1
|
Wong HJ, Lin NHY, Teo YH, Yeo BSY, Toh KZX, Teo YN, Chan MY, Yeo LLL, Poh KK, Kong WKF, Eng PC, Tan BYQ, Dalakoti M, Sia CH. Anti-diabetic effects of GLP-1 receptor agonists on obese and overweight patients across diabetes status, administration routes, treatment duration and baseline characteristics: A systematic review. Diabetes Obes Metab 2025; 27:1648-1659. [PMID: 39726212 DOI: 10.1111/dom.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used for anti-obesity indications. However, little is known of the comparative effect of GLP-1 RAs and their glycemic impact across the different routes of administration, diabetic statuses and durations of prescription. PubMed, EMBASE and CENTRAL were searched from inception to 13 February 2024. Only randomised controlled trials were included in this systematic review and meta-analysis. Adults aged above 18 years old, who were in the overweight/obesity range, with or without type 2 diabetes mellitus (T2DM) were included. Baseline characteristics and changes in glycated haemoglobin (HbA1c) and fasting plasma glucose (FPG) were obtained. GLP1-RAs demonstrated an overall reduction in HbA1c of -0.72% (95% confidence interval [CI] -0.79 to -0.65, p < 0.01) and in FPG of -1.00 mmol/L (95% CI -1.16 to -0.84, p < 0.01). HbA1c reduction in pre-DM patients was -0.44% (95% CI -0.54 to -0.18, p < 0.01). Patients who were followed up for more than a year experienced a smaller reduction of HbA1c. Meta-regression showed that the GLP-1 RAs are more efficacious at higher HbA1c and lower body mass index. Overall, GLP-1 RAs consistently led to a significant reduction in HbA1c at -0.72% and FPG at -1.00 mmol/L. These effects may be equally efficacious in pre-DM patients with obesity and those at lower BMI. With pre-DM and obesity being risk factors for metabolic syndrome, these findings may provide newer perspectives in expanding indications for GLP-1 RA initiation.
Collapse
Affiliation(s)
- Hon Jen Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Norman H Y Lin
- Department of Medicine, National University Hospital, Singapore
| | - Yao Hao Teo
- Department of Medicine, National University Hospital, Singapore
| | - Brian S Y Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Yao Neng Teo
- Department of Medicine, National University Hospital, Singapore
| | - Mark Y Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| | - Leonard L L Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Neurology, Department of Medicine, National University Hospital, Singapore
| | - Kian Keong Poh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| | - William K F Kong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| | - Pei Chia Eng
- Division of Endocrinology, Department of Medicine, National University Hospital, Singapore
| | - Benjamin Y Q Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Neurology, Department of Medicine, National University Hospital, Singapore
| | - Mayank Dalakoti
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| | - Ching-Hui Sia
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| |
Collapse
|
2
|
J C, Me C, Mt C. Renoprotective mechanisms of glucagon-like peptide-1 receptor agonists. DIABETES & METABOLISM 2025; 51:101641. [PMID: 40127835 DOI: 10.1016/j.diabet.2025.101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone, secreted from gut endocrine cells, which acts to potentiate nutrient-induced insulin secretion. Activation of its receptor, GLP-1R, decreases glucagon secretion and gastric emptying, thereby decreasing blood glucose and body weight. It is largely through these mechanisms that Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have transformed the treatment of type 2 diabetes. More recently, preclinical and clinical studies have reported that these agents have potent extra-pancreatic effects, exhibiting cardioprotective and renoprotective actions. The recent FLOW trial was the first multicentre clinical trial investigating the effect of GLP-1RAs on a primary renal outcome and reported robust evidence that GLP-1RAs are renoprotective. Studies in rodent models of renal injury have shown that gain and loss of GLP-1R signalling improves or deteriorates kidney function. However, the precise mechanisms responsible for renal benefits of GLP-1RAs are not yet fully understood. While prolonged activation of GLP-1 receptors (GLP-1R) has been shown to reverse diabetes-related disruptions in gene expression across various renal cell populations, GLP-1R expression in both rodent and human kidneys is thought to be primarily confined to certain vascular smooth muscle cells. This review discusses recent advances in our understanding of the effects of GLP-1 medicines on the kidney with a focus on indirect and direct mechanisms of action.
Collapse
Affiliation(s)
- Chen J
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia
| | - Cooper Me
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia
| | - Coughlan Mt
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, 3004, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University Parkville Campus, 381 Royal Parade, Parkville, 3052, Victoria, Australia.
| |
Collapse
|
3
|
Karakasis P, Theofilis P, Patoulias D, Vlachakis PK, Antoniadis AP, Fragakis N. Diabetes-Driven Atherosclerosis: Updated Mechanistic Insights and Novel Therapeutic Strategies. Int J Mol Sci 2025; 26:2196. [PMID: 40076813 PMCID: PMC11900163 DOI: 10.3390/ijms26052196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The global rise in diabetes prevalence has significantly contributed to the increasing burden of atherosclerotic cardiovascular disease (ASCVD), a leading cause of morbidity and mortality in this population. Diabetes accelerates atherosclerosis through mechanisms such as hyperglycemia, oxidative stress, chronic inflammation, and epigenetic dysregulation, leading to unstable plaques and an elevated risk of cardiovascular events. Despite advancements in controlling traditional risk factors like dyslipidemia and hypertension, a considerable residual cardiovascular risk persists, highlighting the need for innovative therapeutic approaches. Emerging treatments, including sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, epigenetic modulators, and RNA-based therapies, are showing promise in addressing the unique challenges of diabetes-associated ASCVD. Precision medicine strategies, such as nanoparticle-based drug delivery and cell-specific therapies, offer further potential for mitigating cardiovascular complications. Advances in multiomics and systems biology continue to deepen our understanding of the molecular mechanisms driving diabetes-associated atherosclerosis. This review synthesizes recent advances in understanding the pathophysiology and treatment of diabetes-related atherosclerosis, offering a roadmap for future research and precision medicine approaches to mitigate cardiovascular risk in this growing population.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Panagiotis Theofilis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.T.); (P.K.V.)
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, School of Health Sciences Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panayotis K. Vlachakis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.T.); (P.K.V.)
| | - Antonios P. Antoniadis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| |
Collapse
|
4
|
Wong HJ, Sim B, Teo YH, Teo YN, Chan MY, Yeo LLL, Eng PC, Tan BYQ, Sattar N, Dalakoti M, Sia CH. Efficacy of GLP-1 Receptor Agonists on Weight Loss, BMI, and Waist Circumference for Patients With Obesity or Overweight: A Systematic Review, Meta-analysis, and Meta-regression of 47 Randomized Controlled Trials. Diabetes Care 2025; 48:292-300. [PMID: 39841962 DOI: 10.2337/dc24-1678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/22/2024] [Indexed: 01/24/2025]
Abstract
OBJECTIVE To provide an updated synthesis on effects of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) on weight, BMI, and waist circumference incorporating newer randomized controlled trials (RCTs), particularly in individuals with overweight or obesity. RESEARCH DESIGN AND METHODS We systematically searched PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) for RCTs published from inception to 4 October 2024. The search was limited to RCTs evaluating the use of GLP-1 RAs for mean differences from baseline in weight, BMI, and waist circumference in adults with obesity or overweight with or without diabetes. Two independent reviewers performed the literature search and data extraction, resolving disagreements via consensus or third-reviewer consultation. RESULTS Forty-seven RCTs were included, with a combined cohort of 23,244 patients. GLP-1 RAs demonstrated a mean weight reduction of -4.57 kg (95% CI -5.35 to -3.78), mean BMI reduction of -2.07 kg/m2 (95% CI -2.53 to -1.62), and mean waist circumference reduction of -4.55 cm (95% CI -5.72 to -3.38) compared with placebo. This effect was consistent across diabetes status, GLP-1 RA used, and route of administration. The greatest treatment benefit appeared to favor patients who were younger, female, without diabetes, with higher baseline weight and BMI but lower baseline HbA1c, and treated over a longer duration. Limitations include substantial statistical heterogeneity, in part due to broad inclusion criteria. However, this heterogeneity may improve generalizability by reflecting a wide range of study designs and patient populations. CONCLUSIONS GLP-1 RAs demonstrated significant weight, BMI, and waist circumference reduction benefits in this meta-analysis.
Collapse
Affiliation(s)
- Hon Jen Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bryan Sim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yao Hao Teo
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| | - Yao Neng Teo
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| | - Mark Y Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| | - Leonard L L Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Neurology, Department of Medicine, National University Hospital, Singapore
| | - Pei Chia Eng
- Division of Endocrinology, Department of Medicine, National University Hospital, Singapore
| | - Benjamin Y Q Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Neurology, Department of Medicine, National University Hospital, Singapore
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, U.K
| | - Mayank Dalakoti
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| | - Ching-Hui Sia
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| |
Collapse
|
5
|
Wong HJ, Toh KZX, Teo YH, Teo YN, Chan MY, Yeo LLL, Eng PC, Tan BYQ, Zhou X, Yang Q, Dalakoti M, Sia CH. Effects of glucagon-like peptide-1 receptor agonists on blood pressure in overweight or obese patients: a meta-analysis of randomized controlled trials. J Hypertens 2025; 43:290-300. [PMID: 39445607 DOI: 10.1097/hjh.0000000000003903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor agonists are novel medications with proven efficacy in treating type 2 diabetes mellitus, and are increasingly being used for weight loss. They may potentially have benefit in treating metabolic disorders; however, evidence is sparse with regards to treating high blood pressure (BP). We performed a systematic review, meta-analysis and meta-regression investigating the efficacy of GLP-1 RAs in lowering BP in obese or overweight patients. METHODS Three electronic databases (PubMed, EMBASE, and CENTRAL) were systematically searched for randomized controlled trials (RCTs) published from inception to 13 February 2024. Pair-wise meta-analysis and random effects meta-regression models were utilized. Fixed effects meta-analysis was used to unify treatment effects across different GLP-1 RA doses. RESULTS We included a total of 30 RCTs with a combined population of 37 072 patients. GLP-1 RAs demonstrated a mean systolic BP (SBP) reduction of -3.37 mmHg [95% confidence interval (CI) -3.95 to -2.80] and a mean diastolic BP (DBP) reduction of -1.05 mmHg (95% CI -1.46 to -0.65) compared with placebo. This effect was consistent across subgroups for diabetic status, formulation of GLP-1 RA, follow-up duration and route of administration for both SBP and DBP, with the exception of subgroups investigating exenatide. Meta-regression suggested no significant correlation between BP reduction and baseline characteristics such as age, percentage of male patients, HbA1c, weight, BMI, and percentage of patients with hypertension. CONCLUSION Our meta-analysis suggests significant BP reduction benefits from GLP-1 RA use in obese or overweight patients, consistent across diabetic status, duration of treatment, and across route of administration.
Collapse
Affiliation(s)
- Hon Jen Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | | | - Yao Hao Teo
- Department of Cardiology, National University Heart Centre Singapore
| | - Yao Neng Teo
- Department of Cardiology, National University Heart Centre Singapore
| | - Mark Y Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Cardiology, National University Heart Centre Singapore
| | - Leonard L L Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Division of Neurology
| | - Pei Chia Eng
- Division of Endocrinology, Department of Medicine, National University Hospital, Singapore
| | - Benjamin Y Q Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Division of Neurology
| | - Xin Zhou
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Yang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mayank Dalakoti
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Cardiology, National University Heart Centre Singapore
| | - Ching-Hui Sia
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Cardiology, National University Heart Centre Singapore
| |
Collapse
|
6
|
Zhang X, Cao C, Zheng F, Liu C, Tian X. Therapeutic Potential of GLP-1 Receptor Agonists in Diabetes and Cardiovascular Disease: Mechanisms and Clinical Implications. Cardiovasc Drugs Ther 2025:10.1007/s10557-025-07670-9. [PMID: 39832069 DOI: 10.1007/s10557-025-07670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice. OBJECTIVE This review aims to comprehensively summarize the role of GLP-1 RAs in the management of diabetes mellitus (DM) and cardiovascular disease (CVD), with a particular emphasis on the underlying signal transduction pathways and their therapeutic potential. METHODS A comprehensive review was carried out through literature research. RESULTS AND DISCUSSION In pancreatic β-cells, GLP-1 RAs regulate the secretion of insulin and glucagon in a glucosedependent manner by influencing signaling pathways such as cAMP, PI3K, and MAPK. They also contribute to the regulation of blood glucose levels by promoting the proliferation of β-cells and inhibiting apoptosis in these cells. Recent comprehensive studies have also demonstrated the favorable impact of GLP-1 RAs on cardiovascular wellbeing. In addition to the cardiovascular protection afforded by glucose metabolism regulation, a large body of evidence from animal and cellular studies has corroborated the beneficial effects of GLP-1 RAs on conditions such as heart failure (HF), hypertension, and ischemic cardiomyopathy. These benefits are mainly attributed to the alleviation of inflammatory responses, reduction of oxidative stress, and prevention of cell apoptosis. Clinical data shows that GLP-1 RAs can reduce the risk of major adverse cardiovascular events (MACE) in diabetic patients. CONCLUSION GLP-1 RAs play an important role in the management of both diabetes and cardiovascular diseases. They show potential therapeutic value through the modulation of multiple signal transduction pathways. However, there may still be some issues in practical applications that require further research and resolution.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
- Shandong First Medical University (Shandong Academy of Medical Sciences), 6699 Qingdao Road, Jinan City, 250117, China
| | - Chao Cao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Fei Zheng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Chang Liu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Xiuqing Tian
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China.
- Shandong First Medical University (Shandong Academy of Medical Sciences), 6699 Qingdao Road, Jinan City, 250117, China.
| |
Collapse
|
7
|
Khan AW, Jandeleit-Dahm KAM. Atherosclerosis in diabetes mellitus: novel mechanisms and mechanism-based therapeutic approaches. Nat Rev Cardiol 2025:10.1038/s41569-024-01115-w. [PMID: 39805949 DOI: 10.1038/s41569-024-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Atherosclerosis is a disease of large and medium arteries that can lead to life-threatening cardiovascular and cerebrovascular consequences, such as myocardial infarction and stroke. Moreover, atherosclerosis is a major contributor to cardiovascular-related mortality in individuals with diabetes mellitus. Diabetes aggravates the pathobiological mechanisms that underlie the development of atherosclerosis. Currently available anti-atherosclerotic drugs or strategies solely focus on optimal control of systemic risk factors, including hyperglycaemia and dyslipidaemia, but do not adequately target the diabetes-exacerbated mechanisms of atherosclerotic cardiovascular disease, highlighting the need for targeted, mechanism-based therapies. This Review focuses on emerging pathological mechanisms and related novel therapeutic targets in atherosclerotic cardiovascular disease in patients with diabetes.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Karin A M Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- German Diabetes Centre, Leibniz Centre for Diabetes Research at the Heinrich Heine University, Dusseldorf, Germany
| |
Collapse
|
8
|
Blumenfeld L, Morgan J, Morgan TC, Thomas AM. Use of glucagon-like peptide 1 receptor agonist to sustain patients off basal-bolus insulin regimens. J Am Pharm Assoc (2003) 2025; 65:102288. [PMID: 39527981 DOI: 10.1016/j.japh.2024.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The 2024 Standards of Care in Diabetes recommend initiation of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) prior to starting basal insulin and to reconsider initiating a GLP-1 RA before starting bolus insulin if not already initiated. GLP-1 RA addition leads to improved glycemic benefits as well as risk reduction of cardiovascular and renal outcomes in patients with a history of these events. While there is evidence demonstrating the trends of insulin reduction or discontinuation following GLP-1 RA initiation, data regarding longer-term durability of GLP-1 RA use to sustain patients off bolus insulin are lacking. OBJECTIVE This retrospective study aimed to assess the percentage of patients remaining off bolus insulin after transitioning from a basal-bolus regimen to GLP-1 RA therapy with basal insulin over a period of 3 years. METHODS We conducted a single centered, retrospective study analyzing patient data from July 2018 through July 2023. Patients were included if they had a diagnosis of type 2 diabetes, were on a basal-bolus insulin regimen, had a GLP-1 RA initiated followed by bolus insulin discontinuation within 90 days, and remained on a GLP-1 RA for at least 6 months. The primary outcome was the percentage of patients who were sustained off bolus insulin after 3 years following GLP-1 RA initiation. RESULTS There were 252 patients included. At 3 years, 82.6% of patients were sustained off bolus insulin. The mean change in weight at 3 years was -8.5 kg. The mean A1c initially decreased from 8.6% to 7.8%, but then increased slightly to 8.1% at the end of the study timeframe. CONCLUSION This trial demonstrated the majority of patients on basal-bolus regimens where bolus insulin was replaced with a GLP-1 RA were sustained off bolus insulin for a 3 year period of time. These results highlight the promising durability of converting bolus insulin to GLP-1 RAs.
Collapse
|
9
|
Alnima T, Smits MM, Hanssen NMJ. Are the lipid-lowering effects of incretin-based therapies relevant for cardiovascular benefit? Curr Opin Lipidol 2024; 35:259-267. [PMID: 39082103 DOI: 10.1097/mol.0000000000000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
PURPOSE OF REVIEW This review examines the impact of glucagon-like peptide 1 receptor agonists (GLP-1RAs) on lipid profiles in individuals with type 2 diabetes mellitus and/or obesity, crucial for optimizing cardiovascular risk management. RECENT FINDINGS GLP-1RAs affect lipid levels by reducing intestinal apolipoprotein B48 production and mesenteric lymph flow, while increasing catabolism of apolipoprotein B100. It remains unknown whether these effects are direct or indirect, but the improvements in lipid levels are strongly correlated to the drug-induced weight loss. Clinical trials demonstrate improvements in lipid profiles, with different effects per agent and dose. We deem it unlikely that improved lipid levels are sufficient to explain the beneficial effects of GLP-1RA on cardiovascular risk, especially given the improvement of many other risk factors (body weight, glycemic control, inflammation) while using these agents. Posthoc mediation analyses of large cardiovascular outcome trials may shed some light on the relative importance of each risk factor. SUMMARY GLP-1RAs improve lipid profiles in clinical trials, but their complete cardiovascular benefits likely involve multifactorial mechanisms beyond lipid modulation.
Collapse
Affiliation(s)
- Teba Alnima
- Radboud University Medical Center, Department of Internal Medicine, sections Vascular Medicine and Diabetology, Nijmegen
| | - Mark M Smits
- Amsterdam University Medical Center, Department of Internal Medicine
| | - Nordin M J Hanssen
- Amsterdam University Medical Center, Department of Internal Medicine
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Doumani G, Theofilis P, Tsimihodimos V, Kalaitzidis RG. GLP-1 Receptor Agonists and Diabetic Kidney Disease: A Game Charger in the Field? Life (Basel) 2024; 14:1478. [PMID: 39598276 PMCID: PMC11595976 DOI: 10.3390/life14111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Kidney disease is a public health epidemic affecting 10% of the population worldwide with a constantly rising incidence, and it is an important contributor to morbidity and mortality. Type 2 diabetes mellitus (T2DM) is a chronic complex condition with a rising incidence worldwide. T2DM remains the principal cause of chronic kidney disease (CKD), which is related to a high risk for cardiovascular (CV) events, end-stage kidney disease (ESKD), and, overall, considerable morbidity and mortality. In the past few decades, various therapeutic treatments have targeted the culprit pathways for slowing CKD progression, with partial success. Thus, despite new advances in patients' treatment, progressive loss of kidney function or death from T2DM and CKD complications compel new therapeutic pathways. Renin-angiotensin-aldosterone-system-blocking agents have been the only treatment until recently. On top of this, sodium-glucose co-transporter 2 inhibitors along with finerenone showed an impressive ability to reduce the progression of kidney disease and cardiovascular events in diabetic patients with CKD. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) can play a special role and could be a game changer in this field. The latest FLOW trial confirmed multiple favorable clinical effects on renal, cardiovascular, and survival outcomes among high-risk patients treated with semaglutide and supports a significant therapeutic role for GLP-1RAs in this population, although larger-scale evaluation of their risks is needed, given their increasing use.
Collapse
Affiliation(s)
- Georgia Doumani
- General Hospital of Nikaia-Piraeus Agios Panteleimon, Center for Nephrology “G. Papadakis”, 18454 Piraeus, Greece; (G.D.); (P.T.)
| | - Panagiotis Theofilis
- General Hospital of Nikaia-Piraeus Agios Panteleimon, Center for Nephrology “G. Papadakis”, 18454 Piraeus, Greece; (G.D.); (P.T.)
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Rigas G. Kalaitzidis
- General Hospital of Nikaia-Piraeus Agios Panteleimon, Center for Nephrology “G. Papadakis”, 18454 Piraeus, Greece; (G.D.); (P.T.)
| |
Collapse
|
11
|
Huang YN, Liao WL, Huang JY, Lin YJ, Yang SF, Huang CC, Wang CH, Su PH. Long-term safety and efficacy of glucagon-like peptide-1 receptor agonists in individuals with obesity and without type 2 diabetes: A global retrospective cohort study. Diabetes Obes Metab 2024; 26:5222-5232. [PMID: 39171569 DOI: 10.1111/dom.15869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
AIM We aimed to investigate the long-term impact of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) on thyroid function, cardiovascular health, renal outcomes and adverse events in individuals with obesity and without type 2 diabetes (T2D). MATERIALS AND METHODS In this observational cohort study, we used propensity score matching to construct comparable cohorts of individuals with obesity and without T2D who were new to GLP-1 RA treatment and those who did not receive glucose-lowering medications. In total, 3,729,925 individuals with obesity were selected from the TriNetX Global Network, with an index event between 1 January 2016 and 31 March 2024. The primary outcomes were safety, cardiovascular, thyroid and clinical biochemical profile outcomes occurring within 5 years following the index event. RESULTS After propensity score matching, the study included 12,123 individuals in each group. GLP-1 RA treatment was associated with a significantly lower risk of all-cause mortality (hazard ratio 0.23; 95% confidence interval 0.15-0.34) and several cardiovascular complications, including ischaemic heart disease, heart failure, arrhythmias, hypertension, stroke and atrial fibrillation (all p < 0.05). GLP-1 RAs were also associated with a lower risk of acute kidney injury and allergic reactions. These protective effects were consistent across various subgroups and regions. CONCLUSIONS In this large observational study, GLP-1 RAs showed long-term protective effects on cardiovascular health, renal outcomes and adverse events in individuals with obesity and without T2D. Our findings suggest that GLP-1 RAs may offer a comprehensive approach to managing obesity and its related comorbidities, potentially improving overall health and survival in this population.
Collapse
Affiliation(s)
- Yu-Nan Huang
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Center for Personalized Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Yang Huang
- Center for Health Data Science, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Hsing Wang
- Division of Genetics and Metabolism, Children's Hospital of China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Quagliariello V, Canale ML, Bisceglia I, Iovine M, Giordano V, Giacobbe I, Scherillo M, Gabrielli D, Maurea C, Barbato M, Inno A, Berretta M, Tedeschi A, Oliva S, Greco A, Maurea N. Glucagon-like Peptide 1 Receptor Agonists in Cardio-Oncology: Pathophysiology of Cardiometabolic Outcomes in Cancer Patients. Int J Mol Sci 2024; 25:11299. [PMID: 39457081 PMCID: PMC11508560 DOI: 10.3390/ijms252011299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer patients, especially long cancer survivors, are exposed to several cardio-metabolic diseases, including diabetes, heart failure, and atherosclerosis, which increase their risk of cardiovascular mortality. Therapy with glucagon-like peptide 1 (GLP1) receptor agonists demonstrated several beneficial cardiovascular effects, including atherosclerosis and heart failure prevention. Cardiovascular outcome trials (CVOTs) suggest that GLP-1 RA could exert cardiorenal benefits and systemic anti-inflammatory effects in patients with type-2 diabetes through the activation of cAMP and PI3K/AkT pathways and the inhibition of NLRP-3 and MyD88. In this narrative review, we highlight the biochemical properties of GLP-1 RA through a deep analysis of the clinical and preclinical evidence of the primary prevention of cardiomyopathies. The overall picture of this review encourages the study of GLP-1 RA in cancer patients with type-2 diabetes, as a potential primary prevention strategy against heart failure and atherosclerosis.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (M.I.); (V.G.); (I.G.); (M.B.); (N.M.)
| | | | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00148 Rome, Italy;
| | - Martina Iovine
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (M.I.); (V.G.); (I.G.); (M.B.); (N.M.)
| | - Vienna Giordano
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (M.I.); (V.G.); (I.G.); (M.B.); (N.M.)
| | - Ilaria Giacobbe
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (M.I.); (V.G.); (I.G.); (M.B.); (N.M.)
| | - Marino Scherillo
- Division of Cardiology, Hospital San Pio Benevento (BN), 82100 Benevento, Italy;
| | - Domenico Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Rome, Italy;
| | - Carlo Maurea
- Department of Medicine, University of Salerno, 84084 Fisciano, Italy;
| | - Matteo Barbato
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (M.I.); (V.G.); (I.G.); (M.B.); (N.M.)
| | - Alessandro Inno
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar di Valpolicella, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Andrea Tedeschi
- Cardiology Unit of Emergency Department, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
| | - Stefano Oliva
- UOSD Cardiologia di Interesse Oncologico IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Alessandra Greco
- Divisione di Cardiologia, Fondazione IRCCS San Matteo Hospital, Viale Golgi 19, 27100 Pavia, Italy;
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (M.I.); (V.G.); (I.G.); (M.B.); (N.M.)
| |
Collapse
|
13
|
Thomas MC, Cooper ME. The GLP-1 receptor agonist revolution comes to nephrology. Nat Rev Nephrol 2024; 20:637-638. [PMID: 39075285 DOI: 10.1038/s41581-024-00876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Affiliation(s)
- Merlin C Thomas
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Mark E Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Zhao L, Li W, Zhang P, Wang D, Yang L, Yuan G. Liraglutide induced browning of visceral white adipose through regulation of miRNAs in high-fat-diet-induced obese mice. Endocrine 2024; 85:222-232. [PMID: 38378894 DOI: 10.1007/s12020-024-03734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVE Obesity is characterized by excessive accumulation of white adipose tissue (WAT). Conversely, brown adipose tissue is protective against obesity. We recently reported liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), could inhibit high-fat-diet-induced obesity by browning of WAT. However, the molecular mechanism involved is not well defined. Hence, we aimed to explore whether GLP-1RA could promote brown remodeling in WAT by regulating miRNAs. METHODS After the obesity model was successfully constructed, C57BL/6J mice were treated with liraglutide (200 μg/kg/d) or equivoluminal saline subcutaneously for 12 weeks. Then, the deposition of abdominal fat was measured by CT scanning. At the end of the treatments, glucose and insulin tolerance in mice were assessed. Serum lipid levels were monitored and epididymal WAT (eWAT) were collected for analysis. Quantitative real-time PCR and western blot analyses were conducted to evaluate the expression of genes and miRNAs associated with white fat browning. RESULTS Liraglutide significantly reduced body weight and visceral fat mass. Levels of lipid profile were also improved. Liraglutide upregulated the expression of browning-related genes in eWAT. Meanwhile, the expression level of miRNAs (miR-196a and miR-378a) positively associated with the browning of WAT were increased, while the expression of miR-155, miR-199a, and miR-382 negatively related with browning of WAT were decreased. CONCLUSION Our findings suggest that liraglutide could promote brown remodeling of visceral WAT by bi-regulating miRNAs; this might be one of the mechanisms underlying its effect on weight loss.
Collapse
Affiliation(s)
- Li Zhao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Wenxin Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Panpan Zhang
- Department of Endocrinology, Taicang Hospital of Traditional Chinese Medicine, Taicang, Jiangsu, China
| | - Dong Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
15
|
Chee YJ, Dalan R. Novel Therapeutics for Type 2 Diabetes Mellitus-A Look at the Past Decade and a Glimpse into the Future. Biomedicines 2024; 12:1386. [PMID: 39061960 PMCID: PMC11274090 DOI: 10.3390/biomedicines12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular disease (CVD) and kidney disease are the main causes of morbidity and mortality in type 2 diabetes mellitus (T2DM). Globally, the incidence of T2DM continues to rise. A substantial increase in the burden of CVD and renal disease, alongside the socioeconomic implications, would be anticipated. Adopting a purely glucose-centric approach focusing only on glycemic targets is no longer adequate to mitigate the cardiovascular risks in T2DM. In the past decade, significant advancement has been achieved in expanding the pharmaceutical options for T2DM, with novel agents such as the sodium-glucose cotransporter type 2 (SGLT2) inhibitors and glucagon-like peptide receptor agonists (GLP-1 RAs) demonstrating robust evidence in cardiorenal protection. Combinatorial approaches comprising multiple pharmacotherapies combined in a single agent are an emerging and promising way to not only enhance patient adherence and improve glycemic control but also to achieve the potential synergistic effects for greater cardiorenal protection. In this review, we provide an update on the novel antidiabetic agents in the past decade, with an appraisal of the mechanisms contributing to cardiorenal protection. Additionally, we offer a glimpse into the landscape of T2DM management in the near future by providing a comprehensive summary of upcoming agents in early-phase trials.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
16
|
McFarlin BE, Duffin KL, Konkar A. Incretin and glucagon receptor polypharmacology in chronic kidney disease. Am J Physiol Endocrinol Metab 2024; 326:E747-E766. [PMID: 38477666 PMCID: PMC11551006 DOI: 10.1152/ajpendo.00374.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/10/2024] [Indexed: 03/14/2024]
Abstract
Chronic kidney disease is a debilitating condition associated with significant morbidity and mortality. In recent years, the kidney effects of incretin-based therapies, particularly glucagon-like peptide-1 receptor agonists (GLP-1RAs), have garnered substantial interest in the management of type 2 diabetes and obesity. This review delves into the intricate interactions between the kidney, GLP-1RAs, and glucagon, shedding light on their mechanisms of action and potential kidney benefits. Both GLP-1 and glucagon, known for their opposing roles in regulating glucose homeostasis, improve systemic risk factors affecting the kidney, including adiposity, inflammation, oxidative stress, and endothelial function. Additionally, these hormones and their pharmaceutical mimetics may have a direct impact on the kidney. Clinical studies have provided evidence that incretins, including those incorporating glucagon receptor agonism, are likely to exhibit improved kidney outcomes. Although further research is necessary, receptor polypharmacology holds promise for preserving kidney function through eliciting vasodilatory effects, influencing volume and electrolyte handling, and improving systemic risk factors.
Collapse
Affiliation(s)
- Brandon E McFarlin
- Lilly Research Laboratories, Lilly Corporate CenterIndianapolisIndianaUnited States
| | - Kevin L Duffin
- Lilly Research Laboratories, Lilly Corporate CenterIndianapolisIndianaUnited States
| | - Anish Konkar
- Lilly Research Laboratories, Lilly Corporate CenterIndianapolisIndianaUnited States
| |
Collapse
|
17
|
Holliday MW, Frost L, Navaneethan SD. Emerging evidence for glucagon-like peptide-1 agonists in slowing chronic kidney disease progression. Curr Opin Nephrol Hypertens 2024; 33:331-336. [PMID: 38411162 PMCID: PMC11126299 DOI: 10.1097/mnh.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW Diabetic kidney disease continues to increase, and several novel therapeutic agents have been shown to slow the progression of chronic kidney disease in those with diabetes. This review summarizes more recent data on the role of glucagon-like peptide-1 (GLP-1) receptor agonists and kidney outcomes. RECENT FINDINGS Posthoc analysis of cardiovascular outcome trials, as well as several retrospective studies, demonstrate benefits of GLP-1 receptor agonist therapy for chronic kidney disease progression in diabetics. Although limited randomized clinical trials evidence assessing the effects of GLP-1 receptor agonists on kidney outcomes in diabetic chronic kidney disease patients have been published, FLOW-CKD trial was halted based on interim data for efficacy, and results are awaited. SUMMARY GLP-1 receptor agonism is a promising therapy for slowing the progression of diabetic chronic kidney disease. Recent studies support kidney benefits GLP-1 receptor agonists over insulin and dipeptidyl peptidase-4-inhibitors, and the FLOW-CKD trial would inform the potential benefits for reducing the need for dialysis and kidney-disease related mortality in those with kidney disease.
Collapse
Affiliation(s)
- Michael W. Holliday
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX
- Section of Nephrology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| | - Livia Frost
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Sankar D. Navaneethan
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX
- Section of Nephrology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
- Veterans Affairs Health Services Research and Development Center for Innovations in Quality, Effectiveness, and Safety, Houston, TX
- Institute of Clinical and Translational Research Baylor College of Medicine, Houston, TX
| |
Collapse
|
18
|
Wang T, Ding J, Cheng X, Yang Q, Hu P. Glucagon-like peptide-1 receptor agonists: new strategies and therapeutic targets to treat atherosclerotic cardiovascular disease. Front Pharmacol 2024; 15:1396656. [PMID: 38720777 PMCID: PMC11076696 DOI: 10.3389/fphar.2024.1396656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of cardiovascular mortality and is increasingly prevalent in our population. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) can safely and effectively lower glucose levels while concurrently managing the full spectrum of ASCVD risk factors and improving patients' long-term prognosis. Several cardiovascular outcome trials (CVOTs) have been carried out to further investigate the cardiovascular benefits of GLP-1RAs. Analyzing data from CVOTs can provide insights into the pathophysiologic mechanisms by which GLP-1RAs are linked to ASCVD and define the use of GLP-1RAs in clinical practice. Here, we discussed various mechanisms hypothesized in previous animal and preclinical human studies, including blockade of the production of adhesion molecules and inflammatory factors, induction of endothelial cells' synthesis of nitric oxide, protection of mitochondrial function and restriction of oxidative stress, suppression of NOD-like receptor thermal protein domain associated protein three inflammasome, reduction of foam cell formation and macrophage inflammation, and amelioration of vascular smooth muscle cell dysfunction, to help explain the cardiovascular benefits of GLP-1RAs in CVOTs. This paper provides an overview of the clinical research, molecular processes, and possible therapeutic applications of GLP-1RAs in ASCVD, while also addressing current limitations in the literature and suggesting future research directions.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juncan Ding
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyi Cheng
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Yang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
19
|
Li J, Liu J, Shi W, Guo J. Role and molecular mechanism of Salvia miltiorrhiza associated with chemical compounds in the treatment of diabetes mellitus and its complications: A review. Medicine (Baltimore) 2024; 103:e37844. [PMID: 38640337 PMCID: PMC11029945 DOI: 10.1097/md.0000000000037844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent diseases worldwide, greatly impacting patients' quality of life. This article reviews the progress in Salvia miltiorrhiza, an ancient Chinese plant, for the treatment of DM and its associated complications. Extensive studies have been conducted on the chemical composition and pharmacological effects of S miltiorrhiza, including its anti-inflammatory and antioxidant activities. It has demonstrated potential in preventing and treating diabetes and its consequences by improving peripheral nerve function and increasing retinal thickness in diabetic individuals. Moreover, S miltiorrhiza has shown effectiveness when used in conjunction with angiotensin-converting enzyme inhibitors, angiotensin receptor blockers (ARBs), and statins. The safety and tolerability of S miltiorrhiza have also been thoroughly investigated. Despite the established benefits of managing DM and its complications, further research is needed to determine appropriate usage, dosage, long-term health benefits, and safety.
Collapse
Affiliation(s)
- Jiajie Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Jinxing Liu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Weibing Shi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Jinchen Guo
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| |
Collapse
|
20
|
Shen R, Qin S, Lv Y, Liu D, Ke Q, Shi C, Jiang L, Yang J, Zhou Y. GLP-1 receptor agonist attenuates tubular cell ferroptosis in diabetes via enhancing AMPK-fatty acid metabolism pathway through macropinocytosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167060. [PMID: 38354757 DOI: 10.1016/j.bbadis.2024.167060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Kidney tubules are mostly responsible for pathogenesis of diabetic kidney disease. Actively reabsorption of iron, high rate of lipid metabolism and exposure to concentrated redox-active compounds constructed the three main pillars of ferroptosis in tubular cells. However, limited evidence has indicated that ferroptosis is indispensable for diabetic tubular injury. Glucagon-like peptide-1 receptor agonist (GLP-1RA) processed strong benefits on kidney outcomes in people with diabetes. Moreover, GLP-1RA may have additive effects by improving dysmetabolism besides glucose control and weight loss. Therefore, the present study aimed at exploring the benefits of exendin-4, a high affinity GLP-1RA on kidney tubular dysregulation in diabetes and the possible mechanisms involved, with focus on ferroptosis and adenosine 5'-monophosphate-activated protein kinase (AMPK)-mitochondrial lipid metabolism pathway. Our data revealed that exendin-4 treatment markedly improved kidney structure and function by reducing iron overload, oxidative stress, and ACSL4-driven lipid peroxidation taken place in diabetic kidney tubules, along with reduced GPX4 expression and GSH content. AMPK signaling was identified as the downstream target of exendin-4, and enhancement of AMPK triggered the transmit of its downstream signal to activate fatty acid oxidation in mitochondria and suppress lipid synthesis and glycolysis, and ultimately alleviated toxic lipid accumulation and ferroptosis. Further study suggested that exendin-4 was taken up by tubular cells via macropinocytosis. The protective effect of exendin-4 on tubular ferroptosis was abolished by macropinocytosis blockade. Taken together, present work demonstrated the beneficial effects of GLP-1RA treatment on kidney tubular protection in diabetes by suppressing ferroptosis through enhancing AMPK-fatty acid metabolic signaling via macropinocytosis.
Collapse
Affiliation(s)
- Rui Shen
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Songyan Qin
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Yunhui Lv
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Dandan Liu
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Qingqing Ke
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Caifeng Shi
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Lei Jiang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| |
Collapse
|
21
|
Xiang P, Jiang M, Chen X, Chen L, Cheng Y, Luo X, Zhou H, Zheng Y. Targeting Grancalcin Accelerates Wound Healing by Improving Angiogenesis in Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305856. [PMID: 38308197 PMCID: PMC11005700 DOI: 10.1002/advs.202305856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Indexed: 02/04/2024]
Abstract
Chronic diabetic wounds are a serious complication of diabetes and often result in limb amputations and confer high mortality rates. The proinflammatory secretome in the wound perpetuates defective neovascularization and contributes to dysregulated tissue repair. This study aims to design a gelatin methacrylamide (GelMA) hydrogel to sustained the release of grancalcin-neutralizing antibody (GCA-NAb) and evaluate it as a potential scaffold to promote diabetic wound healing. Results show that the expression of grancalcin(GCA), a protein secreted by bone marrow-derived immune cells, is elevated in the wound sites of individuals and animals with diabetic ulcers. Genetic inhibition of grancalcin expression accelerates vascularization and healing in an animal model. Mechanistic studies show that grancalcin binds to transient receptor potential melastatin 8(TRPM8) and partially inactivates its downstream signaling pathways, thereby impairing angiogenesis in vitro and ex vivo. Systemic or topical administration of a GCA-NAb accelerate wound repair in mice with diabetes. The data suggest that GCA is a potential therapeutic target for the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Peng Xiang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Meng Jiang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Xin Chen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Linyun Chen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Yalun Cheng
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Xianghang Luo
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Haiyan Zhou
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Yongjun Zheng
- Department of Burn Surgerythe First Affiliated Hospital of Naval Medical UniversityShanghai200433China
| |
Collapse
|
22
|
Muriana FJG. Large metabolic swings: when feeding exceeds its goals. Trends Endocrinol Metab 2024; 35:185-187. [PMID: 38135555 DOI: 10.1016/j.tem.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Exaggerated blood excursions of nutrients and endogenous molecules in response to food intake may have health consequences if they repeatedly exceed the capacity of homeostatic mechanisms. Here, I discuss the significance of abnormally high postprandial metabolic fluctuations, the role of some influencing factors, and suggest ways to avoid them.
Collapse
Affiliation(s)
- Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, Campus UPO, Building 46, Ctra. De Utrera Km 1, Seville 41013, Spain.
| |
Collapse
|
23
|
He A, Shi C, Wu X, Sheng Y, Zhu X, Yang J, Zhou Y. Clusters of Body Fat and Nutritional Parameters are Strongly Associated with Diabetic Kidney Disease in Adults with Type 2 Diabetes. Diabetes Ther 2024; 15:201-214. [PMID: 37962825 PMCID: PMC10786782 DOI: 10.1007/s13300-023-01502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) has become the leading cause of chronic kidney disease and end-stage renal failure in most developed and many developing countries. Strategies aimed at identifying potential modifiable risk factors for DKD are urgently needed. Here, we investigated the association between clusters of body fat and nutritional parameters with DKD in adults with type 2 diabetes mellitus (T2DM). METHODS This was a cross-sectional study of 184 participants with T2DM. Biochemical parameters including fasting blood glucose, hemoglobin A1c, hemoglobin, albumin, creatinine, and urinary albumin-to-creatinine ratio (UACR) were measured. The data for percentage of body fat mass (PBF), visceral fat area (VFA), phase angle at 50 kHz (PA50), and body cell mass (BCM) were obtained by bioelectrical impedance analysis (BIA). DKD was diagnosed by UACR and estimated glomerular filtration rate. Factor analysis was used for dimensionality reduction clustering among variables. The association of clusters with the presence of DKD was assessed using binary logistic regression analysis. RESULTS Factor analysis identified two clusters which were interpreted as a body fat cluster with positive loadings of VFA, body mass index, waist circumstance, and PBF and a nutritional parameters cluster with positive loadings of PA50, hemoglobin, BCM, and albumin. Participants were divided into the four groups based on the sex-specific cutoff value (median) of each cluster score calculated using the cluster weights and the original variable values. Only participants with high body fat and poor nutritional parameters (OR 3.43, 95% CI 1.25-9.42) were associated with increased odds of having DKD. CONCLUSION Body fat and nutritional parameters were strongly associated with and considerably contributed to the presence of DKD, suggesting that body fat and nutrition might be promising markers representing metabolic state in pathogenesis of DKD and clinical utility of BIA might provide valuable recommendations to patients with T2DM.
Collapse
Affiliation(s)
- Aiqin He
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Caifeng Shi
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Xiaomei Wu
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Yuting Sheng
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Xueting Zhu
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China.
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China.
| |
Collapse
|
24
|
Tan SK, Pinzon-Cortes JA, Cooper ME. Novel pharmacological interventions for diabetic kidney disease. Curr Opin Nephrol Hypertens 2024; 33:13-25. [PMID: 37889557 DOI: 10.1097/mnh.0000000000000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the latest evidence on the prevention and progression of diabetic kidney disease (DKD), as well as novel pharmacological interventions from preclinical and early clinical studies with promising findings in the reduction of this condition's burden. RECENT FINDINGS We will cover the latest evidence on the reduction of proteinuria and kidney function decline in DKD achieved through established renin-angiotensin-aldosterone system (RAAS) system blockade and the more recent addition of SGLT2i, nonsteroidal mineralocorticoid receptor antagonists (MRAs) and GLP1-RA, that combined will most likely integrate the mainstay for current DKD treatment. We also highlight evidence from new mechanisms of action in DKD, including other haemodynamic anti-inflammatory and antifibrotic interventions, oxidative stress modulators and cell identity and epigenetic targets. SUMMARY Renal specific outcome trials have become more popular and are increasing the available armamentarium to diminish the progression of renal decline in patients at greater risk of end-stage kidney disease (ESKD) such as diabetic individuals. A combined pharmaceutical approach based on available rigorous studies should include RAAS blockade, SGLT2 inhibitors, nonsteroidal MRA and expectedly GLP1-RA on a personalized based-intervention. New specific trials designed to address renal outcomes will be needed for innovative therapies to conclude on their potential benefits in DKD.
Collapse
Affiliation(s)
- Seng Kiong Tan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Jairo A Pinzon-Cortes
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Sabnis RW. Novel Pyrrole Derivatives as Apolipoprotein L-1 Inhibitors for Treating Kidney Diseases and Sepsis. ACS Med Chem Lett 2023; 14:1625-1626. [PMID: 38116414 PMCID: PMC10726471 DOI: 10.1021/acsmedchemlett.3c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Indexed: 12/21/2023] Open
Abstract
Provided herein are novel pyrrole derivatives as apolipoprotein L-1 inhibitors, pharmaceutical compositions, use of such compounds in treating kidney diseases and sepsis, and processes for preparing such compounds.
Collapse
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1105 W. Peachtree Street NE, Suite
1000, Atlanta, Georgia 30309, United States
| |
Collapse
|
26
|
Jiao J, Chen L, Peng Y, Jia Q, He Y, Zhang Y, Li N. Development of a core outcome set for cardiovascular diabetology: a methodological framework. Front Endocrinol (Lausanne) 2023; 14:1271891. [PMID: 38125792 PMCID: PMC10731247 DOI: 10.3389/fendo.2023.1271891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Background Cardiovascular diabetology is an emergent field focusing on all aspects of diabetes/cardiovascular interrelationship and metabolic syndrome. High-quality evidence needs to be provided to determine the efficacy and safety of interventions in cardiovascular diabetology. The heterogeneity of outcomes among trials limits the comparison of results, and some outcomes are not always meaningful to end-users. The cardiovascular diabetology core outcome set (COS) study aims to develop a COS of interventions for cardiovascular diabetology. In this paper, we introduce the methodological framework for developing the COS. Methods The COS development will include the following steps: (a) establish the COS groups of stakeholders, including international steering committee, Delphi survey group, and consensus meeting group; (b) systematic reviews of outcomes used in trials of cardiovascular diabetology; (c) semistructured interview of stakeholders for outcomes of cardiovascular diabetology; (d) generate a list of candidate outcomes and determine the original outcome pool; (e) Delphi survey with stakeholders of cardiovascular diabetology to select potential core outcomes; and (f) review and endorse the cardiovascular diabetology COS by expert consensus meeting. Conclusions This current study reports the methodological framework to develop a COS in cardiovascular diabetology and will provide evidence for the future development of COS in cardiovascular diabetology.
Collapse
Affiliation(s)
- Jiao Jiao
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lingmin Chen
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yong Peng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingyi Jia
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ying He
- Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Nian Li
- Department of Medical Administration, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Wang L, Chen Z, Liu X, Wang L, Zhou Y, Huang J, Liu Z, Lin D, Liu L. GLP-1 Receptor Agonist Improves Mitochondrial Energy Status and Attenuates Nephrotoxicity In Vivo and In Vitro. Metabolites 2023; 13:1121. [PMID: 37999218 PMCID: PMC10672795 DOI: 10.3390/metabo13111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
High-sugar and high-fat diets cause significant harm to health, especially via metabolic diseases. In this study, the protective effects of the antidiabetic drug exenatide (synthetic exendin-4), a glucagon-like peptide 1 (GLP-1) receptor agonist, on high-fat and high-glucose (HFHG)-induced renal injuries were investigated in vivo and in vitro. In vivo and in vitro renal injury models were established. Metabolomic analysis based on 1H-nuclear magnetic resonance was performed to examine whether exenatide treatment exerts a protective effect against kidney injury in diabetic rats and to explore its potential molecular mechanism. In vivo, 8 weeks of exenatide treatment resulted in the regulation of most metabolites in the diabetes mellitus group. In vitro results showed that exendin-4 restored the mitochondrial functions of mesangial cells, which were perturbed by HFHG. The effects of exendin-4 included the improved antioxidant capacity of mesangial cells, increased the Bcl-2/Bax ratio, and reduced protein expression of cyt-c and caspase-3 activation. In addition, exendin-4 restored mesangial cell energy metabolism by increasing succinate dehydrogenase and phosphofructokinase activities and glucose consumption while inhibiting pyruvate dehydrogenase E1 activity. In conclusion, GLP-1 agonists improve renal injury in diabetic rats by ameliorating metabolic disorders. This mechanism could be partially related to mitochondrial functions and energy metabolism.
Collapse
Affiliation(s)
- Linxi Wang
- Department of Endocrinology and Metabolism, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (L.W.); (X.L.); (L.W.); (Y.Z.); (J.H.)
| | - Zhou Chen
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou 350001, China;
| | - Xiaoying Liu
- Department of Endocrinology and Metabolism, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (L.W.); (X.L.); (L.W.); (Y.Z.); (J.H.)
| | - Lijing Wang
- Department of Endocrinology and Metabolism, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (L.W.); (X.L.); (L.W.); (Y.Z.); (J.H.)
| | - Yu Zhou
- Department of Endocrinology and Metabolism, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (L.W.); (X.L.); (L.W.); (Y.Z.); (J.H.)
| | - Jingze Huang
- Department of Endocrinology and Metabolism, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (L.W.); (X.L.); (L.W.); (Y.Z.); (J.H.)
| | - Zhiqing Liu
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (Z.L.); (D.L.)
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (Z.L.); (D.L.)
| | - Libin Liu
- Department of Endocrinology and Metabolism, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (L.W.); (X.L.); (L.W.); (Y.Z.); (J.H.)
| |
Collapse
|
28
|
Li M, Wang H, Zhang XJ, Cai J, Li H. NAFLD: An Emerging Causal Factor for Cardiovascular Disease. Physiology (Bethesda) 2023; 38:0. [PMID: 37431986 DOI: 10.1152/physiol.00013.2023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide that poses a significant threat to human health. Cardiovascular disease (CVD) is the leading cause of mortality in NAFLD patients. NAFLD and CVD share risk factors such as obesity, insulin resistance, and type 2 diabetes. However, whether NAFLD is a causal risk factor for CVD remains a matter of debate. This review summarizes the evidence from prospective clinical and Mendelian randomization studies that underscore the potential causal relationship between NAFLD and CVD. The mechanisms of NAFLD contributing to the development of CVD and the necessity of addressing CVD risk while managing NAFLD in clinical practice are also discussed.
Collapse
Affiliation(s)
- Mei Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hongmin Wang
- Department of Rehabilitation Medicine, Huanggang Central Hospital, Huanggang, China
| | - Xiao-Jing Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Shi C, Wan Y, He A, Wu X, Shen X, Zhu X, Yang J, Zhou Y. Urinary metabolites associate with the presence of diabetic kidney disease in type 2 diabetes and mediate the effect of inflammation on kidney complication. Acta Diabetol 2023; 60:1199-1207. [PMID: 37184672 PMCID: PMC10359369 DOI: 10.1007/s00592-023-02094-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
AIMS Diabetic kidney disease (DKD) is the one of the leading causes of end-stage kidney disease. Unraveling novel biomarker signatures capable to identify patients with DKD is favorable for tackle the burden. Here, we investigated the possible association between urinary metabolites and the presence of DKD in type 2 diabetes (T2D), and further, whether the associated metabolites improve discrimination of DKD and mediate the effect of inflammation on kidney involvement was evaluated. METHODS Two independent cohorts comprising 192 individuals (92 DKD) were analyzed. Urinary metabolites were analyzed by targeted metabolome profiling and inflammatory cytokine IL-18 were measured by ELISA. Differentially expressed metabolites were selected and mediation analysis was carried out. RESULTS Seven potential metabolite biomarkers (i.e., S-Adenosyl-L-homocysteine, propionic acid, oxoadipic acid, leucine, isovaleric acid, isobutyric acid, and indole-3-carboxylic acid) were identified using the discovery and validation design. In the pooled analysis, propionic acid, oxoadipic acid, leucine, isovaleric acid, isobutyric acid, and indole-3-carboxylic acid were markedly and independently associated with DKD. The composite index of 7 potential metabolite biomarkers (CMI) mediated 32.99% of the significant association between the inflammatory IL-18 and DKD. Adding the metabolite biomarkers improved the discrimination of DKD. CONCLUSIONS In T2D, several associated urinary metabolites were identified to improve the prediction of DKD. Whether interventions aimed at reducing CMI also reduce the risk of DKD especially in patients with high IL-18 needs further investigations.
Collapse
Affiliation(s)
- Caifeng Shi
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Yemeng Wan
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Aiqin He
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Xiaomei Wu
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Xinjia Shen
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Xueting Zhu
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China.
| | - Yang Zhou
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China.
| |
Collapse
|
30
|
Affiliation(s)
- Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, The Alfred Centre, Level 5, 99 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
31
|
Chen YK, Liu TT, Teia FKF, Xie MZ. Exploring the underlying mechanisms of obesity and diabetes and the potential of Traditional Chinese Medicine: an overview of the literature. Front Endocrinol (Lausanne) 2023; 14:1218880. [PMID: 37600709 PMCID: PMC10433171 DOI: 10.3389/fendo.2023.1218880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Obesity and diabetes are closely related metabolic disorders that have become major public health concerns worldwide. Over the past few decades, numerous studies have explored the underlying mechanisms of these disorders and identified various risk factors, including genetics, lifestyle, and dietary habits. Traditional Chinese Medicine (TCM) has been increasingly recognized for its potential to manage obesity and diabetes. Weight loss is difficult to sustain, and several diabetic therapies, such as sulfonylureas, thiazolidinediones, and insulin, might make it harder to lose weight. While lifestyle changes should be the primary approach for people interested in lowering weight, drugs are also worth investigating. Since some of the newer glucose-lowering medications that cause weight loss, such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter 2 inhibitors (SGLT2i), are additionally utilized or are under consideration for use as anti-obesity drugs, the frontier between glucose-lowering medication and weight loss drugs appears to be shifting. This review provides an overview of the literature on the underlying mechanisms of obesity and diabetes and the prospect of TCM in their management. We discuss the various TCM interventions, including acupuncture, herbal medicine, and dietary therapy, and their effects on metabolic health. We also highlight the potential of TCM in regulating gut microbiota, reducing inflammation, and improving insulin sensitivity. The findings suggest that TCM may provide a promising approach to preventing and managing obesity and diabetes. However, further well-designed studies are needed to confirm the efficacy and safety of TCM interventions and to elucidate their underlying mechanisms of action.
Collapse
Affiliation(s)
- Yan-kun Chen
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Ting-ting Liu
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Farah Khameis Farag Teia
- Department of Agro-technology, Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Centre for Research, Khartoum, Sudan
| | - Meng-zhou Xie
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
32
|
Kim ER, Yun JH, Kim HJ, Park HY, Heo Y, Park YS, Park DJ, Koo SK. Evaluation of hormonal and circulating inflammatory biomarker profiles in the year following bariatric surgery. Front Endocrinol (Lausanne) 2023; 14:1171675. [PMID: 37564975 PMCID: PMC10411526 DOI: 10.3389/fendo.2023.1171675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Background Bariatric surgery (BS) has a superior effect on reducing body weight and fat in patients with morbid obesity. As a result, BS mitigates obesity-related complications such as type 2 diabetes (T2D). However, few studies have shown the mechanism underlying diabetes remission after surgery. This study aimed to investigate the differences in serum hormone and inflammatory cytokine levels related to diabetes before surgery and during 12 months of follow-up in Korean patients with obesity. Methods The study participants were patients with morbid obesity (n=63) who underwent sleeve gastrectomy (SG) or Roux-en-Y gastric bypass (RYGB) between 2016 - 2017 at seven tertiary hospitals in Korea. The patients were followed for 1 year after surgery. Results Sixty-three patients had significant weight loss after surgery and showed improvements in clinical parameters and hormonal and inflammatory profiles. Among them, 23 patients who were diabetic preoperatively showed different remission after surgery. The levels of inflammation-related clinical parameters changed significantly in the remission group, and serum inflammatory cytokine and hormones significantly decreased at certain points and showed an overall decreasing trend. Conclusions Our study found postoperative changes of factors in blood samples, and the changes in hormones secreted from the three major metabolic tissue (pancreas, adipose, and gut) along with the differences in multi-origin inflammatory cytokines between remission and non-remission groups provide a path for understanding how the effect of BS in improving glucose metabolism is mediated.
Collapse
Affiliation(s)
- Eun Ran Kim
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| | - Ji Ho Yun
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| | - Hyo-Jin Kim
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| | - Hyeon Young Park
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| | - Yoonseok Heo
- Department of Surgery, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Young Suk Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Kyung Koo
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| |
Collapse
|
33
|
Sabnis RW. Novel 2,5-Diazabicyclo[4.2.0]octanes as GLP-1 Receptor Modulators for Treating Type 2 Diabetes. ACS Med Chem Lett 2023; 14:709-710. [PMID: 37312848 PMCID: PMC10258909 DOI: 10.1021/acsmedchemlett.3c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 06/15/2023] Open
Abstract
Provided herein are 2,5-diazabicyclo[4.2.0]octanes as GLP-1 receptor modulators, pharmaceutical compositions, use of such compounds in treating type 2 diabetes, and processes for preparing such compounds.
Collapse
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell
LLP, 1105 W. Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309, United States
| |
Collapse
|