziang Yao
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Qingjuan Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yanping Lu
- Department of Hepatology, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Shenzhen 518100, China.
| | - Wenliang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
4
|
Yan LS, Kang JY, Gu CY, Qiu XY, Li JJ, Cheng BCY, Wang YW, Luo G, Zhang Y. Schisandra chinensis lignans ameliorate hepatic inflammation and steatosis in methionine choline-deficient diet-fed mice by modulating the gut-liver axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119801. [PMID: 40222688 DOI: 10.1016/j.jep.2025.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis is used as a traditional Chinese medicine to treat a variety of diseases. Schisandra chinensis lignans (SCL) are one of the most active components extracted from Schisandrae chinensis fructus, exhibit a broad array of pharmacological properties, especially anti-inflammatory and hepatic lipid-lowering effects, suggesting SCL may have potential anti-nonalcoholic steatohepatitis (NASH) ability. However, the therapeutic efficacy of SCL against NASH and the underlying mechanism of this action remains unclear. AIM OF THE STUDY In the current study, we aimed to investigate the anti-NASH action of SCL and explore the underlying mechanism in vitro and in vivo. We also assess the involvement of the gut-liver axis in the anti-NASH effects of SCL. METHODS Palmitic acid (PA)-treated HepG2 cells, mouse primary hepatocytes (MPHs) and methionine-choline deficient (MCD) diet-fed mice were selected as NASH models. ORO staining and qRT-PCR were performed to assess hepatic steatosis and inflammatory responses, respectively. Masson's trichrome staining was used to detect the liver fibrosis. Protein expression was detected by Western blotting or immunohistochemistry. The changes of gut microbiota were analyzed using 16S rDNA sequencing in mice. The levels of metabolites in liver and feces were measured by metabolomics. RESULTS The results showed that SCL treatment alleviated steatosis and inflammation in palmitic acid (PA)-treated HepG2 cells and mouse primary hepatocytes (MPHs). SCL treatment suppressed the phosphorylation of key components involved in NF-κB signaling and enhanced the expression of fatty acid oxidation (FAO)-related enzymes (e.g. CPT1, HMGCS2, and ACOX1) in PA-treated HepG2 cells. SCL could ameliorate hepatic steatosis and inflammation in NASH mice. SCL also ameliorated intestinal barrier injury and restructured the gut microbiota in NASH mice. SCL also modulated hepatic and colonic bile acid metabolism via FXR signaling. CONCLUSION These findings indicate that SCL treatment ameliorates hepatic inflammation and steatosis in NASH mice, potentially though to the suppression of NF-κB signaling and the promotion of fatty acid β-oxidation. Moreover, SCL could restore gut microbiota-mediated bile acid homeostasis via activation of FXR/FGF15 signaling. Our study presents a pharmacological rationale for using SCL in the management of NASH.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Jian-Ying Kang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Chun-Yu Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Xin-Yu Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Jia-Jia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | | | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
5
|
Hu Z, Wei J, Dong K, Li L, Xiong A, Yang L, Wang Z. Enhanced bile acid detection and analysis in liver fibrosis with pseudo-targeted metabolomics. J Pharm Biomed Anal 2025; 257:116668. [PMID: 39879819 DOI: 10.1016/j.jpba.2025.116668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Bile acids (BAs) are essential signaling molecules that engage in host and gut microbial metabolism, playing a crucial role in maintaining organismal stability. Liquid chromatography-mass spectrometry (LC-MS) is a widely employed technique for metabolite analysis in biological samples due to its high sensitivity, excellent specificity, and low detection limits. This method has emerged as the mainstream approach for the detection and analysis of BAs. Pseudo-targeted analysis combines the advantages of both untargeted and targeted metabolomics methodologies. In this study, we developed a comprehensive and rapid method for detecting and analyzing BAs using LC-MS technology, applied to liver samples from bile duct-ligated (BDL) mice exhibiting liver fibrosis. A self-constructed database containing 488 BAs was established, and raw data from universal metabolome standard (UMS) were acquired using UHPLC-Q/TOF-MS. A total of 172 BA compounds were characterized, including 74 free BAs and 158 BAs were successfully detected using the high-coverage assay established with UHPLC-QQQ-MS. This assay was employed in the BDL liver fibrosis mouse model, where statistical analysis tools identified 20 differential BAs in the livers of affected mice. The development of this rapid method signifies a substantial advancement in the field, illustrating its utility in identifying differential BAs and enhancing our understanding of liver fibrosis. Furthermore, the high-coverage assay's ability to accurately analyze a diverse range of BAs could substantially aid in diagnosing and treating liver diseases.
Collapse
Affiliation(s)
- Zhizhi Hu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaojiao Wei
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kua Dong
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Aizhen Xiong
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
He J, Zhang Y, Jing Y, Dong R, Li T, Zheng X, Zhou P, Shi K, Zhong W, Liu Q, Zhou J. FXR protects against neonatal sepsis by enhancing the immunosuppressive function of MDSCs. Cell Mol Immunol 2025:10.1038/s41423-025-01289-4. [PMID: 40335739 DOI: 10.1038/s41423-025-01289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play a protective role against neonatal inflammation during the early postnatal period. However, the mechanisms regulating neonatal MDSC function remain to be fully elucidated. In this study, we report that the bile acid receptor farnesoid X receptor (FXR) acts as a positive regulator of neonatal MDSC function. The FDA-approved FXR agonist obeticholic acid (OCA) protects against neonatal sepsis in an FXR-dependent manner. Genetic deficiency of FXR impairs the immunosuppressive and antibacterial functions of MDSCs, thereby exacerbating the severity of neonatal sepsis. Adoptive transfer of MDSCs alleviates sepsis in both Fxr-/- and Fxrfl/flMrp8-Cre+ pups. Mechanistic studies revealed that Hif1α, a well-established regulator of MDSCs, is a direct transcriptional target of FXR. In patients with neonatal sepsis, downregulation of FXR and HIF-1α in MDSCs was observed, which was inversely correlated with clinical parameters. These observations demonstrate the importance of FXR in neonatal MDSC function and its therapeutic potential in neonatal sepsis.
Collapse
Affiliation(s)
- Juan He
- Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yuxin Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yuchao Jing
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Department of Immunology, Basic Medical College, Changzhi Medical College, Changzhi, 046000, China
| | - Rui Dong
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Tongyang Li
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoqing Zheng
- Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pan Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Kun Shi
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wei Zhong
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300050, China
| | - Jie Zhou
- Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
7
|
Fan F, Guo R, Pan K, Xu H, Chu X. Mucus and mucin: changes in the mucus barrier in disease states. Tissue Barriers 2025:2499752. [PMID: 40338015 DOI: 10.1080/21688370.2025.2499752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
In this review we discuss mucus, the viscoelastic secretion from goblet or mucous producing cells that covers and protects all non-keratinized wet epithelial surfaces. In addition to the surface of organs directly contacting with the external environment such as the eyes, this layer provides protection to the underlying gastrointestinal, respiratory and female reproductive tracts by trapping pathogens, irritants, environmental fine particles and potentially harmful foreign substances. Mucins, the primary structural components of mucus, form structurally different mucus layers at different sites in a process regulated by a variety of factors. Currently, more and more studies have shown that the mucus barrier is not only closely related to various intestinal mucus diseases, but also involved in the occurrence and development of various airway diseases and mucus-related diseases, thus it may become a new target for the treatment of various related diseases in the future. Since the dysfunction of the mucous layer is closely related to various pathological processes, in-depth understanding of its molecular mechanism and physiological role is of great theoretical and practical significance for disease prevention and treatment. Here, we discuss different aspects of the mucus layer by focusing on its chemical composition, synthetic pathways, and some of the characteristics of the mucus layer in physiological and pathological situations.
Collapse
Affiliation(s)
- Fangfang Fan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ruihan Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Kun Pan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hongye Xu
- Quality Assurance department, Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, Anhui Province, China
| |
Collapse
|
8
|
Zhang J, Zhou J, He Z, Xia Z, Liu H, Wu Y, Chen S, Wu B, Li H. Salidroside attenuates NASH through regulating bile acid-FXR/TGR5 signaling pathway via targeting gut microbiota. Int J Biol Macromol 2025; 307:142276. [PMID: 40118401 DOI: 10.1016/j.ijbiomac.2025.142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/15/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Nonalcoholic steatohepatitis (NASH) is a significant threat to human health. Our previous study revealed that salidroside attenuated NASH and regulated the gut microbiota. However, whether the therapeutic effect of salidroside depends on gut microbiota remains to be determined. Therefore, we conducted further experiments to elucidate the essential functions of gut microbiota-associated metabolic pathways in the anti-NASH effects of salidroside. Our results showed that salidroside effectively alleviated lipid accumulation and inflammatory injury in NASH mice. 16S rRNA sequencing revealed that salidroside increased the abundance of Bacteroides. Mice receiving fecal microbiota transplantation (FMT) from salidroside-treated also presented less hepatic steatosis and higher abundance of Bacteroides. Antibiotics eliminated the effects of salidroside on hepatic steatosis and the gut microbiota. Mechanistically, salidroside and FMT from salidroside-treated altered the bile acid (BA) profile by decreasing the levels of conjugated BAs and tauro-α/β-muricholic acid and activated downstream farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). Furthermore, we found that inhibitors of bile salt hydrolase (BSH) and FXR/TGR5 abolished the effects of salidroside and reduced downstream carnitine palmitoyltransferase 1α and lipoprotein lipase expression. These data demonstrate that salidroside attenuated NASH via gut microbiota-BA-FXR/TGR5 signaling pathway and reveal the underlying mechanism of salidroside on NASH.
Collapse
Affiliation(s)
- Jun Zhang
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315300, China
| | - Jing Zhou
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China
| | - Zheyun He
- Liver Diseases Institute, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
| | - Zhanyang Xia
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China
| | - Hongliang Liu
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China
| | - Yuan Wu
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China
| | - Si Chen
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China
| | - Boming Wu
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China
| | - Hongshan Li
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China; Medical Experimental Department of Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China.
| |
Collapse
|
9
|
Cai Z, Zhang M, Zhou L, Xiong Y, Wang H, Chen Y, Yuan J. Kai-Xin-San polysaccharides exert therapeutic effects on D-gal and Aβ 25-35-induced AD rats by regulating gut microbiota and metabolic profile. Int J Biol Macromol 2025; 306:141850. [PMID: 40058438 DOI: 10.1016/j.ijbiomac.2025.141850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 05/11/2025]
Abstract
Metabolic abnormalities and gut microbiota imbalance are intricately linked to the onset and progression of Alzheimer's disease (AD). Kai-Xin-San (KXS) is a traditional herbal formula known for its therapeutic effects on AD. Our previous research indicated that Kai-Xin-San polysaccharide (KXS-P) exhibits a significant therapeutic impact on AD, but the precise mechanisms remain incompletely understood. In this study, untargeted fecal metabolomics and 16S rRNA gene sequencing were used to investigate the potential mechanisms by which KXS-P acts against AD. Key metabolites and gut microbial species were identified using multivariate analysis and a comprehensive examination of intestinal microecology. Our findings revealed that KXS-P improves lipid metabolism in AD rats by modulating a series of lipid molecules and bile acid levels. Additionally, KXS-P regulated gut microbiota composition and restored the symbiotic relationships within the gut microbiome. Notably, the anti-inflammatory effect of KXS-P may be related to its regulation of specific lipotypes levels and the abundance of Romboutsia, Bifidobacterium and Alloprevotella. KXS-P demonstrates the ability to alleviate symptoms of AD rats through multiple mechanisms: ① Improving lipid metabolism and maintaining lipid homeostasis; ② Reducing neuronal and inflammatory damage; ③ Regulating the composition and symbiotic relationships of gut microbiota to preserve intestinal microecological balance.
Collapse
Affiliation(s)
- Zhinan Cai
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Min Zhang
- Nanchang Key Laboratory of Detection and Control of Food Safety, Nanchang Inspection and Testing Center, Nanchang 330012, China
| | - Lifen Zhou
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yongchang Xiong
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huijuan Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ying Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jinbin Yuan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
10
|
John S, Bhowmick K, Park A, Huang H, Yang X, Mishra L. Recent advances in targeting obesity, with a focus on TGF-β signaling and vagus nerve innervation. Bioelectron Med 2025; 11:10. [PMID: 40301996 PMCID: PMC12042417 DOI: 10.1186/s42234-025-00172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/31/2025] [Indexed: 05/01/2025] Open
Abstract
Over a third of the global population is affected by obesity, fatty liver disease (Metabolic Dysfunction-Associated Steatotic Liver Disease, MASLD), and its severe form, MASH (Metabolic Dysfunction-Associated Steatohepatitis), which can ultimately progress to hepatocellular carcinoma (HCC). Recent advancements include therapeutics such as glucagon-like peptide 1 (GLP-1) agonists and neural/vagal modulation strategies for these disorders. Among the many pathways regulating these conditions, emerging insights into transforming growth factor-β (TGF-β) signaling highlight potential future targets through its role in pathophysiological processes such as adipogenesis, inflammation, and fibrosis. Vagus nerve innervation in the gastrointestinal tract is involved in satiety regulation and energy homeostasis, and vagus nerve stimulation has been applied in weight loss and diabetes. This review explores clinical trials in obesity, novel therapeutic targets, and the role of TGF-β signaling and vagus nerve modulation in obesity-related liver diseases and HCC.
Collapse
Affiliation(s)
- Sahara John
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Krishanu Bhowmick
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Andrew Park
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Hai Huang
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Xiaochun Yang
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| | - Lopa Mishra
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- Department of Surgery, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
11
|
Lin X, Xia L, Zhou Y, Xie J, Tuo Q, Lin L, Liao D. Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5. Int J Mol Sci 2025; 26:4240. [PMID: 40362481 PMCID: PMC12072030 DOI: 10.3390/ijms26094240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Bile acids and their corresponding intestinal epithelial receptors, the farnesoid X receptor (FXR), the G protein-coupled bile acid receptor (TGR5), play crucial roles in the physiological and pathological processes of intestinal epithelial cells. These acids and receptors are involved in the regulation of intestinal absorption, signal transduction, cellular proliferation and repair, cellular senescence, energy metabolism, and the modulation of gut microbiota. A comprehensive literature search was conducted using PubMed, employing keywords such as bile acid, bile acid receptor, FXR (nr1h4), TGR5 (gpbar1), intestinal epithelial cells, proliferation, differentiation, senescence, energy metabolism, gut microbiota, inflammatory bowel disease (IBD), colorectal cancer (CRC), and irritable bowel syndrome (IBS), with a focus on publications available in English. This review examines the diverse effects of bile acid signaling and bile receptor pathways on the proliferation, differentiation, senescence, and energy metabolism of intestinal epithelial cells. Additionally, it explores the interactions between bile acids, their receptors, and the microbiota, as well as the implications of these interactions for host health, particularly in relation to prevalent intestinal diseases. Finally, the review highlights the importance of developing highly specific ligands for FXR and TGR5 receptors in the context of metabolic and intestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.L.); (L.X.); (Y.Z.); (J.X.); (Q.T.); (L.L.)
| |
Collapse
|
12
|
Lin J, Chen J, Wang M, He K, Lin C, Cao X, Lai J, Zeng B, Guo X. Ultrasound-driven ROS-scavenging nanobubbles for synergistic NASH treatment via FXR activation. ULTRASONICS SONOCHEMISTRY 2025; 118:107352. [PMID: 40318601 DOI: 10.1016/j.ultsonch.2025.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/03/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025]
Abstract
Non-alcoholic steatohepatitis (NASH) pathogenesis is primarily driven by lipotoxicity-induced oxidative stress and inflammation, yet effective treatments remain challenging to identify. In this work, a novel therapeutic approach was introduced via a ultrasound (US) -driven, reactive oxygen species (ROS) -scavenging and liver-targeted nanobubbles system, termed Apt-DTP-NBs@RSV@OCA, which co-encapsulated resveratrol (RSV) and obeticholic acid (OCA). This system provides a safe and efficient platform for specifically delivering these agents to the liver in the context of the NASH therapy. The synthesized nanobubbles showed a spherical morphology with an average diameter of 165 ± 6.05 nm, whose encapsulation efficiencies of approximately 93 % for RSV and 90 % for OCA were achieved. These nanobubbles exhibited the enhanced targeting and accumulation within NASH affected cells and the excellent biocompatibility in cytotoxicity experiments. Subsequently, in vitro assessments using HepG2 cells, Apt-DTP-NBs@RSV@OCA improved lipid metabolism and reduced ROS levels. It was also showed in vivo experiments in mice that the hepatic targeting of Apt-DTP-NBs@RSV@OCA increased their effective concentration within the liver. In addition, the hepatic-targeting and ultrasound-driving Apt-DTP-NBs@RSV@OCA nanocarriers enhanced the cellular uptake of RSV and OCA in a NASH cell model and improved ROS-scavenging capabilities. Meanwhile, these nanocarriers modulated lipid metabolism (triglycerides, total cholesterol), inflammatory cytokine metabolism (IL-4, IL-10, IL-15, TNF-α) and oxidative stress levels (SOD, MDA). Furthermore, mechanistic studies revealed that Apt-DTP-NBs@RSV@OCA activated the FXR/SHP signaling pathway, enhanced FoxO1 activity, and alleviated lipid accumulation, inflammation, and oxidative stress. In summary, these findings suggest that Apt-DTP-NBs@RSV@OCA pave a promising way for the treatment of NASH.
Collapse
Affiliation(s)
- Jianru Lin
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, 510220 Guangzhou, China
| | - Jialin Chen
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, 510220 Guangzhou, China
| | - Mengdie Wang
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, 510220 Guangzhou, China
| | - Kun He
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, 510220 Guangzhou, China
| | - CuiYan Lin
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, 510220 Guangzhou, China
| | - Xian Cao
- Department of Stomatology, Guangzhou Red Cross Hospital of Jinan University, 510220 Guangzhou, China
| | - Jichuang Lai
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, 510220 Guangzhou, China
| | - Baohui Zeng
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, 510220 Guangzhou, China
| | - Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, 510220 Guangzhou, China.
| |
Collapse
|
13
|
Boulos M, Mousa RS, Jeries N, Simaan E, Alam K, Bulus B, Assy N. Hidden in the Fat: Unpacking the Metabolic Tango Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Syndrome. Int J Mol Sci 2025; 26:3448. [PMID: 40244398 PMCID: PMC11989262 DOI: 10.3390/ijms26073448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic syndrome (MetS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are closely related, with rapidly increasing prevalence globally, driving significant public health concerns. Both conditions share common pathophysiological mechanisms such as insulin resistance (IR), adipose tissue dysfunction, oxidative stress, and gut microbiota dysbiosis, which contribute to their co-occurrence and progression. While the clinical implications of this overlap, including increased cardiovascular, renal, and hepatic risk, are well recognized, current diagnostic and therapeutic approaches remain insufficient due to the clinical and individuals' heterogeneity and complexity of these diseases. This review aims to provide an in-depth exploration of the molecular mechanisms linking MetS and MASLD, identify critical gaps in our understanding, and highlight existing challenges in early detection and treatment. Despite advancements in biomarkers and therapeutic interventions, the need for a comprehensive, integrated approach remains. The review also discusses emerging therapies targeting specific pathways, the potential of precision medicine, and the growing role of artificial intelligence in enhancing research and clinical management. Future research is urgently needed to combine multi-omics data, precision medicine, and novel biomarkers to better understand the complex interactions between MetS and MASLD. Collaborative, multidisciplinary efforts are essential to develop more effective diagnostic tools and therapies to address these diseases on a global scale.
Collapse
Affiliation(s)
- Mariana Boulos
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rabia S. Mousa
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nizar Jeries
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Elias Simaan
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Klode Alam
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Bulus Bulus
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nimer Assy
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
14
|
Girisa S, Aswani BS, Manickasamy MK, Hegde M, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Restoring FXR expression as a novel treatment strategy in liver cancer and other liver disorders. Expert Opin Ther Targets 2025; 29:193-221. [PMID: 40169227 DOI: 10.1080/14728222.2025.2487465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
INTRODUCTION Liver cancer is a leading cause of cancer-associated mortality and is often linked to preexisting liver conditions. Emerging research demonstrates FXR dysregulation, particularly its reduced expression, in the pathogenesis of liver diseases, including inflammation, fibrosis, cholestatic disorders, metabolic dysregulation, and liver cancer. Therefore, this review explores the role of FXR and its agonists in mitigating these conditions. AREAS COVERED This article summarizes FXR's involvement in liver disorders, primarily emphasizing on hepatic neoplasms, and examines the potential of FXR agonists in restoring FXR activity in liver diseases, thereby preventing their progression to liver cancer. The information presented is drawn from existing preclinical and clinical studies specific to each liver disorder, sourced from PubMed. EXPERT OPINION It is well established that FXR expression is downregulated in liver disorders, contributing to disease progression. Notably, FXR agonists have demonstrated therapeutic potential in ameliorating liver diseases, including hepatocellular carcinoma. We believe that activating or restoring FXR expression with agonists offers significant promise for the treatment of liver cancer and other liver conditions. Therefore, FXR modulation by agonists, particularly in combination with other therapeutic agents, could lead to more targeted treatments, improving efficacy while reducing side effects.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| |
Collapse
|
15
|
Zeng W, Sun M, Cao J, Chen C, Jiang S, Wang Y, Yang W, Zhao Z, Jin J. Triterpenoids from ilicis rotundae cortex ameliorate hyperlipidemia by affecting bile acids-hepatointestinal FXR axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156537. [PMID: 40023069 DOI: 10.1016/j.phymed.2025.156537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/15/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Hyperlipidemia is a lipid metabolism disorder that, in severe cases, can lead to conditions such as hypertension, coronary heart disease, and cirrhosis. Previous studies have identified Ilicis Rotundae Cortex (IRC) crude extract as having the potential to regulate blood lipids. However, whether the triterpenoids therein are the principal agents responsible for hypolipidemic effects and their specific mechanisms of action remain unexplored. This study aimed to investigate the effects of total triterpenoids (TT) extract derived from IRC on hyperlipidemia and to elucidate their potential mechanisms. METHODS TT extract was first prepared and characterized to assess their hypolipidemic activity in cell models. A hyperlipidemia mouse model was established by using C57BL/6 J mice fed a high-fat, high-sugar, and high-cholesterol diet for 8 weeks. TT extract was administered as a prophylactic intervention for 4 weeks to evaluate its impact on blood lipid levels, liver lipid metabolism, and liver function. Based on progressive analysis, this study integrated serum non-targeted metabolomics analysis strategy and bile acids-targeted metabolomics analysis strategy. It was combined with modern molecular biology techniques to reveal the mechanism by which TT extract ameliorated the symptoms of hyperlipidemia through a cascade approach. RESULTS TT extract treatment significantly reduced lipid levels in hyperlipidemic mice. Notably, TT extract down-regulated bile acid levels, particularly bile acids as FXR antagonists such as T-β-MCA, β-MCA, TUDCA, and UDCA. This effect is likely mediated through alterations in the hepatic FXR-SHP and ileal FXR-FGF15 signaling pathways. TT extract administration led to decreased expression of CYP7A1 and CYP7B1, resulting in reduced bile acid levels in vivo. Additionally, FXR expression was upregulated in both the liver and ileum, potentially activating FGF15 in the ileum, which in turn transmits signals to the liver and modulates SHP and BSEP expression. These changes contribute to the regulation of bile acid synthesis, metabolism, and excretion. In vitro experiments also demonstrated that TT extract influenced the protein expression of FXR and FGF19. CONCLUSION Our findings demonstrate that TT extract from IRC has hypolipidemic effects. This study is the first to reveal the mechanism by which TT extract improves hyperlipidemia from the perspective of the hepatic-intestinal axis and bile acid metabolism. Its underlying mechanism is related to activating the intestinal FXR-FGF15/19 signaling pathway, which transmits signals to the liver, thereby affecting the hepatic FXR-SHP signaling pathway. This results in improved bile acid metabolism, ultimately reducing hepatic injury and ileal inflammation to exert hypolipidemic effects.
Collapse
Affiliation(s)
- Wei Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China
| | - Mengjia Sun
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China
| | - Jiamin Cao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China
| | - Caixin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China
| | - Shiqin Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Yuanyuan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China
| | - Weiqun Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China
| | - Zhongxiang Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China.
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
16
|
Joerg R, Itariu BK, Amor M, Bilban M, Langer F, Prager G, Joerg F, Stulnig TM. The effect of long-chain n-3 PUFA on liver transcriptome in human obesity. Prostaglandins Leukot Essent Fatty Acids 2025; 204:102663. [PMID: 39752839 DOI: 10.1016/j.plefa.2024.102663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND AND AIMS Obesity is associated with a higher risk of severe diseases such as atherosclerotic cardiovascular disease, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). Polyunsaturated fatty acids, of the omega-3 family (n-3 PUFA), have been shown to reduce adipose tissue inflammation in obesity, as well as to have lipid-lowering effects and improve insulin sensitivity. However, direct effects on liver transcriptome in humans have not been described. Our aim was to understand the impact of n-3 PUFA on gene expression in obese human liver. APPROACH AND RESULTS Patients with obesity (BMI ≥ 40 kg/m2) were treated for eight weeks with 3.36 g n-3 PUFAs (1.84 g eicosapentaenoic acid (EPA) and 1.53 g docosahexaenoic acid (DHA)), or with 5 g of butter as a control (n = 15 per group) before undergoing bariatric surgery where liver biopsies were taken. Liver samples were used for mRNA microarray analyses and subsequently Gene Set Enrichment Analysis (GSEA) was performed. This bioinformatic approach led us to identify 80 significantly dysregulated pathways that were divided into 9 different clusters including insulin and lipid metabolism, and immunity. N-3 PUFA treatment significantly affected pathways related to immunity, metabolism, and inflammation. Specifically, it upregulated pathways involved in T-cell and B-cell functions and lipid metabolism, while downregulating glucagon signalling. These findings highlight the impact of n-3 PUFAs on key metabolic and immune processes in the liver of patients with obesity. CONCLUSION This study provides further insights into the impact on n-3 PUFA on human liver gene expression, particularly in pathways associated with immunity, lipid metabolism, and inflammation, setting basis for further clinical research. SUMMARY Obesity increases the risk of diseases like atherosclerotic- cardiovascular disease, type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease (MASLD). Omega-3 polyunsaturated fatty acids (n-3 PUFA) are known for their anti-inflammatory and metabolic benefits, but their direct impact on liver gene expression in people with obesity, remains unclear. In this study, patients with obesity (BMI ≥ 40 kg/m2) were administered either n-3 PUFAs or butter before bariatric surgery. Liver biopsies were analysed for gene expression via Gene Set Enrichment Analysis (GSEA). The results revealed 80 dysregulated pathways across 9 clusters, including those related to insulin and lipid metabolism, and immunity. This sheds light on how n-3 PUFAs influence gene expression in the liver of patients with obesity, setting the groundwork for further clinical exploration.
Collapse
Affiliation(s)
- Rebeka Joerg
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Austria.
| | - Bianca K Itariu
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria; Metabolism Centre N12 Antonigasse, 1090 Vienna, Austria.
| | - Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Martin Bilban
- Department of Genomics, Medical University of Vienna, Austria.
| | - Felix Langer
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Austria.
| | - Gerhard Prager
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Austria.
| | - Florian Joerg
- Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Austria.
| | - Thomas M Stulnig
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria; Department of Medicine III and Karl Landsteiner Institute for Metabolic Diseases and Nephrology, Clinic Hietzing, Vienna, Austria.
| |
Collapse
|
17
|
Zhao Y, Gao L, Chen J, Wei J, Lin G, Hu K, Zhao W, Wei W, Huang W, Gao L, Yuan A, Qian K, Chen AF, Pu J. Remote limb ischemic conditioning alleviates steatohepatitis via extracellular vesicle-mediated muscle-liver crosstalk. Cell Metab 2025; 37:886-902.e7. [PMID: 40118054 DOI: 10.1016/j.cmet.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/30/2024] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is an advanced form of liver disease with adverse outcomes. Manipulating interorgan communication is considered a promising strategy for managing metabolic disease, including steatohepatitis. Here, we report that remote limb ischemic conditioning (RIC), a clinically validated therapy for distant organ protection by transient muscle ischemia, significantly alleviated steatohepatitis in different mouse models. The beneficial effect of limb ischemic conditioning was mediated by muscle-to-liver transfer of small extracellular vesicles (sEVs) and their cargo microRNAs, leading to elevation of miR-181d-5p in the liver. Hepatic miR-181d-5p overexpression faithfully mirrored the molecular and histological benefits of limb ischemic conditioning by suppressing nuclear receptor 4A3 (NR4A3). Furthermore, circulating EVs from human volunteers undergoing limb ischemic conditioning improved steatohepatitis and transcriptomic perturbations in primary human hepatocytes and animal models. Our data underscore the translational potential of limb ischemic conditioning for steatohepatitis management and extend our understanding of muscle-liver crosstalk.
Collapse
Affiliation(s)
- Yichao Zhao
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Gao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Jianqing Chen
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
| | - Jingze Wei
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
| | - Guanqiao Lin
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kewei Hu
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
| | - Wubin Zhao
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Huang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingchen Gao
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ancai Yuan
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Qian
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering, Institute of Medical Robotics and Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Graduate School of Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
18
|
Li Y, Jiao T, Cheng X, Liu L, Zhang M, Li J, Wang J, Hu S, Li C, Yu T, Liu Y, Li Y, Zhang Y, Sun C, Sun J, Wang J, Xie C, Liu H. Development of cyclopeptide inhibitors specifically disrupting FXR-coactivator interaction in the intestine as a novel therapeutic strategy for MASH. LIFE METABOLISM 2025; 4:loaf004. [PMID: 40225300 PMCID: PMC11992618 DOI: 10.1093/lifemeta/loaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 04/15/2025]
Abstract
Intestinal farnesoid X receptor (FXR) antagonists have been proven to be efficacious in ameliorating metabolic diseases, particularly for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). All the reported FXR antagonists target to the ligand-binding pocket (LBP) of the receptor, whereas antagonist acting on the non-LBP site of nuclear receptor (NR) is conceived as a promising strategy to discover novel FXR antagonist. Here, we have postulated the hypothesis of antagonizing FXR by disrupting the interaction between FXR and coactivators, and have successfully developed a series of macrocyclic peptides as FXR antagonists based on this premise. The cyclopeptide DC646 not only exhibits potent inhibitory activity of FXR, but also demonstrates a high degree of selectivity towards other NRs. Moreover, cyclopeptide DC646 has high potential therapeutic benefit for the treatment of MASH in an intestinal FXR-dependent manner, along with a commendable safety profile. Mechanistically, distinct from other known FXR antagonists, cyclopeptide DC646 specifically binds to the coactivator binding site of FXR, which can block the coactivator recruitment, reducing the circulation of intestine-derived ceramides to the liver, and promoting the release of glucagon-like peptide-1 (GLP-1). Overall, we identify a novel cyclopeptide that targets FXR-coactivator interaction, paving the way for a new approach to treating MASH with FXR antagonists.
Collapse
Affiliation(s)
- Yazhou Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tingying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xi Cheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengjiao Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jue Wang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shulei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cuina Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yangtai Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Yu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Chuying Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jina Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hong Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
19
|
Li T, Fu C, Tang Z, Li C, Hua D, Liu B, Tao Z, Yang J, Zhang L, Cheng T, Wang S, Ning G, Gu Y. Disentangling Organ-Specific Roles of Farnesoid X Receptor in Bile Acid and Glucolipid Metabolism. Liver Int 2025; 45:e70027. [PMID: 40052709 PMCID: PMC11887529 DOI: 10.1111/liv.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND AND AIMS The farnesoid X receptor (FXR) is an attractive pharmaceutical target for metabolic dysfunction-associated steatotic liver disease (MASLD). However, its tissue-specific roles in energy metabolism remain controversial, hindering the development of effective therapies. To address this, new approaches are required. METHODS A novel mouse model was developed to facilitate the re-expression of endogenous FXR in specific tissues on a global FXR-null background. Liver-specific and gut-specific FXR re-expression models were generated. Mice were subjected to a high-fat diet (HFD) for 12 weeks, after which metabolic indices, bile acid (BA) profiles, and gut microbiota composition were analysed. Antibiotic treatment was used to mimic germ-free conditions. RESULTS The resistance of FXR-null mice to MASLD and most HFD-induced metabolic disorders, including increased body weight, adiposity, hepatic triglyceride (TG) accumulation, and hyperglycemia, was reversed by liver, but not gut, FXR re-expression. Gut FXR re-expression restored the increased intestinal TG absorption in FXR-null mice by limiting 12OH BA synthesis and inhibiting intestinal microsomal triglyceride transfer protein (MTTP). Moreover, gut FXR activity was essential for gut microbiota-driven promotion of diet-induced obesity (DIO) and MASLD. CONCLUSIONS Our study overcomes the limitations of traditional tissue-specific knockout models, providing a more comprehensive understanding of FXR's complex roles in metabolic homeostasis, encouraging the development of organ-specific FXR targeting strategy.
Collapse
Affiliation(s)
- Tingting Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenyang Fu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhongzheng Tang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Changkun Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Duanyi Hua
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bei Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheying Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tingting Cheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shujie Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yanyun Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
20
|
Yang Y, Jiao L, Huang Y, Shang H, Li E, Chang H, Cui H, Wan Y. Evaluation of FXR Activity in Pollutants Identified in Sewage Sludge and Subsequent in Vitro and in Vivo Characterization of Metabolic Effects of Triphenyl Phosphate. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47005. [PMID: 40048564 PMCID: PMC12010937 DOI: 10.1289/ehp15435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common liver disease worldwide, and increasing evidence suggests that exposure to environmental pollutants is associated with the increased incidence of MASLD. The farnesoid X receptor (FXR) plays an important role in the development of MASLD by regulating bile acids (BAs) and lipid metabolism. However, whether FXR-active pollutants are the environmental drivers of MASLD remains unclear. OBJECTIVES This study aimed to determine whether FXR-active pollutants exist in the environment and evaluate their ability to trigger MASLD development in mice. METHODS An FXR protein affinity pull-down assay and nontargeted mass spectrometry (MS) analysis were used to identify environmental FXR ligands in sewage sludge. A homogeneous time-resolved fluorescence coactivator recruitment assay and cell-based dual-luciferase reporter assay were used to determine the FXR activities of the identified pollutants. Targeted analysis of BAs, MS imaging, lipidomic analysis, 16S rRNA sequencing, and quantitative polymerase chain reaction were conducted to assess the ability of FXR-active pollutants to induce metabolic disorders of BAs and lipids and to contribute to MASLD development in C57BL/6N mice. RESULTS We identified 19 compounds in the sewage sludge that had FXR-antagonistic activity, and triphenyl phosphate (TPHP) was the FXR antagonist with the highest efficacy. Mice exposed to either 10 or 50 mg / kg TPHP for 30 d had higher levels of conjugated primary BAs in enterohepatic circulation, and the BA pool showed FXR antagonistic activities. The exposed mice also had greater lipogenesis (more Oil Red O staining and high triglyceride levels) in liver. CONCLUSIONS Nineteen FXR-antagonistic pollutants were identified in sewage sludge. FXR inhibition by the strongest antagonist TPHP may have a role in promoting MASLD development in mice by inducing a positive feedback loop between the FXR and BAs. https://doi.org/10.1289/EHP15435.
Collapse
Affiliation(s)
- Yi Yang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ling Jiao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hailin Shang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Enrui Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Hong Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
21
|
Jiao S, Ren Q, Chen L, Zhou Z, Cai Z, Huang W, Wang B, Chen S, Wang W, Cao Z, Yang Z, Ye Q, Zhang L, Li Z. Discovery of First-in-Class FXR and HSD17B13 Dual Modulator for the Treatment of Metabolic Dysfunction-Associated Fatty Liver Disease. J Med Chem 2025; 68:6127-6148. [PMID: 39851255 DOI: 10.1021/acs.jmedchem.4c02720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a complex disease driven by diverse metabolic and inflammatory pathways. Farnesoid X receptor (FXR) is a promising target for MASH due to its role in bile acid and lipid metabolism, while HSD17B13 regulates liver lipid droplet homeostasis. However, the existing HSD17B13 inhibitors have several druglike property challenges due to the common phenolic structure, a key pharmacophore for the HSD17B13 inhibitor. In this study, a two-round high-throughput screening was performed to identify the FXR agonist 2 as the nonphenolic HSD17B13 inhibitor. The multiparameter structural optimization led to the discovery of dual FXR/HSD17B13 modulator 6, with high target selectivity, target tissue distribution, suitable pharmacokinetic properties, and safety profiles. Moreover, even at the lower dose, compound 6 exerted a better therapeutic effect than obeticholic acid (OCA) in multiple MASH models. With attractive pharmacological activity and safety profiles, the dual FXR/HSD17B13 modulator 6 is worthy of further evaluation as a novel anti-MASH agent.
Collapse
Affiliation(s)
- Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Lianru Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qiqing Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
22
|
Rogalska M, Błachnio-Zabielska A, Zabielski P, Janica JR, Roszczyc-Owsiejczuk K, Pogodzińska K, Andrzejuk A, Dąbrowski A, Flisiak R, Rogalski P. Acylcarnitine and Free Fatty Acid Profiles in Primary Biliary Cholangitis: Associations with Fibrosis and Inflammation. Nutrients 2025; 17:1097. [PMID: 40218855 PMCID: PMC11990100 DOI: 10.3390/nu17071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease characterized by bile duct destruction, cholestasis, and fibrosis. Acylcarnitines are esters of carnitine responsible for the transport of long-chain fatty acids into mitochondria for β-oxidation, playing a crucial role in energy metabolism and lipid homeostasis. This study aimed to assess acylcarnitine and free fatty acid (FFA) profiles in PBC patients and their associations with fibrosis severity and inflammation. Methods: This cross-sectional study included 46 PBC patients and 32 healthy controls. Acylcarnitines and FFAs were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzymatic assays, respectively. Liver stiffness was measured by point shear wave elastography (ElastPQ), and fibrosis was assessed using APRI and FIB-4 scores. Inflammatory markers (IL-6, IL-1β) were also analyzed. Results: PBC patients had significantly higher levels of C18:1-acylcarnitine (median: 165.1 ng/mL) compared with the controls (152.4 ng/mL, p = 0.0036). Similarly, the FFA levels were markedly elevated in the PBC patients (median: 0.46 mM/L) compared with the controls (0.26 mM/L, p < 0.0001). Patients with higher liver stiffness (ElastPQ > 5.56 kPa) had significantly elevated C18:1-acylcarnitine (p = 0.0008) and FFA levels (p = 0.00098). Additionally, FFAs were significantly increased in patients with higher APRI and FIB-4 scores and were associated with elevated inflammatory markers (IL-6, IL-1β) and liver injury markers. Multivariate regression analysis confirmed C18:1-acylcarnitine (OR = 1.031, 95% CI: 1.007-1.057, p = 0.013) and FFAs (OR = 2.25 per 0.1 mM/L increase, 95% CI: 1.20-4.22, p = 0.012) as independent predictors of fibrosis severity in PBC. Conclusions: C18:1-acylcarnitine and FFAs are significantly elevated in PBC and are strongly associated with fibrosis severity and inflammation. These findings suggest a link between lipid metabolism disturbances and PBC. Both metabolites may potentially serve as non-invasive biomarkers of fibrosis progression in PBC, warranting further investigation.
Collapse
Affiliation(s)
- Magdalena Rogalska
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Agnieszka Błachnio-Zabielska
- Hygiene, Epidemiology and Metabolic Disorders Department, Medical University of Bialystok, 15-089 Białystok, Poland; (A.B.-Z.); (K.R.-O.); (K.P.)
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Jacek Robert Janica
- Department of Pediatric Radiology, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Kamila Roszczyc-Owsiejczuk
- Hygiene, Epidemiology and Metabolic Disorders Department, Medical University of Bialystok, 15-089 Białystok, Poland; (A.B.-Z.); (K.R.-O.); (K.P.)
| | - Karolina Pogodzińska
- Hygiene, Epidemiology and Metabolic Disorders Department, Medical University of Bialystok, 15-089 Białystok, Poland; (A.B.-Z.); (K.R.-O.); (K.P.)
| | | | - Andrzej Dąbrowski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Białystok, Poland; (A.D.); (P.R.)
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Paweł Rogalski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Białystok, Poland; (A.D.); (P.R.)
| |
Collapse
|
23
|
Zhang J, Wang Q, Zhou N, Liu J, Tao L, Peng Z, Hu G, Wang H, Fu L, Peng S. Fluorofenidone attenuates choline-deficient, l-amino acid-defined, high-fat diet-induced metabolic dysfunction-associated steatohepatitis in mice. Sci Rep 2025; 15:9863. [PMID: 40118958 PMCID: PMC11928590 DOI: 10.1038/s41598-025-94401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD), involves hepatic lipid accumulation, inflammation, and fibrosis. It can progress to cirrhosis or hepatocellular carcinoma without timely treatment. Current treatment options for MASH are limited. This study explores the therapeutic effects of fluorofenidone (AKF-PD), a novel small-molecule compound with antifibrotic and anti-inflammatory properties, on MASH in mouse model. Mice fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) were treated with AKF-PD, resulting in reduced serum ALT, AST, hepatic lipid accumulation, liver inflammation, and fibrosis. Network pharmacology and RNA-sequencing analyses suggested that AKF-PD influenced multiple metabolic, inflammatory, and fibrosis-related pathways. Further experiments verified that AKF-PD activated hepatic AMPK signaling, leading to the inhibition of the downstream SREBF1/SCD1 pathway and the activation of autophagy. Additionally, AKF-PD suppressed the expression of various inflammatory factors, reduced macrophage infiltration, and inhibited NLRP3 inflammasome activation. Moreover, AKF-PD attenuated liver fibrosis by inhibiting TGFβ1/SMAD signaling. In conclusion, this study reveals that AKF-PD effectively decreases hepatic lipid accumulation, liver inflammation and fibrosis in a CDAHFD-induced MASH model, positioning AKF-PD as a promising candidate for the treatment of MASH.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qianbing Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Nianqi Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jinqing Liu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Gaoyun Hu
- Faculty of Pharmaceutical Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Huiwen Wang
- Department of Infection Control Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
24
|
Zheng C, Qi Z, Chen R, Liao Z, Xie L, Zhang F. The association between the dietary index for gut microbiota and non-alcoholic fatty liver disease and liver fibrosis: evidence from NHANES 2017-2020. BMC Gastroenterol 2025; 25:163. [PMID: 40075346 PMCID: PMC11899059 DOI: 10.1186/s12876-025-03756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Imbalance in the gut microbiota is a key factor in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis. The Dietary Index for Gut Microbiota (DI-GM) integrates the potential relationship between diet and gut microbiota diversity. This study aims to investigate the association between DI-GM and the risk of NAFLD and liver fibrosis, providing theoretical support for dietary intervention strategies. METHODS This study utilized data from NHANES 2017-2020, including 6,181 eligible adult participants. The relationship between DI-GM and the risk of NAFLD and liver fibrosis was assessed using DI-GM quartiles, multivariate logistic regression, and restricted cubic spline (RCS) analysis. Subgroup analysis was performed to explore the predictive role of DI-GM in different populations. All analyses were weighted to ensure the representativeness of the results. RESULTS DI-GM was negatively associated with the risks of NAFLD and liver fibrosis. As DI-GM scores increased, the risk of NAFLD and liver fibrosis significantly decreased (52.81%, 43.16%, 40.40%, and 31.98%, p < 0.05; 17.52%, 9.04%, 7.21%, and 6.78%, p < 0.05). Multivariate logistic regression analysis revealed that, in the unadjusted model (Model 1), for each unit increase in DI-GM, the risk of NAFLD decreased by 6.9% (OR = 0.931, 95% CI: 0.886-0.979, p < 0.001), while the risk of liver fibrosis decreased by 15.6% (OR = 0.844, 95% CI: 0.757-0.941, p < 0.05). In the quartile analysis, individuals in the highest DI-GM quartile (Q4) had a 58% lower risk of NAFLD compared to those in the lowest quartile (Q1) (OR = 0.42, 95% CI: 0.219-0.806, p < 0.001). The results remained significant even after adjusting for covariates. RCS analysis showed that DI-GM had a nonlinear relationship with the risks of NAFLD and liver fibrosis, with inflection points at scores of 2 and 5, indicating enhanced protective effects. CONCLUSION This study reveals a negative association between DI-GM and the risk of NAFLD and liver fibrosis, highlighting the potential role of healthy dietary patterns in the prevention and management of NAFLD and liver fibrosis through gut microbiota modulation, providing a theoretical basis for dietary interventions.
Collapse
Affiliation(s)
- Ce Zheng
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zeming Qi
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rui Chen
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhixiong Liao
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lanfeng Xie
- Tongren Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fumang Zhang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Mou Y, Tang Y, Zheng X, Liu X, Wu X, Wang H, Zeng J, Rao Q, Ben-David Y, Li Y, Huang L. Unraveling the molecular mechanisms of Fufangduzhong formula in alleviating high-fat diet-induced non-alcoholic fatty liver disease in mice. Front Pharmacol 2025; 16:1542143. [PMID: 40144651 PMCID: PMC11936930 DOI: 10.3389/fphar.2025.1542143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease, characterized by hepatic lipid accumulation. The Fufangduzhong formula (FFDZ) is a traditional Chinese medicine (TCM) formulation composed of Eucommia ulmoides Oliv., Leonurus artemisia (Lour.) S. Y. Hu, Prunella vulgaris Linn, Uncariarhynchophylla (Miq.) Miq. ex Havil., and Scutellaria baicalensis Georgi. It has demonstrated hepatoprotective effects and the ability to reduce lipid accumulation. However, its mechanisms against NAFLD remain unclear. Methods UPLC-MS/MS was used to identify FFDZ metabolites. C57BL/6J mice were fed a high-fat diet (HFD) supplemented with or without FFDZ (HFD+L, 0.45 g/kg/d; HFD+H, 0.9 g/kg/d) for 12 weeks. Biochemical indicators and histopathological observations were utilized to assess the extent of metabolic homeostasis disorder and hepatic steatosis. An analysis of differentially expressed genes and regulated signaling pathways was conducted using hepatic transcriptomics. Metabolomics analysis was performed to investigate the significantly changed endogenous metabolites associated with NAFLD in mice serum using UPLC-Q-TOF/MS. Western blot was employed to detect proteins involved in the lipid metabolism-related signaling pathways. Oleic acid-induced hepatic steatosis was used to examine the lipid-lowering effect of FFDZ-containing serum in vitro. Results A total of eight active metabolites were identified from the FFDZ formula and FFDZ-containing serum through UPLC-MS/MS analysis. FFDZ reduced body weight, liver weight, and levels of inflammatory cytokines, and it ameliorated hepatic steatosis, serum lipid profiles, insulin sensitivity, and glucose tolerance in mice with HFD-induced NAFLD. Transcriptomics revealed that FFDZ modulated the lipid metabolism-related pathways, including the PPAR signaling pathway, Fatty acid metabolism, and AMPK signaling pathway. Meanwhile, Western blot analysis indicated that FFDZ downregulated the expression of lipid synthesis-related proteins (Srebp-1c, Acly, Scd-1, Fasn, Acaca, and Cd36) and upregulated the fatty acid oxidation-related proteins (p-Ampk, Ppar-α, and Cpt-1). Furthermore, metabolomics identified FFDZ-mediated reversal of phospholipid dysregulation (PC, PE, LPC, LPE). Additionally, FFDZ-containing serum remarkedly reduced OA-induced lipid accumulation in HepG2 cells. Conclusion The present results demonstrate that FFDZ exerts anti-NAFLD effects by enhancing glucose tolerance and insulin sensitivity, as well as regulating the Ampk signaling pathway to ameliorate lipid metabolism disorder, lipotoxicity, hepatic steatosis, and inflammatory responses.
Collapse
Affiliation(s)
- Yu Mou
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yao Tang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Xiuyan Zheng
- Guizhou Institute of Integrated Agriculture Development, Guiyang, China
| | - Xiang Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Xuemei Wu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Hongji Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jie Zeng
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Qing Rao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yaacov Ben-David
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- School of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Yanmei Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lei Huang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
26
|
Read SA, Ahlenstiel G. Immo-bile-izing CD8 + T cell anti-tumor immunity. Immunity 2025; 58:532-534. [PMID: 40073845 DOI: 10.1016/j.immuni.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
Hepatocellular carcinoma is poorly responsive to immune checkpoint blockade. In a recent issue of Science, Varanasi et al. reveal how bile acids dampen anti-tumor CD8+ T cell responses in the liver, contributing to cancer progression and poor immunotherapy outcomes.
Collapse
Affiliation(s)
- Scott A Read
- Blacktown Clinical School, Western Sydney University, Sydney, NSW 2148, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; Blacktown Mt Druitt Hospital, Sydney, NSW 2148, Australia
| | - Golo Ahlenstiel
- Blacktown Clinical School, Western Sydney University, Sydney, NSW 2148, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; Blacktown Mt Druitt Hospital, Sydney, NSW 2148, Australia.
| |
Collapse
|
27
|
Xiang Y, Kuang G, Gong X, Xie H, Lin Y, Zhang X, Chen Z, Wan J, Li Z. Dihydrotanshinone I Attenuates Diet-Induced Nonalcoholic Fatty Liver Disease via Up-Regulation of IRG1. Phytother Res 2025; 39:1531-1548. [PMID: 39853881 DOI: 10.1002/ptr.8443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, but effective therapeutic drugs are still lacking. Dihydrotanshinone I (DHTS), a natural product isolated from Salvia miltiorrhiza , has been shown to have ameliorative effects on NAFLD. The aim of this study was to investigate the hepatoprotective effect of DHTS on NAFLD and its mechanism. A model of NAFLD and DHTS treatment was established using a Western diet to observe the effect of DHTS on NAFLD, which were detected by immunohistochemical, immunofluorescence, and other experiments. The mechanism was further explored by constructing immune responsive gene 1 (IRG1) knockout mice, RNA sequence, and molecular docking. The results revealed that DHTS significantly improved diet-induced metabolic disorders in mice, notably alleviating liver inflammation, oxidative stress, and fibrosis. Further analysis revealed that the intervention of DHTS was associated with the activation of IRG1. Subsequent experiments confirmed that IRG1 gene deletion reversed the above protective effects of DHTS in NAFLD. Mechanistically, DHTS enhanced the antioxidant nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway through IRG1/itaconate and blocked the oxidative stress response in the liver. In addition, DHTS also inhibited the activation of NACHT-, leucine-rich repeat (LRR)-, and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome via IRG1/itaconate, blocking the inflammatory amplification effect in the liver. The study suggests that DHTS may be a potential drug for the treatment of NAFLD, which exerts protective regulatory effects mainly through the IRG1/itaconate molecular pathway.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Ge Kuang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Huang Xie
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yan Lin
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xijian Zhang
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Zhongpei Chen
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Zhenhan Li
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
28
|
Zhang W, Wang Y, Zhang X, Zhang Y, Yu W, Tang H, Yuan WE. Polyzwitterion-branched polycholic acid nanocarriers based oral delivery insulin for long-term glucose and metabolic regulation in diabetes mellitus. J Nanobiotechnology 2025; 23:133. [PMID: 39987096 PMCID: PMC11846306 DOI: 10.1186/s12951-025-03190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/01/2025] [Indexed: 02/24/2025] Open
Abstract
Diabetes represents a global health crisis that necessitates advancements in prevention, treatment, and management. Beyond glucose regulation, addressing weight management and associated complications is imperative. This study introduces an oral nanoparticle formulation designed to simultaneously control blood glucose, obesity, and metabolic dysfunction. These nanoparticles, based on poly (zwitterion-cholic acid), incorporate a polyzwitterion component to enhance permeation through the mucus layer and prolong drug residence. Furthermore, bile acid polymers not only regulate lipid metabolism but also ameliorate obesity-associated inflammation in adipose and liver tissues. In vivo experiments demonstrated significant hypoglycemic effects in healthy, type I diabetic, and type II diabetic mice. Notably, the nanocarriers significantly reduced body weight gain, ameliorated inflammation in adipose and liver tissues, and modulated lipid metabolism in the liver of db/db mice. Our study elucidates a comprehensive strategy for addressing glycemic control and diabetes-related complications, offering a promising approach for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Wenkai Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Yue Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Xiangqi Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Yihui Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China.
| |
Collapse
|
29
|
Gao X, Yu J, Li Y, Shi H, Zhang L, Fang M, Liu Y, Huang C, Fan S. 27-Hydroxymangiferolic Acid Extends Lifespan and Improves Neurodegeneration in Caenorhabditis elegans by Activating Nuclear Receptors. Molecules 2025; 30:1010. [PMID: 40076235 PMCID: PMC11902184 DOI: 10.3390/molecules30051010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
27-Hydroxymangiferolic acid (27-HMA) is a naturally occurring compound in mango fruits that exhibits diverse biological functions. Here, we show that 27-HMA activates the transcriptional activity of farnesoid X receptor (FXR), a nuclear receptor transcription factor, extending the lifespan and healthspan in Caenorhabditis elegans (C. elegans). Meanwhile, the longevity-promoting effect of 27-HMA was attenuated in the mutants of nhr-8 and daf-12, the FXR homologs, indicating that the longevity effects of 27-HMA in C. elegans may depend on nuclear hormone receptors (NHRs). Further analysis revealed potential associations between the longevity effects of 27-HMA and the insulin/insulin-like growth factor-1 signaling (IIS)/TORC1 pathway. Moreover, 27-HMA increased the toxin resistance of nematodes and activated the expression of detoxification genes, which rely on NHRs. Finally, 27-HMA improved the age-related neurodegeneration in Alzheimer's disease (AD) and Parkinson's disease (PD) C. elegans models. Taken together, our findings suggest that 27-HMA is a novel FXR agonist and may prolong lifespan and healthspan via activating NHRs.
Collapse
Affiliation(s)
- Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Yin Li
- School of Agriculture and Medicine, Hebei Open University, Shijiazhuang 050080, China;
| | - Hang Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.G.); (J.Y.); (H.S.); (L.Z.); (M.F.); (Y.L.)
| |
Collapse
|
30
|
Wu Y, Dong P, Wu Q, Zhang Y, Xu G, Pan C, Tong H. Insights into Clinical Trials for Drugs Targeting MASLD: Progress, Challenges, and Future Directions. Clin Pharmacol Ther 2025. [PMID: 39953659 DOI: 10.1002/cpt.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
The transition in terminology from fatty liver disease to metabolic dysfunction-associated steatotic liver disease (MASLD) marks a considerable evolution in diagnostic standards. This new definition focuses on liver fat accumulation in the context of overweight/obesity, type 2 diabetes, or metabolic dysfunction, without requiring the exclusion of other concurrent liver diseases. The new definition also provides clear guidelines for defining alcohol consumption in relation to the disease. MASLD is currently acknowledged as the most widespread liver disorder globally, affecting ~25% of the population. Despite the extensive array of clinical trials conducted in recent years, the number of approved treatments for metabolic dysfunction-associated fatty liver disease is very limited. In the review critically evaluates the results of clinical trials of related drugs and assesses the future directions for drug development trials. The renaming of MASLD presents new challenges and opportunities for the design of clinical trials and the selection of target populations for drug development.
Collapse
Affiliation(s)
- Yu Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Pu Dong
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ya Zhang
- Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenwei Pan
- Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Precision General Practice and Health Management, Wenzhou, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| |
Collapse
|
31
|
Gan C, Yuan Y, Shen H, Gao J, Kong X, Che Z, Guo Y, Wang H, Dong E, Xiao J. Liver diseases: epidemiology, causes, trends and predictions. Signal Transduct Target Ther 2025; 10:33. [PMID: 39904973 PMCID: PMC11794951 DOI: 10.1038/s41392-024-02072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
As a highly complex organ with digestive, endocrine, and immune-regulatory functions, the liver is pivotal in maintaining physiological homeostasis through its roles in metabolism, detoxification, and immune response. Various factors including viruses, alcohol, metabolites, toxins, and other pathogenic agents can compromise liver function, leading to acute or chronic injury that may progress to end-stage liver diseases. While sharing common features, liver diseases exhibit distinct pathophysiological, clinical, and therapeutic profiles. Currently, liver diseases contribute to approximately 2 million deaths globally each year, imposing significant economic and social burdens worldwide. However, there is no cure for many kinds of liver diseases, partly due to a lack of thorough understanding of the development of these liver diseases. Therefore, this review provides a comprehensive examination of the epidemiology and characteristics of liver diseases, covering a spectrum from acute and chronic conditions to end-stage manifestations. We also highlight the multifaceted mechanisms underlying the initiation and progression of liver diseases, spanning molecular and cellular levels to organ networks. Additionally, this review offers updates on innovative diagnostic techniques, current treatments, and potential therapeutic targets presently under clinical evaluation. Recent advances in understanding the pathogenesis of liver diseases hold critical implications and translational value for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Can Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yuan
- Aier Institute of Ophthalmology, Central South University, Changsha, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jinhang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangxin Kong
- Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Zhaodi Che
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yangkun Guo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| | - Erdan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
32
|
Qiu X, Li W, Li X, Wu B, Dai M, Xia Y, Zhang G, Bian Y, Chen J, Wu K, Lu Y, Tang M, Lin H, Shang J. Discovery of Fluorescent Probe ABDS-2 for Farnesoid X Receptor Modulator Characterization and Cell-Based Imaging. Anal Chem 2025; 97:2019-2027. [PMID: 39841563 DOI: 10.1021/acs.analchem.4c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The farnesoid X receptor (FXR) regulates key physiological processes, such as bile acid homeostasis and lipid metabolism, making it an important target for drug discovery. However, the overactivation of FXR often leads to adverse effects. This study presents the development of a novel fluorescent probe utilizing the computer-aided drug design (CADD) approach to optimize linkers between more potent warhead and FITC fluorescent groups. The probes were designed and assessed via molecular dynamics simulations, and four were selected for synthesis to be evaluated in in vitro biochemical assays. Among these, ABDS-2 exhibited high sensitivity and stability, which demonstrated satisfactory validation in high-throughput screening assays. Furthermore, ABDS-2 facilitated real-time bioimaging to monitor FXR homeostasis at the cellular level, providing spatially resolved insights into molecular interactions critical for cellular function studies. This research underscores the efficiency of CADD in probe design and positions ABDS-2 as a valuable chemical tool for in vitro assays and cellular-level bioimaging.
Collapse
Affiliation(s)
- Xianjie Qiu
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenqi Li
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoqin Li
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Bin Wu
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Minxian Dai
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Yi Xia
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Gong Zhang
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yizhou Bian
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jiayi Chen
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kunzhong Wu
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongzhi Lu
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Miru Tang
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Hua Lin
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jinsai Shang
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
33
|
Sun Y, Yuan X, Hu Z, Li Y. Harnessing nuclear receptors to modulate hepatic stellate cell activation for liver fibrosis resolution. Biochem Pharmacol 2025; 232:116730. [PMID: 39710274 DOI: 10.1016/j.bcp.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
With the recent approval of Resmetirom as the first drug targeting nuclear receptors for metabolic dysfunction-associated steatohepatitis (MASH), there is promising way to treat MASH-associated liver fibrosis. However, liver fibrosis can arise from various pathogenic factors, and effective treatments for fibrosis due to other causes remain elusive. The activation of hepatic stellate cells (HSCs) represents a central link in the pathogenesis of hepatic fibrosis. Therefore, harnessing nuclear receptors to modulate HSC activation may be an effective approach to resolving the complex liver fibrosis caused by various factors. In this comprehensive review, we systematically explore the structure and physiological functions of nuclear receptors, shedding light on their multifaceted roles in HSC activation. Recent advancements in drug development targeting nuclear receptors are discussed, providing insights into their potential as rational and effective therapeutic targets for modulating HSC activation in the context of liver fibrosis. By elucidating the intricate interplay between nuclear receptors and HSC activation, this review contributes to the discovery of new nuclear receptor targets in HSCs for resolving hepatic fibrosis.
Collapse
Affiliation(s)
- Yaxin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou, China.
| | - Yuanyuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Gratacós-Ginès J, Ariño S, Sancho-Bru P, Bataller R, Pose E. MetALD: Clinical aspects, pathophysiology and treatment. JHEP Rep 2025; 7:101250. [PMID: 39897615 PMCID: PMC11782861 DOI: 10.1016/j.jhepr.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 02/04/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-related liver disease (ALD) are the most prevalent causes of chronic liver disease worldwide. Both conditions have many pathophysiological mechanisms in common, such as altered lipid and bile acid metabolism, and share some similar clinical features. Furthermore, metabolic risk factors and alcohol often co-exist in the same individuals and have recently been shown to act synergistically to markedly increase the risk of liver disease. Given the high prevalence and impact of this interaction, steatotic liver disease due to the combination of metabolic dysfunction and moderate-to-high alcohol intake has been termed MetALD in the new steatotic liver disease nomenclature, attracting the interest of the scientific community. Subsequent studies have investigated the prevalence of MetALD, which ranges from 1.7% to 17% in cohorts of patients with steatotic liver disease, depending on the population setting and study design. A few cohort studies have also assessed the prognosis of this patient population, with preliminary data suggesting that MetALD is associated with an intermediate risk of liver fibrosis, decompensation and mortality among steatotic liver disease subtypes. In this review article, we examine the clinical evidence and the experimental models of MetALD and discuss the clinical implications of the term for early detection and management. We provide insight into the pathophysiological mechanisms of the synergistic effect of alcohol and metabolic risk factors, possible screening strategies, the use of biomarkers and emerging models of care, as well as potential therapeutic interventions with a special focus on medications for MASLD, highlighting the most promising drugs for patients with MetALD.
Collapse
Affiliation(s)
- Jordi Gratacós-Ginès
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
| | - Silvia Ariño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Ramon Bataller
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Elisa Pose
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Zhang Z, Yuan S, Yang Z, Liu Y, Liu S, Chen L, Wu B. Hepatotoxicity of Three Common Liquid Crystal Monomers in Mus musculus: Differentiation of Actions Across Different Receptors and Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1519-1529. [PMID: 39804792 DOI: 10.1021/acs.est.4c08945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Liquid crystal monomers (LCMs) of different chemical structures were widely detected in various environmental matrices. However, their health risk evaluation is lacking. Herein, three representative LCMs were selected from 74 LCM candidates upon literature review and acute cytotoxicity evaluation, then Mus musculus were exposed to the three LCMs for 42 days at doses of 0.5 and 50 μg/kg/d to investigate hepatotoxicity and mechanisms. Phenotypic and histopathological results showed that the three LCMs (DTMDPB, MeO3bcH, and 5OCB) induced hepatomegaly, and only 5OCB induced fatty liver. DTMDPB and MeO3bcH decreased the total cholesterol (TCHO) and triglyceride (TG) content, whereas 5OCB increased the TCHO, TG, and alanine aminotransferase levels. Transcriptome and molecular docking analysis revealed that DTMDPB induced hepatotoxicity by agonizing the farnesoid X receptor, resulting in the disruption of unsaturated fatty acid biosynthesis, ascorbic acid and antioxidant pathways, and circadian clock homeostasis. MeO3bcH promoted inflammation and altered unsaturated fatty acid, primary bile acid biosynthesis, and circadian rhythm by antagonizing the aryl hydrocarbon receptor. 5OCB antagonized peroxisome proliferator-activated receptors, leading to fatty liver caused by the disruption of steroid, cholesterol, and terpenoid backbone biosynthesis pathways. This study provides references for understanding the hepatotoxicity of LCMs with different structures and the selection of priority control LCMs.
Collapse
Affiliation(s)
- Zhichao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Shengjie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Zhongchao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yafeng Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Su Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
36
|
Lu Q, Yu J, Xia N, Jin M, Zhao W, Fan X, Zhang R, Wang J, Jiang Z, Yu Q. Obeticholic acid aggravates liver fibrosis by activating hepatic farnesoid X receptor-induced apoptosis in cholestatic mice. Chem Biol Interact 2025; 406:111364. [PMID: 39725190 DOI: 10.1016/j.cbi.2024.111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Obeticholic acid (OCA) was approved for the treatment of primary biliary cholangitis (PBC) patients. However, it can cause severe drug-induced liver injury (DILI), which may put PBC patients at risk of acute-on-chronic liver failure (ACLF) and even death. Farnesoid X receptor (FXR) is considered as the target of OCA for cholestasis, but there is still a lack of research on whether hepatic and ileal FXR have different effects after OCA treatment. The aim of this study was to investigate the mechanism of OCA aggravating liver fibrosis in cholestasis. The results showed that 40 mg/kg OCA elevated serum AST, ALT, ALP and γ-GT levels in bile duct ligation (BDL) mice. Besides, severe fibrosis and necrosis were observed in the OCA-treated BDL mice, which was related to hepatic apoptosis pathway activation. Both hepatic and ileal FXR signaling could be significantly activated by OCA. However, ileum-specific knockout of Fxr aggravated OCA-induced liver injury in BDL mice. On the contrary, hepatic-specific knockout of Fxr structurally and functionally ameliorated liver pathological processes in the OCA-treated BDL mice, which was due to the blockade of hepatic FXR-induced apoptosis. In conclusion, the mechanism of OCA aggravating liver fibrosis in cholestasis was based on the activation of hepatic FXR-induced apoptosis. It was also indicated ileal FXR might be a safer pharmacological target for bile acids regulation.
Collapse
Affiliation(s)
- Qian Lu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingyi Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ninglin Xia
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ming Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen Zhao
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue Fan
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Rongmi Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jie Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China.
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
37
|
Yang Y, Gao W, Zhu R, Tao L, Chen W, Zhu X, Shen M, Xu T, Zhao T, Zhang X, Zhu L, Jiao N. Systematic identification of secondary bile acid production genes in global microbiome. mSystems 2025; 10:e0081724. [PMID: 39688414 PMCID: PMC11748489 DOI: 10.1128/msystems.00817-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Microbial metabolism of bile acids (BAs) is crucial for maintaining homeostasis in vertebrate hosts and environments. Although certain organisms involved in bile acid metabolism have been identified, a global, comprehensive elucidation of the microbes, metabolic enzymes, and bile acid remains incomplete. To bridge this gap, we employed hidden Markov models to systematically search in a large-scale and high-quality search library comprising 28,813 RefSeq multi-kingdom microbial complete genomes, enabling us to construct a secondary bile acid production gene catalog. This catalog greatly expanded the distribution of secondary bile acid production genes across 11 phyla, encompassing bacteria, archaea, and fungi, and extended to 14 habitats spanning hosts and environmental contexts. Furthermore, we highlighted the associations between secondary bile acids (SBAs) and gastrointestinal and hepatic disorders, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and nonalcoholic fatty liver disease (NAFLD), further elucidating disease-specific alterations in secondary bile acid production genes. Additionally, we proposed the pig as a particularly suitable animal model for investigating secondary bile acid production in humans, given its closely aligned secondary bile acid production gene composition. This gene catalog provides a comprehensive and reliable foundation for future studies on microbial bile acid metabolism, offering new insights into the microbial contributions to health and disease. IMPORTANCE Bile acid metabolism is an important function in both host and environmental microorganisms. The existing functional annotations from single source pose limitations on cross-habitat analysis. Our construction of a systematic secondary bile acid production gene catalog encompassing numerous high-quality reference sequences propelled research on bile acid metabolism in the global microbiome, holding significance for the concept of One Health. We further highlighted the potential of the microbiota-secondary bile acid axis as a target for the treatment of hepatic and intestinal diseases, as well as the varying feasibility of using animal models for studying human bile acid metabolism. This gene catalog offers a solid groundwork for investigating microbial bile acid metabolism across different compartments, including humans, animals, plants, and environments, shedding light on the contributions of microorganisms to One Health.
Collapse
Affiliation(s)
- Yuwei Yang
- Putuo People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenxing Gao
- Putuo People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ruixin Zhu
- Putuo People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liwen Tao
- Putuo People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wanning Chen
- Putuo People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyue Zhu
- Putuo People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mengping Shen
- Putuo People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tingjun Xu
- Putuo People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Tingting Zhao
- Putuo People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Research Institute, GloriousMed Clinical Laboratory Co, Ltd, Shanghai, China
| | - Xiaobai Zhang
- Putuo People’s Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lixin Zhu
- Department of General Surgery, The Six Affiliated Hospital, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, Sun Yat-Sen University, Guangzhou, China
| | - Na Jiao
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Liu Z, You C. The bile acid profile. Clin Chim Acta 2025; 565:120004. [PMID: 39419312 DOI: 10.1016/j.cca.2024.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
As a large and structurally diverse family of small molecules, bile acids play a crucial role in regulating lipid, glucose, and energy metabolism. In the human body, bile acids share a similar chemical structure with many isomers, exhibit little difference in polarity, and possess various physiological activities. The types and contents of bile acids present in different diseases vary significantly. Therefore, comprehensive and accurate detection of the content of various types of bile acids in different biological samples can not only provide new insights into the pathogenesis of diseases but also facilitate the exploration of novel strategies for disease diagnosis, treatment, and prognosis. The detection of disease-induced changes in bile acid profiles has emerged as a prominent research focus in recent years. Concurrently, targeted metabolomics methods utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) have progressively established themselves as the predominant technology for the separation and detection of bile acids. Bile acid profiles will increasingly play an important role in diagnosis and guidance in the future as the relationship between disease and changes in bile acid profiles becomes clearer. This highlights the growing diagnostic value of bile acid profiles and their potential to guide clinical decision-making. This review aims to explore the significance of bile acid profiles in clinical diagnosis from four perspectives: the synthesis and metabolism of bile acids, techniques for detecting bile acid profiles, changes in bile acid profiles associated with diseases, and the challenges and future prospects of applying bile acid profiles in clinical settings.
Collapse
Affiliation(s)
- Zhenhua Liu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
39
|
Liu D, Chen L, Wang Z, Li Z, Liu L, Peng L. Ubiquitination of TFEB increased intestinal permeability to aggravate metabolic dysfunction-associated steatohepatitis. Hepatology 2025:01515467-990000000-01134. [PMID: 39792087 DOI: 10.1097/hep.0000000000001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND AND AIMS Increased intestinal permeability exacerbates the development of metabolic dysfunction-associated steatohepatitis (MASH), but the underlying mechanisms remain unclear. Autophagy is important for maintaining normal intestinal permeability. Here, we investigated the impact of intestinal transcription factor EB (TFEB), a key regulator of autophagy, on intestinal permeability and MASH progression. APPROACH AND RESULTS TFEB expression was analyzed in the proximal colon of 45 individuals with metabolic dysfunction-associated steatotic liver disease and 23 healthy controls. We used immunoprecipitation-mass spectrometry to identify TFEB-interacting proteins. Intestine-specific Tfeb knockout mice were generated by mating Tfebfl/fl mice with Villin- Cre mice. The mice were fed a high-fat, high-sucrose diet, and assessments were performed to evaluate intestinal permeability and MASH progression. Intestinal TFEB levels were reduced in patients with MASH and negatively correlated with intestinal permeability and hepatic toxicity. Intestine-specific TFEB deficiency increased intestinal permeability and worsened MASH severity, whereas moderate TFEB overexpression conferred protective effects. Mechanistically, the E3 ligase TRIP12 promotes the ubiquitination and degradation of nuclear TFEB, thereby inhibiting autophagic flux to aggravate intestinal barrier impairment and subsequently promote MASH progression. Importantly, a peptide PT1 designed to block the TRIP12-TFEB interaction reduced MASH progression. CONCLUSIONS The ubiquitination of TFEB plays a pivotal role in increasing intestinal permeability and promoting the progression of MASH by inhibiting autophagy. Intestinal TFEB may represent a novel therapeutic target for the treatment of MASH.
Collapse
Affiliation(s)
- Donghai Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lang Chen
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Zai Wang
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Zecheng Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Lihong Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
40
|
Wang X, Ning C, Cheng X, Wu Z, Wu D, Ding X, Ju C, Zhou Z, Wan L, Zhao W, Shi P. The N-terminal domain of gasdermin D induces liver fibrosis by reprogrammed lipid metabolism. Animal Model Exp Med 2025; 8:114-125. [PMID: 39731223 PMCID: PMC11798734 DOI: 10.1002/ame2.12506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/07/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND The emerging incidence of pathogenic liver conditions is turning into a major concern for global health. Induction of pyroptosis in hepatocytes instigates cellular disintegration, which in turn liberates substantial quantities of pro-inflammatory intracellular substances, thereby accelerating the advancement of liver fibrosis. Consequently, directing therapeutic efforts towards inhibiting pyroptosis could potentially serve as an innovative approach in managing inflammation related chronic hepatic disorders. METHODS GSDMD-NTki/wt mice and Alb-creki/wt mice were generated using CRISPR/Cas9 technology. After crossing the two strains together, we induced conditional cell death by doxycycline to construct a mouse model of liver fibrosis. We analyzed differentially expressed genes by RNA sequencing and explored their biological functions. The efficacy of obeticholic acid (OCA) in the treatment of liver fibrosis was assessed. RESULTS Doxycycline-treated GSDMD-NTki/wt × Alb-creki/wt mice showed severe liver damage, vacuolation of hepatocytes, increased collagen fibers, and accumulation of lipid droplets. The expression of liver fibrosis related genes was greatly increased in the doxycycline-treated mouse liver compared with untreated mouse liver. RNA-sequencing showed that upregulated differentially expressed genes were involved in inflammatory responses, cell activation, and metabolic processes. Treatment with OCA alleviated the liver fibrosis, with reduced ALT and AST levels seen in the GSDMD-NTki/wt × Alb-creki/wt mice. CONCLUSIONS We successfully constructed a novel mouse model for liver fibrosis. This GSDMD-NT-induced fibrosis may be mediated by abnormal lipid metabolism. Our results demonstrated that we successfully constructed a mouse model of liver fibrosis, and GSDMD-NT induced fibrosis by mediating lipid metabolism.
Collapse
Affiliation(s)
- Xue Wang
- GemPharmatech Chengdu Co., Ltd.ChengduChina
| | | | | | | | - Dongbo Wu
- Center of Infectious DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | | | - Cunxiang Ju
- Gempharmatech Shanghai Co., Ltd.ShanghaiChina
| | - Zhihang Zhou
- Department of Gastroenterologythe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lingfeng Wan
- Fatty Liver Disease Center of Integrated Chinese and Western MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Wei Zhao
- School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical CollegeChengduChina
- Department of Clinical Biochemistry, School of Laboratory MedicineChengdu Medical CollegeChengduChina
| | - Peiliang Shi
- GemPharmatech Chengdu Co., Ltd.ChengduChina
- GemPharmatech Co., Ltd.GuangdongChina
| |
Collapse
|
41
|
Wang W, Yang C, Xia J, Tan Y, Peng X, Xiong W, Li N. Novel insights into the role of quercetin and kaempferol from Carthamus tinctorius L. in the management of nonalcoholic fatty liver disease via NR1H4-mediated pathways. Int Immunopharmacol 2024; 143:113035. [PMID: 39378656 DOI: 10.1016/j.intimp.2024.113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024]
Abstract
This study investigates the novel therapeutic potential of quercetin and kaempferol, two bioactive compounds derived from Carthamus tinctorius L., in treating nonalcoholic fatty liver disease (NAFLD) by modulating the bile acid receptor NR1H4 (Nuclear Receptor Subfamily 1 Group H Member 4) and its associated metabolic pathways. A rat model of NAFLD was established, and RNA sequencing and proteomics were carefully employed to identify differential gene expressions associated with the disease. The active components of Carthamus tinctorius L. were screened, followed by the construction of a comprehensive network that maps the interactions between these components, NR1H4 and NAFLD-related pathways. Both in vitro (using HepG2 cells) and in vivo experiments were conducted to evaluate the effects on NR1H4 expression levels through Western blot and RT-qPCR analyses. Our findings identify NR1H4 as a pivotal target in NAFLD. Network pharmacology analysis indicates that quercetin and kaempferol play crucial roles in combating NAFLD, with in vitro and in vivo experiments confirming their ability to mitigate hepatocyte steatosis by enhancing NR1H4 expression. Notably, the protective effects of these compounds were inhibited by the NR1H4 antagonist guggulsterone, highlighting the importance of NR1H4 upregulation. This study demonstrates the novel therapeutic efficacy of quercetin and kaempferol from Carthamus tinctorius L. in treating NAFLD through NR1H4 upregulation. This mechanism contributes to the regulation of lipid metabolism, improvement of liver function, reduction of inflammation, and alleviation of oxidative stress, offering a promising direction for future NAFLD treatment strategies.
Collapse
Affiliation(s)
- Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Ce Yang
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Jing Xia
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Ying Tan
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Xiaoyuan Peng
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Wei Xiong
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China.
| | - Ning Li
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China.
| |
Collapse
|
42
|
Qi Y, Ma Y, Duan G. Pharmacological Mechanisms of Bile Acids Targeting the Farnesoid X Receptor. Int J Mol Sci 2024; 25:13656. [PMID: 39769418 PMCID: PMC11727972 DOI: 10.3390/ijms252413656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Bile acids (BAs), a category of amphiphilic metabolites synthesized by liver cells and released into the intestine via the bile duct, serve a vital role in the emulsification of ingested fats during the digestive process. Beyond their conventional emulsifying function, BAs, with their diverse structures, also act as significant hormones within the body. They are pivotal in facilitating nutrient absorption by interacting with the farnesoid X receptor (FXR), and they serve as key regulators of lipid and glucose metabolism, as well as immune system balance. Consequently, BAs contribute to the metabolism of glucose and lipids, enhance the digestion and absorption of lipids, and maintain the equilibrium of the bile pool. Their actions are instrumental in addressing obesity, managing cholestasis, and treating diabetes, and are involved in the onset and progression of cancer. This paper presents an updated systematic review of the pharmacological mechanisms by which BAs target the FXR, incorporating recent findings and discussing their signaling pathways in the context of novel research, including their distinct roles in various disease states and populations. The aim is to provide a theoretical foundation for the continued research and clinical application of BAs.
Collapse
Affiliation(s)
- Youchao Qi
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining 810016, China
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai Tibetan Plateau, Qinghai Normal University, Xining 810008, China;
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Yonggui Ma
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai Tibetan Plateau, Qinghai Normal University, Xining 810008, China;
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Guozhen Duan
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining 810016, China
| |
Collapse
|
43
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
44
|
Yang J, Zhao T, Fan J, Zou H, Lan G, Guo F, Shi Y, Ke H, Yu H, Yue Z, Wang X, Bai Y, Li S, Liu Y, Wang X, Chen Y, Li Y, Lei X. Structure-guided discovery of bile acid derivatives for treating liver diseases without causing itch. Cell 2024; 187:7164-7182.e18. [PMID: 39476841 DOI: 10.1016/j.cell.2024.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/11/2024] [Accepted: 10/02/2024] [Indexed: 12/15/2024]
Abstract
Chronic itch is a debilitating symptom profoundly impacting the quality of life in patients with liver diseases like cholestasis. Activation of the human G-protein coupled receptor, MRGPRX4 (hX4), by bile acids (BAs) is implicated in promoting cholestasis itch. However, the detailed underlying mechanisms remain elusive. Here, we identified 3-sulfated BAs that are elevated in cholestatic patients with itch symptoms. We solved the cryo-EM structure of hX4-Gq in a complex with 3-phosphated deoxycholic acid (DCA-3P), a mimic of the endogenous 3-sulfated deoxycholic acid (DCA-3S). This structure revealed an unprecedented ligand-binding pocket in MRGPR family proteins, highlighting the crucial role of the 3-hydroxyl (3-OH) group on BAs in activating hX4. Guided by this structural information, we designed and developed compound 7 (C7), a BA derivative lacking the 3-OH. Notably, C7 effectively alleviates hepatic injury and fibrosis in liver disease models while significantly mitigating the itch side effects.
Collapse
Affiliation(s)
- Jun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tianjun Zhao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China
| | - Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huaibin Zou
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guangyi Lan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yaocheng Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huasheng Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zongwei Yue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yingjie Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Shuai Li
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Yingjun Liu
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Xiaoming Wang
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Yu Chen
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China.
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China.
| |
Collapse
|
45
|
Li Y, Wang L, Yi Q, Luo L, Xiong Y. Regulation of bile acids and their receptor FXR in metabolic diseases. Front Nutr 2024; 11:1447878. [PMID: 39726876 PMCID: PMC11669848 DOI: 10.3389/fnut.2024.1447878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
High sugar, high-fat diets and unhealthy lifestyles have led to an epidemic of obesity and obesity-related metabolic diseases, seriously placing a huge burden on socio-economic development. A deeper understanding and elucidation of the specific molecular biological mechanisms underlying the onset and development of obesity has become a key to the treatment of metabolic diseases. Recent studies have shown that the changes of bile acid composition are closely linked to the development of metabolic diseases. Bile acids can not only emulsify lipids in the intestine and promote lipid absorption, but also act as signaling molecules that play an indispensable role in regulating bile acid homeostasis, energy expenditure, glucose and lipid metabolism, immunity. Disorders of bile acid metabolism are therefore important risk factors for metabolic diseases. The farnesol X receptor, a member of the nuclear receptor family, is abundantly expressed in liver and intestinal tissues. Bile acids act as endogenous ligands for the farnesol X receptor, and erroneous FXR signaling triggered by bile acid dysregulation contributes to metabolic diseases, including obesity, non-alcoholic fatty liver disease and diabetes. Activation of FXR signaling can reduce lipogenesis and inhibit gluconeogenesis to alleviate metabolic diseases. It has been found that intestinal FXR can regulate hepatic FXR in an organ-wide manner. The crosstalk between intestinal FXR and hepatic FXR provides a new idea for the treatment of metabolic diseases. This review focuses on the relationship between bile acids and metabolic diseases and the current research progress to provide a theoretical basis for further research and clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Yuxia Xiong
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
46
|
Yue H, Jia M, Li B, Zong A, Du F, Xu T. Medium chain triglycerides alleviate non-alcoholic fatty liver disease through bile acid-mediated FXR signaling pathway: A comparative study with common vegetable edible oils. J Food Sci 2024; 89:10171-10180. [PMID: 39668111 DOI: 10.1111/1750-3841.17565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
With the global epidemic trend of obesity, non-alcoholic fatty liver disease (NAFLD) has become a significant cause of chronic liver disease, seriously affecting human health. Medium-chain triglycerides (MCT) with a fatty acid chain length varying between 6 and 10 carbon atoms (most sources from coconut and palm kernel oils), which exhibited activities to improve lipid metabolism, prevent cardiovascular diseases, and enhance immunity. However, the efficacy differences and potential mechanisms between MCT and traditional long-chain vegetable oils (palm oil, PA; high oleic peanut oil, OA) in obesity-induced NAFLD were still unclear. The present study treated obesity-induced NAFLD mice with different dietary lipids for 16 weeks. The results showed that MCT supplements significantly improved abnormal elevation of weight gain and blood lipids and reduced hepatic lipid accumulation to a greater extent than PA and OA. Furthermore, bile acid profiling results indicated that MCT significantly changed the composition of bile acids in the liver, reduced the concentrations of cholic acid (CA), deoxycholic acid (DCA), β-muricholic acid (β-MCA), and ursodeoxycholic acid (UDCA) and increased the concentrations of chenodeoxycholic Acid (CDCA), taurochenodeoxycholic acid (TCDCA), hyodeoxycholic acid (HDCA), and taurohyodeoxycholic acid (THDCA). Mechanistically, MCT supplement upregulated FXR signal and inhibited the expression of key genes for triglyceride synthesis in the liver, thereby reducing hepatic lipid accumulation. In summary, MCT exerted a superior effect on PA and OA in improving obesity-induced NAFLD. These results provided new evidence for the application of MCT in treating NAFLD.
Collapse
Affiliation(s)
- Hao Yue
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Shandong, P. R. China
| | - Min Jia
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Shandong, P. R. China
| | - Baorui Li
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Shandong, P. R. China
| | - Aizhen Zong
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Shandong, P. R. China
| | - Fangling Du
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Shandong, P. R. China
| | - Tongcheng Xu
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Shandong, P. R. China
| |
Collapse
|
47
|
Zhang B, Wang J, Chen X, Xue T, Xin J, Liu Y, Wang X, Li X. Laminaria japonica Polysaccharide Regulates Fatty Hepatosis Through Bile Acids and Gut Microbiota in Diabetes Rat. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1165-1178. [PMID: 39207652 DOI: 10.1007/s10126-024-10365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
In this study, we examined the effect of Laminaria japonica polysaccharide (fucoidan) on the regulation of lipid metabolism. A rat model of diabetes mellitus (DM) was established by a high-sugar and high-fat diet combined with streptozotocin. Changes in the rats' body weight and blood glucose level during the experiment were recorded. Before the end of the experiment, an automatic biochemical analyzer was used to detect the fasting blood glucose (FBG), lipid content in serum, and insulin content, and calculate the insulin resistance index. Oil red O staining was used to detect lipid deposition in the liver. H&E staining, Masson staining, and PASM staining were used to observe the pathological structural changes in the liver. 16 s RNA sequencing and targeted metabolomics were used to detect intestinal microbiota and bile acid content. The results showed that fucoidan was able to inhibit weight loss in the DM rats and reduce the content of triglycerides (TG), cholesterol (TC), and low-density lipoprotein (LDL-C) in serum. Oil red O staining showed a decrease in liver fat accumulation after fucoidan treatment. 16 s RNA sequencing demonstrated that fucoidan increased the abundance of Bacteroidia, Campylobacteria, Clostridia, Gammaproteobacteria, Negativicutes, and Verrucomicrobi. Fucoidan also increased the secretion of secondary bile acids (Nor-DCA, TLCA, β-UDCA) and alleviated lipid metabolism disorders. The expression of α-SMA was inhibited by fucoidan, whereas the expression of FXR and TGR5 was promoted. Fucoidan shows good activity in regulating lipid metabolism by regulating the expression of FXR and TGR5 and acting on the intestinal flora-bile acid axis.
Collapse
Affiliation(s)
- Bo Zhang
- Linyi University, Linyi, Shandong, China
| | - Jiacai Wang
- Linyi University, Linyi, Shandong, China
- Guizhou University, Guiyang, Guizhou, China
| | | | - Tao Xue
- Linyi University, Linyi, Shandong, China
| | - Jie Xin
- Linyi University, Linyi, Shandong, China
| | | | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xinpeng Li
- Linyi University, Linyi, Shandong, China.
| |
Collapse
|
48
|
Zhao L, Jiang Q, Lei J, Cui J, Pan X, Yue Y, Zhang B. Bile acid disorders and intestinal barrier dysfunction are involved in the development of fatty liver in laying hens. Poult Sci 2024; 103:104422. [PMID: 39418789 PMCID: PMC11532484 DOI: 10.1016/j.psj.2024.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of fatty liver is highly intricate. The role of the gut-liver axis in the development of fatty liver has gained increasing recognition in recent years. This study was conducted to explore the role of bile acid signaling and gut barrier in the pathogenesis of fatty liver. A total of 100 "Jing Tint 6" laying hens, 56-week-old, were used and fed basal diets until 60 weeks of age. At the end of the experiment, thirty individuals were selected based on the degree of hepatic steatosis. The hens with minimal hepatic steatosis (< 5 %) were chosen as healthy controls, while those with severe steatosis (> 33 %) in the liver were classified as the fatty liver group. Laying hens with fatty liver and healthy controls showed significant differences in body weight, liver index, abdominal fat ratio, feed conversion ratio (FCR), albumin height, Haugh unit, and biochemical indexes. The results of bile acid metabolomics revealed a clear separation in hepatic bile acid profiles between the fatty liver group and healthy controls, and multiple secondary bile acids were decreased in the fatty liver group, indicating disordered bile acid metabolism. Additionally, the mRNA levels of farnesoid X receptor (FXR) and genes related to bile acid transport were significantly decreased in both the liver and terminal ileum of hens with fatty liver. Moreover, the laying hens with fatty liver exhibited significant decreases in ileal crypt depth, the number of goblet cells, and the mRNA expression of tight junction-related proteins, alongside a significant increase in ileal permeability. Collectively, these findings suggest that disordered bile acids, suppressed FXR-mediated signaling, and impaired intestinal barrier function are potential factors promoting the development of fatty liver. These insights indicate that regulating bile acids and enhancing intestinal barrier function may become new preventive and therapeutic strategies for fatty liver in the near future.
Collapse
Affiliation(s)
- Lihua Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiuyu Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xianjie Pan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuan Yue
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
49
|
Wu Y, Liu W, Wang R, Lian Y, Cheng X, Yang R, Wang X, Mi S. Capsaicin and Quercitrin Maintained Lipid Homeostasis of Hyperlipidemic Mice: Serum Metabolomics and Signaling Pathways. Foods 2024; 13:3727. [PMID: 39682799 DOI: 10.3390/foods13233727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 12/18/2024] Open
Abstract
Capsaicin and quercitrin have proved to be two major ingredients in fresh chili pepper. However, the effect of these two compounds on hyperlipidemia and the related molecular mechanisms were still unclear. This work was performed to examine the hypolipidemic capacity of capsaicin and quercitrin as well as the related signaling pathways. Hyperlipidemia was induced in mice by feeding them with a high-fat diet for 4 weeks. Both capsaicin and quercitrin were beneficial to inhibit a rise in fasting glucose, total cholesterol, total triglycerides, low-density lipoprotein cholesterol, and total bile acids and to lift the level of high-density lipoprotein cholesterol in the serum. The optimal lipid-lowering data were achieved in the capsaicin and quercitrin/3:1 group. Supplementation with capsaicin and quercitrin both singly and together in the feed caused a significant influence on the metabolite profiles of mouse serum. The signaling pathway for the hypolipidemic effect of capsaicin and quercitrin was related to the down-regulation of epidermal growth factor receptor (EGFR) but the up-regulation of phosphatidylin-ositol-3-kinase (PI3K), protein kinase Bb(Akt), farnesoid X receptor 1 (FXR1), and cholesterol 7α-hydroxylase (CYP7A1). This study confirmed the jointly hypolipidemic effect of capsaicin and quercitrin, which would benefit the valorization of chili pepper resources.
Collapse
Affiliation(s)
- Yanxia Wu
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Rongrong Wang
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Yunhe Lian
- Chenguang Biotech Group Co., Ltd., Handan 057250, China
| | - Xinying Cheng
- Hebei Chenguang Testing Technical Services Co., Ltd., Handan 057250, China
| | - Ruili Yang
- Hebei Chenguang Testing Technical Services Co., Ltd., Handan 057250, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Si Mi
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| |
Collapse
|
50
|
Zhang R, Xie X, Liu J, Pan R, Huang Y, Du Y. A novel selenoglycoside compound GlcSeCys alleviates diets-induced obesity and metabolic dysfunctions with the modulation of Galectin-1 and selenoproteins. Life Sci 2024:123259. [PMID: 39557393 DOI: 10.1016/j.lfs.2024.123259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Selenium, an essential trace element in human, has been shown to play protective roles in obesity and metabolic disorders despite insufficient understanding of mechanisms. Moreover, it's well known that biological actions of selenium compounds differed greatly due to divergent chemical forms. Selenoglycoside is a type of organoselenium compounds with excellent hydrophilicity, but biological activity of which in vivo are almost unknown. We have designed and synthesized Se-β-d-glucopyranosyl-D-selenocysteine, a novel selenoglycoside compound named GlcSeCys. Herein, GlcSeCys was given to high fat high cholesterol (HFHC) fed mice to determine its actions as well as relevant molecular mechanisms using transcriptome and multiple molecular biological methods. It was revealed that GlcSeCys displayed pronounced anti-obesity effect and significantly alleviated hyperglycemia, hyperinsulinemia along with hepatic steatosis in HFHC diets-induced mice. Mechanistically, GlcSeCys was found to inhibit lipogenesis, lipid uptake and inflammation in liver, along with attenuation of Galectin-1 and induction of selenoprotein S (SELENOS). With regard to adipose tissues, GlcSeCys ameliorated hypertrophy of adipocytes, suppressed lipids biosynthesis and stimulated WAT browning along with abrogated WAT inflammation activation, which were in line with repression of Galectin-1 and increase of GPx3. Collectively, our results uncovered, for the first time, that selenoglycoside compound GlcSeCys possessed excellent protective effects against obesity and metabolic disorders, and the mechanisms were correlated with modulation of Galectin-1 and selenoproteins, shedding lights upon molecular biology of selenium and novel therapeutic for obesity and relevant metabolic disorders.
Collapse
Affiliation(s)
- Ruhui Zhang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, Shandong Province, China
| | - Ruiying Pan
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Huang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|