1
|
Ma Z, Pan S, Yang Y, Ren H, Yin S, Chen Q, An Z, Zhao X, Xu Z. Lipid droplets: Emerging therapeutic targets for age-related metabolic diseases. Ageing Res Rev 2025; 108:102758. [PMID: 40300696 DOI: 10.1016/j.arr.2025.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
Lipids metabolism is crucial in regulating aging and metabolic diseases. Lipid droplets (LDs) are dynamic, complex organelles responsible for the storage and release of neutral lipids, essential for maintaining lipid homeostasis and energy metabolism. Aging accelerates the accumulation of LDs, functional deterioration, and metabolic disorders, thereby inducing age-related metabolic diseases (ARMDs). This review examines published datasets on the association between LDs and ARMDs, focusing on the structure and function of LDs, their interactions with other organelles, and associated proteins. Furthermore, we explore the potential mechanisms by which LDs mediate the onset of ARMDs, including Alzheimer's disease (AD), sarcopenia, metabolic cardiomyopathy, non-alcoholic fatty liver disease (NAFLD), and cancer. Lastly, we discuss intervention strategies aimed at targeting LDs to improve outcomes in ARMDs, including exercise, dietary, and pharmacological interventions.
Collapse
Affiliation(s)
- Zheying Ma
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Shou Pan
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Yaming Yang
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Huiqian Ren
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Sikun Yin
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Qianyu Chen
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Zhenxian An
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xiaoqin Zhao
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zujie Xu
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
2
|
Yan T, Kang G, Meng Y, Zhang L, Jiang Q, Shen N, Li H, Xu M, Yu L, Ni G, Ma H, Guo F, Cui Y, Che F. Qinglongyi nanoparticles alleviate neuroinflammation and promote neuronal survival by inhibiting neuronal ferroptosis in intracerebral hemorrhage. Int Immunopharmacol 2025; 159:114945. [DOI: 10.1016/j.intimp.2025.114945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2025]
|
3
|
Zhao X, Li Y, Zhang S, Sudwarts A, Zhang H, Kozlova A, Moulton MJ, Goodman LD, Pang ZP, Sanders AR, Bellen HJ, Thinakaran G, Duan J. Alzheimer's disease protective allele of Clusterin modulates neuronal excitability through lipid-droplet-mediated neuron-glia communication. Mol Neurodegener 2025; 20:51. [PMID: 40319306 PMCID: PMC12049787 DOI: 10.1186/s13024-025-00840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified a plethora of risk loci. However, the disease variants/genes and the underlying mechanisms have not been extensively studied. METHODS Bulk ATAC-seq was performed in induced pluripotent stem cells (iPSCs) differentiated various brain cell types to identify allele-specific open chromatin (ASoC) SNPs. CRISPR-Cas9 editing generated isogenic pairs, which were then differentiated into glutamatergic neurons (iGlut). Transcriptomic analysis and functional studies of iGlut co-cultured with mouse astrocytes assessed neuronal excitability and lipid droplet formation. RESULTS We identified a putative causal SNP of CLU that impacted neuronal chromatin accessibility to transcription-factor(s), with the AD protective allele upregulating neuronal CLU and promoting neuron excitability. And, neuronal CLU facilitated neuron-to-glia lipid transfer and astrocytic lipid droplet formation coupled with reactive oxygen species (ROS) accumulation. These changes caused astrocytes to uptake less glutamate thereby altering neuron excitability. CONCLUSIONS For a strong AD-associated locus near Clusterin (CLU), we connected an AD protective allele to a role of neuronal CLU in promoting neuron excitability through lipid-mediated neuron-glia communication. Our study provides insights into how CLU confers resilience to AD through neuron-glia interactions.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Center for Psychiatric Genetics, Endeavor Health, Evanston, IL, 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Yan Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Siwei Zhang
- Center for Psychiatric Genetics, Endeavor Health, Evanston, IL, 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Ari Sudwarts
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33160, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, Endeavor Health, Evanston, IL, 60201, USA
| | - Alena Kozlova
- Center for Psychiatric Genetics, Endeavor Health, Evanston, IL, 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Matthew J Moulton
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lindsey D Goodman
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Johnson Medical School, Child Health Institute of New Jersey, Rutgers Robert Wood, New Brunswick, NJ, 08901, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, Endeavor Health, Evanston, IL, 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Hugo J Bellen
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gopal Thinakaran
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33160, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, Endeavor Health, Evanston, IL, 60201, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2025; 25:321-352. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
5
|
Joly P, Labsy R, Silvin A. Aging and neurodegeneration: when systemic dysregulations affect brain macrophage heterogeneity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:880-888. [PMID: 40073104 DOI: 10.1093/jimmun/vkae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/14/2024] [Indexed: 03/14/2025]
Abstract
Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration. Monocytes' infiltration and differentiation into monocyte-derived macrophages (MDMs) in the brain contribute to this diversity. Microbiota's role in brain diseases has been recently highlighted, revealing how microbial signals, such as metabolites, influence microglia and MDMs. In this brief review, we describe how these signals can influence microglia through their sensome and shape MDMs from their development in the bone marrow to their differentiation in the brain. Monocytes could then be a crucial player in the constitution of a dysbiotic gut-brain axis in neurodegenerative diseases and aging.
Collapse
Affiliation(s)
- Paul Joly
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| | - Reyhane Labsy
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| | - Aymeric Silvin
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| |
Collapse
|
6
|
Qian N, Zhao Z, El Khoury E, Gao X, Canela C, Shen Y, Shi L, Shi L, Hu F, Wei L, Min W. Illuminating life processes by vibrational probes. Nat Methods 2025; 22:928-944. [PMID: 40360917 DOI: 10.1038/s41592-025-02689-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025]
Abstract
Vibration of chemical bonds can serve as imaging contrast. Vibrational probes, synergized with major advances in chemical bond imaging instruments, have recently flourished and proven valuable in illuminating life processes. Here, we review how the development of vibrational probes with optimal biocompatibility, enhanced sensitivity, multichromatic colors and diverse functionality has extended chemical bond imaging beyond the prevalent label-free paradigm into various novel applications such as imaging metabolites, metabolic imaging, drug imaging, super-multiplex imaging, vibrational profiling and vibrational sensing. These advancements in vibrational probes have greatly facilitated understanding living systems, a new field of vibrational chemical biology.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Zhilun Zhao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Elsy El Khoury
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Carli Canela
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Yihui Shen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lingyan Shi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Lixue Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanghao Hu
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Cheng JX, Yuan Y, Ni H, Ao J, Xia Q, Bolarinho R, Ge X. Advanced vibrational microscopes for life science. Nat Methods 2025; 22:912-927. [PMID: 40360912 DOI: 10.1038/s41592-025-02655-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/04/2025] [Indexed: 05/15/2025]
Abstract
Providing molecular fingerprint information, vibrational spectroscopic imaging opens a new window to decipher the function of biomolecules in living systems. While classic vibrational microscopes based on spontaneous Raman scattering or mid-infrared absorption offer rich insights into sample composition, they have very small cross sections or poor spatial resolution. Nonlinear vibrational microscopy, based on coherent Raman scattering or optical photothermal detection of vibrational absorption, overcomes these barriers and enables high-speed and high-sensitivity imaging of chemical bonds in live cells and tissues. Here, we introduce various modalities, including their principles, strengths, weaknesses and data mining methods to the life sciences community. We further provide a guide for prospective users and an outlook on future technological advances.
Collapse
Affiliation(s)
- Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Chemistry, Boston University, Boston, MA, USA.
- Photonics Center, Boston University, Boston, MA, USA.
| | - Yuhao Yuan
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Jianpeng Ao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | | | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
8
|
Chen T, Savini M, Wang MC. Unlocking in vivo metabolic insights with vibrational microscopy. Nat Methods 2025; 22:886-889. [PMID: 40360913 DOI: 10.1038/s41592-025-02616-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Affiliation(s)
- Tao Chen
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marzia Savini
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Meng C Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
9
|
Gong Y, Xu R, Gao G, Li S, Liu Y. The role of fatty acid metabolism on B cells and B cell-related autoimmune diseases. Inflamm Res 2025; 74:75. [PMID: 40299047 DOI: 10.1007/s00011-025-02042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Fatty acid metabolism plays a critical role in regulating immune cell function, including B cells, which are central to humoral immunity and the pathogenesis of autoimmune diseases. Emerging evidence suggests that fatty acid metabolism influences B cell development, activation, differentiation, and antibody production, thereby impacting B cell-related autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In this review, we discuss the mechanisms by which fatty acid metabolism modulates B cell biology, including energy provision, membrane composition, and signaling pathways. We highlight how alterations in fatty acid synthesis, oxidation, and uptake affect B cell function and contribute to autoimmune pathogenesis. Additionally, we explore the therapeutic potential of targeting fatty acid metabolism in B cells to treat autoimmune diseases. Understanding the interplay between fatty acid metabolism and B cell immunity may provide novel insights into the development of precision therapies for B cell-mediated autoimmune disorders.
Collapse
Affiliation(s)
- Yanmei Gong
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Ruiqi Xu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Guohui Gao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Simiao Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Ying Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China.
- Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China, China.
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, Shandong, China.
| |
Collapse
|
10
|
Acosta Ingram D, Turkes E, Kim TY, Vo S, Sweeney N, Bonte MA, Rutherford R, Julian DL, Pan M, Marsh J, Argouarch AR, Wu M, Scharre DW, Bell EH, Honig LS, Vonsattel JP, Serrano GE, Beach TG, Karch CM, Kao AW, Hester ME, Han X, Fu H. GRAMD1B is a regulator of lipid homeostasis, autophagic flux and phosphorylated tau. Nat Commun 2025; 16:3312. [PMID: 40204713 PMCID: PMC11982250 DOI: 10.1038/s41467-025-58585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Lipid dyshomeostasis and tau pathology are present in frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). However, the relationship between lipid dyshomeostasis and tau pathology remains unclear. We report that GRAM Domain Containing 1B (GRAMD1B), a nonvesicular cholesterol transporter, is increased in excitatory neurons of human neural organoids (HNOs) with the MAPT R406W mutation. Human FTLD, AD cases, and PS19 tau mice also have increased GRAMD1B expression. We show that overexpression of GRAMD1B increases levels of free cholesterol, lipid droplets, and impairs autophagy flux. Modulating GRAMD1B in iPSC-derived neurons also alters key autophagy-related components such as PI3K, phospho-AKT, and p62, as well as phosphorylated tau, and CDK5R1. Blocking GRAMD1B function decreases free cholesterol and lipid droplets. Knocking down GRAMD1B additionally reduces phosphorylated tau, and CDK5R1 expression. Our findings elucidate the role of GRAMD1B in the nervous system and highlight its relevance to FTLD and AD.
Collapse
Affiliation(s)
- Diana Acosta Ingram
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Emir Turkes
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Tae Yeon Kim
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sheeny Vo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nicholas Sweeney
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Marie-Amandine Bonte
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dominic L Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea R Argouarch
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Min Wu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas W Scharre
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Erica H Bell
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Lawrence S Honig
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jean Paul Vonsattel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Aimee W Kao
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Mark E Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Villazon J, Dela Cruz N, Shi L. Cancer Cell Line Classification Using Raman Spectroscopy of Cancer-Derived Exosomes and Machine Learning. Anal Chem 2025; 97:7289-7298. [PMID: 40145503 PMCID: PMC11983372 DOI: 10.1021/acs.analchem.4c06966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/09/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025]
Abstract
Liquid biopsies are an emerging, noninvasive tool for cancer diagnostics, utilizing biological fluids for molecular profiling. Nevertheless, the current methods often lack the sensitivity and specificity necessary for early detection and real-time monitoring. This work explores an advanced approach to improving liquid biopsy techniques through machine learning analysis of the Raman spectra measured to classify distinct exosome solutions by their cancer origin. This was accomplished by conducting principal component analysis (PCA) of the Raman spectra of exosomes from three cancer cell lines (COLO205, A375, and LNCaP) to extract chemically significant features. This reduced set of features was then utilized to train a linear discriminant analysis (LDA) classifier to predict the source of the exosomes. Furthermore, we investigated differences in the lipid composition in these exosomes by their spectra. This spectral similarity analysis revealed differences in lipid profiles between the different cancer cell lines as well as identified the predominant lipids across all exosomes. Our PCA-LDA framework achieved 93.3% overall accuracy and F1 scores of 98.2%, 91.1%, and 91.0% for COLO205, A375, and LNCaP, respectively. Our results from spectral similarity analysis were also shown to support previous findings of lipid dynamics due to cancer pathology and pertaining to exosome function and structure. These findings underscore the benefits of enhancing Raman spectroscopy analysis with machine learning, laying the groundwork for the development of early noninvasive cancer diagnostics and personalized treatment strategies. This work potentially establishes the foundation for refining the classification model and optimizing exosome extraction and detection from clinical samples for clinical translation.
Collapse
Affiliation(s)
- Jorge Villazon
- Shu
Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Nathaniel Dela Cruz
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Lingyan Shi
- Shu
Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Aiiso
Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Institute
of Engineering in Medicine, University of
California San Diego, La Jolla, California 92093, United States
- Synthetic
Biology Institute, University of California
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Jia YJ, Wang XY, Liu J, Wang YJ, Masters CL, Guo JH. Halting the Progression of Alzheimer's Disease: Is the Goal in Sight? Neurosci Bull 2025; 41:723-727. [PMID: 39729286 PMCID: PMC11979006 DOI: 10.1007/s12264-024-01339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/28/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Yu-Juan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xuan-Yue Wang
- Department of Memory Principles, Chongqing Institute for Brain and Intelligence, Chongqing, 401125, China
| | - Jie Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- Key Laboratory of Ageing and Brain Disease, Chongqing, 400038, China.
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Jun-Hong Guo
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
13
|
Bai G, Ke S, Lu J, Yu S, Li S, Fang M, Ling J. Hexokinase 2 promotes ISGylation of Acyl-CoA synthetase long-chain family member 4 in sepsis-induced microglia cells. J Lipid Res 2025; 66:100776. [PMID: 40086696 PMCID: PMC12018552 DOI: 10.1016/j.jlr.2025.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
Metabolic reprogramming is often observed in sepsis-associated microglial cells. However, little is known about the aberrant metabolic genes involved in neuroinflammation and lipid accumulation in microglial cells of sepsis-associated encephalopathy (SAE). Here, we show that hexokinase 2 (HK2) is upregulated and strongly associated with the inflammatory response and lipid metabolism in lipopolysaccharide-induced BV2 cells. Downregulation of HK2 lowered the activation of NOD-like receptor signaling family pyrin domain containing 3, both in BV2 cells and in the hippocampus of cecal ligation and puncture-induced male septic mice. Moreover, the inhibition of HK2 promoted lipid droplet reduction. Mechanistically, HK2 knockdown in microglial cells reduced the ISGylation of Acyl-CoA Synthetase Long-chain Family Member 4 (ACSL4) by interferon-stimulated gene 15 (ISG15). Notably, siISG15 effectively down-regulated the expression of ACSL4 in lipopolysaccharide-induced BV2 cells. Our findings provide new mechanistic insights into HK2 in microglial cells through regulation of ACSL4 ISGylation, suggesting a promising therapeutic strategy for treating SAE by targeting HK2. Our findings suggest that HK2 modulates ISGylation of ACSL4 in sepsis-induced microglial cells, indicating that therapeutic targeting of HK2 may constitute a promising strategy for SAE.
Collapse
Affiliation(s)
- Guangyang Bai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Ke
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Lu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Yu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghao Fang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jianmin Ling
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Sturno AM, Hassell JE, Lanaspa MA, Bruce KD. Do microglia metabolize fructose in Alzheimer's disease? J Neuroinflammation 2025; 22:85. [PMID: 40089786 PMCID: PMC11910010 DOI: 10.1186/s12974-025-03401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with a complex etiology. While emerging AD therapeutics can slow cognitive decline, they may worsen dementia in certain groups of individuals. Therefore, alternative treatments are much needed. Microglia, the brain resident macrophages, have the potential to be novel therapeutic targets as they regulate many facets of AD, including lipid droplet (LD) accumulation, amyloid beta (Aβ) clearance, and neuroinflammation. To carry out such functions, microglia undergo phenotypic changes, which are linked to shifts in metabolism and substrate utilization. While homeostatic microglia are driven by oxidative phosphorylation (OXPHOS) and glycolysis, in aging and AD, microglia shift further towards glycolysis. Interestingly, this "metabolic reprogramming" may be linked to an increase in fructose metabolism. In the brain, microglia predominantly express the fructose transporter SLC2A5 (GLUT5), and enzymes involved in fructolysis and endogenous fructose production, with their expression being upregulated in aging and disease. Here, we review evidence for fructose uptake, breakdown, and production in microglia. We also evaluate emerging literature targeting fructose metabolism in the brain and periphery to assess its ability to modulate microglial function in AD. The ability of microglia to transport and utilize fructose, coupled with the well-established role of fructose in metabolic dysfunction, supports the notion that microglial fructose metabolism may be a novel potential therapeutic target for AD.
Collapse
Affiliation(s)
- Annalise M Sturno
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO, 80045, USA
| | - James E Hassell
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO, 80045, USA
| | - Miguel A Lanaspa
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO, 80045, USA.
| |
Collapse
|
15
|
Wang Y, Chen S, Lv X, He J, Liang X, Song Y. Bibliometric analysis and visualization of lipid droplets in the central nervous system: research hotspots and Frontiers (2000-2024). Front Aging Neurosci 2025; 17:1534368. [PMID: 40182755 PMCID: PMC11966413 DOI: 10.3389/fnagi.2025.1534368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Objective The aim of this study is to conduct bibliometric analysis and visualization of the research progress of lipid droplets in the central nervous system in detail using CiteSpace, VOSviewer, and to explore the current research status, hotspots, and research trends, with a view to providing a basis for future research. Methods This study utilized the Web of Science database to search for 1,066 relevant publications on lipid droplets in the central nervous system from 2000 to 2024. Bibliometric analysis was conducted using CiteSpace and VOSviewer software, producing metrics such as annual publication trends, contributions by countries, institutions, and authors, keyword co-occurrences, and reference co-citation networks. The literature of 25 years or so was explored visually to identify the important areas of lipid droplets in neurological research. Results Miguel Lopez is the largest contributor to the relevant literature with 10 publications. The United States, China, Johns Hopkins University, the University of Cambridge, and Zhejiang University are the top contributors in terms of publication volume in this research area. Current research emphasizes the mechanisms of lipid droplets in oxidative stress, neuroinflammation, and related degenerative diseases, with a particular focus on Alzheimer's Disease. Conclusion Our analysis suggests enhancing collaboration among countries, institutions, and authors in clinical and basic research on brain lipid droplets.
Collapse
Affiliation(s)
- Yanan Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Simin Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Lv
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahui He
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Liang
- Department of Stomatology, Qianfoshan Hospital in Shandong Province, Jinan, China
| | - Yuehan Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Du L, Gao R, Chen Z. 5-Methylcytosine Methylation-Linked Hippo Pathway Molecular Interactions Regulate Lipid Metabolism. Int J Mol Sci 2025; 26:2560. [PMID: 40141201 PMCID: PMC11942534 DOI: 10.3390/ijms26062560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
5-methylcytosine (5mC) is a common form of DNA methylation, essentially acting as an epigenetic modification that regulates gene expression by affecting the binding of transcription factors to DNA or by recruiting proteins that make it difficult to recognize and transcribe genes. 5mC methylation is present in eukaryotes in a variety of places, such as in CpG islands, within gene bodies, and in regions of repetitive sequences, whereas in prokaryotic organisms, it is mainly present in genomic DNA. The Hippo pathway is a highly conserved signal transduction pathway, which is extremely important in cell proliferation and death, controlling the size of tissues and organs and regulating cell differentiation, in addition to its important regulatory roles in lipid synthesis, transport, and catabolism. Lipid metabolism is an important part of various metabolic pathways in the human body, and problems in lipid metabolism are related to abnormalities in key enzymes, related proteins, epigenetic inheritance, and certain specific amino acids, which are the key factors affecting its proper regulation. In this article, we will introduce the molecular mechanisms of 5mC methylation and the Hippo signaling pathway, and the possibility of their co-regulation of lipid metabolism, with the aim of providing new ideas for further research and novel therapeutic modalities for lipid metabolism and a reference for the development and exploration of related research.
Collapse
Affiliation(s)
- Lichen Du
- Agricultural College, Yangzhou University, Yangzhou 225009, China;
| | - Rui Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Évora A, Garcia G, Rubi A, De Vitis E, Matos AT, Vaz AR, Gervaso F, Gigli G, Polini A, Brites D. Exosomes enriched with miR-124-3p show therapeutic potential in a new microfluidic triculture model that recapitulates neuron-glia crosstalk in Alzheimer's disease. Front Pharmacol 2025; 16:1474012. [PMID: 40144670 PMCID: PMC11936931 DOI: 10.3389/fphar.2025.1474012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/03/2025] [Indexed: 03/28/2025] Open
Abstract
Background Alzheimer's disease (AD), a complex neurodegenerative disease associated with ageing, is the leading cause of dementia. Few people with early AD are eligible for the novel Food and Drug Administration (FDA)-approved drug treatments. Accordingly, new tools and early diagnosis markers are required to predict subtypes, individual stages, and the most suitable personalized treatment. We previously demonstrated that the regulation of microRNA (miR)-124 is crucial for proper neuronal function and microglia reshaping in human AD cell models. Objective The aim of this study was to develop an efficient miR-124-3p-loaded exosome strategy and validate its therapeutic potential in using a multi-compartment microfluidic device of neuron-glia that recapitulates age-AD pathological features. Methods and results Using cortical microglia from mouse pups, separated from glial mixed cultures and maintained for 2 days in vitro (stressed microglia), we tested the effects of SH-SY5Y-derived exosomes loaded with miR-124-3p mimic either by their direct transfection with Exo-Fect™ (ET124) or by their isolation from the secretome of miR-124 transfected cells (CT124). ET124 revealed better delivery effciency and higher potent effects in improving the stressed microglia status than CT124. Tricultures of human SH-SY5Y neuroblastoma cells (SH-WT) were established in the presence of the human microglia cell line (HMC3) and immortalized human astrocytes (IM-HA) in tricompartmentalized microfluidic devices. Replacement of SH-WT cells with those transfected with APP695 (SH-SWE) in the tricultures and addition of low doses of hydrogen peroxide were used to simulate late-onset AD. The system mimicked AD-associated neurodegeneration and neuroinflammation processes. Notably, ET124 exhibited neuroprotective properties across the three cell types in the AD model by preventing neuronal apoptosis and neurite deficits, redirecting microglial profiles towards a steady state, and attenuating the inflammatory and miRNA fingerprints associated with astrocyte reactivity. Conclusion To the best of our knowledge, this is the first study supporting the neuro- and immunoprotective properties of miR-124-engineered exosomes in a microfluidic triculture platform, recapitulating age-related susceptibility to AD. Our system offers potential to develop personalized medicines in AD patient subtypes.
Collapse
Affiliation(s)
- Artemizia Évora
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rubi
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eleonora De Vitis
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
| | - Ana Teresa Matos
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Vaz
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Francesca Gervaso
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
- Dipartimento di Medicina Sperimentale, Università Del Salento, Lecce, Italy
| | - Alessandro Polini
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
19
|
Sheng J, Zhang X, Liang W, Lyu J, Zhang B, Min J, Xu A, Xu X, Li JW, Li JL, Zhou R, Liu W. The circular RNA circbabo(5,6,7,8S) regulates lipid metabolism and neuronal integrity via TGF-β/ROS/JNK/SREBP signaling axis in Drosophila. BMC Biol 2025; 23:69. [PMID: 40038674 PMCID: PMC11881384 DOI: 10.1186/s12915-025-02175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Lipid droplets (LDs) are dynamic cytoplasmic lipid-storing organelles that play a pivotal role in maintaining cellular energy balance, lipid homeostasis, and metabolic signaling. Dysregulation of lipid metabolism, particularly excessive lipogenesis, contributes to the abnormal accumulation of LDs in the nervous system, which is associated with several neurodegenerative diseases. Circular RNAs (circRNAs) are a new class of non-coding and regulatory RNAs that are widely expressed in eukaryotes. However, only a subset has been functionally characterized. Here, we identified and functionally characterized a new circular RNA circbabo(5,6,7,8S) that regulates lipogenesis and neuronal integrity in Drosophila melanogaster. RESULTS circbabo(5,6,7,8S) is derived from the babo locus which encodes the type I receptor for transforming growth factor β (TGF-β). Depletion of circbabo(5,6,7,8S) in flies causes elevated lipid droplet accumulation, progressive photoreceptor cell loss and shortened lifespan, phenotypes that are rescued by restoring circbabo(5,6,7,8S) expression. In addition, RNA-seq and epistasis analyses reveal that these abnormalities are caused by aberrant activation of the SREBP signaling pathway. Furthermore, circbabo(5,6,7,8S)-depleted tissues display enhanced activation of the TGF-β signaling pathway and compromised mitochondrial function, resulting in upregulation of reactive oxygen species (ROS). Moreover, we provide evidence that circbabo(5,6,7,8S) encodes the protein circbabo(5,6,7,8S)-p, which inhibits TGF-β signaling by interfering with the assembly of babo/put receptor heterodimer complex. Lastly, we show that dysregulation of the ROS/JNK/SREBP signaling cascade is responsible for the LD accumulation, neurodegeneration, and shortened lifespan phenotypes elicited by circbabo(5,6,7,8S) depletion. CONCLUSIONS Our study demonstrates the physiological role of the protein-coding circRNA circbabo(5,6,7,8S) in regulating lipid metabolism and neuronal integrity.
Collapse
Affiliation(s)
- Jie Sheng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xuemei Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Weihong Liang
- Departments of Medicine, Biological Chemistry & Oncology, Johns Hopkins University School of Medicine, Johns Hopkins All Children'S Hospital, BaltimoreSt. Petersburg, MDFL, 2120533701, USA
| | - Junfang Lyu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Bei Zhang
- Departments of Medicine, Biological Chemistry & Oncology, Johns Hopkins University School of Medicine, Johns Hopkins All Children'S Hospital, BaltimoreSt. Petersburg, MDFL, 2120533701, USA
| | - Jie Min
- Departments of Medicine, Biological Chemistry & Oncology, Johns Hopkins University School of Medicine, Johns Hopkins All Children'S Hospital, BaltimoreSt. Petersburg, MDFL, 2120533701, USA
| | - Austin Xu
- Departments of Medicine, Biological Chemistry & Oncology, Johns Hopkins University School of Medicine, Johns Hopkins All Children'S Hospital, BaltimoreSt. Petersburg, MDFL, 2120533701, USA
| | - Xingyu Xu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jennifer W Li
- Department of Medicine, Brown University, Providence, RI, 02912, USA
| | - Jian-Liang Li
- National Institute of Environmental Health Sciences, Durham, NC, 27709, USA
| | - Rui Zhou
- Departments of Medicine, Biological Chemistry & Oncology, Johns Hopkins University School of Medicine, Johns Hopkins All Children'S Hospital, BaltimoreSt. Petersburg, MDFL, 2120533701, USA.
| | - Wei Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China.
- Departments of Medicine, Biological Chemistry & Oncology, Johns Hopkins University School of Medicine, Johns Hopkins All Children'S Hospital, BaltimoreSt. Petersburg, MDFL, 2120533701, USA.
| |
Collapse
|
20
|
Prakash P, Randolph CE, Walker KA, Chopra G. Lipids: Emerging Players of Microglial Biology. Glia 2025; 73:657-677. [PMID: 39688320 PMCID: PMC11784843 DOI: 10.1002/glia.24654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Lipids are small molecule immunomodulators that play critical roles in maintaining cellular health and function. Microglia, the resident immune cells of the central nervous system, regulate lipid metabolism both in the extracellular environment and within intracellular compartments through various mechanisms. For instance, glycerophospholipids and fatty acids interact with protein receptors on the microglial surface, such as the Triggering Receptor Expressed on Myeloid Cells 2, influencing cellular functions like phagocytosis and migration. Moreover, cholesterol is essential not only for microglial survival but, along with other lipids such as fatty acids, is crucial for the formation, function, and accumulation of lipid droplets, which modulate microglial activity in inflammatory diseases. Other lipids, including acylcarnitines and ceramides, participate in various signaling pathways within microglia. Despite the complexity of the microglial lipidome, only a few studies have investigated the effects of specific lipid classes on microglial biology. In this review, we focus on major lipid classes and their roles in modulating microglial function. We also discuss novel analytical techniques for characterizing the microglial lipidome and highlight gaps in current knowledge, suggesting new directions for future research on microglial lipid biology.
Collapse
Affiliation(s)
- Priya Prakash
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
- Neuroscience Institute, NYU Grossman School of MedicineNew YorkNew YorkUSA
| | | | | | - Gaurav Chopra
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Drug Discovery, Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue UniversityWest LafayetteIndianaUSA
- Regenstrief Center for Healthcare Engineering, Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
21
|
Unfried M, Schmauck-Medina T, Amin ND, Boyden ES, Fuellen G, Han JDJ, Hanna JH, Heckenbach I, Khodosevich K, Melton L, Moeendarbary E, Moon TS, Peleg S, Sandberg A, Shi L, Bakula D, Zhavoronkov A, Scheibye-Knudsen M. Innovations in aging biology: highlights from the ARDD emerging science & technologies workshop. NPJ AGING 2025; 11:8. [PMID: 39966395 PMCID: PMC11836439 DOI: 10.1038/s41514-025-00193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Affiliation(s)
- Maximilian Unfried
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Tomas Schmauck-Medina
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Neal D Amin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Edward S Boyden
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and McGovern Institute, MIT, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock, Germany
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jing-Dong Jackie Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China
- International Center for Aging and Cancer, Hainan Medical University, Haikou, China
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Indra Heckenbach
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Lisa Melton
- Nature Biotechnology, Springer Nature, London, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK
- 199 Biotechnologies Ltd, London, UK
| | - Tae Seok Moon
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Shahaf Peleg
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | | | - Lingyan Shi
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alex Zhavoronkov
- Insilico Medicine US Inc, 1000 Massachusetts Avenue, Suite 126, Cambridge, MA, 02138, USA
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Huang J, Zhang L, Shao N, Zhang Y, Xu Y, Zhou Y, Zhang D, Zhang J, Lee HJ. Lipid Metabolic Heterogeneity during Early Embryogenesis Revealed by Hyper-3D Stimulated Raman Imaging. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:15-24. [PMID: 39886225 PMCID: PMC11775849 DOI: 10.1021/cbmi.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 02/01/2025]
Abstract
Studying embryogenesis is fundamental to understanding developmental biology and reproductive medicine. Its process requires precise spatiotemporal regulations in which lipid metabolism plays a crucial role. However, the spatial dynamics of lipid species at the subcellular level remains obscure due to technical limitations. To address this challenge, we developed a hyperspectral 3D imaging and analysis method based on stimulated Raman scattering microscopy (hyper-3D SRS) to quantitatively assess lipid profiles in individual embryos through submicrometer resolution (x-y), 3D optical sectioning (z), and chemical bond-selective (Ω) imaging. Using hyper-3D SRS, individual lipid droplets (LDs) in single cells were identified and quantified. Our findings revealed that the LD profiles within a single embryo are not uniform, even as early as the 2-cell stage. Notably, we also discovered a dynamic relationship between the LD size and unsaturation degree as embryos develop, indicating diverse lipid metabolism during early development. Furthermore, abnormal LDs were observed in oocytes of a progeria mouse model, suggesting that LDs could serve as a potential biomarker for assessing oocyte/embryo quality. Overall, our results highlight the potential of hyper-3D SRS as a noninvasive method for studying lipid content, composition, and subcellular distribution in embryos. This technique provides valuable insights into lipid metabolism during embryonic development and has the potential for clinical applications in evaluating oocyte/embryo quality.
Collapse
Affiliation(s)
- Jie Huang
- Zhejiang
Polytechnic Institute, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Ling Zhang
- Liangzhu
Laboratory, Zhejiang University, Hangzhou 311121, China
- Center
for Stem Cell and Regenerative Medicine, Department of Basic Medical
Sciences, and Bone Marrow Transplantation Center of the First Affiliated
Hospital, Zhejiang University School of
Medicine, Hangzhou 310058, China
| | - Ninghui Shao
- College
of Biomedical Engineering & Instrument Science, Key Laboratory
for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Yongqing Zhang
- Interdisciplinary
Centre for Quantum Information, Zhejiang Province Key Laboratory of
Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yuyan Xu
- Liangzhu
Laboratory, Zhejiang University, Hangzhou 311121, China
- Center
for Stem Cell and Regenerative Medicine, Department of Basic Medical
Sciences, and Bone Marrow Transplantation Center of the First Affiliated
Hospital, Zhejiang University School of
Medicine, Hangzhou 310058, China
| | - Yihui Zhou
- College
of Biomedical Engineering & Instrument Science, Key Laboratory
for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Delong Zhang
- Interdisciplinary
Centre for Quantum Information, Zhejiang Province Key Laboratory of
Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
- MOE
Frontier
Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Jin Zhang
- Liangzhu
Laboratory, Zhejiang University, Hangzhou 311121, China
- Center
for Stem Cell and Regenerative Medicine, Department of Basic Medical
Sciences, and Bone Marrow Transplantation Center of the First Affiliated
Hospital, Zhejiang University School of
Medicine, Hangzhou 310058, China
- Center
of Gene and Cell Therapy and Genome Medicine of Zhejiang Province, Hangzhou 310058, China
| | - Hyeon Jeong Lee
- Zhejiang
Polytechnic Institute, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- College
of Biomedical Engineering & Instrument Science, Key Laboratory
for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
- MOE
Frontier
Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
He S, Xu Z, Han X. Lipidome disruption in Alzheimer's disease brain: detection, pathological mechanisms, and therapeutic implications. Mol Neurodegener 2025; 20:11. [PMID: 39871348 PMCID: PMC11773937 DOI: 10.1186/s13024-025-00803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Alzheimer's disease (AD) is among the most devastating neurodegenerative disorders with limited treatment options. Emerging evidence points to the involvement of lipid dysregulation in the development of AD. Nevertheless, the precise lipidomic landscape and the mechanistic roles of lipids in disease pathology remain poorly understood. This review aims to highlight the significance of lipidomics and lipid-targeting approaches in the diagnosis and treatment of AD. We summarized the connection between lipid dysregulation in the human brain and AD at both genetic and lipid species levels. We briefly introduced lipidomics technologies and discussed potential challenges and areas of future advancements in the lipidomics field for AD research. To elucidate the central role of lipids in converging multiple pathological aspects of AD, we reviewed the current knowledge on the interplay between lipids and major AD features, including amyloid beta, tau, and neuroinflammation. Finally, we assessed the progresses and obstacles in lipid-based therapeutics and proposed potential strategies for leveraging lipidomics in the treatment of AD.
Collapse
Affiliation(s)
- Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA.
| |
Collapse
|
24
|
Zhang L, Zhou Y, Yang Z, Jiang L, Yan X, Zhu W, Shen Y, Wang B, Li J, Song J. Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases. J Neuroinflammation 2025; 22:7. [PMID: 39806503 PMCID: PMC11730833 DOI: 10.1186/s12974-025-03334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders. Additionally, we also emphasize the paradoxical role of LDs in post-cerebral ischemia inflammation and explore potential underlying mechanisms, aiming to identify novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Longxiao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yunfei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zhongbo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liangchao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyang Yan
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenkai Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yi Shen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bolong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiaxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Jinning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
25
|
Shahidehpour RK, Nelson PT, Katsumata Y, Bachstetter AD. Exploring the link between dystrophic microglia and the spread of Alzheimer's neuropathology. Brain 2025; 148:89-101. [PMID: 39101580 PMCID: PMC11706277 DOI: 10.1093/brain/awae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
Genetics and other data modalities indicate that microglia play a critical role in Alzheimer's disease progression, but details of the disease-driving influence of microglia are poorly understood. Microglial cells can be parsed into subtypes based on their histological appearance. One subtype of microglia, termed dystrophic microglia, is characterized structurally by fragmented processes and cytoplasmic decay, and their presence has been associated with ageing and neurodegeneration. Recent studies suggest that the interaction between tau proteins and amyloid-β might induce dystrophic changes in microglia, potentially linking amyloid-β and tau pathologies to their effects on these microglia. We developed a study of human brains to test the hypothesis that dystrophic microglia are involved in Alzheimer's disease progression. We speculated that if their presence is unique to Alzheimer's disease neuropathological change, they would be substantially more common in Alzheimer's disease neuropathological change than in neurodegenerative diseases characterized by other proteinopathies, e.g. α-synuclein or transactive response (TAR) DNA-binding protein 43 kDa (TDP-43) pathology. Our analyses used histologically stained sections from five human brain regions of 64 individuals across six disease states, from healthy controls to advanced Alzheimer's disease stages, including comparative conditions such as Lewy body disease and limbic-predominant age-related TDP-43 encephalopathy neuropathological change. Using stereological sampling and digital pathology, we assessed populations of ramified, hypertrophic and dystrophic microglia. We found a significant increase in dystrophic microglia in areas affected early by Alzheimer's disease neuropathological change, suggesting a disease-specific role in neuropathology. Mediation analysis and structural equation modelling suggest that dystrophic microglia might impact the regional spread of Alzheimer's disease neuropathological change. In the mediation model, tau was found to be the initiating factor leading to the development of dystrophic microglia, which was then associated with the spread of amyloid-β and tau. These results suggest that a loss of the protective role of microglia could contribute to the spread of Alzheimer's disease neuropathological change and indicate that further research into preserving microglial function might be warranted.
Collapse
Affiliation(s)
- Ryan K Shahidehpour
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, KY 40536, USA
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
26
|
Li Q, Liu P, Zhu X, Zhou C, Hu Y, Cao S, Li H, Zou X, Gao S, Cao X, Bao X, Xu Y, Li J. NG-497 Alleviates Microglia-Mediated Neuroinflammation in a MTNR1A-Dependent Manner. Inflammation 2025:10.1007/s10753-024-02218-9. [PMID: 39751706 DOI: 10.1007/s10753-024-02218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Microglia-mediated neuroinflammation plays a crucial role in multiple neurological diseases. We have previously found that Atglistatin, the mouse Adipose Triglyceride Lipase (ATGL) inhibitor, could promote lipid droplets (LDs) accumulation and suppress LPS-induced neuroinflammation in mouse microglia. However, Atglistatin was species-selective, which limited its use in clinical settings. Here, we found that NG-497, a previously identified human ATGL inhibitor, significantly increased LDs accumulation and inhibited LPS-induced pro-inflammatory responses in human microglia. Moreover, NG-497 also protected human neurons against neurotoxic cytokines in a humanized in vitro model of neuroinflammation. However, the anti-inflammatory capacity of NG-497 was independent of its effect on ATGL. Instead, we revealed that NG-497 alleviated microglia-mediated neuroinflammation through elevating the protein level of melatonin receptor 1A (MTNR1A). Therefore, in this study, we uncovered a novel MTNR1A-targeting compound, which exhibited anti-inflammatory and neuroprotective effect, highlighting its potential in the treatment of neuroinflammation. Moreover, the MTNRs agonist, Ramelteon, exerts comparable anti-inflammation effects with NG-497.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Pinyi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Xuan Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Chao Zhou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Yujie Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Shiying Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Huiya Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Xinxin Zou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, China.
| | - Jingwei Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, China.
| |
Collapse
|
27
|
Navarro E, Montesinos J. Mitochondria-Associated Endoplasmic Reticulum Membranes in Microglia: One Contact Site to Rule Them all. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564241312807. [PMID: 39881949 PMCID: PMC11775980 DOI: 10.1177/25152564241312807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining tissue homeostasis by monitoring and responding to environmental changes through processes such as phagocytosis, cytokine production or synapse remodeling. Their dynamic nature and diverse functions are supported by the regulation of multiple metabolic pathways, enabling microglia to efficiently adapt to fluctuating signals. A key aspect of this regulation occurs at mitochondria-associated ER membranes (MAM), specialized contact sites between the ER and mitochondria. These structures facilitate the exchange of calcium, lipids, and metabolites and serve as metabolic and signaling hubs. This review synthesizes current research on how MAM influence microglial physiology, with an emphasis on their role in immunometabolism, offering new insights into the integration of metabolic and immune functions in the CNS and its impact in the context of neurodegeneration.
Collapse
Affiliation(s)
- Elisa Navarro
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Neurochemistry Research Institute, Complutense University of Madrid, Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Jorge Montesinos
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| |
Collapse
|
28
|
Robb JL, Boisjoly F, Machuca-Parra AI, Coursan A, Manceau R, Majeur D, Rodaros D, Bouyakdan K, Greffard K, Bilodeau JF, Forest A, Daneault C, Ruiz M, Laurent C, Arbour N, Layé S, Fioramonti X, Madore C, Fulton S, Alquier T. Blockage of ATGL-mediated breakdown of lipid droplets in microglia alleviates neuroinflammatory and behavioural responses to lipopolysaccharides. Brain Behav Immun 2025; 123:315-333. [PMID: 39326768 DOI: 10.1016/j.bbi.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LD) are triglyceride storing organelles that have emerged as an important component of cellular inflammatory responses. LD lipolysis via adipose triglyceride lipase (ATGL), the enzyme that catalyses the rate-limiting step of triglyceride lipolysis, regulates inflammation in peripheral immune and non-immune cells. ATGL elicits both pro- and anti-inflammatory responses in the periphery in a cell-type dependent manner. The present study determined the impact of ATGL inhibition and microglia-specific ATGL genetic loss-of-function on acute inflammatory and behavioural responses to pro-inflammatory insult. First, we evaluated the impact of lipolysis inhibition on lipopolysaccharide (LPS)-induced expression and secretion of cytokines and phagocytosis in mouse primary microglia cultures. Lipase inhibitors (ORlistat and ATGListatin) and LPS led to LD accumulation in microglia. Pan-lipase inhibition with ORlistat alleviated LPS-induced expression of IL-1β and IL-6. Specific inhibition of ATGL had a similar action on CCL2, IL-1β and IL-6 expression in both neonatal and adult microglia cultures. CCL2 and IL-6 secretion were also reduced by ATGListatin or knockdown of ATGL. ATGListatin increased phagocytosis in neonatal cultures independently from LPS treatment. Second, targeted and untargeted lipid profiling revealed that ATGListatin reduced LPS-induced generation of pro-inflammatory prostanoids and modulated ceramide species in neonatal microglia. Finally, the role of microglial ATGL in neuroinflammation was assessed using a novel microglia-specific and inducible ATGL knockout mouse model. Loss of microglial ATGL in adult male mice dampened LPS-induced expression of IL-6 and IL-1β and microglial density. LPS-induced sickness- and anxiety-like behaviours were also reduced in male mice with loss of ATGL in microglia. Together, our results demonstrate potent anti-inflammatory effects produced by pharmacological or genetic inhibition of ATGL-mediated triglyceride lipolysis and thereby propose that supressing microglial LD lipolysis has beneficial actions in acute neuroinflammatory conditions.
Collapse
Affiliation(s)
- Josephine Louise Robb
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Frédérick Boisjoly
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Arturo Israel Machuca-Parra
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Adeline Coursan
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Romane Manceau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Danie Majeur
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Demetra Rodaros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Karine Greffard
- Axe Endocrinologie et Néphrologie, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean-François Bilodeau
- Axe Endocrinologie et Néphrologie, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, G1K 7P4, Canada
| | - Anik Forest
- Institut de Cardiologie de Montréal, Plateforme de métabolomique, Montréal, QC H1T1C8, Canada
| | - Caroline Daneault
- Institut de Cardiologie de Montréal, Plateforme de métabolomique, Montréal, QC H1T1C8, Canada
| | - Matthieu Ruiz
- Département de Nutrition, Université de Montréal, Montréal, QC H3T 1J4, Canada; Institut de Cardiologie de Montréal, Plateforme de métabolomique, Montréal, QC H1T1C8, Canada
| | - Cyril Laurent
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Nathalie Arbour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Xavier Fioramonti
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Charlotte Madore
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Nutrition, Université de Montréal, Montréal, QC H3T 1J4, Canada; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Food4BrainHealth France-Canada International Research Network, Bordeaux, France.
| |
Collapse
|
29
|
Li H, Yu W, Zheng X, Zhu Z. TREM1-Microglia crosstalk: Neurocognitive disorders. Brain Res Bull 2025; 220:111162. [PMID: 39645047 DOI: 10.1016/j.brainresbull.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Neurocognitive Disorders (NCDs) primarily affect cognitive functions, including learning, memory, perception, and problem-solving. They predominantly arise as pathological sequelae of central nervous system (CNS) disorders. Emerging evidence suggests that microglial inflammatory activation within the hippocampus underlies the pathogenesis of cognitive impairment. Triggering receptor expressed on myeloid cells 1 (TREM1), a pattern-recognition receptor on microglia, becomes upregulated in response to injury and synergistically amplifies inflammatory responses mediated by other pattern-recognition receptors, leading to uncontrolled inflammation. While TREM1 is lowly expressed in the resting state, its upregulation upon exposure to injurious inflammatory stimuli promotes microglial activation and contributes to the development of NCDs. Consequently, TREM1 may serve as a critical receptor in microglia-mediated inflammation. This article reviews the current understanding of TREM1 and its role in NCDs pathogenesis.
Collapse
Affiliation(s)
- Huashan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China.
| | - Wanqiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Xue Zheng
- Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China
| | - Zhaoqiong Zhu
- Early Clinical Research Ward, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
30
|
Wang C, Zhai J, Zhou X, Chen Y. Lipid metabolism: Novel approaches for managing idiopathic epilepsy. Neuropeptides 2024; 108:102475. [PMID: 39366134 DOI: 10.1016/j.npep.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/15/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Epilepsy is a common neurological condition characterized by abnormal neuronal activity, often leading to cellular damage and death. There is evidence to suggest that lipid imbalances resulting in cellular death play a key role in the development of epilepsy, including changes in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Disrupted lipid metabolism acts as a crucial pathological mechanism in epilepsy, potentially linked to processes such as cellular ferroptosis, lipophagy, and immune modulation of gut microbiota (thus influencing the gut-brain axis). Understanding these mechanisms could open up new avenues for epilepsy treatment. This study investigates the association between disturbances in lipid metabolism and the onset of epilepsy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinxia Zhai
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuemei Zhou
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
31
|
Meng H, Elliott A, Mansfield J, Bailey M, Frogley M, Cinque G, Moger J, Stone N, Tamagnini F, Palombo F. Identification of tauopathy-associated lipid signatures in Alzheimer's disease mouse brain using label-free chemical imaging. Commun Biol 2024; 7:1341. [PMID: 39420210 PMCID: PMC11487145 DOI: 10.1038/s42003-024-07034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
There is cumulative evidence that lipid metabolism plays a key role in the pathogenesis of various neurodegenerative disorders including Alzheimer's disease (AD). Visualising lipid content in a non-destructive label-free manner can aid in elucidating the AD phenotypes towards a better understanding of the disease. In this study, we combined multiple optical molecular-specific methods, Fourier transform infrared (FTIR) spectroscopic imaging, synchrotron radiation-infrared (SR-IR) microscopy, Raman and stimulated Raman scattering (SRS) microscopy, and optical-photothermal infrared (O-PTIR) microscopy with multivariate data analysis, to investigate the biochemistry of brain hippocampus in situ using a mouse model of tauopathy (rTg4510). We observed a significant difference in the morphology and lipid content between transgenic (TG) and wild type (WT) samples. Immunohistochemical staining revealed some degree of microglia co-localisation with elevated lipids in the brain. These results provide new evidence of tauopathy-related dysfunction in a preclinical study at a subcellular level.
Collapse
Affiliation(s)
- Hao Meng
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Alicia Elliott
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Jessica Mansfield
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Michelle Bailey
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Mark Frogley
- Diamond Light Source, MIRIAM beamline B22, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK
| | - Gianfelice Cinque
- Diamond Light Source, MIRIAM beamline B22, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK
| | - Julian Moger
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Nick Stone
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Francesco Tamagnini
- School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
- Centro Studi Biomedici, Università degli Studi della Repubblica di San Marino, Salita alla Rocca, 44 - 47890, San Marino Città, Republic of San Marino
| | - Francesca Palombo
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK.
| |
Collapse
|
32
|
Goodman LD, Ralhan I, Li X, Lu S, Moulton MJ, Park YJ, Zhao P, Kanca O, Ghaderpour Taleghani ZS, Jacquemyn J, Shulman JM, Ando K, Sun K, Ioannou MS, Bellen HJ. Tau is required for glial lipid droplet formation and resistance to neuronal oxidative stress. Nat Neurosci 2024; 27:1918-1933. [PMID: 39187706 PMCID: PMC11809452 DOI: 10.1038/s41593-024-01740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
The accumulation of reactive oxygen species (ROS) is a common feature of tauopathies, defined by Tau accumulations in neurons and glia. High ROS in neurons causes lipid production and the export of toxic peroxidated lipids (LPOs). Glia uptake these LPOs and incorporate them into lipid droplets (LDs) for storage and catabolism. We found that overexpressing Tau in glia disrupts LDs in flies and rat neuron-astrocyte co-cultures, sensitizing the glia to toxic, neuronal LPOs. Using a new fly tau loss-of-function allele and RNA-mediated interference, we found that endogenous Tau is required for glial LD formation and protection against neuronal LPOs. Similarly, endogenous Tau is required in rat astrocytes and human oligodendrocyte-like cells for LD formation and the breakdown of LPOs. Behaviorally, flies lacking glial Tau have decreased lifespans and motor defects that are rescuable by administering the antioxidant N-acetylcysteine amide. Overall, this work provides insights into the important role that Tau has in glia to mitigate ROS in the brain.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Pinghan Zhao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ziyaneh S Ghaderpour Taleghani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Julie Jacquemyn
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Kanae Ando
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
33
|
Seferi G, Mjønes HS, Havik M, Reiersen H, Dalen KT, Nordengen K, Morland C. Distribution of lipid droplets in hippocampal neurons and microglia: impact of diabetes and exercise. Life Sci Alliance 2024; 7:e202302239. [PMID: 39117458 PMCID: PMC11310565 DOI: 10.26508/lsa.202302239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Neuroinflammation, aging, and neurodegenerative disorders are associated with excessive accumulation of neutral lipids in lipid droplets (LDs) in microglia. Type 2 diabetes mellitus (T2DM) may cause neuroinflammation and is a risk factor for neurodegenerative disorders. Here, we show that hippocampal pyramidal neurons contain smaller, more abundant LDs than their neighboring microglia. The density of LDs varied between pyramidal cells in adjacent subregions, with CA3 neurons containing more LDs than CA1 neurons. Within the CA3 region, a gradual increase in the LD content along the pyramidal layer from the hilus toward CA2 was observed. Interestingly, the high neuronal LD content correlated with less ramified microglial morphotypes. Using the db/db model of T2DM, we demonstrated that diabetes increased the number of LDs per microglial cell without affecting the neuronal LD density. High-intensity interval exercise induced smaller changes in the number of LDs in microglia but was not sufficient to counteract the diabetes-induced changes in LD accumulation. The changes observed in response to T2DM may contribute to the cerebral effects of T2DM and provide a mechanistic link between T2DM and neurodegenerative disorders.
Collapse
Affiliation(s)
- Gezime Seferi
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Harald S Mjønes
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Mona Havik
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Herman Reiersen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Knut Tomas Dalen
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kaja Nordengen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Manceau R, Majeur D, Cherian CM, Miller CJ, Wat LW, Fisher JD, Labarre A, Hollman S, Prakash S, Audet S, Chao CF, Depaauw-Holt L, Rogers B, Bosson A, Xi JJY, Callow CAS, Yoosefi N, Shahraki N, Xia YH, Hui A, VanderZwaag J, Bouyakdan K, Rodaros D, Kotchetkov P, Daneault C, Fallahpour G, Tetreault M, Tremblay MÈ, Ruiz M, Lacoste B, Parker JA, Murphy-Royal C, Huan T, Fulton S, Rideout EJ, Alquier T. Neuronal lipid droplets play a conserved and sex-biased role in maintaining whole-body energy homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613929. [PMID: 39345476 PMCID: PMC11429983 DOI: 10.1101/2024.09.19.613929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Lipids are essential for neuron development and physiology. Yet, the central hubs that coordinate lipid supply and demand in neurons remain unclear. Here, we combine invertebrate and vertebrate models to establish the presence and functional significance of neuronal lipid droplets (LD) in vivo. We find that LD are normally present in neurons in a non-uniform distribution across the brain, and demonstrate triglyceride metabolism enzymes and lipid droplet-associated proteins control neuronal LD formation through both canonical and recently-discovered pathways. Appropriate LD regulation in neurons has conserved and male-biased effects on whole-body energy homeostasis across flies and mice, specifically neurons that couple environmental cues with energy homeostasis. Mechanistically, LD-derived lipids support neuron function by providing phospholipids to sustain mitochondrial and endoplasmic reticulum homeostasis. Together, our work identifies a conserved role for LD as the organelle that coordinates lipid management in neurons, with implications for our understanding of mechanisms that preserve neuronal lipid homeostasis and function in health and disease.
Collapse
Affiliation(s)
- Romane Manceau
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Danie Majeur
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Celena M Cherian
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Colin J Miller
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Lianna W Wat
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Jasper D Fisher
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Audrey Labarre
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Serena Hollman
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Sanjana Prakash
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Sébastien Audet
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Charlotte F Chao
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Lewis Depaauw-Holt
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Benjamin Rogers
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Anthony Bosson
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Joyce J Y Xi
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Catrina A S Callow
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Niyoosha Yoosefi
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Niki Shahraki
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Alisa Hui
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Khalil Bouyakdan
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Demetra Rodaros
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Pavel Kotchetkov
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Caroline Daneault
- Montreal Heart Institute Research Centre, Montreal, Canada. QC, Canada
| | - Ghazal Fallahpour
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Martine Tetreault
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matthieu Ruiz
- Department of Nutrition Université de Montréal, Montréal, QC, Canada
- Montreal Heart Institute Research Centre, Montreal, Canada. QC, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - J A Parker
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Ciaran Murphy-Royal
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Tao Huan
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Fulton
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Nutrition Université de Montréal, Montréal, QC, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Thierry Alquier
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
35
|
Bae JY, Jacquemyn J, Ioannou MS. Neuronal AMPK regulates lipid transport to microglia. Trends Cell Biol 2024; 34:695-697. [PMID: 39241754 DOI: 10.1016/j.tcb.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
In neurodegeneration, neurons release lipids that accumulate in glial lipid droplets (LDs). But what controls lipid transport and how does this affect glia? A recent study by Li et al. discovered that the loss of neuronal AMP-activated protein kinase (AMPK) activity promotes lipid efflux, which drives a proinflammatory state in microglia.
Collapse
Affiliation(s)
- Ju-Young Bae
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Julie Jacquemyn
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada; Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada; Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
36
|
Huang H, Xiang R, Yan R. Linking APOE4/4 genotype to microglial lipid droplets and neurotoxicity in Alzheimer's disease. Transl Neurodegener 2024; 13:38. [PMID: 39080732 PMCID: PMC11290272 DOI: 10.1186/s40035-024-00433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Affiliation(s)
- Hao Huang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China.
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
37
|
Feringa FM, Hertog SJKD, Wang L, Derks RJE, Kruijff I, Erlebach L, Heijneman J, Miramontes R, Pömpner N, Blomberg N, Olivier-Jimenez D, Johansen LE, Cammack AJ, Giblin A, Toomey CE, Rose IVL, Yuan H, Ward M, Isaacs AM, Kampmann M, Kronenberg-Versteeg D, Lashley T, Thompson LM, Ori A, Mohammed Y, Giera M, van der Kant R. The Neurolipid Atlas: a lipidomics resource for neurodegenerative diseases uncovers cholesterol as a regulator of astrocyte reactivity impaired by ApoE4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601474. [PMID: 39005258 PMCID: PMC11244892 DOI: 10.1101/2024.07.01.601474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Lipid changes in the brain have been implicated in many neurodegenerative diseases including Alzheimer's Disease (AD), Parkinson's disease and Amyotrophic Lateral Sclerosis. To facilitate comparative lipidomic research across brain-diseases we established a data commons named the Neurolipid Atlas, that we have pre-populated with novel human, mouse and isogenic induced pluripotent stem cell (iPSC)-derived lipidomics data for different brain diseases. We show that iPSC-derived neurons, microglia and astrocytes display distinct lipid profiles that recapitulate in vivo lipotypes. Leveraging multiple datasets, we show that the AD risk gene ApoE4 drives cholesterol ester (CE) accumulation in human astrocytes recapitulating CE accumulation measured in the human AD brain. Multi-omic interrogation of iPSC-derived astrocytes revealed that cholesterol plays a major role in astrocyte interferon-dependent pathways such as the immunoproteasome and major histocompatibility complex (MHC) class I antigen presentation. We show that through enhanced cholesterol esterification ApoE4 suppresses immune activation of astrocytes. Our novel data commons, available at neurolipidatlas.com, provides a user-friendly tool and knowledge base for a better understanding of lipid dyshomeostasis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Femke M Feringa
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Sascha J Koppes-den Hertog
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Lian Wang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Rico J E Derks
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Iris Kruijff
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Lena Erlebach
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jorin Heijneman
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Ricardo Miramontes
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Nadine Pömpner
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Niek Blomberg
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Damien Olivier-Jimenez
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Lill Eva Johansen
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alexander J Cammack
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Ashling Giblin
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Christina E Toomey
- Department of Clinical and Molecular Neuroscience, Queen Square Institute of Neurology, University College London, London, UK
| | - Indigo V L Rose
- Institute for Neurodegenerative Diseases and Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hebao Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michael Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Martin Kampmann
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Deborah Kronenberg-Versteeg
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Leslie M Thompson
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Yassene Mohammed
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Rik van der Kant
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|