1
|
Richter EA, Bilan PJ, Klip A. A comprehensive view of muscle glucose uptake: regulation by insulin, contractile activity, and exercise. Physiol Rev 2025; 105:1867-1945. [PMID: 40173020 DOI: 10.1152/physrev.00033.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Accepted: 03/08/2025] [Indexed: 04/04/2025] Open
Abstract
Skeletal muscle is the main site of glucose deposition in the body during meals and the major glucose utilizer during physical activity. Although in both instances the supply of glucose from the circulation to the muscle is of paramount importance, in most conditions the rate-limiting step in glucose uptake, storage, and utilization is the transport of glucose across the muscle cell membrane. This step is dependent upon the translocation of the insulin- and contraction-responsive glucose transporter GLUT4 from intracellular storage sites to the sarcolemma and T tubules. Here, we first analyze how glucose can traverse the capillary wall into the muscle interstitial space. We then review the molecular processes that regulate GLUT4 translocation in response to insulin and muscle contractions and the methodologies utilized to unravel them. We further discuss how physical activity and inactivity, respectively, lead to increased and decreased insulin action in muscle and touch upon sex differences in glucose metabolism. Although many key processes regulating glucose uptake in muscle are known, the advent of newer and bioinformatics tools has revealed further molecular signaling processes reaching a staggering level of complexity. Much of this molecular mapping has emerged from cellular and animal studies and more recently from application of a variety of -omics in human tissues. In the future, it will be imperative to validate the translatability of results drawn from experimental systems to human physiology.
Collapse
Affiliation(s)
- Erik A Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Blazev R, Zee BM, Peckham H, Ng YK, Lewis CTA, Zhang C, McNamara JW, Goodman CA, Gregorevic P, Ochala J, Steyn FJ, Ngo ST, Stokes MP, Parker BL. Site-specific quantification of the in vivo UFMylome reveals myosin modification in ALS. CELL REPORTS METHODS 2025; 5:101048. [PMID: 40347946 DOI: 10.1016/j.crmeth.2025.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/24/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
UFMylation is a ubiquitin-like protein modification of Ubiquitin Fold Modifier 1 (UFM1) applied to substrate proteins and regulates several cellular processes such as protein quality control. Here, we describe the development of an antibody-based enrichment approach to immunoprecipitate remnant UFMylated peptides and identification by mass spectrometry. We used this approach to identify >200 UFMylation sites from various mouse tissues, revealing extensive modification in skeletal muscle. In vivo knockdown of the E2 ligase, UFC1, followed by enrichment and analysis of remnant UFMylated peptides quantified concomitant down-regulation and validation of a subset of modification sites, particularly myosin UFMylation. Furthermore, we show that UFMylation is increased in skeletal muscle biopsies from people living with amyotrophic lateral sclerosis (plwALS). Quantification of UFMylation sites in these biopsies with multiplexed isotopic labeling reveal prominent increases in myosin UFMylation. Our data suggest that in vivo UFMylation is more complex than previously thought.
Collapse
Affiliation(s)
- Ronnie Blazev
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Barry M Zee
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Yaan-Kit Ng
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher T A Lewis
- Department of Biomedical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Novo Nordisk A/S, Research and Early Development, 2760 Måløv, Denmark
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48104, USA
| | - James W McNamara
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC 3010, Australia; Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, VIC 3052, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Craig A Goodman
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul Gregorevic
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shyuan T Ngo
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia
| | | | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
3
|
Zhu WG, Thomas ACQ, Wilson GM, McGlory C, Hibbert JE, Flynn CG, Sayed RKA, Paez HG, Meinhold M, Jorgenson KW, You JS, Steinert ND, Lin KH, MacInnis MJ, Coon JJ, Phillips SM, Hornberger TA. Identification of a resistance-exercise-specific signalling pathway that drives skeletal muscle growth. Nat Metab 2025:10.1038/s42255-025-01298-7. [PMID: 40374925 DOI: 10.1038/s42255-025-01298-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/09/2025] [Indexed: 05/18/2025]
Abstract
Endurance and resistance exercise lead to distinct functional adaptations: the former increases aerobic capacity and the latter increases muscle mass. However, the signalling pathways that drive these adaptations are not well understood. Here we identify phosphorylation events that are differentially regulated by endurance and resistance exercise. Using a model of unilateral exercise in male participants and deep phosphoproteomic analyses, we find that a prolonged activation of a signalling pathway involving MKK3b/6, p38, MK2 and mTORC1 occurs specifically in response to resistance exercise. Follow-up studies in both male and female participants reveal that the resistance-exercise-induced activation of MKK3b is highly correlated with the induction of protein synthesis (R = 0.87). Additionally, we show that in mice, genetic activation of MKK3b is sufficient to induce signalling through p38, MK2 and mTORC1, along with an increase in protein synthesis and muscle fibre size. Overall, we identify core components of a signalling pathway that drives the growth-promoting effects of resistance exercise.
Collapse
Affiliation(s)
- Wenyuan G Zhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Aaron C Q Thomas
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jamie E Hibbert
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Corey Gk Flynn
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ramy K A Sayed
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Hector G Paez
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Marius Meinhold
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kent W Jorgenson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jae-Sung You
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel D Steinert
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kuan-Hung Lin
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin J MacInnis
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA.
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Bodine SC, Goodman CA. Mechanically sensitive MAPK signalling mediates resistance exercise-induced muscle growth. Nat Metab 2025:10.1038/s42255-025-01303-z. [PMID: 40374924 DOI: 10.1038/s42255-025-01303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Affiliation(s)
- Sue C Bodine
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Hostrup M, Deshmukh AS. Fiber Type-Specific Adaptations to Exercise Training in Human Skeletal Muscle: Lessons From Proteome Analyses and Future Directions. Scand J Med Sci Sports 2025; 35:e70059. [PMID: 40281372 PMCID: PMC12031692 DOI: 10.1111/sms.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Skeletal muscle is a key determinant of sports performance. It is a highly specialized, yet complex and heterogeneous tissue, comprising multiple cell types. Muscle fibers are the main functional cell type responsible for converting energy into mechanical work. They exhibit a remarkable ability to adapt in response to stressors, such as exercise training. But while it is recognized that human skeletal muscle fibers have distinct contractile and metabolic features, classified as slow/oxidative (type 1) or fast/glycolytic (type 2a/x), less attention has been directed to the adaptability of the different fiber types. Methodological advancements in mass spectrometry-based proteomics allow researchers to quantify thousands of proteins with only a small amount of muscle tissue-even in a single muscle fiber. By exploiting this technology, studies are emerging highlighting that muscle fiber subpopulations adapt differently to exercise training. This review provides a contemporary perspective on the fiber type-specific adaptability to exercise training in humans. A key aim of our review is to facilitate further advancements within exercise physiology by harnessing mass spectrometry proteomics.
Collapse
Affiliation(s)
- Morten Hostrup
- Clinical & Experimental Physiology Group, The August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
6
|
Hoffman NJ, Whitfield J, Xiao D, Radford BE, Suni V, Blazev R, Yang P, Parker BL, Hawley JA. Phosphoproteomics Uncovers Exercise Intensity-Specific Skeletal Muscle Signaling Networks Underlying High-Intensity Interval Training in Healthy Male Participants. Sports Med 2025:10.1007/s40279-025-02217-2. [PMID: 40257739 DOI: 10.1007/s40279-025-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND In response to exercise, protein kinases and signaling networks are engaged to blunt homeostatic threats generated by acute contraction-induced increases in skeletal muscle energy and oxygen demand, as well as serving roles in the adaptive response to chronic exercise training to blunt future disruptions to homeostasis. High-intensity interval training (HIIT) is a time-efficient exercise modality that induces superior or similar health-promoting skeletal muscle and whole-body adaptations compared with prolonged, moderate-intensity continuous training (MICT). However, the skeletal muscle signaling pathways underlying HIIT's exercise intensity-specific adaptive responses are unknown. OBJECTIVE We mapped human muscle kinases, substrates, and signaling pathways activated/deactivated by an acute bout of HIIT versus work-matched MICT. METHODS In a randomized crossover trial design (Australian New Zealand Clinical Trials Registry number ACTRN12619000819123; prospectively registered 6 June 2019), ten healthy male participants (age 25.4 ± 3.2 years; BMI 23.5 ± 1.6 kg/m2;V ˙ O 2 max 37.9 ± 5.2 ml/kg/min, mean values ± SD) completed a single bout of HIIT and MICT cycling separated by ≥ 10 days and matched for total work (67.9 ± 10.2 kJ) and duration (10 min). Mass spectrometry-based phosphoproteomic analysis of muscle biopsy samples collected before, during (5 min), and immediately following (10 min) each exercise bout, to map acute temporal signaling responses to HIIT and MICT, identified and quantified 14,931 total phosphopeptides, corresponding to 8509 phosphorylation sites. RESULTS Bioinformatic analyses uncovered exercise intensity-specific signaling networks, including > 1000 differentially phosphorylated sites (± 1.5-fold change; adjusted P < 0.05; ≥ 3 participants) after 5 min and 10 min HIIT and/or MICT relative to rest. After 5 and 10 min, 92 and 348 sites were differentially phosphorylated by HIIT, respectively, versus MICT. Plasma lactate concentrations throughout HIIT were higher than MICT (P < 0.05), and correlation analyses identified > 3000 phosphosites significantly correlated with lactate (q < 0.05) including top functional phosphosites underlying metabolic regulation. CONCLUSIONS Collectively, this first global map of the work-matched HIIT versus MICT signaling networks has revealed rapid exercise intensity-specific regulation of kinases, substrates, and pathways in human skeletal muscle that may contribute to HIIT's skeletal muscle adaptations and health-promoting effects. Preprint: The preprint version of this work is available on medRxiv, https://doi.org/10:1101/2024.07.11.24310302 .
Collapse
Affiliation(s)
- Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia.
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - Di Xiao
- Computational Systems Biology Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Bridget E Radford
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - Veronika Suni
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Pengyi Yang
- Computational Systems Biology Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- School of Mathematics and Statistics and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| |
Collapse
|
7
|
Chen X, Wang J, Chan P, Zhu Q, Zhu Z, Zheng M, Chen X, Wu H, Cui M, Zhang Y. Metabolic Reprogramming in Spinal Cord Injury and Analysis of Potential Therapeutic Targets. J Mol Neurosci 2025; 75:50. [PMID: 40237957 DOI: 10.1007/s12031-025-02343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Spinal cord injury (SCI) is a critical neurological disorder that frequently leads to permanent disability, profoundly affecting the quality of life of individuals with SCI. In this research, we examined the varied expression of genes associated with metabolic reprogramming-related genes in SCI. By employing the Gene Expression Omnibus datasets GSE5296 and GSE47681, 1001 differentially expressed genes (DEGs) were identified through the limma R package. Among these, 871 and 130 genes were upregulated and downregulated, respectively. A subset of 10 metabolic reprogramming-related differentially expressed genes (MRRDEGs) was recognized as key players in metabolic reprogramming. Analyses of enrichment performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes indicated that the identified MRRDEGs predominantly participated in processes related to pyruvate metabolism and carbohydrate degradation. Nine hub genes were discerned using a protein-protein interaction network. Subsequently, an SCI mouse model was established using the LISA SCI modeling device, and preliminary validation was conducted through quantitative real-time PCR experiments at various time points after SCI, specifically on days 1, 3, and 7, suggesting their central role in SCI. Receiver operating characteristic curve analysis indicated that these MRRDEGs could be used to diagnose SCI. The CIBERSORT algorithm analysis of immune infiltration identified an inverse relationship between M0 and M2 macrophages. Furthermore, a positive relationship was observed between Ucp2 and M0 macrophages, underscoring their essential function in the immune response following SCI. These results highlight MRRDEGs' importance in SCI and propose their potential roles as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Xiangjun Chen
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Juan Wang
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Peiran Chan
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Qian Zhu
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Ziyan Zhu
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Mingming Zheng
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Xinyi Chen
- The First Medical School of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Haozhen Wu
- National Demonstration Center for Experimental Basic Medical Education, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Min Cui
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China.
- National Demonstration Center for Experimental Basic Medical Education, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China.
| | - Yongjie Zhang
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China.
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China.
| |
Collapse
|
8
|
Dumitras AG, Piccoli G, Tellkamp F, Keufgens L, Baraldo M, Zorzato S, Cussonneau L, Nogara L, Krüger M, Blaauw B. Neural stimulation suppresses mTORC1-mediated protein synthesis in skeletal muscle. SCIENCE ADVANCES 2025; 11:eadt4955. [PMID: 40173236 PMCID: PMC11963989 DOI: 10.1126/sciadv.adt4955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Skeletal muscle fibers are classified as glycolytic or oxidative, with differing susceptibilities to muscle wasting. However, the intracellular signaling pathways regulating fiber-specific muscle trophism remain unclear because of a lack of experimental models measuring protein synthesis. We developed a mouse model overexpressing a mutated transfer RNA synthetase in muscle fibers, enabling specific protein labeling using an artificial methionine substitute, which can be revealed through click chemistry. This model revealed that denervation increases protein labeling in oxidative muscle fibers through mammalian target of rapamycin complex 1 (mTORC1) activation, while deleting the mTORC1 scaffold protein Raptor reduces labeling in glycolytic fibers. On the other hand, increased muscle activity acutely decreases protein synthesis, accompanied by reduced mTORC1 signaling, glycogen depletion, and adenosine 5'-monophosphate kinase activation. Our findings identify nerve activity as an inhibitory signal for mTORC1-dependent protein synthesis in skeletal muscle, enhancing the understanding of fiber-specific responses to exercise and pathological conditions.
Collapse
Affiliation(s)
- Ana G. Dumitras
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35137 Padova, Italy
| | - Giorgia Piccoli
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35137 Padova, Italy
| | - Frederik Tellkamp
- Institute for Genetics, Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Lena Keufgens
- Institute for Genetics, Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Martina Baraldo
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35137 Padova, Italy
| | - Sabrina Zorzato
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35137 Padova, Italy
| | - Laura Cussonneau
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35137 Padova, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35137 Padova, Italy
- Department of Pharmaceutical Sciences, University of Padova, 35137 Padova, Italy
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35137 Padova, Italy
| |
Collapse
|
9
|
Van der Stede T, Van de Loock A, Turiel G, Hansen C, Tamariz-Ellemann A, Ullrich M, Lievens E, Spaas J, Yigit N, Anckaert J, Nuytens J, De Baere S, Van Thienen R, Weyns A, De Wilde L, Van Eenoo P, Croubels S, Halliwill JR, Mestdagh P, Richter EA, Gliemann L, Hellsten Y, Vandesompele J, De Bock K, Derave W. Cellular deconstruction of the human skeletal muscle microenvironment identifies an exercise-induced histaminergic crosstalk. Cell Metab 2025; 37:842-856.e7. [PMID: 39919738 DOI: 10.1016/j.cmet.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 10/14/2024] [Accepted: 12/18/2024] [Indexed: 02/09/2025]
Abstract
Plasticity of skeletal muscle is induced by transcriptional and translational events in response to exercise, leading to multiple health and performance benefits. The skeletal muscle microenvironment harbors myofibers and mononuclear cells, but the rich cell diversity has been largely ignored in relation to exercise adaptations. Using our workflow of transcriptome profiling of individual myofibers, we observed that their exercise-induced transcriptional response was surprisingly modest compared with the bulk muscle tissue response. Through the integration of single-cell data, we identified a small mast cell population likely responsible for histamine secretion during exercise and for targeting myeloid and vascular cells rather than myofibers. We demonstrated through histamine H1 or H2 receptor blockade in humans that this paracrine histamine signaling cascade drives muscle glycogen resynthesis and coordinates the transcriptional exercise response. Altogether, our cellular deconstruction of the human skeletal muscle microenvironment uncovers a histamine-driven intercellular communication network steering muscle recovery and adaptation to exercise.
Collapse
Affiliation(s)
- Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium; Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Alexia Van de Loock
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Guillermo Turiel
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Camilla Hansen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Max Ullrich
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Spaas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nurten Yigit
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Justine Nuytens
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Ruud Van Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Anneleen Weyns
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Laurie De Wilde
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Ghent, Belgium
| | - Peter Van Eenoo
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - John R Halliwill
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Pieter Mestdagh
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jo Vandesompele
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
10
|
Smiles WJ, Ovens AJ, Yu D, Ling NXY, Poblete Goycoolea AC, Morrison KR, Murphy EO, Glaser A, O’Byrne SFM, Taylor S, Chalk AM, Walkley CR, McAloon LM, Scott JW, Kemp BE, Hoque A, Langendorf CG, Petersen J, Galic S, Oakhill JS. AMPK phosphosite profiling by label-free mass spectrometry reveals a multitude of mTORC1-regulated substrates. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:8. [PMID: 40052110 PMCID: PMC11879883 DOI: 10.1038/s44324-025-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
The nutrient-sensitive protein kinases AMPK and mTORC1 form a fundamental negative feedback loop that governs cell growth and proliferation. mTORC1 phosphorylates α2-S345 in the AMPK αβγ heterotrimer to suppress its activity and promote cell proliferation under nutrient stress conditions. Whether AMPK contains other functional mTORC1 substrates is unknown. Using mass spectrometry, we generated precise stoichiometry profiles of phosphorylation sites across all twelve AMPK complexes expressed in proliferating human cells and identified seven sites displaying sensitivity to pharmacological mTORC1 inhibition. These included the abundantly phosphorylated residues β1-S182 and β2-S184, which were confirmed as mTORC1 substrates on purified AMPK, and four residues in the unique γ2 N-terminal extension. β-S182/184 phosphorylation was elevated in α1-containing complexes relative to α2, an effect attributed to the α-subunit serine/threonine-rich loop. Mutation of β1-S182 to non-phosphorylatable Ala had no effect on basal and ligand-stimulated AMPK activity; however, β2-S184A mutation increased nuclear AMPK activity, enhanced cell proliferation under nutrient stress and altered expression of genes implicated in glucose metabolism and Akt signalling. Our results indicate that mTORC1 directly or indirectly phosphorylates multiple AMPK residues that may contribute to metabolic rewiring in cancerous cells.
Collapse
Affiliation(s)
- William J. Smiles
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Ashley J. Ovens
- Protein Engineering in Immunity and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Dingyi Yu
- Protein Chemistry and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Naomi X. Y. Ling
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | | | - Kaitlin R. Morrison
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
| | - Emmanuel O. Murphy
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Astrid Glaser
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Sophie F. Monks O’Byrne
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Scott Taylor
- Cancer and RNA Biology, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Alistair M. Chalk
- Cancer and RNA Biology, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Carl R. Walkley
- Cancer and RNA Biology, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
| | - Luke M. McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052 Australia
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000 Australia
| | - John W. Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052 Australia
- The Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3052 Australia
| | - Bruce E. Kemp
- Protein Chemistry and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000 Australia
| | - Ashfaqul Hoque
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Christopher G. Langendorf
- Protein Engineering in Immunity and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
| | - Sandra Galic
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000 Australia
| |
Collapse
|
11
|
Murach KA, Bagley JR. A primer on global molecular responses to exercise in skeletal muscle: Omics in focus. JOURNAL OF SPORT AND HEALTH SCIENCE 2025:101029. [PMID: 39961420 DOI: 10.1016/j.jshs.2025.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
Advances in skeletal muscle omics has expanded our understanding of exercise-induced adaptations at the molecular level. Over the past 2 decades, transcriptome studies in muscle have detailed acute and chronic responses to resistance, endurance, and concurrent exercise, focusing on variables such as training status, nutrition, age, sex, and metabolic health profile. Multi-omics approaches, such as the integration of transcriptomic and epigenetic data, along with emerging ribosomal RNA sequencing advancements, have further provided insights into how skeletal muscle adapts to exercise across the lifespan. Downstream of the transcriptome, proteomic and phosphoproteomic studies have identified novel regulators of exercise adaptations, while single-cell/nucleus and spatial sequencing technologies promise to evolve our understanding of cellular specialization and communication in and around skeletal muscle cells. This narrative review highlights (a) the historical foundations of exercise omics in skeletal muscle, (b) current research at 3 layers of the omics cascade (DNA, RNA, and protein), and (c) applications of single-cell omics and spatial sequencing technologies to study skeletal muscle adaptation to exercise. Further elaboration of muscle's global molecular footprint using multi-omics methods will help researchers and practitioners develop more effective and targeted approaches to improve skeletal muscle health as well as athletic performance.
Collapse
Affiliation(s)
- Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR 72701, USA.
| | - James R Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, College of Health and Social Sciences, San Francisco State University, San Francisco, CA 94132, USA.
| |
Collapse
|
12
|
Miranda-Cervantes A, Fritzen AM, Raun SH, Hodek O, Møller LLV, Johann K, Deisen L, Gregorevic P, Gudiksen A, Artati A, Adamski J, Andersen NR, Sigvardsen CM, Carl CS, Voldstedlund CT, Kjøbsted R, Hauck SM, Schjerling P, Jensen TE, Cebrian-Serrano A, Jähnert M, Gottmann P, Burtscher I, Lickert H, Pilegaard H, Schürmann A, Tschöp MH, Moritz T, Müller TD, Sylow L, Kiens B, Richter EA, Kleinert M. Pantothenate kinase 4 controls skeletal muscle substrate metabolism. Nat Commun 2025; 16:345. [PMID: 39746949 PMCID: PMC11695632 DOI: 10.1038/s41467-024-55036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Metabolic flexibility in skeletal muscle is essential for maintaining healthy glucose and lipid metabolism, and its dysfunction is closely linked to metabolic diseases. Exercise enhances metabolic flexibility, making it an important tool for discovering mechanisms that promote metabolic health. Here we show that pantothenate kinase 4 (PanK4) is a new conserved exercise target with high abundance in muscle. Muscle-specific deletion of PanK4 impairs fatty acid oxidation which is related to higher intramuscular acetyl-CoA and malonyl-CoA levels. Elevated acetyl-CoA levels persist regardless of feeding state and are associated with whole-body glucose intolerance, reduced insulin-stimulated glucose uptake in glycolytic muscle, and impaired glucose uptake during exercise. Conversely, increasing PanK4 levels in glycolytic muscle lowers acetyl-CoA and enhances glucose uptake. Our findings highlight PanK4 as an important regulator of acetyl-CoA levels, playing a key role in both muscle lipid and glucose metabolism.
Collapse
Affiliation(s)
- Adriana Miranda-Cervantes
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Andreas M Fritzen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steffen H Raun
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ondřej Hodek
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Swedish Metabolomics Centre, Umeå, Sweden
| | - Lisbeth L V Møller
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kornelia Johann
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Luisa Deisen
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
| | - Paul Gregorevic
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Vic, Australia
- Centre for Muscle Research, University of Melbourne, Melbourne, Vic, Australia
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anna Artati
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Nicoline R Andersen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Casper M Sigvardsen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), Munich, Germany
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, Germany
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg-Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Cebrian-Serrano
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Jähnert
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Pascal Gottmann
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Ingo Burtscher
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timo D Müller
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian University Munich (LMU), Munich, Germany
| | - Lykke Sylow
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
- University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany.
| |
Collapse
|
13
|
Çığırtaş R, Bulgay C, Kazan HH, Akman O, Sporiš G, John G, Yusupov RA, Sultanov RI, Zhelankin AV, Semenova EA, Larin AK, Kulemin NA, Generozov EV, Jurko D, Ahmetov II. The ARK2N ( C18ORF25) Genetic Variant Is Associated with Muscle Fiber Size and Strength Athlete Status. Metabolites 2024; 14:684. [PMID: 39728465 DOI: 10.3390/metabo14120684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Data on the genetic factors contributing to inter-individual variability in muscle fiber size are limited. Recent research has demonstrated that mice lacking the Arkadia (RNF111) N-terminal-like PKA signaling regulator 2N (Ark2n; also known as C18orf25) gene exhibit reduced muscle fiber size, contraction force, and exercise capacity, along with defects in calcium handling within fast-twitch muscle fibers. However, the role of the ARK2N gene in human muscle physiology, and particularly in athletic populations, remains poorly understood. The aim of this study was threefold: (a) to compare ARK2N gene expression between power and endurance athletes; (b) to analyze the relationship between ARK2N gene expression and muscle fiber composition; and (c) to investigate the association between the functional variant of the ARK2N gene, muscle fiber size, and sport-related phenotypes. RESULTS We found that ARK2N gene expression was significantly higher in power athletes compared to endurance athletes (p = 0.042) and was positively associated with the proportion of oxidative fast-twitch (type IIA) muscle fibers in untrained subjects (p = 0.017, adjusted for age and sex). Additionally, we observed that the ARK2N rs6507691 T allele, which predicts high ARK2N gene expression (p = 3.8 × 10-12), was associated with a greater cross-sectional area of fast-twitch muscle fibers in strength athletes (p = 0.015) and was over-represented in world-class strength athletes (38.6%; OR = 2.2, p = 0.023) and wrestlers (33.8%; OR = 1.8, p = 0.044) compared to controls (22.0%). CONCLUSIONS In conclusion, ARK2N appears to be a gene specific to oxidative fast-twitch myofibers, with its functional variant being associated with muscle fiber size and strength-athlete status.
Collapse
Affiliation(s)
- Rukiye Çığırtaş
- Faculty of Sports Sciences, Bingol University, 12000 Bingol, Türkiye
| | - Celal Bulgay
- Faculty of Sports Sciences, Bingol University, 12000 Bingol, Türkiye
| | - Hasan Hüseyin Kazan
- Department of Medical Biology, Gulhane Faculty of Medicine, University of Health Sciences, 06018 Ankara, Türkiye
| | - Onur Akman
- Faculty of Sports Sciences, Bayburt University, 69000 Bayburt, Türkiye
| | - Goran Sporiš
- Department of General and Applied Kinesiology, Faculty of Kinesiology, Zagreb University, 10110 Zagreb, Croatia
| | - George John
- Transform Specialist Medical Centre, Dubai 119190, United Arab Emirates
| | - Rinat A Yusupov
- Department of Physical Culture and Sport, Kazan National Research Technical University named after A.N. Tupolev-KAI, 420111 Kazan, Russia
| | - Rinat I Sultanov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Andrey V Zhelankin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Nikolay A Kulemin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Damir Jurko
- Department of General and Applied Kinesiology, Faculty of Kinesiology, Zagreb University, 10110 Zagreb, Croatia
| | - Ildus I Ahmetov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St Petersburg, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
14
|
Needham EJ, Hingst JR, Onslev JD, Diaz-Vegas A, Leandersson MR, Huckstep H, Kristensen JM, Kido K, Richter EA, Højlund K, Parker BL, Cooke K, Yang G, Pehmøller C, Humphrey SJ, James DE, Wojtaszewski JFP. Personalized phosphoproteomics of skeletal muscle insulin resistance and exercise links MINDY1 to insulin action. Cell Metab 2024; 36:2542-2559.e6. [PMID: 39577414 DOI: 10.1016/j.cmet.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/05/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Type 2 diabetes is preceded by a defective insulin response, yet our knowledge of the precise mechanisms is incomplete. Here, we investigate how insulin resistance alters skeletal muscle signaling and how exercise partially counteracts this effect. We measured parallel phenotypes and phosphoproteomes of insulin-resistant (IR) and insulin-sensitive (IS) men as they responded to exercise and insulin (n = 19, 114 biopsies), quantifying over 12,000 phosphopeptides in each biopsy. Insulin resistance involves selective and time-dependent alterations to signaling, including reduced insulin-stimulated mTORC1 and non-canonical signaling responses. Prior exercise promotes insulin sensitivity even in IR individuals by "priming" a portion of insulin signaling prior to insulin infusion. This includes MINDY1 S441, which we show is an AKT substrate. We found that MINDY1 knockdown enhances insulin-stimulated glucose uptake in rat myotubes. This work delineates the signaling alterations in IR skeletal muscle and identifies MINDY1 as a regulator of insulin action.
Collapse
Affiliation(s)
- Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johan D Onslev
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Alexis Diaz-Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Magnus R Leandersson
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Hannah Huckstep
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Jonas M Kristensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kohei Kido
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Kristen Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Guang Yang
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, MA, USA
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Lord S, Johnston H, Samant R, Lai Y. Ubiquitylomics: An Emerging Approach for Profiling Protein Ubiquitylation in Skeletal Muscle. J Cachexia Sarcopenia Muscle 2024; 15:2281-2294. [PMID: 39279720 PMCID: PMC11634490 DOI: 10.1002/jcsm.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Skeletal muscle is a highly adaptable tissue, finely tuned by various physiological and pathological factors. Whilst the pivotal role of skeletal muscle in overall health is widely acknowledged, unravelling the underlying molecular mechanisms poses ongoing challenges. Protein ubiquitylation, a crucial post-translational modification, is involved in regulating most biological processes. This widespread impact is achieved through a diverse set of enzymes capable of generating structurally and functionally distinct ubiquitin modifications on proteins. The complexity of protein ubiquitylation has presented significant challenges in not only identifying ubiquitylated proteins but also characterising their functional significance. Mass spectrometry enables in-depth analysis of proteins and their post-translational modification status, offering a powerful tool for studying protein ubiquitylation and its biological diversity: an approach termed ubiquitylomics. Ubiquitylomics has been employed to tackle different perspectives of ubiquitylation, including but not limited to global quantification of substrates and ubiquitin linkages, ubiquitin site recognition and crosstalk with other post-translational modifications. As the field of mass spectrometry continues to evolve, the usage of ubiquitylomics has unravelled novel insights into the regulatory mechanisms of protein ubiquitylation governing biology. However, ubiquitylomics research has predominantly been conducted in cellular models, limiting our understanding of ubiquitin signalling events driving skeletal muscle biology. By integrating the intricate landscape of protein ubiquitylation with dynamic shifts in muscle physiology, ubiquitylomics promises to not only deepen our understanding of skeletal muscle biology but also lay the foundation for developing transformative muscle-related therapeutics. This review aims to articulate how ubiquitylomics can be utilised by researchers to address different aspects of ubiquitylation signalling in skeletal muscle. We explore methods used in ubiquitylomics experiments, highlight relevant literature employing ubiquitylomics in the context of skeletal muscle and outline considerations for experimental design.
Collapse
Affiliation(s)
- Samuel O. Lord
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | | | | | - Yu‐Chiang Lai
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamBirminghamUK
- NIHR Birmingham Biomedical Research Centre Sarcopenia and MultimorbidityUniversity of BirminghamBirminghamUK
| |
Collapse
|
16
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 PMCID: PMC11752127 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
17
|
Smiles WJ, Ovens AJ, Kemp BE, Galic S, Petersen J, Oakhill JS. New developments in AMPK and mTORC1 cross-talk. Essays Biochem 2024; 68:321-336. [PMID: 38994736 PMCID: PMC12055038 DOI: 10.1042/ebc20240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Metabolic homeostasis and the ability to link energy supply to demand are essential requirements for all living cells to grow and proliferate. Key to metabolic homeostasis in all eukaryotes are AMPK and mTORC1, two kinases that sense nutrient levels and function as counteracting regulators of catabolism (AMPK) and anabolism (mTORC1) to control cell survival, growth and proliferation. Discoveries beginning in the early 2000s revealed that AMPK and mTORC1 communicate, or cross-talk, through direct and indirect phosphorylation events to regulate the activities of each other and their shared protein substrate ULK1, the master initiator of autophagy, thereby allowing cellular metabolism to rapidly adapt to energy and nutritional state. More recent reports describe divergent mechanisms of AMPK/mTORC1 cross-talk and the elaborate means by which AMPK and mTORC1 are activated at the lysosome. Here, we provide a comprehensive overview of current understanding in this exciting area and comment on new evidence showing mTORC1 feedback extends to the level of the AMPK isoform, which is particularly pertinent for some cancers where specific AMPK isoforms are implicated in disease pathogenesis.
Collapse
Affiliation(s)
- William J Smiles
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Ashley J Ovens
- Protein Engineering in Immunity and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Fitzroy, Vic 3065, Vic. Australia
| | - Sandra Galic
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Metabolic Physiology, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Nutrition and Metabolism, South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
18
|
Rider MH, Vertommen D, Johanns M. How mass spectrometry can be exploited to study AMPK. Essays Biochem 2024; 68:283-294. [PMID: 39056150 DOI: 10.1042/ebc20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of metabolism and a recognised target for the treatment of metabolic diseases such as Type 2 diabetes (T2D). Here, we review how mass spectrometry (MS) can be used to study short-term control by AMPK via protein phosphorylation and long-term control due to changes in protein expression. We discuss how MS can quantify AMPK subunit levels in tissues from different species. We propose hydrogen-deuterium exchange (HDX)-MS to investigate molecular mechanisms of AMPK activation and thermoproteomic profiling (TPP) to assess off-target effects of pharmacological AMPK activators/inhibitors. Lastly, because large MS data sets are generated, we consider different approaches that can be used for their interpretation.
Collapse
Affiliation(s)
- Mark H Rider
- Protein Phosphorylation (PHOS) laboratory, Université catholique de Louvain and de Duve Institute, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Didier Vertommen
- Protein Phosphorylation (PHOS) laboratory, Université catholique de Louvain and de Duve Institute, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Manuel Johanns
- Protein Phosphorylation (PHOS) laboratory, Université catholique de Louvain and de Duve Institute, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| |
Collapse
|
19
|
Gutierrez CS, Kassim AA, Gutierrez BD, Raines RT. Sitetack: a deep learning model that improves PTM prediction by using known PTMs. Bioinformatics 2024; 40:btae602. [PMID: 39388212 PMCID: PMC11552626 DOI: 10.1093/bioinformatics/btae602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024] Open
Abstract
MOTIVATION Post-translational modifications (PTMs) increase the diversity of the proteome and are vital to organismal life and therapeutic strategies. Deep learning has been used to predict PTM locations. Still, limitations in datasets and their analyses compromise success. RESULTS We evaluated the use of known PTM sites in prediction via sequence-based deep learning algorithms. For each PTM, known locations of that PTM were encoded as a separate amino acid before sequences were encoded via word embedding and passed into a convolutional neural network that predicts the probability of that PTM at a given site. Without labeling known PTMs, our models are on par with others. With labeling, however, we improved significantly upon extant models. Moreover, knowing PTM locations can increase the predictability of a different PTM. Our findings highlight the importance of PTMs for the installation of additional PTMs. We anticipate that including known PTM locations will enhance the performance of other proteomic machine learning algorithms. AVAILABILITY AND IMPLEMENTATION Sitetack is available as a web tool at https://sitetack.net; the source code, representative datasets, instructions for local use, and select models are available at https://github.com/clair-gutierrez/sitetack.
Collapse
Affiliation(s)
- Clair S Gutierrez
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02143, United States
| | - Alia A Kassim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02143, United States
- Koch Institute for Integrated Cancer Research at MIT, Cambridge, MA 02139, United States
| |
Collapse
|
20
|
Van der Stede T, Van de Loock A, Lievens E, Yigit N, Anckaert J, Van Thienen R, Weyns A, Mestdagh P, Vandesompele J, Derave W. Transcriptomic signatures of human single skeletal muscle fibers in response to high-intensity interval exercise. Am J Physiol Cell Physiol 2024; 327:C1249-C1262. [PMID: 39316684 DOI: 10.1152/ajpcell.00299.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
The heterogeneous fiber type composition of skeletal muscle makes it challenging to decipher the molecular signaling events driving the health- and performance benefits of exercise. We developed an optimized workflow for transcriptional profiling of individual human muscle fibers before, immediately after, and after 3 h of recovery from high-intensity interval cycling exercise. From a transcriptional point-of-view, we observe that there is no dichotomy in fiber activation, which could refer to a fiber being recruited or nonrecruited. Rather, the activation pattern displays a continuum with a more uniform response within fast versus slow fibers during the recovery from exercise. The transcriptome-wide response immediately after exercise is characterized by some distinct signatures for slow versus fast fibers, although the most exercise-responsive genes are common between the two fiber types. The temporal transcriptional waves further converge the gene signatures of both fiber types toward a more similar profile during the recovery from exercise. Furthermore, a large heterogeneity among all resting and exercised fibers was observed, with the principal drivers being independent of a slow/fast typology. This profound heterogeneity extends to distinct exercise responses of fibers beyond a classification based on myosin heavy chains. Collectively, our single-fiber methodological approach points to a substantial between-fiber diversity in muscle fiber responses to high-intensity interval exercise.NEW & NOTEWORTHY By development of a single-fiber transcriptomics technology, we assessed the transcriptional events in individual human skeletal muscle fibers upon high-intensity exercise. We demonstrate a large variability in transcriptional activation of fibers, with shared and distinct gene signatures for slow and fast fibers. The heterogeneous fiber-specific exercise response extends beyond this traditional slow/fast categorization. These findings expand on our understanding of exercise responses and uncover a profound between-fiber diversity in muscle fiber activation and transcriptional perturbations.
Collapse
Affiliation(s)
- Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Alexia Van de Loock
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Nurten Yigit
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ruud Van Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Anneleen Weyns
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Masson SWC, Cutler HB, James DE. Unlocking metabolic insights with mouse genetic diversity. EMBO J 2024; 43:4814-4821. [PMID: 39284908 PMCID: PMC11535531 DOI: 10.1038/s44318-024-00221-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 11/06/2024] Open
Abstract
As part of EMBO Journal’s 2024 metabolism methods series, this commentary revisits the impact of genetics on metabolic studies, enabling dissection of novel mechanisms and phenotypes.
Collapse
Affiliation(s)
- Stewart W C Masson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Harry B Cutler
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - David E James
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Thomas ACQ, Stead CA, Burniston JG, Phillips SM. Exercise-specific adaptations in human skeletal muscle: Molecular mechanisms of making muscles fit and mighty. Free Radic Biol Med 2024; 223:341-356. [PMID: 39147070 DOI: 10.1016/j.freeradbiomed.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The mechanisms leading to a predominantly hypertrophied phenotype versus a predominantly oxidative phenotype, the hallmarks of resistance training (RT) or aerobic training (AT), respectively, are being unraveled. In humans, exposure of naïve persons to either AT or RT results in their skeletal muscle exhibiting generic 'exercise stress-related' signaling, transcription, and translation responses. However, with increasing engagement in AT or RT, the responses become refined, and the phenotype typically associated with each form of exercise emerges. Here, we review some of the mechanisms underpinning the adaptations of how muscles become, through AT, 'fit' and RT, 'mighty.' Much of our understanding of molecular exercise physiology has arisen from targeted analysis of post-translational modifications and measures of protein synthesis. Phosphorylation of specific residue sites has been a dominant focus, with canonical signaling pathways (AMPK and mTOR) studied extensively in the context of AT and RT, respectively. These alone, along with protein synthesis, have only begun to elucidate key differences in AT and RT signaling. Still, key yet uncharacterized differences exist in signaling and regulation of protein synthesis that drive unique adaptation to AT and RT. Omic studies are required to better understand the divergent relationship between exercise and phenotypic outcomes of training.
Collapse
Affiliation(s)
- Aaron C Q Thomas
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada; Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Stuart M Phillips
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
23
|
Wang Z, Yu H, Bao W, Qu M, Wang Y, Zhang L, Liu X, Liu C, He M, Li J, Dong Z, Zhang Y, Yang B, Hou J, Xu C, Wang L, Li X, Gao X, Yang C. Proteomic and phosphoproteomic landscape of localized prostate cancer unveils distinct molecular subtypes and insights into precision therapeutics. Proc Natl Acad Sci U S A 2024; 121:e2402741121. [PMID: 39320917 PMCID: PMC11459144 DOI: 10.1073/pnas.2402741121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Building upon our previous investigation of genomic, epigenomic, and transcriptomic profiles of prostate cancer in China, we conducted a comprehensive analysis of proteomic and phosphoproteomic profiles of 82 tumor tissues and matched adjacent normal tissues from 41 Chinese patients with localized prostate cancer. We identified three distinct proteomic subtypes with significant difference in both molecular features and clinical prognosis. Notably, these proteomic subtypes exhibited a parallel degree of heterogeneity in the phosphoproteome, featuring unique metabolism, proliferation, and immune infiltration characteristics. We further demonstrated that a combination of proteins and phosphosites serves as the most effective biomarkers in prostate cancer to predict biochemical recurrence. Through an integrated multiomics analysis, we revealed mechanistic differences underlying different proteomic subtypes and highlighted the potential significance of Serine/arginine-rich splicing factor 1 (SRSF1) phosphorylation in promoting the malignant characteristics of prostate cancer cells. Our multiomics data provide valuable resources for understanding the molecular mechanisms of prostate cancer within the Chinese population, which have the potential to inform the development of personalized treatment strategies and enhance prognostic analyses for prostate cancer patients.
Collapse
Affiliation(s)
- Zengming Wang
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Wei Bao
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Min Qu
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Yan Wang
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Liandong Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Xubing Liu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Chen Liu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Miaoxia He
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai200433, China
| | - Jing Li
- Center for Translational Medicine, Second Military Medical University (Naval Medical University), Shanghai200433, China
| | - Zhenyang Dong
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
| | - Yun Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
| | - Bo Yang
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Jianguo Hou
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Xin Li
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| |
Collapse
|
24
|
Furrer R, Handschin C. Molecular aspects of the exercise response and training adaptation in skeletal muscle. Free Radic Biol Med 2024; 223:53-68. [PMID: 39059515 PMCID: PMC7617583 DOI: 10.1016/j.freeradbiomed.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Skeletal muscle plasticity enables an enormous potential to adapt to various internal and external stimuli and perturbations. Most notably, changes in contractile activity evoke a massive remodeling of biochemical, metabolic and force-generating properties. In recent years, a large number of signals, sensors, regulators and effectors have been implicated in these adaptive processes. Nevertheless, our understanding of the molecular underpinnings of training adaptation remains rudimentary. Specifically, the mechanisms that underlie signal integration, output coordination, functional redundancy and other complex traits of muscle adaptation are unknown. In fact, it is even unclear how stimulus-dependent specification is brought about in endurance or resistance exercise. In this review, we will provide an overview on the events that describe the acute perturbations in single endurance and resistance exercise bouts. Furthermore, we will provide insights into the molecular principles of long-term training adaptation. Finally, current gaps in knowledge will be identified, and strategies for a multi-omic and -cellular analyses of the molecular mechanisms of skeletal muscle plasticity that are engaged in individual, acute exercise bouts and chronic training adaptation discussed.
Collapse
Affiliation(s)
- Regula Furrer
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| | - Christoph Handschin
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| |
Collapse
|
25
|
Vantaggiato L, Landi C, Shaba E, Rossi D, Sorrentino V, Bini L. Protein Extraction Methods Suitable for Muscle Tissue Proteomic Analysis. Proteomes 2024; 12:27. [PMID: 39449499 PMCID: PMC11503273 DOI: 10.3390/proteomes12040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Muscle tissue is one of the most dynamic and plastic tissues of the mammalian body and covers different roles, such as force generation and metabolic control. Muscular proteomics provides an important opportunity to reveal the molecular mechanisms behind muscle pathophysiology. To ensure successful proteomic analysis, it is necessary to have an efficient and reproducible protein extraction method. This study aimed to evaluate the efficacy of two different extraction protocols of muscle samples for two-dimensional gel electrophoresis. In particular, mouse muscle proteins were extracted by an SDS-based buffer (Method A) and by a UREA/CHAPS/DTE/TRIS solution (Method B). The efficacies of the methods were assessed by performing an image analysis of the 2DE gels and by statistical and multivariate analyses. The 2DE gels in both preparations showed good resolution and good spot overlapping. Methods A and B produced 2DE gels with different means of total spots, higher for B. Image analysis showed different patterns of protein abundance between the protocols. The results showed that the two methods extract and solubilize proteins with different chemical-physical characteristics and different cellular localizations. These results attest the efficacy and reproducibility of both protein extraction methods, which can be parallelly applied for comprehensive proteomic profiling of muscle tissue.
Collapse
Affiliation(s)
- Lorenza Vantaggiato
- Functional Proteomics Lab., Department Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.V.); (E.S.); (L.B.)
| | - Claudia Landi
- Functional Proteomics Lab., Department Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.V.); (E.S.); (L.B.)
| | - Enxhi Shaba
- Functional Proteomics Lab., Department Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.V.); (E.S.); (L.B.)
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (D.R.); (V.S.)
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (D.R.); (V.S.)
| | - Luca Bini
- Functional Proteomics Lab., Department Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.V.); (E.S.); (L.B.)
| |
Collapse
|
26
|
Chen Y, Zhang Y, Jin X, Hong S, Tian H. Exerkines: Benign adaptation for exercise and benefits for non-alcoholic fatty liver disease. Biochem Biophys Res Commun 2024; 726:150305. [PMID: 38917635 DOI: 10.1016/j.bbrc.2024.150305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Exercise has multiple beneficial effects on human metabolic health and is regarded as a "polypill" for various diseases. At present, the lack of physical activity usually causes an epidemic of chronic metabolic syndromes, including obesity, cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Remarkably, NAFLD is emerging as a serious public health issue and is associated with the development of cirrhosis and hepatocellular carcinoma. Unfortunately, specific drug therapies for NAFLD and its more severe form, non-alcoholic steatohepatitis (NASH), are currently unavailable. Lifestyle modification is the foundation of treatment recommendations for NAFLD and NASH, especially for exercise. There are under-appreciated organs that crosstalk to the liver during exercise such as muscle-liver crosstalk. Previous studies have reported that certain exerkines, such as FGF21, GDF15, irisin, and adiponectin, are beneficial for liver metabolism and have the potential to be targeted for NAFLD treatment. In addition, some of exerkines can be modified for the new proteins and get enhanced functions, like IL-6/IC7Fc. Another importance of exercise is the physiological adaptation that combats metabolic diseases. Thus, this review aims to summarize the known exerkines and utilize a multi-omics mining tool to identify more exerkines for the future research. Overall, understanding the mechanisms by which exercise-induced exerkines exert their beneficial effects on metabolic health holds promise for the development of novel therapeutic strategies for NAFLD and related diseases.
Collapse
Affiliation(s)
- Yang Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yan Zhang
- Clinical Laboratory, Suzhou Yong Ding Hospital, Suzhou, 215200, China
| | - Xingsheng Jin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
27
|
Achter JS, Vega ET, Sorrentino A, Kahnert K, Galsgaard KD, Hernandez-Varas P, Wierer M, Holst JJ, Wojtaszewski JFP, Mills RW, Kjøbsted R, Lundby A. In-depth phosphoproteomic profiling of the insulin signaling response in heart tissue and cardiomyocytes unveils canonical and specialized regulation. Cardiovasc Diabetol 2024; 23:258. [PMID: 39026321 PMCID: PMC11264841 DOI: 10.1186/s12933-024-02338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Insulin signaling regulates cardiac substrate utilization and is implicated in physiological adaptations of the heart. Alterations in the signaling response within the heart are believed to contribute to pathological conditions such as type-2 diabetes and heart failure. While extensively investigated in several metabolic organs using phosphoproteomic strategies, the signaling response elicited in cardiac tissue in general, and specifically in the specialized cardiomyocytes, has not yet been investigated to the same extent. METHODS Insulin or vehicle was administered to male C57BL6/JRj mice via intravenous injection into the vena cava. Ventricular tissue was extracted and subjected to quantitative phosphoproteomics analysis to evaluate the insulin signaling response. To delineate the cardiomyocyte-specific response and investigate the role of Tbc1d4 in insulin signal transduction, cardiomyocytes from the hearts of cardiac and skeletal muscle-specific Tbc1d4 knockout mice, as well as from wildtype littermates, were studied. The phosphoproteomic studies involved isobaric peptide labeling with Tandem Mass Tags (TMT), enrichment for phosphorylated peptides, fractionation via micro-flow reversed-phase liquid chromatography, and high-resolution mass spectrometry measurements. RESULTS We quantified 10,399 phosphorylated peptides from ventricular tissue and 12,739 from isolated cardiomyocytes, localizing to 3,232 and 3,128 unique proteins, respectively. In cardiac tissue, we identified 84 insulin-regulated phosphorylation events, including sites on the Insulin Receptor (InsrY1351, Y1175, Y1179, Y1180) itself as well as the Insulin receptor substrate protein 1 (Irs1S522, S526). Predicted kinases with increased activity in response to insulin stimulation included Rps6kb1, Akt1 and Mtor. Tbc1d4 emerged as a major phosphorylation target in cardiomyocytes. Despite limited impact on the global phosphorylation landscape, Tbc1d4 deficiency in cardiomyocytes attenuated insulin-induced Glut4 translocation and induced protein remodeling. We observed 15 proteins significantly regulated upon knockout of Tbc1d4. While Glut4 exhibited decreased protein abundance consequent to Tbc1d4-deficiency, Txnip levels were notably increased. Stimulation of wildtype cardiomyocytes with insulin led to the regulation of 262 significant phosphorylation events, predicted to be regulated by kinases such as Akt1, Mtor, Akt2, and Insr. In cardiomyocytes, the canonical insulin signaling response is elicited in addition to regulation on specialized cardiomyocyte proteins, such as Kcnj11Y12 and DspS2597. Details of all phosphorylation sites are provided. CONCLUSION We present a first global outline of the insulin-induced phosphorylation signaling response in heart tissue and in isolated adult cardiomyocytes, detailing the specific residues with changed phosphorylation abundances. Our study marks an important step towards understanding the role of insulin signaling in cardiac diseases linked to insulin resistance.
Collapse
Affiliation(s)
- Jonathan Samuel Achter
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Estefania Torres Vega
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Kahnert
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Douglas Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Hernandez-Varas
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Wierer
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Frank Pind Wojtaszewski
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Robert William Mills
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
28
|
Cao H, Li C, Sun X, Yang J, Li X, Yang G, Jin J, Shi X. Circular RNA circMYLK4 shifts energy metabolism from glycolysis to OXPHOS by binding to the calcium channel auxiliary subunit CACNA2D2. J Biol Chem 2024; 300:107426. [PMID: 38823637 PMCID: PMC11245919 DOI: 10.1016/j.jbc.2024.107426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Skeletal muscle is heterogeneous tissue, composed of fast-twitch fibers primarily relying on glycolysis and slow-twitch fibers primarily relying on oxidative phosphorylation. The relative expression and balance of glycolysis and oxidative phosphorylation in skeletal muscle are crucial for muscle growth and skeletal muscle metabolism. Here, we employed multi-omics approaches including transcriptomics, proteomics, phosphoproteomics, and metabolomics to unravel the role of circMYLK4, a differentially expressed circRNA in fast and slow-twitch muscle fibers, in muscle fiber metabolism. We discovered that circMYLK4 inhibits glycolysis and promotes mitochondrial oxidative phosphorylation. Mechanistically, circMYLK4 interacts with the voltage-gated calcium channel auxiliary subunit CACNA2D2, leading to the inhibition of Ca2+ release from the sarcoplasmic reticulum. The decrease in cytoplasmic Ca2+ concentration inhibits the expression of key enzymes, PHKB and PHKG1, involved in glycogen breakdown, thereby suppressing glycolysis. On the other hand, the increased fatty acid β-oxidation enhances the tricarboxylic acid cycle and mitochondrial oxidative phosphorylation. In general, circMYLK4 plays an indispensable role in maintaining the metabolic homeostasis of skeletal muscle.
Collapse
Affiliation(s)
- Haigang Cao
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chenchen Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaohui Sun
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinjin Yang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xine Shi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
29
|
Luo Y, Li J, Li X, Lin H, Mao Z, Xu Z, Li S, Nie C, Zhou XA, Liao J, Xiong Y, Xu X, Wang J. The ARK2N-CK2 complex initiates transcription-coupled repair through enhancing the interaction of CSB with lesion-stalled RNAPII. Proc Natl Acad Sci U S A 2024; 121:e2404383121. [PMID: 38843184 PMCID: PMC11181095 DOI: 10.1073/pnas.2404383121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/08/2024] [Indexed: 06/19/2024] Open
Abstract
Transcription is extremely important for cellular processes but can be hindered by RNA polymerase II (RNAPII) pausing and stalling. Cockayne syndrome protein B (CSB) promotes the progression of paused RNAPII or initiates transcription-coupled nucleotide excision repair (TC-NER) to remove stalled RNAPII. However, the specific mechanism by which CSB initiates TC-NER upon damage remains unclear. In this study, we identified the indispensable role of the ARK2N-CK2 complex in the CSB-mediated initiation of TC-NER. The ARK2N-CK2 complex is recruited to damage sites through CSB and then phosphorylates CSB. Phosphorylation of CSB enhances its binding to stalled RNAPII, prolonging the association of CSB with chromatin and promoting CSA-mediated ubiquitination of stalled RNAPII. Consistent with this finding, Ark2n-/- mice exhibit a phenotype resembling Cockayne syndrome. These findings shed light on the pivotal role of the ARK2N-CK2 complex in governing the fate of RNAPII through CSB, bridging a critical gap necessary for initiating TC-NER.
Collapse
Affiliation(s)
- Yefei Luo
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Jia Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Haodong Lin
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Zuchao Mao
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Zhanzhan Xu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Shiwei Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Chen Nie
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Xiao Albert Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Junwei Liao
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Yundong Xiong
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen518055, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
- Department of Gastrointestinal Translational Research, Peking University Cancer Hospital, Beijing100142, China
| |
Collapse
|
30
|
Wong JPH, Blazev R, Ng YK, Goodman CA, Montgomery MK, Watt KI, Carl CS, Watt MJ, Voldstedlund CT, Richter EA, Crouch PJ, Steyn FJ, Ngo ST, Parker BL. Characterization of the skeletal muscle arginine methylome in health and disease reveals remodeling in amyotrophic lateral sclerosis. FASEB J 2024; 38:e23647. [PMID: 38787599 DOI: 10.1096/fj.202400045r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.
Collapse
Affiliation(s)
- Julian P H Wong
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yaan-Kit Ng
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin I Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Peter J Crouch
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Shyuan T Ngo
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Reisman EG, Hawley JA, Hoffman NJ. Exercise-Regulated Mitochondrial and Nuclear Signalling Networks in Skeletal Muscle. Sports Med 2024; 54:1097-1119. [PMID: 38528308 PMCID: PMC11127882 DOI: 10.1007/s40279-024-02007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/27/2024]
Abstract
Exercise perturbs energy homeostasis in skeletal muscle and engages integrated cellular signalling networks to help meet the contraction-induced increases in skeletal muscle energy and oxygen demand. Investigating exercise-associated perturbations in skeletal muscle signalling networks has uncovered novel mechanisms by which exercise stimulates skeletal muscle mitochondrial biogenesis and promotes whole-body health and fitness. While acute exercise regulates a complex network of protein post-translational modifications (e.g. phosphorylation) in skeletal muscle, previous investigations of exercise signalling in human and rodent skeletal muscle have primarily focused on a select group of exercise-regulated protein kinases [i.e. 5' adenosine monophosphate-activated protein kinase (AMPK), protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase (CaMK) and mitogen-activated protein kinase (MAPK)] and only a small subset of their respective protein substrates. Recently, global mass spectrometry-based phosphoproteomic approaches have helped unravel the extensive complexity and interconnection of exercise signalling pathways and kinases beyond this select group and phosphorylation and/or translocation of exercise-regulated mitochondrial and nuclear protein substrates. This review provides an overview of recent advances in our understanding of the molecular events associated with acute endurance exercise-regulated signalling pathways and kinases in skeletal muscle with a focus on phosphorylation. We critically appraise recent evidence highlighting the involvement of mitochondrial and nuclear protein phosphorylation and/or translocation in skeletal muscle adaptive responses to an acute bout of endurance exercise that ultimately stimulate mitochondrial biogenesis and contribute to exercise's wider health and fitness benefits.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
32
|
Ng YK, Blazev R, McNamara JW, Dutt M, Molendijk J, Porrello ER, Elliott DA, Parker BL. Affinity Purification-Mass Spectrometry and Single Fiber Physiology/Proteomics Reveals Mechanistic Insights of C18ORF25. J Proteome Res 2024; 23:1285-1297. [PMID: 38480473 DOI: 10.1021/acs.jproteome.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
C18ORF25 was recently shown to be phosphorylated at S67 by AMP-activated protein kinase (AMPK) in the skeletal muscle, following acute exercise in humans. Phosphorylation was shown to improve the ex vivo skeletal muscle contractile function in mice, but our understanding of the molecular mechanisms is incomplete. Here, we profiled the interactome of C18ORF25 in mouse myotubes using affinity purification coupled to mass spectrometry. This analysis included an investigation of AMPK-dependent and S67-dependent protein/protein interactions. Several nucleocytoplasmic and contractile-associated proteins were identified, which revealed a subset of GTPases that associate with C18ORF25 in an AMPK- and S67 phosphorylation-dependent manner. We confirmed that C18ORF25 is localized to the nucleus and the contractile apparatus in the skeletal muscle. Mice lacking C18Orf25 display defects in calcium handling specifically in fast-twitch muscle fibers. To investigate these mechanisms, we developed an integrated single fiber physiology and single fiber proteomic platform. The approach enabled a detailed assessment of various steps in the excitation-contraction pathway including SR calcium handling and force generation, followed by paired single fiber proteomic analysis. This enabled us to identify >700 protein/phenotype associations and 36 fiber-type specific differences, following loss of C18Orf25. Taken together, our data provide unique insights into the function of C18ORF25 and its role in skeletal muscle physiology.
Collapse
Affiliation(s)
- Yaan-Kit Ng
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| | - Ronnie Blazev
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| | - James W McNamara
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
- Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, 3052 VIC, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, 3052 VIC, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052 VIC, Australia
| | - Mriga Dutt
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| | - Jeffrey Molendijk
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| | - Enzo R Porrello
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, 3052 VIC, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, 3052 VIC, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052 VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, 3010 VIC, Australia
| | - David A Elliott
- Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, 3052 VIC, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, 3052 VIC, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052 VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, 3010 VIC, Australia
| | - Benjamin L Parker
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| |
Collapse
|
33
|
Hesketh SJ. Advancing cancer cachexia diagnosis with -omics technology and exercise as molecular medicine. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:1-15. [PMID: 38463663 PMCID: PMC10918365 DOI: 10.1016/j.smhs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 03/12/2024] Open
Abstract
Muscle atrophy exacerbates disease outcomes and increases mortality, whereas the preservation of skeletal muscle mass and function play pivotal roles in ensuring long-term health and overall quality-of-life. Muscle atrophy represents a significant clinical challenge, involving the continued loss of muscle mass and strength, which frequently accompany the development of numerous types of cancer. Cancer cachexia is a highly prevalent multifactorial syndrome, and although cachexia is one of the main causes of cancer-related deaths, there are still no approved management strategies for the disease. The etiology of this condition is based on the upregulation of systemic inflammation factors and catabolic stimuli, resulting in the inhibition of protein synthesis and enhancement of protein degradation. Numerous necessary cellular processes are disrupted by cachectic pathology, which mediate intracellular signalling pathways resulting in the net loss of muscle and organelles. However, the exact underpinning molecular mechanisms of how these changes are orchestrated are incompletely understood. Much work is still required, but structured exercise has the capacity to counteract numerous detrimental effects linked to cancer cachexia. Primarily through the stimulation of muscle protein synthesis, enhancement of mitochondrial function, and the release of myokines. As a result, muscle mass and strength increase, leading to improved mobility, and quality-of-life. This review summarises existing knowledge of the complex molecular networks that regulate cancer cachexia and exercise, highlighting the molecular interplay between the two for potential therapeutic intervention. Finally, the utility of mass spectrometry-based proteomics is considered as a way of establishing early diagnostic biomarkers of cachectic patients.
Collapse
|
34
|
Botella J, Shaw CS, Bishop DJ. Autophagy and Exercise: Current Insights and Future Research Directions. Int J Sports Med 2024; 45:171-182. [PMID: 37582398 DOI: 10.1055/a-2153-9258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Autophagy is a cellular process by which proteins and organelles are degraded inside the lysosome. Exercise is known to influence the regulation of autophagy in skeletal muscle. However, as gold standard techniques to assess autophagy flux in vivo are restricted to animal research, important gaps remain in our understanding of how exercise influences autophagy activity in humans. Using available datasets, we show how the gene expression profile of autophagy receptors and ATG8 family members differ between human and mouse skeletal muscle, providing a potential explanation for their differing exercise-induced autophagy responses. Furthermore, we provide a comprehensive view of autophagy regulation following exercise in humans by summarizing human transcriptomic and phosphoproteomic datasets that provide novel targets of potential relevance. These newly identified phosphorylation sites may provide an explanation as to why both endurance and resistance exercise lead to an exercise-induced reduction in LC3B-II, while possibly divergently regulating autophagy receptors, and, potentially, autophagy flux. We also provide recommendations to use ex vivo autophagy flux assays to better understand the influence of exercise, and other stimuli, on autophagy regulation in humans. This review provides a critical overview of the field and directs researchers towards novel research areas that will improve our understanding of autophagy regulation following exercise in humans.
Collapse
Affiliation(s)
- Javier Botella
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, VIC, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| |
Collapse
|
35
|
Ashcroft SP, Stocks B, Egan B, Zierath JR. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab 2024; 36:278-300. [PMID: 38183980 DOI: 10.1016/j.cmet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
The risk associated with multiple cancers, cardiovascular disease, diabetes, and all-cause mortality is decreased in individuals who meet the current recommendations for physical activity. Therefore, regular exercise remains a cornerstone in the prevention and treatment of non-communicable diseases. An acute bout of exercise results in the coordinated interaction between multiple tissues to meet the increased energy demand of exercise. Over time, the associated metabolic stress of each individual exercise bout provides the basis for long-term adaptations across tissues, including the cardiovascular system, skeletal muscle, adipose tissue, liver, pancreas, gut, and brain. Therefore, regular exercise is associated with a plethora of benefits throughout the whole body, including improved cardiorespiratory fitness, physical function, and glycemic control. Overall, we summarize the exercise-induced adaptations that occur within multiple tissues and how they converge to ultimately improve cardiometabolic health.
Collapse
Affiliation(s)
- Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
36
|
Yoshioka S, Arakawa Y, Hasegawa M, Kato S, Hashimoto H, Mori S, Ueda H, Watanabe M. Twin study: genotype-dependent epigenetic factors affecting free thyroxine levels in the normal range. Epigenomics 2024; 16:147-158. [PMID: 38264851 DOI: 10.2217/epi-2023-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Aim: To explore the clinical application of DNA methylation affecting thyroid function, we evaluated the association of DNA methylation with free thyroxine (FT4) and TSH measurements in monozygotic twins. Materials & methods: Discordant pairs for FT4 or TSH levels were examined for the relationship between the within-pair difference of each measurement and the DNA methylation levels using epigenome-wide association studies. The contribution of polymorphisms to the methylation sensitivity was also examined. Results: We found two CpG sites significantly associated with FT4 levels, and also some CpG sites showing significant differences in their methylation levels within FT4-discordant pairs depending on the polymorphism in EPHB2. Conclusion: The FT4 level may be associated with a combination of methylation and polymorphisms in the EPHB2 gene.
Collapse
Affiliation(s)
- Saki Yoshioka
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Yuya Arakawa
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Mika Hasegawa
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Shiho Kato
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Hinako Hashimoto
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Saho Mori
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Hiromichi Ueda
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
37
|
Mordente K, Ryder L, Bekker-Jensen S. Mechanisms underlying sensing of cellular stress signals by mammalian MAP3 kinases. Mol Cell 2024; 84:142-155. [PMID: 38118452 DOI: 10.1016/j.molcel.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
Cellular homeostasis is continuously challenged by environmental cues and cellular stress conditions. In their defense, cells need to mount appropriate stress responses that, dependent on the cellular context, signaling intensity, and duration, may have diverse outcomes. The stress- and mitogen-activated protein kinase (SAPK/MAPK) system consists of well-characterized signaling cascades that sense and transduce an array of different stress stimuli into biological responses. However, the physical and chemical nature of stress signals and how these are sensed by individual upstream MAP kinase kinase kinases (MAP3Ks) remain largely ambiguous. Here, we review the existing knowledge of how individual members of the large and diverse group of MAP3Ks sense specific stress signals through largely non-redundant mechanisms. We emphasize the large knowledge gaps in assigning function and stress signals for individual MAP3K family members and touch on the potential of targeting this class of proteins for clinical benefit.
Collapse
Affiliation(s)
- Kelly Mordente
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Laura Ryder
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
38
|
Cervone DT, Moreno-Justicia R, Quesada JP, Deshmukh AS. Mass spectrometry-based proteomics approaches to interrogate skeletal muscle adaptations to exercise. Scand J Med Sci Sports 2024; 34:e14334. [PMID: 36973869 DOI: 10.1111/sms.14334] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/29/2023]
Abstract
Acute exercise and chronic exercise training elicit beneficial whole-body changes in physiology that ultimately depend on profound alterations to the dynamics of tissue-specific proteins. Since the work accomplished during exercise owes predominantly to skeletal muscle, it has received the majority of interest from exercise scientists that attempt to unravel adaptive mechanisms accounting for salutary metabolic effects and performance improvements that arise from training. Contemporary scientists are also beginning to use mass spectrometry-based proteomics, which is emerging as a powerful approach to interrogate the muscle protein signature in a more comprehensive manner. Collectively, these technologies facilitate the analysis of skeletal muscle protein dynamics from several viewpoints, including changes to intracellular proteins (expression proteomics), secreted proteins (secretomics), post-translational modifications as well as fiber-, cell-, and organelle-specific changes. This review aims to highlight recent literature that has leveraged new workflows and advances in mass spectrometry-based proteomics to further our understanding of training-related changes in skeletal muscle. We call attention to untapped areas in skeletal muscle proteomics research relating to exercise training and metabolism, as well as basic points of contention when applying mass spectrometry-based analyses, particularly in the study of human biology. We further encourage researchers to couple the hypothesis-generating and descriptive nature of omics data with functional analyses that propel our understanding of the complex adaptive responses in skeletal muscle that occur with acute and chronic exercise.
Collapse
Affiliation(s)
- Daniel T Cervone
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Roger Moreno-Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Júlia Prats Quesada
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Clinical Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Hughes DC, Goodman CA, Baehr LM, Gregorevic P, Bodine SC. A critical discussion on the relationship between E3 ubiquitin ligases, protein degradation, and skeletal muscle wasting: it's not that simple. Am J Physiol Cell Physiol 2023; 325:C1567-C1582. [PMID: 37955121 PMCID: PMC10861180 DOI: 10.1152/ajpcell.00457.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Ubiquitination is an important post-translational modification (PTM) for protein substrates, whereby ubiquitin is added to proteins through the coordinated activity of activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The E3s provide key functions in the recognition of specific protein substrates to be ubiquitinated and aid in determining their proteolytic or nonproteolytic fates, which has led to their study as indicators of altered cellular processes. MuRF1 and MAFbx/Atrogin-1 were two of the first E3 ubiquitin ligases identified as being upregulated in a range of different skeletal muscle atrophy models. Since their discovery, the expression of these E3 ubiquitin ligases has often been studied as a surrogate measure of changes to bulk protein degradation rates. However, emerging evidence has highlighted the dynamic and complex regulation of the ubiquitin proteasome system (UPS) in skeletal muscle and demonstrated that protein ubiquitination is not necessarily equivalent to protein degradation. These observations highlight the potential challenges of quantifying E3 ubiquitin ligases as markers of protein degradation rates or ubiquitin proteasome system (UPS) activation. This perspective examines the usefulness of monitoring E3 ubiquitin ligases for determining specific or bulk protein degradation rates in the settings of skeletal muscle atrophy. Specific questions that remain unanswered within the skeletal muscle atrophy field are also identified, to encourage the pursuit of new research that will be critical in moving forward our understanding of the molecular mechanisms that govern protein function and degradation in muscle.
Collapse
Affiliation(s)
- David C Hughes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Leslie M Baehr
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Paul Gregorevic
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, United States
| | - Sue C Bodine
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| |
Collapse
|
40
|
Henriquez-Olguin C, Meneses-Valdes R, Kritsiligkou P, Fuentes-Lemus E. From workout to molecular switches: How does skeletal muscle produce, sense, and transduce subcellular redox signals? Free Radic Biol Med 2023; 209:355-365. [PMID: 37923089 DOI: 10.1016/j.freeradbiomed.2023.10.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Skeletal muscle is crucial for maintaining human health and overall quality of life. Acute exercise introduces a multifaceted intracellular stress, with numerous post-translational modifications believed to underpin the health benefits of sustained exercise training. Reactive oxygen species (ROS) are posited to serve as second messengers, triggering cytoprotective adaptations such as the upregulation of enzymatic scavenger systems. However, a significant knowledge gap exists between the generation of oxidants in muscle and the exact mechanisms driving muscle adaptations. This review delves into the current research on subcellular redox biochemistry and its role in the physiological adaptations to exercise. We propose that the subcellular regulation of specific redox modifications is key to ensuring specificity in the intracellular response.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- The August Krogh Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark; Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile.
| | - Roberto Meneses-Valdes
- The August Krogh Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark
| | | | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
41
|
Nayyar D, Yan X, Xu G, Shi M, Garnham AP, Mathai ML, McAinch AJ. Gynostemma Pentaphyllum Increases Exercise Performance and Alters Mitochondrial Respiration and AMPK in Healthy Males. Nutrients 2023; 15:4721. [PMID: 38004115 PMCID: PMC10675532 DOI: 10.3390/nu15224721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
This research aimed to determine the effects of Gynostemma pentaphyllum (G. pentaphyllum) on exercise performance, AMP-activated protein kinase (AMPK), and mitochondrial signaling in human muscle. This randomized double-blind placebo control crossover study provided placebo or 450 mg of G. pentaphyllum dried leaf extract equivalent to 2.25 g of dry leaf per day for four weeks to 16 healthy untrained young males, separated by four weeks wash-out. Following 4-week supplementation with G. pentaphyllum, participants had significantly lower leptin and blood glucose levels and improved time trial performance over 20 km, which corresponded with a higher muscle oxygen flux compared to placebo. Muscle AMPK Thr172 phosphorylation significantly increased after 60 min exercise following G. pentaphyllum supplementation. AMPK Thr172 phosphorylation levels relative to total AMPK increased earlier following exercise with G. pentaphyllum compared to placebo. Total ACC-α was lower following G. pentaphyllum supplementation compared to placebo. While further research is warranted, G. pentaphyllum supplementation improved exercise performance in healthy untrained males, which corresponded with improved mitochondrial respiration, altered AMPK and ACC, and decreased plasma leptin and glucose levels.
Collapse
Affiliation(s)
- Deepti Nayyar
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Xu Yan
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Guoqin Xu
- College of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China;
| | - Min Shi
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Andrew P. Garnham
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Michael L. Mathai
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| |
Collapse
|
42
|
Kvandová M, Rajlic S, Stamm P, Schmal I, Mihaliková D, Kuntic M, Bayo Jimenez MT, Hahad O, Kollárová M, Ubbens H, Strohm L, Frenis K, Duerr GD, Foretz M, Viollet B, Ruan Y, Jiang S, Tang Q, Kleinert H, Rapp S, Gericke A, Schulz E, Oelze M, Keaney JF, Daiber A, Kröller-Schön S, Jansen T, Münzel T. Mitigation of aircraft noise-induced vascular dysfunction and oxidative stress by exercise, fasting, and pharmacological α1AMPK activation: molecular proof of a protective key role of endothelial α1AMPK against environmental noise exposure. Eur J Prev Cardiol 2023; 30:1554-1568. [PMID: 37185661 DOI: 10.1093/eurjpc/zwad075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 05/17/2023]
Abstract
AIMS Environmental stressors such as traffic noise represent a global threat, accounting for 1.6 million healthy life years lost annually in Western Europe. Therefore, the noise-associated health side effects must be effectively prevented or mitigated. Non-pharmacological interventions such as physical activity or a balanced healthy diet are effective due to the activation of the adenosine monophosphate-activated protein kinase (α1AMPK). Here, we investigated for the first time in a murine model of aircraft noise-induced vascular dysfunction the potential protective role of α1AMPK activated via exercise, intermittent fasting, and pharmacological treatment. METHODS AND RESULTS Wild-type (B6.Cg-Tg(Cdh5-cre)7Mlia/J) mice were exposed to aircraft noise [maximum sound pressure level of 85 dB(A), average sound pressure level of 72 dB(A)] for the last 4 days. The α1AMPK was stimulated by different protocols, including 5-aminoimidazole-4-carboxamide riboside application, voluntary exercise, and intermittent fasting. Four days of aircraft noise exposure produced significant endothelial dysfunction in wild-type mice aorta, mesenteric arteries, and retinal arterioles. This was associated with increased vascular oxidative stress and asymmetric dimethylarginine formation. The α1AMPK activation with all three approaches prevented endothelial dysfunction and vascular oxidative stress development, which was supported by RNA sequencing data. Endothelium-specific α1AMPK knockout markedly aggravated noise-induced vascular damage and caused a loss of mitigation effects by exercise or intermittent fasting. CONCLUSION Our results demonstrate that endothelial-specific α1AMPK activation by pharmacological stimulation, exercise, and intermittent fasting effectively mitigates noise-induced cardiovascular damage. Future population-based studies need to clinically prove the concept of exercise/fasting-mediated mitigation of transportation noise-associated disease.
Collapse
Affiliation(s)
- Miroslava Kvandová
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1813 71 Bratislava, Slovak Republic
| | - Sanela Rajlic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Paul Stamm
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Isabella Schmal
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Dominika Mihaliková
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marta Kollárová
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Henning Ubbens
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Lea Strohm
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katie Frenis
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Georg Daniel Duerr
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marc Foretz
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Benoit Viollet
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Qi Tang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Steffen Rapp
- Department of Cardiology, Preventive Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | - Matthias Oelze
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - John F Keaney
- Division of Cardiovascular Medicine, UMass Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Andreas Daiber
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Thomas Jansen
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiology, KVB Hospital Königstein, 61462 Königstein, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
43
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
44
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
45
|
Negoita F, Addinsall AB, Hellberg K, Bringas CF, Hafen PS, Sermersheim TJ, Agerholm M, Lewis CTA, Ahwazi D, Ling NXY, Larsen JK, Deshmukh AS, Hossain MA, Oakhill JS, Ochala J, Brault JJ, Sankar U, Drewry DH, Scott JW, Witczak CA, Sakamoto K. CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle. Mol Metab 2023; 75:101761. [PMID: 37380024 PMCID: PMC10362367 DOI: 10.1016/j.molmet.2023.101761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
OBJECTIVE The AMP-activated protein kinase (AMPK) gets activated in response to energetic stress such as contractions and plays a vital role in regulating various metabolic processes such as insulin-independent glucose uptake in skeletal muscle. The main upstream kinase that activates AMPK through phosphorylation of α-AMPK Thr172 in skeletal muscle is LKB1, however some studies have suggested that Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) acts as an alternative kinase to activate AMPK. We aimed to establish whether CaMKK2 is involved in activation of AMPK and promotion of glucose uptake following contractions in skeletal muscle. METHODS A recently developed CaMKK2 inhibitor (SGC-CAMKK2-1) alongside a structurally related but inactive compound (SGC-CAMKK2-1N), as well as CaMKK2 knock-out (KO) mice were used. In vitro kinase inhibition selectivity and efficacy assays, as well as cellular inhibition efficacy analyses of CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) were performed. Phosphorylation and activity of AMPK following contractions (ex vivo) in mouse skeletal muscles treated with/without CaMKK inhibitors or isolated from wild-type (WT)/CaMKK2 KO mice were assessed. Camkk2 mRNA in mouse tissues was measured by qPCR. CaMKK2 protein expression was assessed by immunoblotting with or without prior enrichment of calmodulin-binding proteins from skeletal muscle extracts, as well as by mass spectrometry-based proteomics of mouse skeletal muscle and C2C12 myotubes. RESULTS STO-609 and SGC-CAMKK2-1 were equally potent and effective in inhibiting CaMKK2 in cell-free and cell-based assays, but SGC-CAMKK2-1 was much more selective. Contraction-stimulated phosphorylation and activation of AMPK were not affected with CaMKK inhibitors or in CaMKK2 null muscles. Contraction-stimulated glucose uptake was comparable between WT and CaMKK2 KO muscle. Both CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) and the inactive compound (SGC-CAMKK2-1N) significantly inhibited contraction-stimulated glucose uptake. SGC-CAMKK2-1 also inhibited glucose uptake induced by a pharmacological AMPK activator or insulin. Relatively low levels of Camkk2 mRNA were detected in mouse skeletal muscle, but neither CaMKK2 protein nor its derived peptides were detectable in mouse skeletal muscle tissue. CONCLUSIONS We demonstrate that pharmacological inhibition or genetic loss of CaMKK2 does not affect contraction-stimulated AMPK phosphorylation and activation, as well as glucose uptake in skeletal muscle. Previously observed inhibitory effect of STO-609 on AMPK activity and glucose uptake is likely due to off-target effects. CaMKK2 protein is either absent from adult murine skeletal muscle or below the detection limit of currently available methods.
Collapse
Affiliation(s)
- Florentina Negoita
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Alex B Addinsall
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kristina Hellberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Conchita Fraguas Bringas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Paul S Hafen
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Science, Indiana University Purdue University Columbus, Columbus, IN 47203, USA
| | - Tyler J Sermersheim
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Christopher T A Lewis
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Danial Ahwazi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Naomi X Y Ling
- Metabolic Signalling, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jeppe K Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Mohammad A Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan S Oakhill
- Metabolic Signalling, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jeffrey J Brault
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Uma Sankar
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, VIC 3052, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052, Australia; St Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC 3065, Australia
| | - Carol A Witczak
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
46
|
Stonadge A, Genzor AV, Russell A, Hamed MF, Romero N, Evans G, Pownall ME, Bekker-Jensen S, Blanco G. Myofibrillar myopathy hallmarks associated with ZAK deficiency. Hum Mol Genet 2023; 32:2751-2770. [PMID: 37427997 PMCID: PMC10789240 DOI: 10.1093/hmg/ddad113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
The ZAK gene encodes two functionally distinct kinases, ZAKα and ZAKβ. Homozygous loss of function mutations affecting both isoforms causes a congenital muscle disease. ZAKβ is the only isoform expressed in skeletal muscle and is activated by muscle contraction and cellular compression. The ZAKβ substrates in skeletal muscle or the mechanism whereby ZAKβ senses mechanical stress remains to be determined. To gain insights into the pathogenic mechanism, we exploited ZAK-deficient cell lines, zebrafish, mice and a human biopsy. ZAK-deficient mice and zebrafish show a mild phenotype. In mice, comparative histopathology data from regeneration, overloading, ageing and sex conditions indicate that while age and activity are drivers of the pathology, ZAKβ appears to have a marginal role in myoblast fusion in vitro or muscle regeneration in vivo. The presence of SYNPO2, BAG3 and Filamin C (FLNC) in a phosphoproteomics assay and extended analyses suggested a role for ZAKβ in the turnover of FLNC. Immunofluorescence analysis of muscle sections from mice and a human biopsy showed evidence of FLNC and BAG3 accumulations as well as other myofibrillar myopathy markers. Moreover, endogenous overloading of skeletal muscle exacerbated the presence of fibres with FLNC accumulations in mice, indicating that ZAKβ signalling is necessary for an adaptive turnover of FLNC that allows for the normal physiological response to sustained mechanical stress. We suggest that accumulation of mislocalized FLNC and BAG3 in highly immunoreactive fibres contributes to the pathogenic mechanism of ZAK deficiency.
Collapse
Affiliation(s)
- Amy Stonadge
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Aitana V Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Alex Russell
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Mohamed F Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Norma Romero
- Unité de Morphologie Neuromusculaire Institut de Myologie - Inserm Sorbonne Université - GHU Pitié-Salpêtrière 47- 83, boulevard de l’Hôpital F-75 651 Paris, Cedex 13, France
| | - Gareth Evans
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Mary Elizabeth Pownall
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Gonzalo Blanco
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
47
|
Pham T, Dollet L, Ali MS, Raun SH, Møller LL, Jafari A, Ditzel N, Andersen NR, Fritzen AM, Gerhart-Hines Z, Kiens B, Suomalainen A, Simpson SJ, Salling Olsen M, Kieser A, Schjerling P, Nieminen AI, Richter EA, Havula E, Sylow L. TNIK is a conserved regulator of glucose and lipid metabolism in obesity. SCIENCE ADVANCES 2023; 9:eadf7119. [PMID: 37556547 PMCID: PMC10411879 DOI: 10.1126/sciadv.adf7119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
Obesity and type 2 diabetes (T2D) are growing health challenges with unmet treatment needs. Traf2- and NCK-interacting protein kinase (TNIK) is a recently identified obesity- and T2D-associated gene with unknown functions. We show that TNIK governs lipid and glucose homeostasis in Drosophila and mice. Loss of the Drosophila ortholog of TNIK, misshapen, altered the metabolite profiles and impaired de novo lipogenesis in high sugar-fed larvae. Tnik knockout mice exhibited hyperlocomotor activity and were protected against diet-induced fat expansion, insulin resistance, and hepatic steatosis. The improved lipid profile of Tnik knockout mice was accompanied by enhanced skeletal muscle and adipose tissue insulin-stimulated glucose uptake and glucose and lipid handling. Using the T2D Knowledge Portal and the UK Biobank, we observed associations of TNIK variants with blood glucose, HbA1c, body mass index, body fat percentage, and feeding behavior. These results define an untapped paradigm of TNIK-controlled glucose and lipid metabolism.
Collapse
Affiliation(s)
- T. C. Phung Pham
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucile Dollet
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mona S. Ali
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steffen H. Raun
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth L. V. Møller
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Ditzel
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and University of Southern Denmark, Odense, Denmark
- Biomedical Laboratory, The Faculty of Health Sciences, University of Southern Denmark, Denmark
| | - Nicoline R. Andersen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M. Fritzen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostic Center, Helsinki 00290, Finland
| | - Stephen J. Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, 2006, Australia
| | - Morten Salling Olsen
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Building 9312, Henrik Harpestrengs Vej 4C, Copenhagen 2100, Denmark
- Laboratory for Molecular Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arnd Kieser
- Helmholtz Centre Munich–German Research Centre for Environmental Health, Research Unit Signaling and Translation, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anni I. Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Finland
| | - Erik A. Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Essi Havula
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Coyle-Asbil B, Ogilvie LM, Simpson JA. Emerging roles for estrogen in regulating skeletal muscle physiology. Physiol Genomics 2023; 55:75-78. [PMID: 36622080 DOI: 10.1152/physiolgenomics.00158.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Bridget Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| |
Collapse
|
49
|
Kristiansen J, Grove EL, Sjúrðarson T, Rasmussen J, Mohr M, Kristensen SD, Hvas AM. Haemostasis and fibrinolysis after regular high-intensity interval training in patients with coronary artery disease: a randomised controlled trial. Open Heart 2022; 9:e002127. [PMID: 36428083 PMCID: PMC9703332 DOI: 10.1136/openhrt-2022-002127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
IntroductionPatients with coronary artery disease (CAD) have prothrombotic changes compared with healthy individuals. Regular exercise reduces cardiovascular mortality in patients with stable CAD. However, the underlying mechanism for the beneficial effect is unknown. We investigated whether regular exercise would inhibit platelet aggregation and thrombin generation and increase fibrinolysis in patients with CAD. MATERIALS AND METHODS Patients with CAD were randomised 1:1 to a supervised high-intensity exercise training programme or standard care for 12 weeks. Blood samples were obtained at baseline and after 6 and 12 weeks. Platelet aggregation was evaluated with the Multiplate Analyser, thrombin generation using the calibrated automated thrombogram and fibrinolysis employing a clot lysis assay. RESULTS A total of 169 stable patients with CAD were randomised, and 142 patients (67±9 years, 83% males) completed the study; 64 in the exercise group and 78 in the standard care group. All but one patients received single antiplatelet therapy. From baseline to 12 weeks postintervention (Δ), no significant between-group differences were found in adenosine diphosphate-induced platelet aggregation (Δ-15 aggregation units (AU), AU×min, 95% CI -70 to 40 in the exercise group and Δ-26 AU×min, 95% CI -77 to 26 in the standard care group, p=0.44); endogenous thrombin potential (medians: Δ-5%, 95% CI -12 to 3 in the exercise group and Δ-6%, 95% CI -13 to 1 in the standard care group, p=0.26); nor in 50% clot lysis time (medians: Δ-9%, 95% CI -23 to 7 in the exercise group and Δ-17%, 95% CI -29 to -3 in the standard care group, p=0.60). CONCLUSIONS Twelve weeks of high-intensity whole-body endurance exercise did not affect platelet aggregation, thrombin generation or fibrinolysis in patients with stable CAD. TRIAL REGISTRATION NUMBER NCT04268992.
Collapse
Affiliation(s)
- Jacobina Kristiansen
- Department of Medicine, National Hospital of the Faroe Islands, Torshavn, Faroe Islands
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Erik Lerkevang Grove
- Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Tórur Sjúrðarson
- Faculty of Health, University of the Faroe Islands, Torshavn, Faroe Islands
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Kobenhavn, Denmark
| | - Jan Rasmussen
- Department of Medicine, National Hospital of the Faroe Islands, Torshavn, Faroe Islands
| | - Magni Mohr
- Faculty of Health, University of the Faroe Islands, Torshavn, Faroe Islands
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Steen Dalby Kristensen
- Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|