1
|
Lee NE, Kim KH, Hong JH, Lee S, Park JS, Lee D, Yoon DS, Lee JH. Enhancing RT-PCR Throughput and Sensitivity through Large-Scale Sample Pooling Using a Nano-Hybrid Membrane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408771. [PMID: 39834032 PMCID: PMC11904979 DOI: 10.1002/advs.202408771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/19/2024] [Indexed: 01/22/2025]
Abstract
During the pandemic surge, including SARS-CoV-2 and influenza, pooling samples emerged as an efficient strategy to identify infected individuals in large groups. While pooling enhances RT-PCR throughput, reducing costs and resources, it dilutes positive samples with negative ones, lowering sensitivity and increasing false negatives. This study proposes a new method to address the trade-off between pool sizes and RT-PCR accuracy. This method integrates large-scale pooling with sample enrichment using a nano-hybrid membrane, preventing the pooling-induced decrease in viral concentration and maintaining cycle threshold (Ct) values close to individual positive samples. The nano-hybrid membrane, named SIMPLE (streamlined, simple, and inexpensive method for preconcentration, lysis, and nucleic acid extraction), comprises layered red blood cell membranes, polyethersulfone, and silica membranes. Using SIMPLE, a Ct value reduction to ≈2.6 is demonstrated in pooled COVID-19 samples with a pool size of 6 and found Ct values from larger pool sizes (8, 16, 32, 64, and 128) comparable to individual positive samples.
Collapse
Affiliation(s)
- Na Eun Lee
- Department of Electrical EngineeringKwangwoon UniversitySeoul01897Republic of Korea
- Department of BiotechnologyCollege of Life Sciences and BiotechnologyKorea UniversityAnam‐dong, Seongbuk‐guSeoul02841Republic of Korea
| | - Kang Hyeon Kim
- Department of Electrical EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| | - Ji Hye Hong
- Department of Electrical EngineeringKwangwoon UniversitySeoul01897Republic of Korea
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Seungmin Lee
- Department of Electrical EngineeringKwangwoon UniversitySeoul01897Republic of Korea
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Jeong Soo Park
- Department of Electrical EngineeringKwangwoon UniversitySeoul01897Republic of Korea
- School of Mechanical EngineeringKorea University145 Anam‐ro, Seoungbuk‐guSeoul02841Republic of Korea
| | - Dohwan Lee
- Department of Electrical EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
- Interdisciplinary Program in Precision Public HealthKorea UniversitySeoul02841Republic of Korea
- Astrion Inc.Seoul02841Republic of Korea
| | - Jeong Hoon Lee
- Department of Electrical EngineeringKwangwoon UniversitySeoul01897Republic of Korea
- CALTH Inc.Changeop‐ro 54, SeongnamGyeonggi13449Republic of Korea
| |
Collapse
|
2
|
Tong G, Nath P, Hiruta Y, Citterio D. Amplification-free CRISPR/Cas based dual-enzymatic colorimetric nucleic acid biosensing device. LAB ON A CHIP 2025; 25:536-545. [PMID: 39775780 DOI: 10.1039/d4lc01039f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Nucleic acid testing (NAT) is widely considered the gold standard in analytical fields, with applications spanning environmental monitoring, forensic science and clinical diagnostics, among others. However, its widespread use is often constrained by complicated assay procedures, the need for specialized equipment, and the complexity of reagent handling. In this study, we demonstrate a fully integrated 3D-printed biosensensing device employing a CRISPR/Cas12a-based dual-enzymatic mechanism for highly sensitive and user-friendly nucleic acid detection. A plastic probe stick was designed to host small-sized gold nanoparticles, enhancing enzyme labeling density. Alkaline phosphatase (ALP) was then conjugated via single-stranded DNA, requiring only a single enzyme substrate addition to generate a simple visual signal change. This approach eliminates the need for amplification or centrifugation steps, achieving a limit of detection (LOD) as low as 10 pM - among the highest sensitivities reported for amplification-free colorimetric nucleic acid detection. Furthermore, we developed a device that incorporates this probe stick, integrates all necessary reagents, and features a smartphone-compatible accessory for quantitative analysis. This allows end-users to perform visual or quantitative DNA analysis with simple operations, achieving a visual detection limit of approximately 100 pM, comparable to other CRISPR-based non-amplified nucleic acid detection methods. Additionally, the system successfully distinguished perfectly matched from mismatched nucleic acid sequences, demonstrating its specificity and versatility. Although certain design limitations affected the sensitivity of the integrated device compared to the probe stick alone, the simplicity and portability of this device make it a promising tool for rapid nucleic acid screening in clinical diagnostics, environmental monitoring, and food safety control. This study paves the way for the development of practical biosensors for point-of-care testing (POCT) applications.
Collapse
Affiliation(s)
- Guodong Tong
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Pabitra Nath
- Department of Physics, Tezpur University, Sonitpur, Napaam, Assam 784028, India
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
3
|
Miranda JP, Osorio J, Silva M, Silva C, Madrid V, Camponovo R, Henríquez-Henríquez M. Reagent efficiency and analytical sensitivity optimization for a reliable SARS-CoV-2 pool-based testing strategy. Heliyon 2025; 11:e41623. [PMID: 39866431 PMCID: PMC11761315 DOI: 10.1016/j.heliyon.2025.e41623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/30/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Background The SARS-CoV-2 pandemic caused millions of infections worldwide. Among the strategies for effective containment, frequent and massive testing was fundamental. Although sample pooling allows multiplying the installed analysis capacity, the definition of the number of samples to include in a pool is commonly guided more by economic parameters than analytical quality. Methods We developed a mathematical model to determine the pooling conditions that maximize reagent efficiency and analytical sensitivity. We evaluated 30 samples individually and in 2-sample to 12-sample pools. Using Passing Bablok regressions, we estimated the shift of Ct values in the RT-qPCR reaction for each pool size. With this Ct shift, we estimated sensitivity in the context of the distribution of 1,030 individually evaluated positive samples. Findings Our results showed that the most significant gain in efficiency occurred in the 4-sample pool, while at pools greater than 8-sample, there was no considerable reagent savings. Sensitivity significantly dropped to 87.18 %-92.52 % for a 4-sample pool and reached as low as 77.09 %-80.87 % in a 12-sample pooling. Conclusions Our results suggest that a 4-sample pooling maximizes reagent efficiency and analytical sensitivity. These considerations are essential to increase testing capacity and efficiently detect and contain contagious.
Collapse
Affiliation(s)
- José P. Miranda
- Bupa Lab, part of Bupa, La Florida, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile & Universidad de Chile, Santiago, Chile
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Marcia Silva
- Bupa Lab, part of Bupa, La Florida, Santiago, Chile
| | - Carola Silva
- Bupa Lab, part of Bupa, La Florida, Santiago, Chile
| | | | | | - Marcela Henríquez-Henríquez
- Bupa Lab, part of Bupa, La Florida, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile & Universidad de Chile, Santiago, Chile
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Millennium Science Initiative Program, ANID, Santiago, Chile
| |
Collapse
|
4
|
Cabrera Alvargonzalez JJ, Larrañaga A, Martinez J, Pérez Castro S, Rey Cao S, Daviña Nuñez C, Del Campo Pérez V, Duran Parrondo C, Suarez Luque S, González Alonso E, Silva Tojo AJ, Porteiro J, Regueiro B. Assessment of the Effective Sensitivity of SARS-CoV-2 Sample Pooling Based on a Large-Scale Screening Experience: Retrospective Analysis. JMIR Public Health Surveill 2024; 10:e54503. [PMID: 39316785 PMCID: PMC11462102 DOI: 10.2196/54503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 07/18/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND The development of new large-scale saliva pooling detection strategies can significantly enhance testing capacity and frequency for asymptomatic individuals, which is crucial for containing SARS-CoV-2. OBJECTIVE This study aims to implement and scale-up a SARS-CoV-2 screening method using pooled saliva samples to control the virus in critical areas and assess its effectiveness in detecting asymptomatic infections. METHODS Between August 2020 and February 2022, our laboratory received a total of 928,357 samples. Participants collected at least 1 mL of saliva using a self-sampling kit and registered their samples via a smartphone app. All samples were directly processed using AutoMate 2550 for preanalytical steps and then transferred to Microlab STAR, managed with the HAMILTON Pooling software for pooling. The standard pool preset size was 20 samples but was adjusted to 5 when the prevalence exceeded 2% in any group. Real-time polymerase chain reaction (RT-PCR) was conducted using the Allplex SARS-CoV-2 Assay until July 2021, followed by the Allplex SARS-CoV-2 FluA/FluB/RSV assay for the remainder of the study period. RESULTS Of the 928,357 samples received, 887,926 (95.64%) were fully processed into 56,126 pools. Of these pools, 4863 tested positive, detecting 5720 asymptomatic infections. This allowed for a comprehensive analysis of pooling's impact on RT-PCR sensitivity and false-negative rate (FNR), including data on positive samples per pool (PPP). We defined Ctref as the minimum cycle threshold (Ct) of each data set from a sample or pool and compared these Ctref results from pooled samples with those of the individual tests (ΔCtP). We then examined their deviation from the expected offset due to dilution [ΔΔCtP = ΔCtP - log2]. In this work, the ΔCtP and ΔΔCtP were 2.23 versus 3.33 and -0.89 versus 0.23, respectively, comparing global results with results for pools with 1 positive sample per pool. Therefore, depending on the number of genes used in the test and the size of the pool, we can evaluate the FNR and effective sensitivity (1 - FNR) of the test configuration. In our scenario, with a maximum of 20 samples per pool and 3 target genes, statistical observations indicated an effective sensitivity exceeding 99%. From an economic perspective, the focus is on pooling efficiency, measured by the effective number of persons that can be tested with 1 test, referred to as persons per test (PPT). In this study, the global PPT was 8.66, reflecting savings of over 20 million euros (US $22 million) based on our reagent prices. CONCLUSIONS Our results demonstrate that, as expected, pooling reduces the sensitivity of RT-PCR. However, with the appropriate pool size and the use of multiple target genes, effective sensitivity can remain above 99%. Saliva pooling may be a valuable tool for screening and surveillance in asymptomatic individuals and can aid in controlling SARS-CoV-2 transmission. Further studies are needed to assess the effectiveness of these strategies for SARS-CoV-2 and their application to other microorganisms or biomarkers detected by PCR.
Collapse
Affiliation(s)
- Jorge J Cabrera Alvargonzalez
- Microbiology Department, Complexo Hospitalario Universitario de Vigo, Servicio Galego de Saude, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), Microbiology and Infectology Research Group, Vigo, Spain
| | - Ana Larrañaga
- Centro de Investigación en Tecnologías, Energía y Procesos Industriales, University of Vigo, Lagoas-Marcosende, Vigo, Spain
| | - Javier Martinez
- Applied Mathematics I, Telecommunications Engineering School, University of Vigo, Vigo, Spain
| | - Sonia Pérez Castro
- Microbiology Department, Complexo Hospitalario Universitario de Vigo, Servicio Galego de Saude, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), Microbiology and Infectology Research Group, Vigo, Spain
| | - Sonia Rey Cao
- Microbiology Department, Complexo Hospitalario Universitario de Vigo, Servicio Galego de Saude, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), Microbiology and Infectology Research Group, Vigo, Spain
| | - Carlos Daviña Nuñez
- Galicia Sur Health Research Institute (IIS Galicia Sur), Microbiology and Infectology Research Group, Vigo, Spain
| | - Víctor Del Campo Pérez
- Department of Preventive Medicine and Public Health, Complexo Hospitalario, Universitario de Vigo, Vigo, Spain
| | - Carmen Duran Parrondo
- Dirección Xeral de Saúde Pública, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Spain
| | - Silvia Suarez Luque
- Dirección Xeral de Saúde Pública, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, Spain
| | - Elena González Alonso
- Galicia Sur Health Research Institute (IIS Galicia Sur), Microbiology and Infectology Research Group, Vigo, Spain
| | - Alfredo José Silva Tojo
- Dirección Xeral de Maiores y atención Sociosanitaria, Conselleria de Politica Social e Xuventude, Xunta de Galicia, Santiago de Compostela, Spain
| | - Jacobo Porteiro
- Centro de Investigación en Tecnologías, Energía y Procesos Industriales, University of Vigo, Lagoas-Marcosende, Vigo, Spain
| | - Benito Regueiro
- Microbiology Department, Complexo Hospitalario Universitario de Vigo, Servicio Galego de Saude, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), Microbiology and Infectology Research Group, Vigo, Spain
| |
Collapse
|
5
|
Lin J, Aprahamian H, Golovko G. A proactive/reactive mass screening approach with uncertain symptomatic cases. PLoS Comput Biol 2024; 20:e1012308. [PMID: 39141678 PMCID: PMC11346970 DOI: 10.1371/journal.pcbi.1012308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/26/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
We study the problem of mass screening of heterogeneous populations under limited testing budget. Mass screening is an essential tool that arises in various settings, e.g., the COVID-19 pandemic. The objective of mass screening is to classify the entire population as positive or negative for a disease as efficiently and accurately as possible. Under limited budget, testing facilities need to allocate a portion of the budget to target sub-populations (i.e., proactive screening) while reserving the remaining budget to screen for symptomatic cases (i.e., reactive screening). This paper addresses this decision problem by taking advantage of accessible population-level risk information to identify the optimal set of sub-populations for proactive/reactive screening. The framework also incorporates two widely used testing schemes: Individual and Dorfman group testing. By leveraging the special structure of the resulting bilinear optimization problem, we identify key structural properties, which in turn enable us to develop efficient solution schemes. Furthermore, we extend the model to accommodate customized testing schemes across different sub-populations and introduce a highly efficient heuristic solution algorithm for the generalized model. We conduct a comprehensive case study on COVID-19 in the US, utilizing geographically-based data. Numerical results demonstrate a significant improvement of up to 52% in total misclassifications compared to conventional screening strategies. In addition, our case study offers valuable managerial insights regarding the allocation of proactive/reactive measures and budget across diverse geographic regions.
Collapse
Affiliation(s)
- Jiayi Lin
- Department of Industrial and Systems Engineering, Texas A&M University College Station, Texas, United States of America
| | - Hrayer Aprahamian
- Department of Industrial and Systems Engineering, Texas A&M University College Station, Texas, United States of America
| | - George Golovko
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch Galveston, Texas, United States of America
| |
Collapse
|
6
|
Yani H, Yuan TD, Lubis AD, Iswara LK, Lubis IN. Comparison of RT-PCR cycle threshold values between individual and pooled SARS-CoV-2 infected nasopharyngeal swab specimens. NARRA J 2024; 4:e765. [PMID: 39280312 PMCID: PMC11391988 DOI: 10.52225/narra.v4i2.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/17/2024] [Indexed: 09/18/2024]
Abstract
The molecular reverse transcription-polymerase chain reaction (RT-PCR) testing of respiratory tract swabs has become mandatory to confirm the diagnosis of coronavirus disease 2019 (COVID-19). However, RT-PCR tests are expensive, require standardized equipment, and relatively long testing times, and the sample pooling method has been introduced to solve this issue. The aim of this study was to compare the cycle threshold (Ct) values of the individual sample and pooled sample methods to assess how accurate the pooling method was. Repeat RT-PCR examinations were initially performed to confirm the Ct values for each sample before running the pooled test procedure. Sample extraction and amplification were performed in both assays to detect ORF1ab, N, and E genes with a cut-off point value of Ct <38. Overall, there was no difference in Ct values between individual sample and pooled sample groups at all concentrations (p=0.259) and for all pooled sizes. Only pooled size of five could detect the Ct value in the pooled samples for all concentration samples, including low-concentration sample (Ct values 36 to 38). This study highlighted that pooled RT-PCR testing strategy did not reduce the quality of individually measured RT-PCR Ct values. A pool size of five could provide a practical technique to expand the screening capacity of RT-PCR.
Collapse
Affiliation(s)
- Handa Yani
- Department of Pediatric, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Toh D Yuan
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Aridamuriany D Lubis
- Department of Pediatric, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Lia K Iswara
- Department of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Inke Nd Lubis
- Department of Pediatric, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
7
|
Bouska O, Koudelakova V, Gurska S, Kubanova K, Slavkovsky R, Jaworek H, Vrbkova J, Dzubak P, Hajduch M. Pooling of samples to optimise SARS-CoV-2 detection in nasopharyngeal swabs and gargle lavage self-samples for covid-19 diagnostics and surveillance. Infect Dis (Lond) 2024; 56:531-542. [PMID: 38549542 DOI: 10.1080/23744235.2024.2333438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/16/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Testing of pooled samples is an effective strategy for increasing testing capacity while saving resources and time. This study aimed to validate pooled testing and gather real-life data on its use for Covid-19 surveillance with a gargle lavage (GL) self-sampling strategy. METHODS Two-stage pooled testing with pools of 6 and 12 samples was used for preventive testing of an asymptomatic population and Covid-19 surveillance in Czech schools. Both GL and nasopharyngeal swabs were used for sampling. RESULTS In total, 61,111 samples were tested. The use of pooled testing for large-scale Covid-19 surveillance reduced consumable costs by almost 75% and increased testing capacity up to 3.8-fold compared to standard methods. RT-PCR experiments revealed a minimal loss of sensitivity (0-2.2%) when using pooled samples, enabling the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes with Ct values >35. The minor loss of sensitivity was counterbalanced by a significantly increased throughput and the ability to substantially increase testing frequencies. CONCLUSIONS Pooled testing is considerably more cost-effective and less time-consuming than standard testing for large-scale Covid-19 surveillance even when the prevalence of SARS-CoV-2 is fluctuating. Gargle lavage self-sampling is a non-invasive technique suitable for sample collection without a healthcare worker's assistance.
Collapse
Affiliation(s)
- Ondrej Bouska
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Vladimira Koudelakova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc, Olomouc, Czech Republic
| | - Sona Gurska
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Katerina Kubanova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Rastislav Slavkovsky
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Jaworek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc, Olomouc, Czech Republic
| | - Jana Vrbkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
8
|
Mohammed Hashim KK, Manoj E. Aminoguanidine-based bioactive proligand as AIEE probe for anticancer and anticovid studies. RSC Adv 2024; 14:13654-13668. [PMID: 38665490 PMCID: PMC11044126 DOI: 10.1039/d4ra00554f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The emission features of a novel bioactive compound, 1,3-bis(2-hydroxy-3,5-diiodophenyl-methylideneamino)guanidine is found impressive with aggregation induced emission enhancement. The nitrogen and iodine rich multidentate proligand was characterized physicochemically. SCXRD and Hirshfeld surface investigation have revealed the presence of significant triangular iodine bonding apart from hydrogen bonding, weak C-H⋯π and π⋯π intermolecular interactions. These interactions collectively contribute to the solid-state packing arrangement of the molecules within the crystal lattice. The band gap of the compound was estimated experimentally and is supported with theoretical calculations. The solid-state fluorescence quantum yield of Φ = 0.36 emphasizes the utility of the proligand and the AIEE characteristics is attributed to restricted intramolecular motions as indicated by fluorescence lifetime decay studies. Strong interaction of the compound with calf thymus DNA was explored experimentally and found to align with in silico docking results. Notably, in vitro anticancer assessment on MCF-7 breast cancer cells show an IC50 value of 181.05 μg mL-1 and signifying its potent cytotoxic properties. Also, the compound is found to have lesser cytotoxicity against L929 normal cell line with an IC50 value of 356.54 μg mL-1. Computational studies further underscore the exceptional binding affinity with active sites in the SARS-CoV-2 main protease 3CLpro, surpassing established repurposed drugs. Furthermore, the proligand demonstrates excellent putative affinity towards the SARS-CoV-2 spike glycoprotein, accompanied by its distinctive AIEE attributes, drug likeness and DNA binding capability rendering it a valuable tool for prospective research investigations.
Collapse
Affiliation(s)
- K K Mohammed Hashim
- Department of Applied Chemistry, Cochin University of Science and Technology Kochi Kerala 682 022 India
| | - E Manoj
- Department of Applied Chemistry, Cochin University of Science and Technology Kochi Kerala 682 022 India
| |
Collapse
|
9
|
Merav L, Ofek Shlomai N, Oiknine-Djian E, Caplan O, Livneh A, Sido T, Peri A, Shtoyer A, Amir E, Ben Meir K, Daitch Y, Rivkin M, Kripper E, Fogel I, Horowitz H, Greenberger S, Cohen M, Geal-Dor M, Gordon O, Averbuch D, Ergaz-Shaltiel Z, Eventov Friedman S, Wolf DG, Yassour M. Implementation of pooled saliva tests for universal screening of cCMV infection. Nat Med 2024; 30:1111-1117. [PMID: 38459181 PMCID: PMC11031397 DOI: 10.1038/s41591-024-02873-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
Congenital cytomegalovirus (cCMV) is the most common intrauterine infection, leading to neurodevelopmental disabilities. Universal newborn infant screening of cCMV has been increasingly advocated. In the absence of a high-throughput screening test, which can identify all infected newborn infants, the development of an accurate and efficient testing strategy has remained an ongoing challenge. Here we assessed the implementation of pooled saliva polymerase chain reaction (PCR) tests for universal screening of cCMV, in two hospitals of Jerusalem from April 2022 through April 2023. During the 13-month study period, 15,805 infants (93.6% of all live newborn infants) were screened for cCMV using the pooled approach that has since become our routine screening method. The empirical efficiency of the pooling was six (number of tested newborn infants per test), thereby sparing 83% of the saliva tests. Only a minor 3.05 PCR cycle loss of sensitivity was observed for the pooled testing, in accordance with the theoretical prediction for an eight-sample pool. cCMV was identified in 54 newborn infants, with a birth prevalence of 3.4 per 1,000; 55.6% of infants identified with cCMV were asymptomatic at birth and would not have been otherwise targeted for screening. The study demonstrates the wide feasibility and benefits of pooled saliva testing as an efficient, cost-sparing and sensitive approach for universal screening of cCMV.
Collapse
Affiliation(s)
- Lior Merav
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Noa Ofek Shlomai
- Department of Neonatology, Hadassah and Hebrew University Medical Center, Jerusalem, Israel
- Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Hebrew University Faculty of Medicine, Jerusalem, Israel
- Lautenberg Center for General and Tumor Immunology, Jerusalem, Israel
| | - Orit Caplan
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ayala Livneh
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tal Sido
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Amir Peri
- Computing Department of Laboratories and Institutes, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Aviad Shtoyer
- Computing Department of Laboratories and Institutes, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Eden Amir
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Kerem Ben Meir
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Hebrew University Faculty of Medicine, Jerusalem, Israel
- Lautenberg Center for General and Tumor Immunology, Jerusalem, Israel
| | - Yutti Daitch
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Mila Rivkin
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Esther Kripper
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Irit Fogel
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Hadar Horowitz
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Sraya Greenberger
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Mevaseret Cohen
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Hebrew University Faculty of Medicine, Jerusalem, Israel
- Lautenberg Center for General and Tumor Immunology, Jerusalem, Israel
| | - Miriam Geal-Dor
- Speech and Hearing Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Department of Communication Disorders, Hadassah Academic College, Jerusalem, Israel
| | - Oren Gordon
- Hebrew University Faculty of Medicine, Jerusalem, Israel
- Pediatric Infectious Diseases, Pediatric Division, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Diana Averbuch
- Hebrew University Faculty of Medicine, Jerusalem, Israel
- Pediatric Infectious Diseases, Pediatric Division, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Zivanit Ergaz-Shaltiel
- Department of Neonatology, Hadassah and Hebrew University Medical Center, Jerusalem, Israel
- Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Smadar Eventov Friedman
- Department of Neonatology, Hadassah and Hebrew University Medical Center, Jerusalem, Israel
- Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
- Hebrew University Faculty of Medicine, Jerusalem, Israel.
- Lautenberg Center for General and Tumor Immunology, Jerusalem, Israel.
| | - Moran Yassour
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
10
|
Ali S, Cella E, Johnston C, Rojas AC, Brown AN, Deichen M, Azarian T. Environmental surface monitoring as a noninvasive method for SARS-CoV-2 surveillance in community settings: Lessons from a university campus study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169456. [PMID: 38123097 DOI: 10.1016/j.scitotenv.2023.169456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Environmental testing of high-touch objects is a potential noninvasive approach for monitoring population-level trends of SARS-CoV-2 and other respiratory viruses within a defined setting. We aimed to determine the association between SARS-CoV-2 contamination on high-touch environmental surfaces, community level case incidence, and university student health data. Environmental swabs were collected from January 2022 to November 2022 from high-touch objects and surfaces from five locations on a large university campus in Florida, USA. RT-qPCR was used to detect and quantify viral RNA, and a subset of positive samples was analyzed by viral genome sequencing to identify circulating lineages. During the study period, we detected SARS-CoV-2 viral RNA on 90.7 % of 162 tested samples. Levels of environmental viral RNA correlated with trends in community-level activity and case reports from the student health center. A significant positive correlation was observed between the estimated viral gene copy number in environmental samples and the weekly confirmed cases at the university. Viral sequencing data from environmental samples identified lineages concurrently circulating in the local community and state based on genomic surveillance data. Further, we detected emerging variants in environmental samples prior to their identification by clinical genomic surveillance. Our results demonstrate the utility of viral monitoring on high-touch environmental surfaces for SARS-CoV-2 surveillance at a community level. In communities with delayed or limited testing facilities, immediate environmental surface testing may considerably inform epidemic dynamics.
Collapse
Affiliation(s)
- Sobur Ali
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Catherine Johnston
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Ana C Rojas
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL 32827, USA
| | - Ashley N Brown
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL 32827, USA
| | - Michael Deichen
- Student Health Services, University of Central Florida, Orlando, FL, USA
| | - Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
11
|
Cerda A, Rivera M, Armijo G, Ibarra-Henriquez C, Reyes J, Blázquez-Sánchez P, Avilés J, Arce A, Seguel A, Brown AJ, Vásquez Y, Cortez-San Martín M, Cubillos FA, García P, Ferres M, Ramírez-Sarmiento CA, Federici F, Gutiérrez RA. An Open One-Step RT-qPCR for SARS-CoV-2 detection. PLoS One 2024; 19:e0297081. [PMID: 38271448 PMCID: PMC10810446 DOI: 10.1371/journal.pone.0297081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic has resulted in millions of deaths globally, and while several diagnostic systems were proposed, real-time reverse transcription polymerase chain reaction (RT-PCR) remains the gold standard. However, diagnostic reagents, including enzymes used in RT-PCR, are subject to centralized production models and intellectual property restrictions, which present a challenge for less developed countries. With the aim of generating a standardized One-Step open RT-qPCR protocol to detect SARS-CoV-2 RNA in clinical samples, we purified and tested recombinant enzymes and a non-proprietary buffer. The protocol utilized M-MLV RT and Taq DNA pol enzymes to perform a Taqman probe-based assay. Synthetic RNA samples were used to validate the One-Step RT-qPCR components, demonstrating sensitivity comparable to a commercial kit routinely employed in clinical settings for patient diagnosis. Further evaluation on 40 clinical samples (20 positive and 20 negative) confirmed its comparable diagnostic accuracy. This study represents a proof of concept for an open approach to developing diagnostic kits for viral infections and diseases, which could provide a cost-effective and accessible solution for less developed countries.
Collapse
Affiliation(s)
- Ariel Cerda
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maira Rivera
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Grace Armijo
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Ibarra-Henriquez
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Reyes
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Blázquez-Sánchez
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Avilés
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Aníbal Arce
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Aldo Seguel
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Alexander J. Brown
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Yesseny Vásquez
- Escuela de Ciencias Médicas, Facultad de Medicina, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Marcelo Cortez-San Martín
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Francisco A. Cubillos
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Patricia García
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Ferres
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - César A. Ramírez-Sarmiento
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernán Federici
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A. Gutiérrez
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Jiang HQ, Lu LY, Weng ZM, Huang KY, Yang Y, Deng HH, Xu YY, Chen W, Zhuang QQ. 6-Aza-2-Thiothymine-Capped Gold Nanoclusters as Robust Antimicrobial Nanoagents for Eradicating Multidrug-Resistant Escherichia coli Infection. ACS OMEGA 2023; 8:47123-47133. [PMID: 38107925 PMCID: PMC10720302 DOI: 10.1021/acsomega.3c07114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Multidrug-resistant bacterial infections, especially those caused by multidrug-resistant Escherichia coli (E. coli) bacteria, are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Therefore, it is urgently needed to develop a kind of novel, long-term antibacterial agent effectively overcome resistant bacteria. Herein, we present a novel designed antibacterial agent-6-Aza-2-thiothymine-capped gold nanoclusters (ATT-AuNCs), which show excellent antibacterial activity against multidrug-resistant E. coli bacteria. The prepared AuNCs could permeabilize into the bacterial cell membrane via binding with a bivalent cation (e.g., Ca2+), followed by the generation of reactive oxygen species (e.g., •OH and •O2-), ultimately resulting in protein leakage from compromised cell membranes, inducing DNA damage and upregulating pro-oxidative genes intracellular. The AuNCs also speed up the wound healing process without noticeable hemolytic activity or cytotoxicity to erythrocytes and mammalian tissue. Altogether, the results indicate the great promise of ATT-AuNCs for treating multidrug-resistant E. coli bacterial infection.
Collapse
Affiliation(s)
- Hui-Qiong Jiang
- Department
of Cardiac Function Examination Room, Affiliated
Quanzhou First Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Lin-Yan Lu
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, School of Pharmacy, Fujian Medical
University, Fuzhou 350004, China
| | - Zhi-Min Weng
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, School of Pharmacy, Fujian Medical
University, Fuzhou 350004, China
| | - Kai-Yuan Huang
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, School of Pharmacy, Fujian Medical
University, Fuzhou 350004, China
| | - Yu Yang
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, School of Pharmacy, Fujian Medical
University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, School of Pharmacy, Fujian Medical
University, Fuzhou 350004, China
| | - Ying-Ying Xu
- Department
of Pharmaceutics, School of Pharmacy, Fujian
Medical University, Fuzhou 350004, China
| | - Wei Chen
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, School of Pharmacy, Fujian Medical
University, Fuzhou 350004, China
| | - Quan-Quan Zhuang
- Department
of Pharmacy, Affiliated Quanzhou First Hospital
of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
13
|
Chang T, Lee K, Lee P, Wang Y, Lin Y, Huang H, Luo J, Ho H, Huang Y, Hou M. Assuring safety of fecal microbiota transplantation in the COVID-19 era: A single-center experience. JGH Open 2023; 7:765-771. [PMID: 38034050 PMCID: PMC10684976 DOI: 10.1002/jgh3.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 12/02/2023]
Abstract
Background and Aim Fecal microbiota transplantation (FMT) is used to treat recurrent or refractory Clostridioides difficile infection (CDI). In the past, screening of fecal donors required surveillance of personal behavior, medical history, and diseases that could be transmitted by the blood or fecal-oral route. In addition, the exclusion of multidrug-resistant organisms (MDROs) has been recommended since 2018. This task has become more complicated in the era of the coronavirus disease-2019 (COVID-19) pandemic. To prevent fecal transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is crucial to commence screening for SARS-CoV-2, alongside other traditional tests. Our aim was to investigate whether hidden carriers of SARS-CoV-2 were enrolled for stool donation, and the status of the presence or incidence of MDRO during fecal donation in Taiwan. Methods Fecal products collected from March 2019 to December 2022 were tested for MDRO and nucleic acid amplification tests for SARS-CoV-2 using the pooling method. The period of fecal product collection crossed the time before and during the COVID pandemic in Taiwan. Results A total of 151 fecal samples were collected. The fecal products were tested using polymerase chain reaction (PCR) to detect SARS-CoV-2. The results were negative for all stocks. This was similar to the results of MDRO testing. The safety of FMT products has been guaranteed during the pandemic. Conclusion Our FMT center produced MDRO-free and COVID-19-free products before and during the COVID-19 outbreak in Taiwan. Our protocol was effective for ensuring the safety of FMT products.
Collapse
Affiliation(s)
- Tien‐En Chang
- Division of Gastroenterology and HepatologyTaipei Veterans General HospitalTaipeiTaiwan
- Endoscopic Center for Diagnosis and TherapyTaipei Veterans General HospitalTaipeiTaiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Kuei‐Chuan Lee
- Division of Gastroenterology and HepatologyTaipei Veterans General HospitalTaipeiTaiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Pei‐Chang Lee
- Division of Gastroenterology and HepatologyTaipei Veterans General HospitalTaipeiTaiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yen‐Po Wang
- Division of Gastroenterology and HepatologyTaipei Veterans General HospitalTaipeiTaiwan
- Endoscopic Center for Diagnosis and TherapyTaipei Veterans General HospitalTaipeiTaiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi‐Tsung Lin
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Division of Infectious DiseasesTaipei Veterans General HospitalTaipeiTaiwan
| | - Hui‐Chun Huang
- Division of Gastroenterology and HepatologyTaipei Veterans General HospitalTaipeiTaiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Division of General Medicine, Department of MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Jiing‐Chyuan Luo
- Division of Gastroenterology and HepatologyTaipei Veterans General HospitalTaipeiTaiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Healthcare and Services CenterTaipei Veterans General HospitalTaipeiTaiwan
| | - Hsiang‐Ling Ho
- Department of Pathology and Laboratory MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Yi‐Hsiang Huang
- Division of Gastroenterology and HepatologyTaipei Veterans General HospitalTaipeiTaiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Ming‐Chih Hou
- Division of Gastroenterology and HepatologyTaipei Veterans General HospitalTaipeiTaiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | | |
Collapse
|
14
|
Song Y, Song J, Kim S, Jang H, Kim H, Jeong B, Park N, Kim S, Yong D, Lim EK, Lee KG, Kang T, Im SG. Charge-shifting polyplex as a viral RNA extraction carrier for streamlined detection of infectious viruses. MATERIALS HORIZONS 2023; 10:4571-4580. [PMID: 37581348 DOI: 10.1039/d3mh00861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid, user-friendly nucleic acid testing that involves simple but efficient RNA extraction. Here, we present a charge-shifting polyplex as an RNA extraction carrier for advanced diagnosis of infectious viral diseases. The polyplex comprises poly(2-(dimethylamino) ethyl acrylate) (pDMAEA) electrostatically conjugated with RNA. The pDMAEA film can rapidly dissolve in the viral RNA solution, promoting immediate binding with RNA to form the polyplex, which enables the efficient capture of a substantial quantity of RNA. Subsequently, the captured RNA can be readily released by the quick hydrolysis of pDMAEA at the onset of quantitative reverse transcription-polymerase chain reaction (qRT-PCR), streamlining the entire process from RNA extraction to analysis. The developed method requires only 5 min of centrifugation and enables the detection of RNA in a one-pot setup. Moreover, the proposed method is fully compatible with high-speed qRT-PCR kits and can identify clinical samples within 1 h including the entire extraction to detection procedure. Indeed, the method successfully detected influenza viruses, SARS-CoV-2, and their delta and omicron variants in 260 clinical samples with a sensitivity of 99.4% and specificity of 98.9%. This rapid, user-friendly polyplex-based approach represents a significant breakthrough in molecular diagnostics.
Collapse
Affiliation(s)
- Younseong Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jayeon Song
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Seongeun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Hogi Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Booseok Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Nahyun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, 79 Gangnam-ro, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
15
|
Vuchas C, Teyim P, Dang BF, Neh A, Keugni L, Che M, Che PN, Beloko H, Fondoh V, Ndi NN, Wandji IAG, Fundoh M, Manga H, Mbuli C, Creswell J, Bisso A, Donkeng V, Sander M. Implementation of large-scale pooled testing to increase rapid molecular diagnostic test coverage for tuberculosis: a retrospective evaluation. Sci Rep 2023; 13:15358. [PMID: 37717043 PMCID: PMC10505184 DOI: 10.1038/s41598-023-41904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023] Open
Abstract
In 2021, only 6.4 million of the 10.6 million people with tuberculosis (TB) were diagnosed and treated for the disease. Although the World Health Organization recommends initial diagnostic testing using a rapid sensitive molecular assay, only 38% of people diagnosed with TB benefited from these, due to barriers including the high cost of available assays. Pooled testing has been used as an approach to increase testing efficiency in many resource-constrained situations, such as the COVID-19 pandemic, but it has not yet been widely adopted for TB diagnostic testing. Here we report a retrospective analysis of routine pooled testing of 10,117 sputum specimens using the Xpert MTB/RIF and Xpert MTB/RIF Ultra assays that was performed from July 2020 to February 2022. Pooled testing saved 48% of assays and enabled rapid molecular testing for 4156 additional people as compared to individual testing, with 6.6% of specimens positive for TB. From an in silico analysis, the positive percent agreement of pooled testing in pools of 3 as compared with individual testing for the Xpert MTB/RIF Ultra assay was estimated as 99.4% (95% CI, 96.6% to 100%). These results support the scale-up of pooled testing for efficient TB diagnosis.
Collapse
Affiliation(s)
- Comfort Vuchas
- Center for Health Promotion and Research, Bamenda, Northwest, Cameroon.
| | - Pride Teyim
- Tuberculosis Reference Laboratory Douala, Douala, Littoral, Cameroon
| | | | - Angela Neh
- Center for Health Promotion and Research, Bamenda, Northwest, Cameroon
| | - Liliane Keugni
- Tuberculosis Reference Laboratory Douala, Douala, Littoral, Cameroon
| | - Mercy Che
- Center for Health Promotion and Research, Bamenda, Northwest, Cameroon
| | - Pantalius Nji Che
- Center for Health Promotion and Research, Bamenda, Northwest, Cameroon
| | - Hamada Beloko
- Tuberculosis Reference Laboratory Douala, Douala, Littoral, Cameroon
| | - Victor Fondoh
- Bamenda Regional Hospital, Bamenda, Northwest, Cameroon
| | - Norah Nyah Ndi
- Baptist Convention Health Services and Baptist Institute of Health Sciences, Bamenda, Northwest, Cameroon
| | | | - Mercy Fundoh
- National TB Program- Northwest Region, Bamenda, Northwest, Cameroon
| | - Henri Manga
- National TB Program, Yaoundé, Center, Cameroon
| | - Cyrille Mbuli
- Center for Health Promotion and Research, Bamenda, Northwest, Cameroon
| | | | - Annie Bisso
- National TB Program, Yaoundé, Center, Cameroon
| | | | - Melissa Sander
- Center for Health Promotion and Research, Bamenda, Northwest, Cameroon.
| |
Collapse
|
16
|
Baek YH, Park MY, Lim HJ, Youm DJ, You Y, Ahn S, Park JE, Kim MJ, Lee SH, Sohn YH, Yang YJ. Evaluation of Rapid Multiplex Reverse Transcription-Quantitative Polymerase Chain Reaction Assays for SARS-CoV-2 Detection in Individual and Pooled Samples. Life (Basel) 2023; 13:1717. [PMID: 37629574 PMCID: PMC10455980 DOI: 10.3390/life13081717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Although coronavirus disease 2019 (COVID-19) is no longer a Public Health Emergency of International Concern (PHEIC), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has had a vast impact to date. Hence, continuous management is required, given the uncertainty caused by the potential evolution of SARS-CoV-2. Reverse transcription-quantitative PCR (RT-qPCR) diagnosis has been fundamental in overcoming this issue. In this study, the performances of two rapid RT-qPCR assays (Real-Q Direct SARS-CoV-2 Detection Kit and Allplex™ SARS-CoV-2 fast PCR Assay) with short PCR times were comparatively evaluated using a STANDARD M nCoV Real-Time Detection Kit (STANDARD M, conventional RT-qPCR assay). All kits showed a limit of detection values (102-103 copies/reaction). The evaluation showed that the two rapid assay tests had ≥97.89% sensitivity and ≥99.51% specificity (κ = 0.98) for individual samples and ≥97.32% sensitivity and ≥97.67% specificity for pooled samples compared to STANDARD M. These results indicate that the two rapid RT-qPCR kits, which showed significant time reduction in performance, are as effective as a conventional RT-qPCR assay. They are likely to increase not only the number of tests that can be performed but also the efficiency of sustainable management of COVID-19 in the long term.
Collapse
Affiliation(s)
- Young-Hyun Baek
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (Y.-H.B.); (M.-Y.P.); (H.-J.L.); (D.-J.Y.); (Y.Y.); (S.A.); (M.-J.K.); (Y.-H.S.)
| | - Min-Young Park
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (Y.-H.B.); (M.-Y.P.); (H.-J.L.); (D.-J.Y.); (Y.Y.); (S.A.); (M.-J.K.); (Y.-H.S.)
| | - Ho-Jae Lim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (Y.-H.B.); (M.-Y.P.); (H.-J.L.); (D.-J.Y.); (Y.Y.); (S.A.); (M.-J.K.); (Y.-H.S.)
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea;
| | - Dong-Jae Youm
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (Y.-H.B.); (M.-Y.P.); (H.-J.L.); (D.-J.Y.); (Y.Y.); (S.A.); (M.-J.K.); (Y.-H.S.)
| | - Youngshin You
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (Y.-H.B.); (M.-Y.P.); (H.-J.L.); (D.-J.Y.); (Y.Y.); (S.A.); (M.-J.K.); (Y.-H.S.)
| | - Seojin Ahn
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (Y.-H.B.); (M.-Y.P.); (H.-J.L.); (D.-J.Y.); (Y.Y.); (S.A.); (M.-J.K.); (Y.-H.S.)
| | - Jung-Eun Park
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea;
| | - Min-Jin Kim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (Y.-H.B.); (M.-Y.P.); (H.-J.L.); (D.-J.Y.); (Y.Y.); (S.A.); (M.-J.K.); (Y.-H.S.)
| | - Sun-Hwa Lee
- Department of Laboratory Medicine, Seegene Medical Foundation, Seoul 04805, Republic of Korea;
| | - Yong-Hak Sohn
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (Y.-H.B.); (M.-Y.P.); (H.-J.L.); (D.-J.Y.); (Y.Y.); (S.A.); (M.-J.K.); (Y.-H.S.)
| | - Yong-Jin Yang
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (Y.-H.B.); (M.-Y.P.); (H.-J.L.); (D.-J.Y.); (Y.Y.); (S.A.); (M.-J.K.); (Y.-H.S.)
| |
Collapse
|
17
|
Grosman A, Duanis-Assaf T, Mazurski N, Zektzer R, Frydendahl C, Stern L, Reches M, Levy U. On-chip multivariant COVID 19 photonic sensor based on silicon nitride double-microring resonators. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2831-2839. [PMID: 39635473 PMCID: PMC11501435 DOI: 10.1515/nanoph-2022-0722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/20/2023] [Indexed: 12/07/2024]
Abstract
Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease that continues to develop new variants. A crucial step in the quest to reduce the infection is the development of rapid and reliable virus detectors. Here, we report a chip scale photonic sensing device consisting of a silicon-nitride double microring resonator (MRR) for detecting SARS-CoV-2 in clinical samples. The sensor is implemented by surface activation of one of the MRRs, acting as a probe, with DNA primers for SARS-CoV-2 RNA, whereas the other MRR is used as a reference. The performance of the sensor is determined by applying different amounts of SARS-CoV-2 complementary RNA. As will be shown in the paper, our device detects the RNA fragments at concentrations of 10 cp/μL and with sensitivity of 750 nm/RIU. As such, it shows a promise toward the implementation of label-free, small form factor, CMOS compatible biosensor for SARS-CoV-2, which is also environment, temperature, and pressure independent. Our approach can also be used for detecting other SARS-CoV-2 genes, as well as other viruses and pathogens.
Collapse
Affiliation(s)
- Arieh Grosman
- Department of Applied Physics, The Benin School of Engineering and Computer Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Tal Duanis-Assaf
- The Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Noa Mazurski
- Department of Applied Physics, The Benin School of Engineering and Computer Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Roy Zektzer
- Department of Applied Physics, The Benin School of Engineering and Computer Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Christian Frydendahl
- Department of Applied Physics, The Benin School of Engineering and Computer Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Liron Stern
- Department of Applied Physics, The Benin School of Engineering and Computer Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Meital Reches
- The Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Uriel Levy
- Department of Applied Physics, The Benin School of Engineering and Computer Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
18
|
Liu D, Li Q, Luo J, Huang Q, Zhang Y. An SPRI beads-based DNA purification strategy for flexibility and cost-effectiveness. BMC Genomics 2023; 24:125. [PMID: 36927488 PMCID: PMC10022144 DOI: 10.1186/s12864-023-09211-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Current solid-phase reversible immobilization (SPRI) beads technology is widely used in molecular biology due to its convenience for DNA manipulation. However, the high performance commercial SPRI beads have no price advantage over our method. Furthermore, the use of commercially available SPRI beads standards does not provide the flexibility required for a number of specific nucleic acid handling scenarios. RESULTS We report an efficient DNA purification strategy by combining home-made beads-suspension buffer with SPRI beads. The method tests the critical concentrations of polyethylene glycol (PEG) 8000 and beads to maximise recovery. And the composition of the SPRI beads DNA purification system (SDPS) was determined at 20% PEG 8000, 2 M NaCl and 16.3 mM MgCl2, and 1.25 mg/ml beads (1/8th original concentration). Then, we tested the DNA recovery of the SDPS, and the result showed that it was comparable to the control (AMPure XP beads). In the study, we have also developed an adjustment SPRI beads DNA purification system (ASDPS), the volume of ASDPS per reaction is 0.6× reaction volume (beads/samples). The performance of ASDPS is similar to SDPS and the control. But the cost of our methods is only about 1/24th of the control. To further assess its performance, we prepare the DNA-seq libraries to evaluate the yield, library quality, capture efficiency and consistency. We have compared all these results with the performance of the control and confirmed its efficiency. CONCLUSION We have proposed an alternative DNA purification approach with great flexibility, allowing researchers to manipulate DNA in different conditions. And ultimately, its application will benefit molecular biology research in the future.
Collapse
Affiliation(s)
- Danli Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfei Road, Dapeng, Shenzhen, 518120, China
| | - Qiujia Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfei Road, Dapeng, Shenzhen, 518120, China
| | - Qitong Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfei Road, Dapeng, Shenzhen, 518120, China
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, 6708PB, Netherlands
| | - Yubo Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfei Road, Dapeng, Shenzhen, 518120, China.
- College of Life Science and Engineering, Foshan University, Foshan, China.
| |
Collapse
|
19
|
Effectiveness of sample pooling strategies for diagnosis of SARS-CoV-2: Specimen pooling vs. RNA elutes pooling. Indian J Med Microbiol 2023; 42:34-38. [PMID: 36967213 PMCID: PMC9870240 DOI: 10.1016/j.ijmmb.2022.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/13/2022] [Accepted: 12/31/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE The pandemic of SARS-CoV-2 or COVID-19 has hugely created an economic imbalance worldwide. With the exponential increase in the number of cases and to keep in check on the community transmission, there is high demand and acute shortage of diagnostic kits. The pooled-sample strategy turns out to be the promising strategy intended to determine the optimal testing for specimens with limited resources and without losing the test sensitivity and specificity. The study was performed with standard molecular biology graded lab equipment, FDA-approved COVID-19 RNA extraction, and SARS-CoV-2 tests kits. MATERIALS AND METHODS The study aims to comparatively analyze the pooling strategy of the naso-oropharyngeal specimen sample and RNA extracted from the same patient samples in the pool of 3,5, and 8 with no significant loss in test usability. Another primary focus of the study was detection of low or borderline SARS-CoV-2 positives in the pooling strategy. A total of 300 samples (240 positives and 60 negatives) were tested for 3, 5, and 8 pools of specimen samples and RNA elutes. RESULTS The comparative analysis determined the sensitivity for three and five pool strategy to be above 98% and eight pool strategy to be 100%. CONCLUSION The RNA elutes pooling strategy concordance rate is better than that of specimen pooling with 100% specificity. Thus, in the substantial crisis of resources with the global pandemic, pooling approaches for SARS-CoV-2 can be practical in a low prevalence rate of 5%.
Collapse
|
20
|
Filiatreau LM, Zivich PN, Edwards JK, Mulholland GE, Max R, Westreich D. Optimizing SARS-CoV-2 Pooled Testing Strategies Through Differentiated Pooling for Distinct Groups. Am J Epidemiol 2023; 192:246-256. [PMID: 36222677 PMCID: PMC9620733 DOI: 10.1093/aje/kwac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/02/2022] [Accepted: 10/06/2022] [Indexed: 02/07/2023] Open
Abstract
Pooled testing has been successfully used to expand SARS-CoV-2 testing, especially in settings requiring high volumes of screening of lower-risk individuals, but efficiency of pooling declines as prevalence rises. We propose a differentiated pooling strategy that independently optimizes pool sizes for distinct groups with different probabilities of infection to further improve the efficiency of pooled testing. We compared the efficiency (results obtained per test kit used) of the differentiated strategy with a traditional pooling strategy in which all samples are processed using uniform pool sizes under a range of scenarios. For most scenarios, differentiated pooling is more efficient than traditional pooling. In scenarios examined here, an improvement in efficiency of up to 3.94 results per test kit could be obtained through differentiated versus traditional pooling, with more likely scenarios resulting in 0.12 to 0.61 additional results per kit. Under circumstances similar to those observed in a university setting, implementation of our strategy could result in an improvement in efficiency between 0.03 to 3.21 results per test kit. Our results can help identify settings, such as universities and workplaces, where differentiated pooling can conserve critical testing resources.
Collapse
Affiliation(s)
- Lindsey M Filiatreau
- Correspondence Address: Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid, St. Louis, MO 63110, E-mail:
| | - Paul N Zivich
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jessie K Edwards
- Gillings Center for Coronavirus Testing, Screening, and Surveillance, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Grace E Mulholland
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ryan Max
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel Westreich
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Gillings Center for Coronavirus Testing, Screening, and Surveillance, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
21
|
Tapia-Sidas DA, Vargas-Hernández BY, Ramírez-Pool JA, Núñez-Muñoz LA, Calderón-Pérez B, González-González R, Brieba LG, Lira-Carmona R, Ferat-Osorio E, López-Macías C, Ruiz-Medrano R, Xoconostle-Cázares B. Starting from scratch: Step-by-step development of diagnostic tests for SARS-CoV-2 detection by RT-LAMP. PLoS One 2023; 18:e0279681. [PMID: 36701313 PMCID: PMC9879405 DOI: 10.1371/journal.pone.0279681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/12/2022] [Indexed: 01/27/2023] Open
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide. Public health strategies to reduce viral transmission are based on widespread diagnostic testing to detect and isolate contagious patients. Several reverse transcription (RT)-PCR tests, along with other SARS-CoV-2 diagnostic assays, are available to attempt to cover the global demand. Loop-mediated isothermal amplification (LAMP) based methods have been established as rapid, accurate, point of care diagnostic tests for viral infections; hence, they represent an excellent alternative for SARS-CoV-2 detection. The aim of this study was to develop and describe molecular detection systems for SARS-CoV-2 based on RT-LAMP. Recombinant DNA polymerase from Bacillus stearothermophilus and thermostable engineered reverse transcriptase from Moloney Murine Leukemia Virus were expressed using a prokaryotic system and purified by fast protein liquid chromatography. These enzymes were used to set up fluorometric real time and colorimetric end-point RT-LAMP assays. Several reaction conditions were optimized such as reaction temperature, Tris-HCl concentration, and pH of the diagnostic tests. The key enzymes for RT-LAMP were purified and their enzymatic activity was determined. Standardized reaction conditions for both RT-LAMP assays were 65°C and a Tris-HCl-free buffer at pH 8.8. Colorimetric end-point RT-LAMP assay was successfully used for viral detection from clinical saliva samples with 100% sensitivity and 100% specificity compared to the results obtained by RT-qPCR based diagnostic protocols with Ct values until 30. The developed RT-LAMP diagnostic tests based on purified recombinant enzymes allowed a sensitive and specific detection of the nucleocapsid gene of SARS-CoV-2.
Collapse
Affiliation(s)
- Diana Angélica Tapia-Sidas
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | | | - José Abrahán Ramírez-Pool
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Rogelio González-González
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Luis Gabriel Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, Irapuato, Guanajuato, Mexico
| | - Rosalía Lira-Carmona
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eduardo Ferat-Osorio
- División de Investigación en Salud, UMAE Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Constantino López-Macías
- División de Investigación en Salud, UMAE Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
- * E-mail: (RRM); (BXC)
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
- * E-mail: (RRM); (BXC)
| |
Collapse
|
22
|
A Pooling Strategy for Detecting Carbapenem Resistance Genes by the Xpert Carba-R Test in Rectal Swab Specimens. J Clin Microbiol 2022; 60:e0118122. [PMID: 36374075 PMCID: PMC9769799 DOI: 10.1128/jcm.01181-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rapid and accurate detection of carriers of carbapenemase-producing organisms (CPO) in hospitalized patients is critical for infection control and prevention. This study aimed to evaluate a pooling strategy for the detection of carbapenem resistance genes (CRG) in multiple specimens using the Xpert Carba-R test. Two rectal swabs each were collected from 415 unique patients. One swab was tested by Carba-R on the five specimen-pooled strategy. The other swab was tested individually by culture followed by DNA sequence analysis for CRG as the reference. At the first 5:1 pooling testing, 22 of 83 pools were positive, which yielded 34 positives from individual specimens when positive pools were subsequently retested. All individual specimens in the 61 negative pools were retested as negative by Carba-R. Among the 34 Carba-R-positive samples, 30 and four were positive and negative, respectively, by culture and sequencing. The remaining 381 Carba-R-negative specimens were also negative by culture and sequencing. Overall sensitivity, specificity, positive predictive value, and negative predictive value of the 5:1 pooled screening were 100.0% (95% confidence interval [CI] = 85.9% to 100%), 99.0% (95% CI = 97.2% to 99.7%), 88.2% (95% CI = 71.6% to 96.2%), and 100.0% (95% CI = 98.8% to 100%), respectively. Using the 5:1 pooling strategy, our study completed CRG screening in 414 patients with 193 reagents with significant cost savings. The 5:1 pooling strategy using the Carba-R test showed a potential method for screening CRG from rectal swabs with good sensitivity and decreased cost.
Collapse
|
23
|
Validation of SARS-CoV-2 pooled testing for surveillance using the Panther Fusion® system: Impact of pool size, automation, and assay chemistry. PLoS One 2022; 17:e0276729. [PMID: 36342921 PMCID: PMC9639840 DOI: 10.1371/journal.pone.0276729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Combining diagnostic specimens into pools has been considered as a strategy to augment throughput, decrease turnaround time, and leverage resources. This study utilized a multi-parametric approach to assess optimum pool size, impact of automation, and effect of nucleic acid amplification chemistries on the detection of SARS-CoV-2 RNA in pooled samples for surveillance testing on the Hologic Panther Fusion® System. Dorfman pooled testing was conducted with previously tested SARS-CoV-2 nasopharyngeal samples using Hologic’s Aptima® and Panther Fusion® SARS-CoV-2 Emergency Use Authorization assays. A manual workflow was used to generate pool sizes of 5:1 (five samples: one positive, four negative) and 10:1. An automated workflow was used to generate pool sizes of 3:1, 4:1, 5:1, 8:1 and 10:1. The impact of pool size, pooling method, and assay chemistry on sensitivity, specificity, and lower limit of detection (LLOD) was evaluated. Both the Hologic Aptima® and Panther Fusion® SARS-CoV-2 assays demonstrated >85% positive percent agreement between neat testing and pool sizes ≤5:1, satisfying FDA recommendation. Discordant results between neat and pooled testing were more frequent for positive samples with CT>35. Fusion® CT (cycle threshold) values for pooled samples increased as expected for pool sizes of 5:1 (CT increase of 1.92–2.41) and 10:1 (CT increase of 3.03–3.29). The Fusion® assay demonstrated lower LLOD than the Aptima® assay for pooled testing (956 vs 1503 cp/mL, pool size of 5:1). Lowering the cut-off threshold of the Aptima® assay from 560 kRLU (manufacturer’s setting) to 350 kRLU improved the assay sensitivity to that of the Fusion® assay for pooled testing. Both Hologic’s SARS-CoV-2 assays met the FDA recommended guidelines for percent positive agreement (>85%) for pool sizes ≤5:1. Automated pooling increased test throughput and enabled automated sample tracking while requiring less labor. The Fusion® SARS-CoV-2 assay, which demonstrated a lower LLOD, may be more appropriate for surveillance testing.
Collapse
|
24
|
Wang S, Wu Y, Wang Y, Chen Z, Ying D, Lin X, Liu C, Lin M, Zhang J, Zhu Y, Guo S, Shang H, Chen X, Qiang H, Yin Y, Tang Z, Zheng Z, Xia N. Potential of antibody pair targeting conserved antigenic sites in diagnosis of SARS-CoV-2 variants infection. J Virol Methods 2022; 309:114597. [PMID: 35932997 PMCID: PMC9347178 DOI: 10.1016/j.jviromet.2022.114597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has become disaster for human society. As the pandemic becomes more regular, we should develop more rapid and accurate detection methods to achieve early diagnosis and treatment. Antigen detection methods based on spike protein has great potential, however, it has not been effectively developed, probably due to the torturing conformational complexity. By utilizing cross-blocking data, we clustered SARS-CoV-2 receptor binding domain (RBD)-specific monoclonal antibodies (mAbs) into 6 clusters. Subsequently, the antigenic sites for representative mAbs were identified by RBDs with designed residue substitutions. The sensitivity and specificity of selected antibody pairs was demonstrated using serial diluted samples of SARS-CoV-2 S protein and SARS-CoV S protein. Furthermore, pseudovirus system was constructed to determine the detection capability against SARS-CoV-2 and SARS-CoV. 6 RBD-specific mAbs, recognizing different antigenic sites, were identified as potential candidates for optimal antibody pairs for detection of SARS-CoV-2 S protein. By considering relative spatial position, accessibility and conservation of corresponding antigenic sites, affinity and the presence of competitive antibodies in clinical samples, 6H7-6G3 was rationally identified as optimal antibody pair for detection of both SARS-CoV-2 and SARS-CoV. Furthermore, our results showed that 6H7 and 6G3 effectively bind to SARS-CoV-2 variants of concern (VOCs). Taken together, we identified 6H7-6G3 antibody pair as a promising rapid antigen diagnostic tool in containing COVID-19 pandemic caused by multiple VOCs. Moreover, our results also provide an important reference in screening of antibody pairs detecting antigens with complex conformation.
Collapse
Affiliation(s)
- Siling Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Yangling Wu
- Emergency Department, The First Affiliated Hospital of Xiamen University, 361003 Xiamen, Fujian, PR China
| | - Yizhen Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Zihao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Dong Ying
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Xue Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Chang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Min Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Jinlei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Yuhe Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Shaoqi Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Huixian Shang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Xiuting Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Hongsheng Qiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Yifan Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China
| | - Zimin Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China.
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, PR China.
| |
Collapse
|
25
|
Butler KS, Carson BD, Podlevsky JD, Mayes CM, Rowland JM, Campbell D, Ricken JB, Wudiri G, Timlin JA. Singleplex, multiplex and pooled sample real-time RT-PCR assays for detection of SARS-CoV-2 in an occupational medicine setting. Sci Rep 2022; 12:17733. [PMID: 36273023 PMCID: PMC9587995 DOI: 10.1038/s41598-022-22106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/10/2022] [Indexed: 01/18/2023] Open
Abstract
For workplaces which cannot operate as telework or remotely, there is a critical need for routine occupational SARS-CoV-2 diagnostic testing. Although diagnostic tests including the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel (CDC Diagnostic Panel) (EUA200001) were made available early in the pandemic, resource scarcity and high demand for reagents and equipment necessitated priority of symptomatic patients. There is a clearly defined need for flexible testing methodologies and strategies with rapid turnaround of results for (1) symptomatic, (2) asymptomatic with high-risk exposures and (3) asymptomatic populations without preexisting conditions for routine screening to address the needs of an on-site work force. We developed a distinct SARS-CoV-2 diagnostic assay based on the original CDC Diagnostic Panel (EUA200001), yet, with minimum overlap for currently employed reagents to eliminate direct competition for limited resources. As the pandemic progressed with testing loads increasing, we modified the assay to include 5-sample pooling and amplicon target multiplexing. Analytical sensitivity of the pooled and multiplexed assays was rigorously tested with contrived positive samples in realistic patient backgrounds. Assay performance was determined with clinical samples previously assessed with an FDA authorized assay. Throughout the pandemic we successfully tested symptomatic, known contact and travelers within our occupational population with a ~ 24-48-h turnaround time to limit the spread of COVID-19 in the workplace. Our singleplex assay had a detection limit of 31.25 copies per reaction. The three-color multiplexed assay maintained similar sensitivity to the singleplex assay, while tripling the throughput. The pooling assay further increased the throughput to five-fold the singleplex assay, albeit with a subtle loss of sensitivity. We subsequently developed a hybrid 'multiplex-pooled' strategy to testing to address the need for both rapid analysis of samples from personnel at high risk of COVID infection and routine screening. Herein, our SARS-CoV-2 assays specifically address the needs of occupational healthcare for both rapid analysis of personnel at high-risk of infection and routine screening that is essential for controlling COVID-19 disease transmission. In addition to SARS-CoV-2 and COVID-19, this work demonstrates successful flexible assays developments and deployments with implications for emerging highly transmissible diseases and future pandemics.
Collapse
Affiliation(s)
- Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Bryan D Carson
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Joshua D Podlevsky
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Cathryn M Mayes
- WMD Threats and Aerosol Science, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Jessica M Rowland
- Global Chemical and Biological Security, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - DeAnna Campbell
- Biological and Chemical Sensors Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - J Bryce Ricken
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - George Wudiri
- Cooperative Nuclear Counterproliferation, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Jerilyn A Timlin
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA.
- Computational Biology and Biophysics Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA.
| |
Collapse
|
26
|
Mladonicky J, Bedada A, Yoder C, VanderWaal K, Torrison J, Wells SJ. Pooled surveillance testing for asymptomatic SARS-CoV-2 infections at a Veterinary Teaching Hospital College, University of Minnesota, December 2020-April 2021. Front Public Health 2022; 10:879107. [PMID: 35991058 PMCID: PMC9388852 DOI: 10.3389/fpubh.2022.879107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
To evaluate the use of asymptomatic surveillance, we implemented a surveillance program for asymptomatic SARS-CoV-2 infection in a voluntary sample of individuals at the College of Veterinary Medicine at the University of Minnesota. Self-collected anterior nasal samples were tested using real time reverse transcription-polymerase chain reaction (RT-PCR), in a 5:1 pooled testing strategy, twice weekly for 18 weeks. Positive pools were deconvoluted into individual tests, revealing an observed prevalence of 0.07% (3/4,525). Pooled testing allowed for large scale testing with an estimated cost savings of 79.3% and modeling demonstrated this testing strategy prevented up to 2 workplace transmission events, averting up to 4 clinical cases. At the study endpoint, antibody testing revealed 80.7% of participants had detectable vaccine antibody levels while 9.6% of participants had detectable antibodies to natural infection.
Collapse
Affiliation(s)
- Janice Mladonicky
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Addisalem Bedada
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Colin Yoder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jerry Torrison
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Scott J. Wells
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
27
|
Filchakova O, Dossym D, Ilyas A, Kuanysheva T, Abdizhamil A, Bukasov R. Review of COVID-19 testing and diagnostic methods. Talanta 2022; 244:123409. [PMID: 35390680 PMCID: PMC8970625 DOI: 10.1016/j.talanta.2022.123409] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/09/2023]
Abstract
More than six billion tests for COVID-19 has been already performed in the world. The testing for SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) virus and corresponding human antibodies is essential not only for diagnostics and treatment of the infection by medical institutions, but also as a pre-requisite for major semi-normal economic and social activities such as international flights, off line work and study in offices, access to malls, sport and social events. Accuracy, sensitivity, specificity, time to results and cost per test are essential parameters of those tests and even minimal improvement in any of them may have noticeable impact on life in the many countries of the world. We described, analyzed and compared methods of COVID-19 detection, while representing their parameters in 22 tables. Also, we compared test performance of some FDA approved test kits with clinical performance of some non-FDA approved methods just described in scientific literature. RT-PCR still remains a golden standard in detection of the virus, but a pressing need for alternative less expensive, more rapid, point of care methods is evident. Those methods that may eventually get developed to satisfy this need are explained, discussed, quantitatively compared. The review has a bioanalytical chemistry prospective, but it may be interesting for a broader circle of readers who are interested in understanding and improvement of COVID-19 testing, helping eventually to leave COVID-19 pandemic in the past.
Collapse
Affiliation(s)
- Olena Filchakova
- Biology Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Dina Dossym
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Aisha Ilyas
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Tamila Kuanysheva
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Altynay Abdizhamil
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Rostislav Bukasov
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| |
Collapse
|
28
|
Song Y, Wang X, Xiao Y, Wang H. A review of pooled‐sample strategy: Does complexity lead to better performance? VIEW 2022. [DOI: 10.1002/viw.20210005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Yu Song
- Department of Molecular Biology Shanghai Centre for Clinical Laboratory Shanghai China
| | - XueLiang Wang
- Department of Molecular Biology Shanghai Centre for Clinical Laboratory Shanghai China
| | - YanQun Xiao
- Department of Molecular Biology Shanghai Centre for Clinical Laboratory Shanghai China
| | - Hualiang Wang
- Department of Molecular Biology Shanghai Centre for Clinical Laboratory Shanghai China
| |
Collapse
|
29
|
Miron-Spektor E, Emich KJ, Argote L, Smith WK. Conceiving opposites together: Cultivating paradoxical frames and epistemic motivation fosters team creativity. ORGANIZATIONAL BEHAVIOR AND HUMAN DECISION PROCESSES 2022. [DOI: 10.1016/j.obhdp.2022.104153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Cohen Y, Bamberger N, Mor O, Walfisch R, Fleishon S, Varkovitzky I, Younger A, Levi DO, Kohn Y, Steinberg DM, Zeevi D, Erster O, Mendelson E, Livneh Z. Effective bubble-based testing for SARS-CoV-2 using swab-pooling. Clin Microbiol Infect 2022; 28:859-864. [PMID: 35182758 PMCID: PMC8849906 DOI: 10.1016/j.cmi.2022.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Despite the success in developing COVID-19 vaccines, containment of the disease is obstructed worldwide by vaccine production bottlenecks, logistics hurdles, vaccine refusal, transmission through unvaccinated children, and the appearance of new viral variants. This underscores the need for effective strategies for identifying carriers/patients, which was the main aim of this study. METHODS We present a bubble-based PCR testing approach using swab-pooling into lysis buffer. A bubble is a cluster of people who can be periodically tested for SARS-CoV-2 by swab-pooling. A positive test of a pool mandates quarantining each of its members, who are then individually tested while in isolation to identify the carrier(s) for further epidemiological contact tracing. RESULTS We tested an overall sample of 25 831 individuals, divided into 1273 bubbles, with an average size of 20.3 ± 7.7 swabs/test tube, obtaining for all pools (≤37 swabs/pool) a specificity of 97.5% (lower bound 96.6%) and a sensitivity of 86.3% (lower bound 78.2%) and a post hoc analyzed sensitivity of 94.6% (lower bound 86.7%) and a specificity of 97.2% (lower bound 96.2%) in pools with ≤25 swabs, relative to individual testing. DISCUSSION This approach offers a significant scale-up in sampling and testing throughput and savings in testing cost, without reducing sensitivity or affecting the standard PCR testing laboratory routine. It can be used in school classes, airplanes, hospitals, military units, and workplaces, and may be applicable to future pandemics.
Collapse
Affiliation(s)
- Yuval Cohen
- Directorate of Defense Research & Development, Israeli Ministry of Defense, Tel Aviv, Israel
| | - Nadav Bamberger
- Directorate of Defense Research & Development, Israeli Ministry of Defense, Tel Aviv, Israel
| | - Orna Mor
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ronen Walfisch
- Directorate of Defense Research & Development, Israeli Ministry of Defense, Tel Aviv, Israel
| | | | - Itay Varkovitzky
- Directorate of Defense Research & Development, Israeli Ministry of Defense, Tel Aviv, Israel
| | | | | | - Yishai Kohn
- Directorate of Defense Research & Development, Israeli Ministry of Defense, Tel Aviv, Israel
| | - David M Steinberg
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Danny Zeevi
- Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Oran Erster
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zvi Livneh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
31
|
Abstract
Scaling up SARS-CoV-2 testing during the COVID-19 pandemic was critical to maintaining clinical operations and an open society. Pooled testing and automation were two critical strategies used by laboratories to meet the unprecedented demand. Here, we review these and other cutting-edge strategies that sought to expand SARS-CoV-2 testing capacity while maintaining high individual test performance.
Collapse
Affiliation(s)
- Sanchita Das
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Karen M Frank
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Różański M, Walczak-Drzewiecka A, Witaszewska J, Wójcik E, Guziński A, Zimoń B, Matusiak R, Kazimierczak J, Borowiec M, Kania K, Paradowska E, Pawełczyk J, Dziadek J, Dastych J. RT-qPCR-based tests for SARS-CoV-2 detection in pooled saliva samples for massive population screening to monitor epidemics. Sci Rep 2022; 12:8082. [PMID: 35577836 PMCID: PMC9109753 DOI: 10.1038/s41598-022-12179-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/28/2022] [Indexed: 01/09/2023] Open
Abstract
Swab, RT-qPCR tests remain the gold standard of diagnostics of SARS-CoV-2 infections. These tests are costly and have limited throughput. We developed a 3-gene, seminested RT-qPCR test with SYBR green-based detection designed to be oversensitive rather than overspecific for high-throughput diagnostics of populations. This two-tier approach depends on decentralized self-collection of saliva samples, pooling, 1st-tier testing with highly sensitive screening test and subsequent 2nd-tier testing of individual samples from positive pools with the IVD test. The screening test was able to detect five copies of the viral genome in 10 µl of isolated RNA with 50% probability and 18.8 copies with 95% probability and reached Ct values that were highly linearly RNA concentration-dependent. In the side-by-side comparison, the screening test attained slightly better results than the commercially available IVD-certified RT-qPCR diagnostic test DiaPlexQ (100% specificity and 89.8% sensitivity vs. 100% and 73.5%, respectively). Testing of 1475 individual clinical samples pooled in 374 pools of four revealed 0.8% false positive pools and no false negative pools. In weekly prophylactic testing of 113 people within 6 months, a two-tier testing approach enabled the detection of 18 infected individuals, including several asymptomatic individuals, with substantially lower cost than individual RT-PCR testing.
Collapse
Affiliation(s)
- Michał Różański
- Laboratory of Cellular Immunology, Institute of Medical Biology of PAS, Lodz, Poland
| | | | | | - Ewelina Wójcik
- Proteon Pharmaceuticals S.A., Tylna 3A, 90-364, Lodz, Poland
| | | | - Bogumił Zimoń
- Proteon Pharmaceuticals S.A., Tylna 3A, 90-364, Lodz, Poland
| | - Rafał Matusiak
- Proteon Pharmaceuticals S.A., Tylna 3A, 90-364, Lodz, Poland
| | | | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kania
- Laboratory of Virology, Institute of Medical Biology of PAS, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of PAS, Lodz, Poland
| | - Jakub Pawełczyk
- Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology of PAS, Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology of PAS, Lodz, Poland
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology of PAS, Lodz, Poland.
- Proteon Pharmaceuticals S.A., Tylna 3A, 90-364, Lodz, Poland.
| |
Collapse
|
33
|
Yang JR, Kuo CY, Huang HY, Yu IL, Hsieh CT, Chen BS, Liu MT. Evaluation of conventional and point-of-care real-time RT-PCR tests for the detection of SARS-CoV-2 through a pooled testing strategy. J Clin Lab Anal 2022; 36:e24491. [PMID: 35535393 PMCID: PMC9169176 DOI: 10.1002/jcla.24491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background The rapid identification and isolation of individuals infected with SARS‐CoV‐2 are fundamental countermeasures for the efficient control of the COVID‐19 pandemic, which has affected millions of people around the world. Real‐time RT‐PCR is one of the most commonly applied reference methods for virus detection, and the use of pooled testing has been proposed as an effective way to increase the throughput of routine diagnostic tests. However, the clinical applicability of different types of real‐time RT‐PCR tests in a given group size remains inconclusive due to inconsistent regional disease prevalence and test demands. Methods In this study, the performance of one dual‐target conventional and two point‐of‐care real‐time RT‐PCR tests in a 5‐specimen pooled testing strategy for the detection of SARS‐COV‐2 was evaluated. Results We demonstrated the proof of concept that all of these real‐time RT‐PCR tests could feasibly detect SARS‐CoV‐2 from nasopharyngeal and oropharyngeal specimens that contain viral RNA loads in the range of 3.48 × 105 to 3.42 × 102 copies/ml through pooled testing in a group size of 5 with overall positive percent agreement (pooling vs. individual testing) ranging from 100% to 93.75%. Furthermore, the two POC real‐time RT‐PCR tests exhibited comparable sensitivity to that of the dual‐target conventional one when clinical specimens were tested individually. Conclusion Our findings support the feasibility of using real‐time RT‐PCR tests developed as a variety of platforms in routine laboratory detection of suspected COVID‐19 cases through a pooled testing strategy that is beneficial to increasing the daily diagnostic capacity.
Collapse
Affiliation(s)
- Ji-Rong Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Chuan-Yi Kuo
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Hsiang-Yi Huang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - I-Ling Yu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Chih-Tsun Hsieh
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Bao-Shan Chen
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ming-Tsan Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| |
Collapse
|
34
|
Song W, Zhang T, Lin H, Yang Y, Zhao G, Huang X. Conventional and Microfluidic Methods for the Detection of Nucleic Acid of SARS-CoV-2. MICROMACHINES 2022; 13:636. [PMID: 35457940 PMCID: PMC9031662 DOI: 10.3390/mi13040636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/23/2022]
Abstract
Nucleic acid testing (NAT) played a crucial role in containing the spread of SARS-CoV-2 during the epidemic. The gold standard technique, the quantitative real-time polymerase chain reaction (qRT-PCR) technique, is currently used by the government and medical boards to detect SARS-CoV-2. Due to the limitations of this technology, it is not capable of meeting the needs of large-scale rapid detection. To solve this problem, many new techniques for detecting nucleic acids of SARS-CoV-2 have been reported. Therefore, a review that systematically and comprehensively introduces and compares various detection technologies is needed. In this paper, we not only review the traditional NAT but also provide an overview of microfluidic-based NAT technologies and summarize and discuss the characteristics and development prospects of these techniques.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (W.S.); (T.Z.); (H.L.); (Y.Y.); (G.Z.)
| |
Collapse
|
35
|
Sanyal A, Agarwal S, Ramakrishnan U, Garg KM, Chattopadhyay B. Using Environmental Sampling to Enable Zoonotic Pandemic Preparedness. J Indian Inst Sci 2022; 102:711-730. [PMID: 36093274 PMCID: PMC9449264 DOI: 10.1007/s41745-022-00322-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
The current pandemic caused by the SARS CoV-2, tracing back its origin possibly to a coronavirus associated with bats, has ignited renewed interest in understanding zoonotic spillovers across the globe. While research is more directed towards solving the problem at hand by finding therapeutic strategies and novel vaccine techniques, it is important to address the environmental drivers of pathogen spillover and the complex biotic and abiotic drivers of zoonoses. The availability of cutting-edge genomic technologies has contributed enormously to preempt viral emergence from wildlife. However, there is still a dearth of studies from species-rich South Asian countries, especially from India. In this review, we outline the importance of studying disease dynamics through environmental sampling from wildlife in India and how ecological parameters of both the virus and the host community may play a role in mediating cross-species spillovers. Non-invasive sampling using feces, urine, shed hair, saliva, shed skin, and feathers has been instrumental in providing genetic information for both the host and their associated pathogens. Here, we discuss the advances made in environmental sampling protocols and strategies to generate genetic data from such samples towards the surveillance and characterization of potentially zoonotic pathogens. We primarily focus on bat-borne or small mammal-borne zoonoses and propose a conceptual framework for non-invasive strategies to tackle the threat of emerging zoonotic infections.
Collapse
|
36
|
A four specimen-pooling scheme reliably detects SARS-CoV-2 and influenza viruses using the BioFire FilmArray Respiratory Panel 2.1. Sci Rep 2022; 12:4947. [PMID: 35322125 PMCID: PMC8942994 DOI: 10.1038/s41598-022-09039-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic required increased testing capacity, enabling rapid case identification and effective contract tracing to reduce transmission of disease. The BioFire FilmArray is a fully automated nucleic acid amplification test system providing specificity and sensitivity associated with gold standard molecular methods. The FilmArray Respiratory Panel 2.1 targets 22 viral and bacterial pathogens, including SARS-CoV-2 and influenza virus. While each panel provides a robust output of information regarding pathogen detection, the specimen throughput is low. This study evaluates the FilmArray Respiratory Panel 2.1 using 33 pools of contrived nasal samples and 22 pools of clinical nasopharyngeal specimens to determine the feasibility of increasing testing capacity, while maintaining detection of both SARS-CoV-2 and influenza virus. We observed 100% detection and 90% positive agreement for SARS-CoV-2 and 98% detection and 95% positive agreement for influenza viruses with pools of contrived or clinical specimens, respectively. While discordant results were mainly attributed to loss in sensitivity, the sensitivity of the pooling assay was well within accepted limits of detection for a nucleic acid amplification test. Overall, this study provides evidence supporting the use of pooling patient specimens, one in four with the FilmArray Respiratory Panel 2.1 for the detection of SARS-CoV-2 and influenza virus.
Collapse
|
37
|
Single-tube collection and nucleic acid analysis of clinical samples for SARS-CoV-2 saliva testing. Sci Rep 2022; 12:3951. [PMID: 35273232 PMCID: PMC8913774 DOI: 10.1038/s41598-022-07871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
The SARS-CoV-2 pandemic has brought to light the need for expedient diagnostic testing. Cost and availability of large-scale testing capacity has led to a lag in turnaround time and hindered contact tracing efforts, resulting in a further spread of SARS-CoV-2. To increase the speed and frequency of testing, we developed a cost-effective single-tube approach for collection, denaturation, and analysis of clinical samples. The approach utilizes 1 µL microbiological inoculation loops to collect saliva, sodium dodecyl sulfate (SDS) to inactivate and release viral genomic RNA, and a diagnostic reaction mix containing polysorbate 80 (Tween 80). In the same tube, the SDS-denatured clinical samples are introduced to the mixtures containing all components for nucleic acids detection and Tween 80 micelles to absorb the SDS and allow enzymatic reactions to proceed, obviating the need for further handling of the samples. The samples can be collected by the tested individuals, further decreasing the need for trained personnel to administer the test. We validated this single-tube sample-to-assay method with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP) and discovered little-to-no difference between Tween- and SDS-containing reaction mixtures, compared to control reactions. This approach reduces the logistical burden of traditional large-scale testing and provides a method of deployable point-of-care diagnostics to increase testing frequency.
Collapse
|
38
|
Yoshioka N, Deguchi M, Hagiya H, Kagita M, Tsukamoto H, Takao M, Yoshida H, Hamaguchi S, Maeda I, Hidaka Y, Tomono K. Comparison of Extraction-based and Elution-based Polymerase Chain Reaction Testing, and Automated and Rapid Antigen Testing for the Diagnosis of Severe Acute Respiratory Syndrome Coronavirus 2. J Med Virol 2022; 94:3155-3159. [PMID: 35274327 PMCID: PMC9088563 DOI: 10.1002/jmv.27709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
Abstract
We aimed to compare the differences in testing performance of extraction‐based polymerase chain reaction (PCR) assays, elution‐based direct PCR assay, and rapid antigen detection tests for severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). We used nasopharyngeal swab samples of patients with coronavirus disease 2019 (COVID‐19). We used the MagNA Pure 24 System (Roche Diagnostics K.K.) or magLEAD 12gC (Precision System Science Co., Ltd.) for RNA extraction, mixed the concentrates with either the LightMix Modular SARS‐CoV PCR mixture (Roche Diagnostics K.K.) or Takara SARS‐CoV‐2 direct PCR detection kit (Takara Bio Inc.), and amplified it using COBAS® z480 (Roche Diagnostics K.K.). For elution‐based PCR, we directly applied clinical samples to the Takara SARS‐CoV‐2 direct PCR detection kit before the same amplification step. Additionally, we performed Espline SARS‐CoV‐2 (Fuji Rebio Co., Ltd.) for rapid diagnostic test (RDT), and used Lumipulse SARS‐CoV‐2 antigen (Fuji Rebio Co., Ltd.) and Elecsys SARS‐CoV‐2 antigen (Roche Diagnostics K.K.) for automated antigen tests (ATs). Extraction‐based and elution‐based PCR tests detected the virus up to 214–216 and 210 times dilution, respectively. ATs remained positive up to 24–26 times dilution, while RDT became negative after 22 dilutions. For 153 positive samples, positivity rates of the extraction‐based PCR assay were 85.6% to 98.0%, while that of the elution‐based PCR assay was 73.2%. Based on the RNA concentration process, extraction‐based PCR assays were superior to elution‐based direct PCR assays for detecting SARS‐CoV‐2.
Collapse
Affiliation(s)
- Nori Yoshioka
- Division of Infection Control and Prevention, Osaka University Hospital, Japan.,Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Matsuo Deguchi
- Division of Infection Control and Prevention, Osaka University Hospital, Japan
| | - Hideharu Hagiya
- Division of Infection Control and Prevention, Osaka University Hospital, Japan.,Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Masanori Kagita
- Division of Infection Control and Prevention, Osaka University Hospital, Japan.,Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Hiroko Tsukamoto
- Division of Infection Control and Prevention, Osaka University Hospital, Japan.,Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Miyuki Takao
- Division of Infection Control and Prevention, Osaka University Hospital, Japan.,Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Hisao Yoshida
- Division of Infection Control and Prevention, Osaka University Hospital, Japan
| | - Shigeto Hamaguchi
- Division of Infection Control and Prevention, Osaka University Hospital, Japan
| | - Ikuhiro Maeda
- Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Yoh Hidaka
- Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Kazunori Tomono
- Division of Infection Control and Prevention, Osaka University Hospital, Japan
| |
Collapse
|
39
|
Paganini I, Sani C, Chilleri C, Baccini M, Antonelli A, Bisanzi S, Burroni E, Cellai F, Coppi M, Mealli F, Pompeo G, Viti J, Rossolini GM, Carozzi FM. Assessment of the feasibility of pool testing for SARS-CoV-2 infection screening. Infect Dis (Lond) 2022; 54:478-487. [PMID: 35239458 DOI: 10.1080/23744235.2022.2044512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND SARS-CoV-2 pandemic represented a huge challenge for national health systems worldwide. Pooling nasopharyngeal (NP) swabs seems to be a promising strategy, saving time and resources, but it could reduce the sensitivity of the RT-PCR and exacerbate samples management in terms of automation and tracing. In this study, taking advantage of the routine implementation of a screening plan on health workers, we evaluated the feasibility of pool testing for SARS-CoV-2 infection diagnosis in the presence of low viral load samples. METHOD Pools were prepared with an automated instrument, mixing 4, 6 or 20 NP specimens, including one, two or none positive samples. Ct values of positive samples were on average about 35 for the four genes analyzed. RESULTS The overall sensitivity of 4-samples and 6-samples pools was 93.1 and 90.0%, respectively. Focussing on pools including one sample with Ct value ≥35 for all analyzed genes, sensitivity decreased to 77.8 and 75.0% for 4- and 6-samples, respectively; pools including two positive samples, resulted positive in any size as well as pools including positive samples with Ct values <35. CONCLUSION Pool testing strategy should account the balance between cost-effectiveness, dilution effect and prevalence of the infection. Our study demonstrated the good performances in terms of sensitivity and saving resources of pool testing mixing 4 or 6 samples, even including low viral load specimens, in a real screening context possibly affected by prevalence fluctuation. In conclusion, pool testing strategy represents an efficient and resources saving surveillance and tracing tool, especially in specific context like schools, even for monitoring changes in prevalence associated to vaccination campaign.
Collapse
Affiliation(s)
- Irene Paganini
- Regional Laboratory of Cancer Prevention, ISPRO, Florence, Italy
| | - Cristina Sani
- Regional Laboratory of Cancer Prevention, ISPRO, Florence, Italy
| | - Chiara Chilleri
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michela Baccini
- Department of Statistics, Computer Science, Applications, University of Florence, Florence, Italy
| | - Alberto Antonelli
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Elena Burroni
- Regional Laboratory of Cancer Prevention, ISPRO, Florence, Italy
| | - Filippo Cellai
- Regional Laboratory of Cancer Prevention, ISPRO, Florence, Italy
| | - Marco Coppi
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fabrizia Mealli
- Department of Statistics, Computer Science, Applications, University of Florence, Florence, Italy
| | - Giampaolo Pompeo
- Regional Laboratory of Cancer Prevention, ISPRO, Florence, Italy
| | - Jessica Viti
- Regional Laboratory of Cancer Prevention, ISPRO, Florence, Italy
| | - Gian Maria Rossolini
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | |
Collapse
|
40
|
Tsirtsis S, De A, Lorch L, Gomez-Rodriguez M. Pooled testing of traced contacts under superspreading dynamics. PLoS Comput Biol 2022; 18:e1010008. [PMID: 35344547 PMCID: PMC8989305 DOI: 10.1371/journal.pcbi.1010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/07/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Testing is recommended for all close contacts of confirmed COVID-19 patients. However, existing pooled testing methods are oblivious to the circumstances of contagion provided by contact tracing. Here, we build upon a well-known semi-adaptive pooled testing method, Dorfman's method with imperfect tests, and derive a simple pooled testing method based on dynamic programming that is specifically designed to use information provided by contact tracing. Experiments using a variety of reproduction numbers and dispersion levels, including those estimated in the context of the COVID-19 pandemic, show that the pools found using our method result in a significantly lower number of tests than those found using Dorfman's method. Our method provides the greatest competitive advantage when the number of contacts of an infected individual is small, or the distribution of secondary infections is highly overdispersed. Moreover, it maintains this competitive advantage under imperfect contact tracing and significant levels of dilution.
Collapse
Affiliation(s)
- Stratis Tsirtsis
- Μax Planck Institute for Software Systems, Kaiserslautern, Germany
| | | | | | | |
Collapse
|
41
|
He Y, Xie T, Tu Q, Tong Y. Importance of sample input volume for accurate SARS-CoV-2 qPCR testing. Anal Chim Acta 2022; 1199:339585. [PMID: 35227385 PMCID: PMC8820412 DOI: 10.1016/j.aca.2022.339585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 11/26/2022]
Abstract
Nucleic acid testing is the most widely used detection method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. Currently, a number of COVID-19 real-time quantitative reverse transcription PCR (qPCR) kits with high sensitivity and specificity are available for SARS-CoV-2 testing. However, these qPCR assays are not always reliable in detecting low viral load samples (Ct-value ≥ 35), resulting in inconclusive or false-negative results. Here, we used a Poisson distribution to illustrate the inconsistent performance of qPCR tests in detecting low viral load samples. From this, we concluded that the false-negative outcomes resulted from the random occurrences of sampling zero target molecules in a single test, and the probability to sample zero target molecules in one test decreased significantly with increasing purified RNA or initial sample input volume. At a given RNA concentration of 0.5 copy/μL, the probability of sampling zero RNA molecules decreased from 36.79% to close to 0.67% after increasing the RNA input volume from 2 to 10 μL. A SARS-CoV-2 qPCR assay with an LOD of 300 copies/mL was used to validate the improved consistency of the qPCR tests. We found that the false-negative qPCR results of clinical COVID-19 samples with a Ct ≥ 35 decreased by 50% after increasing the input of purified RNA from 2 to 10 μL. The consistency, accuracy, and robustness of nucleic acid testing for SARS-CoV-2 samples with low viral loads can be improved by increasing the sample input volume.
Collapse
|
42
|
Wu X, Chen Q, Li J, Liu Z. Diagnostic techniques for COVID-19: A mini-review. J Virol Methods 2022; 301:114437. [PMID: 34933045 PMCID: PMC8684097 DOI: 10.1016/j.jviromet.2021.114437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
COVID-19, a new respiratory infectious disease, was first reported at the end of 2019, in Wuhan, China. Now, COVID-19 is still causing major loss of human life and economic productivity in almost all countries around the world. Early detection, early isolation, and early diagnosis of COVID-19 patients and asymptomatic carriers are essential to blocking the spread of the pandemic. This paper briefly reviewed COVID-19 diagnostic assays for clinical application, including nucleic acid tests, immunological methods, and Computed Tomography (CT) imaging. Nucleic acid tests (NAT) target the virus genome and indicates the existence of the SARS-CoV-2 virus. Currently, real-time quantitative PCR (qPCR) is the most widely used NAT and, basically, is the most used diagnostic assay for COVID-19. Besides qPCR, many novel rapid and sensitive NAT assays were also developed. Serological testing (detection of serum antibodies specific to SARS-CoV-2), which belongs to the immunological methods, is also used in the diagnosis of COVID-19. The positive results of serological testing indicate the presence of antibodies specific to SARS-CoV-2 resulting from being infected with the virus. Viral antigen detection assays are also important immunological methods used mainly for rapid virus detection. However, only a few of these assays had been reported. CT imaging is still an important auxiliary diagnosis tool for COVID-19 patients, especially for symptomatic patients in the early stage, whose viral load is low and different to be identified by NAT. These diagnostic techniques are all good in some way and applying a combination of them will greatly improve the accuracy of COVID-19 diagnostics.
Collapse
Affiliation(s)
- Xianyong Wu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qiming Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Junhai Li
- Department of Oncology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang City, Shaanxi Province, 712000, China.
| | - Zhanmin Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
43
|
Chiani M, Liva G, Paolini E. Identification-detection group testing protocols for COVID-19 at high prevalence. Sci Rep 2022; 12:3250. [PMID: 35228579 PMCID: PMC8885674 DOI: 10.1038/s41598-022-07205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractGroup testing allows saving chemical reagents, analysis time, and costs, by testing pools of samples instead of individual samples. We introduce a class of group testing protocols with small dilution, suited to operate even at high prevalence (5–10$$\%$$
%
), and maximizing the fraction of samples classified positive/negative within the first round of tests. Precisely, if the tested group has exactly one positive sample then the protocols identify it without further individual tests. The protocols also detect the presence of two or more positives in the group, in which case a second round could be applied to identify the positive individuals. With a prevalence of $$5\%$$
5
%
and maximum dilution 6, with 100 tests we classify 242 individuals, $$92\%$$
92
%
of them in one round and $$8\%$$
8
%
requiring a second individual test. In comparison, the Dorfman’s scheme can test 229 individuals with 100 tests, with a second round for $$18.5\%$$
18.5
%
of the individuals.
Collapse
|
44
|
Gajpal Y, Appadoo SS, Shi V, Hu G. Optimal multi-stage group partition for efficient coronavirus screening. ANNALS OF OPERATIONS RESEARCH 2022:1-17. [PMID: 35221417 PMCID: PMC8860262 DOI: 10.1007/s10479-022-04543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The outbreak of COVID-19 has affected the economy worldwide due to entire countries being on lockdown. This has been highly challenging for governments facing constraints in terms of time and resources related to the availability of testing kits for the virus. This paper develops an optimal method for multiple-stage group partition for coronavirus screening using a dynamic programming approach. That is, in each stage, a group of people is divided into a certain number of subgroups, each will be tested as a whole. Only the subgroup(s) tested positive will be further divided into smaller subgroups in the next stage or individuals at the last stage. Our multiple-stage group partition scheme is able to minimize the total number of test kits and the number of stages. Our scheme can help solve the test kit shortage problem and save time. Finally, numerical examples with useful managerial insights for further investigation are presented. The results confirm the advantages of the multi-stage sampling method over the existing binary tree method.
Collapse
Affiliation(s)
- Yuvraj Gajpal
- Asper School of Business, University of Manitoba, Winnipeg, MB R3T 5V4 Canada
| | - S. S. Appadoo
- Asper School of Business, University of Manitoba, Winnipeg, MB R3T 5V4 Canada
| | - Victor Shi
- Lazaridis School of Business and Economics, Wilfrid Laurier University, Waterloo, ON N2L 3C5 Canada
| | - Guoping Hu
- School of Business Administration, Southwestern University of Finance and Economics, Chengdu, China
| |
Collapse
|
45
|
Sitko JC, Almand EA, Cullenbine CA, Steel JJ, Rohrer JW, Wickert DP, Hasstedt SC. Campus Reset: Dynamic Planning and Response to SARS-CoV-2 Infections at the US Air Force Academy. Public Health Rep 2022; 137:431-436. [PMID: 35152785 PMCID: PMC9109537 DOI: 10.1177/00333549211065520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Predominantly asymptomatic infections, such as those for SARS-CoV-2, require robust surveillance testing to identify people who are unknowingly spreading the virus. The US Air Force Academy returned to in-person classes for more than 4000 cadets aged 18-26 years during the fall 2020 semester to meet graduation and leadership training requirements. To enable this sustained cadet footprint, the institution developed a dynamic SARS-CoV-2 response plan using near-real-time data to inform decisions and trigger policies. A surveillance testing program based on mathematical modeling and a policy-driven campus reset option provided a scaled approach to react to SARS-CoV-2 conditions. This program adequately controlled the spread of the virus for the first 2 months of the academic semester but failed to predict or initially mitigate a significant outbreak in the second half of the semester. Although this approach did not completely eliminate SARS-CoV-2 infections in the population, it served as an early warning system to alert public health authorities to potential issues, which allowed timely responses while containment was still possible.
Collapse
Affiliation(s)
- John C. Sitko
- Department of Biology, US Air Force Academy,
Colorado Springs, CO, USA
| | - Erin A. Almand
- Department of Biology, US Air Force Academy,
Colorado Springs, CO, USA,Erin A. Almand, PhD, US Air Force Academy,
Department of Biology, 2355 Faculty Dr, Colorado Springs, CO 80840, USA.
| | | | - J. Jordan Steel
- Department of Biology, US Air Force Academy,
Colorado Springs, CO, USA
| | - Joseph W. Rohrer
- Department of Biology, US Air Force Academy,
Colorado Springs, CO, USA,Otolaryngology, 10th Medical Group, US Air
Force Academy, Colorado Springs, CO, USA
| | - Douglas P. Wickert
- Department of Aeronautical Engineering, US
Air Force Academy, Colorado Springs, CO, USA
| | | |
Collapse
|
46
|
Sun Y, Qin P, He J, Li W, Shi Y, Xu J, Wu Q, Chen Q, Li W, Wang X, Liu G, Chen W. Rapid and simultaneous visual screening of SARS-CoV-2 and influenza virufses with customized isothermal amplification integrated lateral flow strip. Biosens Bioelectron 2022; 197:113771. [PMID: 34775255 PMCID: PMC8571105 DOI: 10.1016/j.bios.2021.113771] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/02/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Due to the similar clinical symptoms of influenza (Flu) and coronavirus disease 2019 (COVID-19), there is a looming infection threat of concurrent Flu viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this work, we introduce a customized isothermal amplification integrated lateral flow strip (LFS) that is capable performing duplex reverse transcription–recombinase polymerase amplification (RT-RPA) and colorimetric LFS in a sequential manner. With customized amplification primer sets targeted to SARS-CoV-2 (opening reading frame 1a/b and nucleoprotein genes) and Flu viruses (Flu A and Flu B), the platform allows the rapid and simultaneous visual screening of SARS-CoV-2 and Flu viruses (Flu A and Flu B) without cross reactivity, false positives, and false negatives. Moreover, it maximally eases the detection, reduces the detection time (1 h), and improves the assay performance to detect as low as 10 copies of the viral RNA. Its clinical application is powerfully demonstrated with 100% accuracy for evaluating 15 SARS-CoV-2-positive clinical samples, 10 Flu viruses-positive clinical samples, and 5 negative clinical samples, which were pre-confirmed by standard qRT-PCR. We envision this portable device can meet the increasing need of online monitoring the serious infectious diseases that substantially affects health care systems worldwide.
Collapse
Affiliation(s)
- Yong Sun
- Center of Disease Control and Prevention of Anhui Province, Hefei, 230009, China
| | - Panzhu Qin
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China; Department of Nutrition and Food Hygiene, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui, China
| | - Jun He
- Center of Disease Control and Prevention of Anhui Province, Hefei, 230009, China
| | - Weiwei Li
- Center of Disease Control and Prevention of Anhui Province, Hefei, 230009, China
| | - Yonglin Shi
- Center of Disease Control and Prevention of Anhui Province, Hefei, 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Qian Wu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Qingqing Chen
- Center of Disease Control and Prevention of Anhui Province, Hefei, 230009, China
| | - Weidong Li
- Center of Disease Control and Prevention of Anhui Province, Hefei, 230009, China.
| | - Xinxin Wang
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, 233100, China.
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|
47
|
El Hajj H, Bish DR, Bish EK, Aprahamian H. Screening multi-dimensional heterogeneous populations for infectious diseases under scarce testing resources, with application to COVID-19. NAVAL RESEARCH LOGISTICS 2022; 69:3-20. [PMID: 38607835 PMCID: PMC8251476 DOI: 10.1002/nav.21985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 05/12/2023]
Abstract
Testing provides essential information for managing infectious disease outbreaks, such as the COVID-19 pandemic. When testing resources are scarce, an important managerial decision is who to test. This decision is compounded by the fact that potential testing subjects are heterogeneous in multiple dimensions that are important to consider, including their likelihood of being disease-positive, and how much potential harm would be averted through testing and the subsequent interventions. To increase testing coverage, pooled testing can be utilized, but this comes at a cost of increased false-negatives when the test is imperfect. Then, the decision problem is to partition the heterogeneous testing population into three mutually exclusive sets: those to be individually tested, those to be pool tested, and those not to be tested. Additionally, the subjects to be pool tested must be further partitioned into testing pools, potentially containing different numbers of subjects. The objectives include the minimization of harm (through detection and mitigation) or maximization of testing coverage. We develop data-driven optimization models and algorithms to design pooled testing strategies, and show, via a COVID-19 contact tracing case study, that the proposed testing strategies can substantially outperform the current practice used for COVID-19 contact tracing (individually testing those contacts with symptoms). Our results demonstrate the substantial benefits of optimizing the testing design, while considering the multiple dimensions of population heterogeneity and the limited testing capacity.
Collapse
Affiliation(s)
- Hussein El Hajj
- Department of Industrial and Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | - Douglas R. Bish
- Department of Information Systems, Statistics, and Management ScienceUniversity of AlabamaTuscaloosaAlabamaUSA
| | - Ebru K. Bish
- Department of Information Systems, Statistics, and Management ScienceUniversity of AlabamaTuscaloosaAlabamaUSA
| | - Hrayer Aprahamian
- Department of Industrial and Systems EngineeringTexas A&MCollege StationTexasUSA
| |
Collapse
|
48
|
Reliable and Scalable SARS-CoV-2 qPCR Testing at a High Sample Throughput: Lessons Learned from the Belgian Initiative. Life (Basel) 2022; 12:life12020159. [PMID: 35207446 PMCID: PMC8879918 DOI: 10.3390/life12020159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
We present our approach to rapidly establishing a standardized, multi-site, nation-wide COVID-19 screening program in Belgium. Under auspices of a federal government Task Force responsible for upscaling the country’s testing capacity, we were able to set up a national testing initiative with readily available resources, putting in place a robust, validated, high-throughput, and decentralized qPCR molecular testing platform with embedded proficiency testing. We demonstrate how during an acute scarcity of equipment, kits, reagents, personnel, protective equipment, and sterile plastic supplies, we introduced an approach to rapidly build a reliable, validated, high-volume, high-confidence workflow based on heterogeneous instrumentation and diverse assays, assay components, and protocols. The workflow was set up with continuous quality control monitoring, tied together through a clinical-grade information management platform for automated data analysis, real-time result reporting across different participating sites, qc monitoring, and making result data available to the requesting physician and the patient. In this overview, we address challenges in optimizing high-throughput cross-laboratory workflows with minimal manual intervention through software, instrument and assay validation and standardization, and a process for harmonized result reporting and nation-level infection statistics monitoring across the disparate testing methodologies and workflows, necessitated by a rapid scale-up as a response to the pandemic.
Collapse
|
49
|
Ding X, Li Z, Liu C. Monolithic, 3D-printed lab-on-disc platform for multiplexed molecular detection of SARS-CoV-2. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 351:130998. [PMID: 34725537 PMCID: PMC8550893 DOI: 10.1016/j.snb.2021.130998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 05/09/2023]
Abstract
Multiplexed detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rather than detection targeting a single gene is crucial to ensure more accurate coronavirus disease 2019 (COVID-19) diagnostics. Here, we develop a monolithic, 3D-printed, lab-on-disc platform for multiplexed molecular detection of SARS-CoV-2. The centrifugal lab-on-disc is fabricated in one step using simple 3D printing technology, circumventing the need for aligning and binding multiple layers. By combining isothermal amplification technology, this lab-on-disc platform is capable of simultaneously detecting the nucleoprotein and envelope genes of SARS-CoV-2 as well as an internal control of the human POP7 gene. Within a 50-minute incubation period, 100 copies SARS-CoV-2 RNA can be detected through visual observation according to color and fluorescence changes in the disc. Further, we clinically validated the lab-on-disc platform by testing 20 nasopharyngeal swab samples and demonstrated a sensitivity of 100% and an accuracy of 95%. Therefore, the monolithic, 3D-printed, lab-on-disc platform provides simple, rapid, disposable, sensitive, reliable, and multiplexed molecular detection of SARS-CoV-2, holding promise for COVID-19 diagnostics at the point of care.
Collapse
Affiliation(s)
- Xiong Ding
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, United States
| | - Ziyue Li
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, United States
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, CT 06029, United States
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, United States
| |
Collapse
|
50
|
Aljindan RY, Alnimr AM, Al Dossary RA, Al Haddad AJ, Alturki FA, Al-Romihi NM, Aldossary BH, Alkharsah KR. Pooled Specimen Testing Using Automated Cartridge-Based System for COVID-19: The Cost on Sensitivity. Malays J Med Sci 2022; 28:100-107. [PMID: 35002494 PMCID: PMC8715885 DOI: 10.21315/mjms2021.28.6.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/10/2021] [Indexed: 12/02/2022] Open
Abstract
Background Pooled specimen screening for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can improve laboratory testing capacity. This study assessed the impact of pooling and retesting individual swabs on the overall detection rate and reduction in the frequency of retesting. Methods One hundred respiratory swabs specimens were tested individually and in pools of three or five samples using the Cepheid’s Xpert® Xpress SARS-CoV-2 test kit. The optimum number of samples per pool was calculated using the application ‘A Shiny App for Pooled Testing’. Results Twenty-five pools were generated from 101 samples. Out of 13 pools that contained five samples each, three pools gave true positive results. While out of the 12 pools that contained three samples each, five pools gave true positive results. Four samples gave a false negative pool result. The overall sensitivity and specificity of the assay in the pools were 66.6% and 100%, respectively. The cycle threshold was reduced in most of the pools compared to individual sample tests. Conclusion The overall pooled test had a remarkable impact on laboratory resources. Yet, caution is warranted when selecting the cases for pooled testing, since the reduction in sensitivity can significantly impact and increase the risk of exposure to infection.
Collapse
Affiliation(s)
- Reem Y Aljindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Amani M Alnimr
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Reem A Al Dossary
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Ali J Al Haddad
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Fatimah A Alturki
- Microbiology Laboratory, Medical Laboratory Department, King Fahd Hospital of the University, Al Khobar, Saudi Arabia
| | - Nouf Mohammed Al-Romihi
- Microbiology Laboratory, Medical Laboratory Department, King Fahd Hospital of the University, Al Khobar, Saudi Arabia
| | - Bashayer Hussain Aldossary
- Microbiology Laboratory, Medical Laboratory Department, King Fahd Hospital of the University, Al Khobar, Saudi Arabia
| | - Khaled R Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| |
Collapse
|