1
|
Basak S, Dixit AK, Dey RK, Puia L, Bora M, Kumar Y R S, Babu G. An endocrinological perspective on polycystic ovarian syndrome. Mol Cell Endocrinol 2025; 602:112524. [PMID: 40147712 DOI: 10.1016/j.mce.2025.112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Polycystic ovarian syndrome (PCOS) is a complex endocrinological disorder that involves dysfunctions across multiple endocrine axes, including the hypothalamic-pituitary-gonadal (HPG), hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-thyroid (HPT) axes. Our review focuses on understanding the pathophysiology of PCOS through an endocrinological perspective, emphasizing the complex interactions between multiple endocrine axes. We have discussed the roles of the HPG, HPA, and HPT axes in PCOS. Dysregulation of the HPG axis, particularly the altered gonadotropin-releasing hormone pulse frequency resulting in elevated ratio of luteinizing hormone to follicle stimulating hormone, is central to the hyperandrogenism and anovulation, observed in PCOS. We have further highlighted the contributions of the HPA and HPT axes, where elevated adrenal androgen levels and hypothyroidism intensifies the phenotypes of PCOS. Additionally, insulin resistance and hyperinsulinemia, commonly associated with PCOS, aggravates hormonal disturbances and heighten the risk of metabolic complications such as type 2 diabetes and cardiovascular diseases. Elevated levels of anti-Müllerian hormone have also been emphasized as a key factor in inhibiting follicular growth, leading to impaired ovarian function and hyperandrogenism. This review further supports that PCOS is a multifactorial condition involving complex feedback mechanisms between the endocrine, metabolic, and reproductive systems. Furthermore, there remains a huge scope for deciphering the precise molecular interactions between the HPG, HPA, and HPT axes in PCOS, which could pave the way for targeted therapies for better management of both the endocrine and metabolic aspects of this disorder. This review will benefit researchers to get an endocrine perspective on PCOS.
Collapse
Affiliation(s)
- Smarto Basak
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Amit Kumar Dixit
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India.
| | - Ranjit Kumar Dey
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Lalrin Puia
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Manajit Bora
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Guwahati, Assam, India
| | - Sanjay Kumar Y R
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, India
| | - Gajji Babu
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| |
Collapse
|
2
|
He J, Wang Z, Yang L, Jiang Y, Yan G, Pan Y, Gao F, Yuan J, Gao Y. Unveiling the role of FOXL2 in female differentiation and disease: a comprehensive review†. Biol Reprod 2025; 112:600-613. [PMID: 39976382 DOI: 10.1093/biolre/ioaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/30/2024] [Accepted: 02/20/2025] [Indexed: 02/21/2025] Open
Abstract
Ovarian differentiation relies on the accurate and orderly expression of numerous related genes. Forkhead box protein L2 (FOXL2) is one of the earliest ovarian differentiation markers and transcription factors. In sex determination, FOXL2 maintains the differentiation of the female pathway by inhibiting male differentiation genes, including SOX9 and SF1. In addition, FOXL2 promotes the synthesis of follicle-stimulating hormone and anti-Müllerian hormone to support follicle development. Mutations in FOXL2 are associated with numerous female reproductive diseases. A comprehensive and in-depth study of FOXL2 provides novel strategies for the diagnosis and treatment of such diseases. This review discusses the mechanism of FOXL2 in female sex differentiation and maintenance, hormone synthesis, and disease occurrence and reveals the role of FOXL2 as a central factor in female sex development and fertility maintenance. This review will serve as a reference for identifying novel targets of other regulatory factors interacting with FOXL2 in female sex determination and follicle development and for the diagnosis and treatment of female reproductive diseases.
Collapse
Affiliation(s)
- Jia He
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Zican Wang
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Lici Yang
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Yongjian Jiang
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Ge Yan
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Yongwei Pan
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Fei Gao
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China
| | - Yang Gao
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
3
|
An J, Lin T, Guo X, Cao Z, Lu Q. Regulation of the EGFR/PI3K/AKT signaling cascade using the Shengui Yangrong Decoction improves ovulation dysfunction and insulin resistance in polycystic ovary syndrome. Fitoterapia 2025; 182:106407. [PMID: 39978644 DOI: 10.1016/j.fitote.2025.106407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 02/22/2025]
Abstract
Shengui Yangrong Decoction (SGYR) is a traditional Chinese herbal prescription that has been used for the treatment of polycystic ovary syndrome (PCOS). However, there is a consensus on the clinical efficacy of SGYR in treating PCOS, yet the underlying pharmacological mechanisms remain unclear.This study aim to investigate the effects of SGYR on insulin resistance in rats with PCOS and its modulation of follicular development through the epidermal growth factor receptor (EGFR)/PI3K/AKT signaling cascade by integrating metabolomics and network pharmacology and in vivo and in vitro experimental validation.Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, network pharmacology, and molecular docking, were used to identify key components of SGYR and predict its potential targets. Subcutaneous dehydroepiandrosterone injections and a fat-rich diet were used to create a rat model for PCOS. This was followed by the in vitro growth of human granulosa cells and subsequent treatment with dihydrotestosterone and the epidermal growth factor (EGF). Subsequently, the recovery mechanism of SGYR was analyzed using an enzyme-linked immunosorbent assay, hematoxylin and eosin staining, immunofluorescence, and western blot assays.A total of 112 compounds were identified in SGYR, and 147 potential PCOS targets were found. The core targets were screened using a cluster analysis, and seven gene clusters and five core genes were identified. The core genes included ERBB2, SDHB, EGFR, IL6ST, and PIK3CD, and the EGFR/PI3K/AKT signaling cascade was investigated in depth based on component-target-pathway screening and in conjunction with literature studies. Molecular docking confirmed that the EGF receptor had good binding activity with these compounds. In vivo and in vitro experiments confirmed that SGYR effectively regulated sex hormone levels, improved insulin resistance, attenuated pathological changes in rat ovaries, and verified the localization and expression of EGFR, ERBB2, IGF-1, follicle-stimulating hormone receptor, and luteinizing hormone/chorionic gonadotropin receptor in the ovaries. The complex mechanism of SGYR in treating PCOS by inhibiting the EGFR/PI3K/AKT signaling cascade was revealed.
Collapse
Affiliation(s)
- Jie An
- Nanjing University of Chinese Medicine, Nanjing 210029, China; Kunshan TCM Hospital Affliated to Nanjing University of Chinese Medicine, Kunshan 215300, China
| | - Tao Lin
- Kunshan TCM Hospital Affliated to Nanjing University of Chinese Medicine, Kunshan 215300, China
| | - Xiaojing Guo
- Kunshan TCM Hospital Affliated to Nanjing University of Chinese Medicine, Kunshan 215300, China
| | - Zhenzhen Cao
- Kunshan TCM Hospital Affliated to Nanjing University of Chinese Medicine, Kunshan 215300, China
| | - Qibin Lu
- Jiangsu Provincial Hospital of Chinese Medicine, Affliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
4
|
Cen Z, Lv S, Li Q, Zhang J, Mei S, Hu X, Yang A. Acute exposure to antimony elicits endocrine disturbances, leading to PCOS and ovarian fibrosis in female zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110198. [PMID: 40174734 DOI: 10.1016/j.cbpc.2025.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Antimony (Sb) is an estrogenic metal. Exogenous exposure to Sb can affect estrogen levels and their receptor expression in organisms, exerting estrogen-disrupting effects and even inducing polycystic ovary syndrome (PCOS), which is accompanied by the progression of ovarian fibrosis. To investigate the pathological mechanism of this reproductive damage caused by Sb exposure, we exposed female zebrafish to Sb solution for 18 days for acute toxicity experiments. The results showed that Sb exposure affected the changes of GnRH, FSH, LH, E2 and T levels on the HPG axis, which disrupted the balance of sex steroid hormones in the internal environment of zebrafish and progression of PCOS. Furthermore, Sirius red staining revealed significant fibrosis in the ovarian tissues of Sb-exposed female zebrafish. This study adopted transcriptome sequencing and Western Blotting to explore the mechanisms of action. The biological processes and signaling pathways potentially associated with Sb-induced ovarian fibrosis were predicted by using GO annotation and KEGG pathway enrichment analysis, such as ECM receptors, TGF-β/Smad and WNT/β-catenin. The experiment results showed that Sb induced up-regulation of the transcription levels of the pro-fibrotic factors tgf-β3, wnt10a, ctnnb1, and β-catenin protein expression, suggesting the activation of the WNT/β-catenin pathways and TGF-β/Smad. Sb exposure led to up-regulation of ECM-related genes col2a1a, itgb1b.2, lamc1, fn1a and up-regulation of fibrosis markers α-SMA, Fn1a, col4a2 protein expression, Therefore, we hypothesized that Sb exposure activates the TGF-β/Smad and WNT/β-catenin pathways, leading to abnormal ECM deposition and promoting the progression of ovarian fibrosis in zebrafish.
Collapse
Affiliation(s)
- Zhongqian Cen
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Shenghan Lv
- Guizhou Fishery Science Research Institute, Guiyang 550025, China
| | - Qing Li
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Jingyun Zhang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - ShiXue Mei
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Xia Hu
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environmental, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environmental, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Bevilacqua A, Giuliani C, Emidio GD, Myers SH, Unfer V, Tatone C. Murine Models and Human Cell Line Models to Study Altered Dynamics of Ovarian Follicles in Polycystic Ovary Syndrome. Adv Biol (Weinh) 2025:e2400713. [PMID: 39840999 DOI: 10.1002/adbi.202400713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/29/2024] [Indexed: 01/23/2025]
Abstract
Polycystic ovary syndrome is one of the most common endocrine disorders in women of reproductive age, characterized by functional and structural alterations of the female reproductive organs. Due to the unknown underlying molecular mechanisms, in vivo murine models and in vitro human cellular models are developed to study the syndrome. These models are used to analyze various aspects of the pathology by replicating the conditions of the syndrome. Even though the complexity of polycystic ovary syndrome and the challenge of reproducing all its features leave several questions unanswered, studies conducted to date have elucidated some of the alterations in ovarian follicle molecular and cellular mechanisms involved in the syndrome, and do not require the employment of complex and invasive techniques on human patients. This review examines ovarian functions and their alterations in polycystic ovary syndrome, explores preclinical in vivo and in vitro models, and highlights emerging research and medical perspectives. It targets researchers, healthcare professionals, and academics, including endocrinologists, cell biologists, and reproductive medicine specialists, studying the molecular and cellular mechanisms of the syndrome.
Collapse
Affiliation(s)
- Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via Dei Marsi 78, Rome, 00185, Italy
- The Experts Group on Inositols in Basic and Clinical Research and on PCOS (EGOI-PCOS), Rome, Italy
- Systems Biology Group Lab and Research Center in Neurobiology Daniel Bovet (CRiN), Rome, 00185, Italy
| | - Cristiano Giuliani
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via Dei Marsi 78, Rome, 00185, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | | | - Vittorio Unfer
- The Experts Group on Inositols in Basic and Clinical Research and on PCOS (EGOI-PCOS), Rome, Italy
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, 00156, Italy
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| |
Collapse
|
6
|
Ildarabadi A, Vahid-Dastjerdi M, Ghorbanpour M, Mousavi A, Meshkani M, Yekaninejad M, Saedisomeolia A. Effects of green coffee supplementation on paraoxonase-1 activity and malondialdehyde levels in Iranian women with polycystic ovary syndrome: a randomized clinical trial. Osong Public Health Res Perspect 2024; 15:521-532. [PMID: 39562530 DOI: 10.24171/j.phrp.2024.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common, heterogeneous clinical syndrome affecting women. Investigating oxidative stress in women is crucial, as it is linked to insulin resistance and endothelial dysfunction. Chlorogenic acid, a bioactive component found in green coffee, has numerous documented health benefits. This study aimed to assess the beneficial effects of green coffee consumption on paraoxonase-1 (PON-1) activity and malondialdehyde (MDA) levels in women with PCOS. METHODS This study was a double-blind randomized clinical trial that included 44 patients with PCOS. Participants were randomly assigned to either the intervention or control group. For 6 weeks, the intervention group (n=22) received 400 mg of green coffee supplements, while the control group (n=22) received 400 mg of a starch-based placebo. Anthropometric indices, dietary assessments, and physical activity levels were evaluated before and after the 6-week intervention period. Additionally, blood samples were collected for laboratory analysis. RESULTS Supplementation with green coffee increased PON-1 levels by 3.5 units, a significant finding (p=0.038). Additionally, the intake of green coffee supplements significantly reduced blood cholesterol levels by 18.8 units (p=0.013) and triglyceride levels by 6.1 units (p=0.053). However, no significant differences were observed in the levels of MDA, high-density lipoprotein, low-density lipoprotein, fasting blood sugar, insulin, or homeostatic model assessment of insulin resistance as a result of the intervention. CONCLUSION Supplementation with green coffee alters PON-1 activity and cholesterol levels in women with PCOS. However, it has no significant impact on MDA levels or glycemic status.
Collapse
Affiliation(s)
- Azam Ildarabadi
- Department of Nutrition Science, Science and Research Branch, Faculty of Medical Science and Technology, Islamic Azad University, Tehran, Iran
| | - Marzieh Vahid-Dastjerdi
- Department of Obstetrics and Gynecology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mina Ghorbanpour
- University Research and Development Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Mousavi
- Department of Nutrition Science, Science and Research Branch, Faculty of Medical Science and Technology, Islamic Azad University, Tehran, Iran
| | - Mehrnoush Meshkani
- Department of Nutrition Science, Science and Research Branch, Faculty of Medical Science and Technology, Islamic Azad University, Tehran, Iran
| | - Mirsaeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Saedisomeolia
- Higher Education College of Health Sciences, Education Centre of Australia, Parramatta, NSW, Australia
- Research Scientist Affiliate of School of Human Nutrition, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Hestiantoro A, Noor Al Maghfira R, Fathmasari R, Rahmala Febri R, Ongko Joyo E, Muharam R, Pratama G, Bowolaksono A. Altered expression of kisspeptin, dynorphin, and related neuropeptides in polycystic ovary syndrome: A cross-sectional study. Int J Reprod Biomed 2024; 22:395-404. [PMID: 39091430 PMCID: PMC11290195 DOI: 10.18502/ijrm.v22i5.16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/02/2023] [Accepted: 03/13/2024] [Indexed: 08/04/2024] Open
Abstract
Background Since kisspeptin (KISS1) in the hypothalamus is affected by the inhibitory effect of dynorphin, it raises questions about the controlled balance of these 2 neuropeptides in women with and without polycystic ovary syndrome (PCOS). Objective This study compares the expression levels of KISS1, dynorphin, neurokinin-B, leptin, and neuropeptide-Y in women with and without PCOS. Materials and Methods In this cross-sectional study, the peripheral blood samples of 20 women with PCOS and 20 women without PCOS who referred to Yamin Kencana Clinic, Cipto Mangunkusumo hospital, Jakarta, Indonesia were enrolled from August-December 2022. mRNA relative expression of genes related to the central factors associated with PCOS, such as leptin, neuropeptide-Y, KISS1, tachykinin-3, and prodynorphin (PDYN), in PCOS and non-PCOS populations were examined. Gene quantification was carried out by the quantitative polymerase chain reaction method. Results The KISS1/PDYN ratio was significantly higher in the PCOS group than in the control group (p = 0.02), and the PDYN was lower in the PCOS group than the control group (p < 0.001). Moreover, the positive correlation between KISS1 and the KISS1/PDYN ratio was significantly stronger in the PCOS group than in the control group (R = 0.93; p < 0.001 vs. R = 0.66, p < 0.001). Conclusion Our results suggest that an increased KISS1/PDYN ratio in PCOS women is related to diminished dynorphin expression. Low expression of the gene encoding dynorphin and a high KISS1/PDYN ratio is highly specific to PCOS.
Collapse
Affiliation(s)
- Andon Hestiantoro
- Reproductive Immunoendocrinology Division, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- Cluster of Human Reproduction, Fertility and Family Planning, Indonesia Medical Education and Research Institute, University of Indonesia, Jakarta, Indonesia
| | - Rachellina Noor Al Maghfira
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| | - Ratna Fathmasari
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| | - Ririn Rahmala Febri
- Cluster of Human Reproduction, Fertility and Family Planning, Indonesia Medical Education and Research Institute, University of Indonesia, Jakarta, Indonesia
| | | | - Raden Muharam
- Reproductive Immunoendocrinology Division, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- Cluster of Human Reproduction, Fertility and Family Planning, Indonesia Medical Education and Research Institute, University of Indonesia, Jakarta, Indonesia
| | - Gita Pratama
- Reproductive Immunoendocrinology Division, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- Cluster of Human Reproduction, Fertility and Family Planning, Indonesia Medical Education and Research Institute, University of Indonesia, Jakarta, Indonesia
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| |
Collapse
|
8
|
Salmeri N, Viganò P, Cavoretto P, Marci R, Candiani M. The kisspeptin system in and beyond reproduction: exploring intricate pathways and potential links between endometriosis and polycystic ovary syndrome. Rev Endocr Metab Disord 2024; 25:239-257. [PMID: 37505370 DOI: 10.1007/s11154-023-09826-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Endometriosis and polycystic ovary syndrome (PCOS) are two common female reproductive disorders with a significant impact on the health and quality of life of women affected. A novel hypothesis by evolutionary biologists suggested that these two diseases are inversely related to one another, representing a pair of diametrical diseases in terms of opposite alterations in reproductive physiological processes but also contrasting phenotypic traits. However, to fully explain the phenotypic features observed in women with these conditions, we need to establish a potential nexus system between the reproductive system and general biological functions. The recent discovery of kisspeptin as pivotal mediator of internal and external inputs on the hypothalamic-pituitary-gonadal axis has led to a new understanding of the neuroendocrine upstream regulation of the human reproductive system. In this review, we summarize the current knowledge on the physiological roles of kisspeptin in human reproduction, as well as its involvement in complex biological functions such as metabolism, inflammation and pain sensitivity. Importantly, these functions are known to be dysregulated in both PCOS and endometriosis. Within the evolving scientific field of "kisspeptinology", we critically discuss the clinical relevance of these discoveries and their potential translational applications in endometriosis and PCOS. By exploring the possibilities of manipulating this complex signaling system, we aim to pave the way for novel targeted therapies in these reproductive diseases.
Collapse
Affiliation(s)
- Noemi Salmeri
- Gynecology and Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Paola Viganò
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via M. Fanti 6, 20122, Milan, Italy.
| | - Paolo Cavoretto
- Gynecology and Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Roberto Marci
- Gynecology & Obstetrics, University of Ferrara, 44121, Ferrara, Italy
| | - Massimo Candiani
- Gynecology and Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| |
Collapse
|
9
|
Calcaterra V, Magenes VC, Massini G, De Sanctis L, Fabiano V, Zuccotti G. High Fat Diet and Polycystic Ovary Syndrome (PCOS) in Adolescence: An Overview of Nutritional Strategies. Nutrients 2024; 16:938. [PMID: 38612972 PMCID: PMC11013055 DOI: 10.3390/nu16070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted and heterogeneous disorder, linked with notable reproductive, metabolic, and psychological outcomes. During adolescence, key components of PCOS treatment involve weight loss achieved through lifestyle and dietary interventions, subsequently pursued by pharmacological or surgical therapies. Nutritional interventions represent the first-line therapeutic approach in adolescents affected by PCOS, but different kinds of dietary protocols exist, so it is necessary to clarify the effectiveness and benefits of the most well-known nutritional approaches. We provided a comprehensive review of the current literature concerning PCOS definition, pathophysiology, and treatment options, highlighting nutritional strategies, particularly those related to high-fat diets. The high-fat nutritional protocols proposed in the literature, such as the ketogenic diet (KD), appear to provide benefits to patients with PCOS in terms of weight loss and control of metabolic parameters. Among the different types of KD studies, very low-calorie ketogenic diets (VLCKD), can be considered an effective dietary intervention for the short-term treatment of patients with PCOS. It rapidly leads to weight loss alongside improvements in body composition and metabolic profile. Even though extremely advantageous, long-term adherence to the KD is a limiting factor. Indeed, this dietary regimen could become unsustainable due to the important restrictions required for ketosis development. Thus, a combination of high-fat diets with more nutrient-rich nutritional regimens, such as the Mediterranean diet, can amplify positive effects for individuals with PCOS.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.M.); (V.F.); (G.Z.)
| | - Vittoria Carlotta Magenes
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.M.); (V.F.); (G.Z.)
| | - Giulia Massini
- Pediatric Endocrinology, Regina Margherita Children Hospital, 10131 Torino, Italy; (G.M.); (L.D.S.)
- Department of Public Health and Pediatric Sciences, University of Torino, 10131 Torino, Italy
| | - Luisa De Sanctis
- Pediatric Endocrinology, Regina Margherita Children Hospital, 10131 Torino, Italy; (G.M.); (L.D.S.)
- Department of Public Health and Pediatric Sciences, University of Torino, 10131 Torino, Italy
| | - Valentina Fabiano
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.M.); (V.F.); (G.Z.)
- Department of Biomedical and Clinical Science, Università degli Studi di Milano, 20157 Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.M.); (V.F.); (G.Z.)
- Department of Biomedical and Clinical Science, Università degli Studi di Milano, 20157 Milan, Italy
| |
Collapse
|
10
|
Xu Q, Zhang J, Lu Y, Wu L. Association of metabolic-dysfunction associated steatotic liver disease with polycystic ovary syndrome. iScience 2024; 27:108783. [PMID: 38292434 PMCID: PMC10825666 DOI: 10.1016/j.isci.2024.108783] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which has a prevalence of over 25% in adults, encompasses a wide spectrum of liver diseases. Metabolic-dysfunction associated steatotic liver disease (MASLD), the new term for NAFLD, is characterized by steatotic liver disease accompanied by cardiometabolic criteria, showing a strong correlation with metabolic diseases. Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease affecting 4-21% of women of reproductive age. Numerous studies have indicated that NAFLD and PCOS often occur together. However, as MASLD is a new term, there is still a lack of reports describing the effects of MASLD on the development of PCOS. In this review article, we have summarized the complex and multifaceted connections between MASLD and PCOS. Understanding the pathogenesis and treatment methods could not only guide the clinical prevention, diagnosis, and treatment of PCOS in patients with MASLD, but also increase the clinical attention of reproductive doctors to MASLD.
Collapse
Affiliation(s)
- Qiuyu Xu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Porth R, Oelerich K, Sivanandy MS. The Role of Sodium-Glucose Cotransporter-2 Inhibitors in the Treatment of Polycystic Ovary Syndrome: A Review. J Clin Med 2024; 13:1056. [PMID: 38398368 PMCID: PMC10889251 DOI: 10.3390/jcm13041056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive-age women impacting their reproductive, mental, and metabolic health. Insulin resistance is a major driver of the pathophysiology of PCOS. There are several challenges with the management of this complex disorder including insufficient treatment options. Over the past 88 years, multiple hormonal and non-hormonal medications have been tried to treat the various components of this syndrome and there is no FDA (Food and Drug Administration)-approved medication specifically for PCOS yet. Sodium-glucose cotransporter-2 (SGLT-2) inhibitors have a unique mechanism of inhibiting the coupled reabsorption of sodium and glucose in renal proximal convoluted tubules. This review aims to examine the efficacy and side-effect profile of SGLT-2 inhibitors in patients with PCOS. In a limited number of studies, SGLT-2 inhibitors appear to be effective in improving menstrual frequency, reducing body weight and total fat mass, lowering total testosterone and DHEAS levels, and improving some glycemic indices in women with PCOS. SGLT2 inhibitors are generally well tolerated. With future research, it is possible that SGLT-2 inhibitors could become a key therapeutic option for PCOS.
Collapse
Affiliation(s)
- Rachel Porth
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (R.P.); (K.O.)
| | - Karina Oelerich
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (R.P.); (K.O.)
| | - Mala S. Sivanandy
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (R.P.); (K.O.)
- PCOS Center, Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Patel B, Koysombat K, Mills EG, Tsoutsouki J, Comninos AN, Abbara A, Dhillo WS. The Emerging Therapeutic Potential of Kisspeptin and Neurokinin B. Endocr Rev 2024; 45:30-68. [PMID: 37467734 PMCID: PMC10765167 DOI: 10.1210/endrev/bnad023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Kisspeptin (KP) and neurokinin B (NKB) are neuropeptides that govern the reproductive endocrine axis through regulating hypothalamic gonadotropin-releasing hormone (GnRH) neuronal activity and pulsatile GnRH secretion. Their critical role in reproductive health was first identified after inactivating variants in genes encoding for KP or NKB signaling were shown to result in congenital hypogonadotropic hypogonadism and a failure of pubertal development. Over the past 2 decades since their discovery, a wealth of evidence from both basic and translational research has laid the foundation for potential therapeutic applications. Beyond KP's function in the hypothalamus, it is also expressed in the placenta, liver, pancreas, adipose tissue, bone, and limbic regions, giving rise to several avenues of research for use in the diagnosis and treatment of pregnancy, metabolic, liver, bone, and behavioral disorders. The role played by NKB in stimulating the hypothalamic thermoregulatory center to mediate menopausal hot flashes has led to the development of medications that antagonize its action as a novel nonsteroidal therapeutic agent for this indication. Furthermore, the ability of NKB antagonism to partially suppress (but not abolish) the reproductive endocrine axis has supported its potential use for the treatment of various reproductive disorders including polycystic ovary syndrome, uterine fibroids, and endometriosis. This review will provide a comprehensive up-to-date overview of the preclinical and clinical data that have paved the way for the development of diagnostic and therapeutic applications of KP and NKB.
Collapse
Affiliation(s)
- Bijal Patel
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Kanyada Koysombat
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Edouard G Mills
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Jovanna Tsoutsouki
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Alexander N Comninos
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Ali Abbara
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| |
Collapse
|
13
|
Pant P, Chitme H, Sircar R, Prasad R, Prasad HO. Differential Gene Expression Analysis of Human Ovarian Follicular Cumulus and Mural Granulosa Cells Under the Influence of Insulin in IVF Ovulatory Women and Polycystic Ovary Syndrome Patients Through Network Analysis. Endocr Res 2024; 49:22-45. [PMID: 37874895 DOI: 10.1080/07435800.2023.2272629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a commonly occurring reproductive disorder among the reproductive-aged women. Its global occurrence varies based on diagnostic guidelines, ethnicities, and locations of concern. Insulin resistance (IR) is commonly observed around 65-70% of women diagnosed with PCOS, representing a prevalent association. Consequently, the study was designed with an objective of illustrating the effect of insulin on mural and cumulus granulosa cells (GCs) of PCOS patients in comparison to normal ovulating women. METHODOLOGY This study is a case-control design, wherein a total of 80 participants were recruited meeting criterion of inclusion and exclusion, divided into 8 groups with each group consisting of 10 samples. The process involves the isolation and culturing of mural granulosa cells (MGC) and cumulus granulosa cells (CGC) with and without exposure to insulin. The proteins released by untreated GCs and insulin-treated GCs were extracted, and complex protein mixtures were digested with trypsin, followed by tandem mass spectrometry analysis and data processing using bioinformatics. RESULTS We found 595 proteins in both control and PCOS samples, of which 310 were contributed by MGCs and 285 by CGCs. The PCOS MGCs expressed 20%, both the normal MGCs and CGCs have equal representation of 16% by each, whereas the PCOS CGCs proteins contributed 15% of the total of the proteomic expression. However, the poor expression observed with the Insulin exposure, the Insulin treated PCOS CGCs contributes 13%, PCOS MGCs contributes 8%. The normal MGCs upon the Insulin treatment give 8% then and there only 4% of proteins expressed by normal CGCs after Insulin treatment. The Venn analysis widened on their precise expression topographies. The examination of strings exhibited important protein-protein interaction pathways. CONCLUSION This is a pioneering investigation aimed to establish the link between hyperinsulinemia in localized follicular GCs and PCOS mechanisms by comparing them to control group. The examination of various attributes, mechanisms, and traits shown by genes and proteins in individuals with PCOS compared to control populations, alongside the investigation of the dynamics of these genes and proteins following exposure to insulin, holds promise for the formulation of novel hypotheses and strategies in the identification of new biomarkers.
Collapse
Affiliation(s)
- Pankaj Pant
- Faculty of Pharmacy, DIT University, Dehradun, India
| | | | - Reema Sircar
- Gynaecology, Indira IVF Hospital, Dehradun, India
| | - Ritu Prasad
- Gynaecology, Morpheus Prasad International Hospital, Dehradun, India
| | - Hari Om Prasad
- Gynaecology, Morpheus Prasad International Hospital, Dehradun, India
| |
Collapse
|
14
|
Moreira MV, Vale-Fernandes E, Albergaria IC, Alves MG, Monteiro MP. Follicular fluid composition and reproductive outcomes of women with polycystic ovary syndrome undergoing in vitro fertilization: A systematic review. Rev Endocr Metab Disord 2023; 24:1045-1073. [PMID: 37493841 PMCID: PMC10697886 DOI: 10.1007/s11154-023-09819-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
Polycystic ovary syndrome (PCOS) is recognized as one of the most prevalent endocrinopathy in women at reproductive age. As affected women tend to have poorer assisted reproductive technology (ART) outcomes, PCOS has been suggested to endanger oocyte quality and competence development. The aim of this systematic review was to summarize the available evidence on how the follicular fluid (FF) profile of women with PCOS undergoing in vitro fertilization (IVF) treatment differs from the FF of normo-ovulatory women. For that, an electronic search in PubMed and Web of Science databases was conducted (up to December 2021). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA guidelines were followed, and the Newcastle-Ottawa Scale was used to assess the risk of bias in the included studies. Data retrieved from papers included (n=42), revealed that the FF composition of women with PCOS compared to those without PCOS predominantly diverged at the following molecular classes: oxidative stress, inflammatory biomarkers, growth factors and hormones. Among those biomarkers, some were proposed as being closely related to pathophysiological processes, strengthening the hypothesis that low-grade inflammation and oxidative stress play a critical role in the pathogenesis of PCOS. Notwithstanding, it should be noticed that the available data on PCOS FF fingerprints derives from a limited number of studies conducted in a relatively small number of subjects. Furthermore, phenotypic heterogeneity of PCOS hampers wider comparisons and weakens putative conclusions. Therefore, future studies should be focused at comparing well characterized patient subgroups according to phenotypes.
Collapse
Affiliation(s)
- Mafalda V Moreira
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal
- ITR- Laboratory for Integrative, Translational Research in Population Health, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Emídio Vale-Fernandes
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal
- ITR- Laboratory for Integrative, Translational Research in Population Health, Porto, Portugal
- Centre for Medically Assisted Procreation / Public Gamete Bank, Gynaecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Centro Hospitalar Universitário de Santo António (CHUdSA), 4099-001, Porto, Portugal
| | - Inês C Albergaria
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal
| | - Marco G Alves
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal
- ITR- Laboratory for Integrative, Translational Research in Population Health, Porto, Portugal
| | - Mariana P Monteiro
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal.
- ITR- Laboratory for Integrative, Translational Research in Population Health, Porto, Portugal.
| |
Collapse
|
15
|
Mastnak L, Herman R, Ferjan S, Janež A, Jensterle M. Prolactin in Polycystic Ovary Syndrome: Metabolic Effects and Therapeutic Prospects. Life (Basel) 2023; 13:2124. [PMID: 38004264 PMCID: PMC10672473 DOI: 10.3390/life13112124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine and metabolic disorder in premenopausal women, characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries. Patients frequently present comorbidities, including obesity, insulin resistance, and impaired glucose and lipid metabolism. The diverse clinical presentation may mimic various endocrine disorders, making the diagnosis challenging in some clinical circumstances. Prolactin (PRL) is a recommended biomarker in the initial diagnostic workup to rule out hyperprolactinemia (HPRL). The traditional role of PRL is linked to lactation and the reproductive system. Recent research highlights PRL's emerging role in metabolic homeostasis. PRL influences metabolism directly by interacting with the pancreas, liver, hypothalamus, and adipose tissue. Its influence on an individual's metabolism is intricately tied to its serum concentration. While deficient and very high levels of PRL can negatively affect metabolism, intermediate-normal to moderately high levels may promote metabolic health. In women with PCOS, PRL levels may be altered. Research results on different aspects of the relationship between PCOS and the impact of various levels of PRL on metabolic homeostasis are limited and inconsistent. In this narrative literature review, we comprehensively examined data on serum PRL levels in PCOS patients. We investigated the correlation between a favorable metabolic profile and serum PRL levels in this population. Furthermore, we explored the concept of beneficial PRL effects on metabolism and discussed the potential therapeutic application of dopamine agonists in PCOS treatment. Lastly, we emphasized several promising avenues for future research in this field.
Collapse
Affiliation(s)
- Lara Mastnak
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Rok Herman
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simona Ferjan
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Ali R, Ahmed Khan T, Gul H, Rehman R. An interplay of Progesterone, Leukemia Inhibitor Factor and Interleukin-6 in the window of implantation; Impact on fertility. Cytokine 2023; 170:156332. [PMID: 37586287 DOI: 10.1016/j.cyto.2023.156332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The process of implantation is crucial for the initiation of conception and hence fertility. In addition to a number of factors, it is regulated by a cross talk of gonadotrophins [Luteinizing Hormone (LH), Follicle Stimulatory Hormone (FSH)], ovarian steroids [Estrogen (Et), Progesterone (Pt)] and cytokines [Leukemia inhibitory factor (LIF) and Interleukin 6 (IL6)]. These biomarkers are chief players of implantation. OBJECTIVE We aimed to explore the role of gonadotrophins (LH, FSH, LH/FSH ratio), ovarian steroids (Et, Pt) and cytokines (LIF, IL6) in the implantation process. This aim was achieved by comparing these hormones and cytokines in the fertile and infertile groups [Polycystic ovaries (PCOs), endometriosis, unexplained infertility (Uex-IF)] and finding their association in all study groups. METHODS A case control study conducted from October 2020-March 2023. A total of 135 infertile women (with PCOs, Uex-IF, and endometriosis) and 177 fertile women (matched for age and BMI) were selected. Levels of 'Et', 'Pt', 'LIF' and, 'IL6' were estimated using Enzyme Linked Immunosorbent Assay (ELISA). LH and FSH values were obtained from hospital desk records. The Independent Student'st-test was used to compare fertile and infertile groups. One-way ANOVA test was used to compare more than two groups, and Pearson's chi-square (χ2) test was employed to compare percentages of variables. Pearson correlation analysis was performed to assess the associations and correlations. A p value < 0.05 was considered statistically significant. RESULTS Significantly higher levels of LIF and IL6 were observed in fertile women compared to infertile women. Pt levels were significantly greater in the fertile group than in the infertile group. The FSH/LH ratio was significantly higher in the fertile group. Among infertile women, PCOs (71%) and Uex-IF (91%) exhibited lower Pt levels than the fertile controls (p < 0.01), but these levels remained within the reference range (RR). Among the fertile group (81%), levels of LIF within the RR were significantly higher compared to those with Uex-IF (49%) and females with endometriosis (37%). Moreover, the highest number of participants (57%) with Uex-IF exhibited IL6 levels significantly below the RR in comparison to the fertile group and infertile groups (PCOS and endometriosis). However, lower levels of IL6 were observed in women with Uex-IF. In the control group, LIF exhibited a significant positive correlation with IL6 (r = 0.370), Pt (r = 0.496), Et (r = 0.403), and LH (r = 0.428). Among women with PCOs, LIF showed a significant positive correlation with IL6 (r = 0.443), Pt (r = 0.607), and LH (r = 0.472). In cases of Uex-IF, LIF demonstrated a significant positive correlation with IL6 (r = 0.727). Females with endometriosis displayed a significant positive correlation between LIF and IL6 (r = 0.535) as well as Pt (r = 0.605). In fertile women, a positive correlation was observed between LH and IL6 (r = 0.197, p = 0.009), LIF (r = 0.428, p = 0.000), Pt (r = 0.238, p = 0.001), and Et (r = 0.356, p = 0.000). Furthermore, a positive correlation was found between LH and LIF (r = 0.472, p = 0.000) in women with PCOs. CONCLUSION Elevated levels of Pt were found to increase the production of LIF in fertile females. However, infertile females with PCOs and Uex-IF exhibited deficient levels of Pt, supporting its role as a biomarker for successful implantation in infertile women. These females showed decreased levels of gonadotropins as well as reduced LH/FSH ratio and diminished secretion of receptivity marker LIF, in addition to reduced Pt secretion. This suggests that reduced gonadotropin levels contribute to a lower LH/FSH ratio, resulting in decreased Pt secretion and ultimately leading to low levels of LIF, thereby causing impaired implantation in women with PCOs and Uex-IF. The exploration of low levels of LIF in patients with endometriosis requires further investigation. The significantly low levels of IL6 in the Uex-IF group elucidate the role of this cytokine in association with decreased Pt and LIF synthesis within this group.
Collapse
Affiliation(s)
- Rabiya Ali
- Department of Physiology, Karachi Institute of Medical Sciences (KIMS), CMH, Malir Cantt, Karachi, Pakistan; Department of Physiology, University of Karachi, Karachi, Pakistan.
| | | | - Hina Gul
- Department of Community Health Sciences, United Medical and Dental College, Karachi, Pakistan.
| | - Rehana Rehman
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
17
|
Wang D, Nan N, Bing H, He B. Controlled attenuation parameters to assess liver steatosis in obese patients with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1241734. [PMID: 37720537 PMCID: PMC10501797 DOI: 10.3389/fendo.2023.1241734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Objectives This study was performed to investigate the changes and influencing factors of liver controlled attenuation parameter (CAP) in obese patients with polycystic ovary syndrome (PCOS), and to determine the prevalence and risk factors of nonalcoholic fatty liver disease (NAFLD) in PCOS patients with obesity. Methods Forty-one PCOS patients with obesity and twenty age- and body mass index (BMI)-matched control women without PCOS were enrolled in this study. General data, body composition, biochemical parameters, sex hormones, and liver CAP in the two groups were collected and compared. Liver CAP was measured using transient elastography. Results NAFLD was more common in the Obese PCOS group than in the control group (75.61% vs. 45.00%, P=0.018). Compared to the control group, the obese PCOS group showed apparent increases in alanine transaminase (ALT), aspartate transaminase (AST), CAP, triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), totle testosterone (TT), free androgen index (FAI), fasting insulin (FIns), and homeostasis model assessment-insulin resistance (HOMA-IR), along with lower high-density lipoprotein cholesterol (HDL-C) and sex hormone binding globulin (SHBG) levels. In addition, as shown by Spearman analysis, liver CAP in PCOS patients with obesity had a positive correlation with ALT, AST, TG, TT, FAI, FIns, and HOMA-IR, and a negative correlation with SHBG. Logistic regression analysis showed that TG, TT, FIns, and HOMA-IR were risk factors for NAFLD, while TT was an independent risk factor for NAFLD in PCOS patients with obesity. Conclusion PCOS patients with obesity had a significantly higher prevalence of NAFLD. Furthermore, in PCOS patients with obesity, liver CAP was associated with disorders of lipid metabolism, insulin resistance, and hyperandrogenemia, with elevated testosterone levels being an independent risk factor for NAFLD in PCOS patients with obesity.
Collapse
Affiliation(s)
- Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Nan Nan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Bing
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Watanabe Y, Fisher L, Campbell RE, Jasoni CL. Defining potential targets of prenatal androgen excess: Expression analysis of androgen receptor on hypothalamic neurons in the fetal female mouse brain. J Neuroendocrinol 2023; 35:e13302. [PMID: 37280378 DOI: 10.1111/jne.13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a female endocrine disorder that is associated with prenatal exposure to excess androgens. In prenatally androgenized (PNA) mice that model PCOS, GABAergic neural transmission to and innervation of GnRH neurons is increased. Evidence suggests that elevated GABAergic innervation originates in the arcuate nucleus (ARC). We hypothesized that GABA-GnRH circuit abnormalities are a direct consequence of PNA, resulting from DHT binding to androgen receptor (AR) in the prenatal brain. However, whether prenatal ARC neurons express AR at the time of PNA treatment is presently unknown. We used RNAScope in situ hybridization to localize AR mRNA (Ar)-expressing cells in healthy gestational day (GD) 17.5 female mouse brains and to assess coexpression levels in specific neuronal phenotypes. Our study revealed that less than 10% of ARC GABA cells expressed Ar. In contrast, we found that ARC kisspeptin neurons, critical regulators of GnRH neurons, were highly colocalized with Ar. Approximately 75% of ARC Kiss1-expressing cells also expressed Ar at GD17.5, suggesting that ARC kisspeptin neurons are potential targets of PNA. Investigating other neuronal populations in the ARC we found that ~50% of pro-opiomelanocortin (Pomc) cells, 22% of tyrosine hydroxylase (Th) cells, 8% of agouti-related protein (Agrp) cells and 8% of somatostatin (Sst) cells express Ar. Lastly, RNAscope in coronal sections showed Ar expression in the medial preoptic area (mPOA), and the ventral part of the lateral septum (vLS). These Ar-expressing regions were highly GABAergic, and 22% of GABA cells in the mPOA and 25% of GABA cells in the vLS also expressed Ar. Our findings identify specific neuronal phenotypes in the ARC, mPOA, and vLS that are androgen sensitive in late gestation. PNA-induced functional changes in these neurons may be related to the development of impaired central mechanisms associated with PCOS-like features.
Collapse
Affiliation(s)
- Yugo Watanabe
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Lorryn Fisher
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| |
Collapse
|
19
|
Lissaman AC, Girling JE, Cree LM, Campbell RE, Ponnampalam AP. Androgen signalling in the ovaries and endometrium. Mol Hum Reprod 2023; 29:gaad017. [PMID: 37171897 PMCID: PMC10663053 DOI: 10.1093/molehr/gaad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/27/2023] [Indexed: 05/14/2023] Open
Abstract
Currently, our understanding of hormonal regulation within the female reproductive system is largely based on our knowledge of estrogen and progesterone signalling. However, while the important functions of androgens in male physiology are well known, it is also recognized that androgens play critical roles in the female reproductive system. Further, androgen signalling is altered in a variety of gynaecological conditions, including endometriosis and polycystic ovary syndrome, indicative of regulatory roles in endometrial and ovarian function. Co-regulatory mechanisms exist between different androgens, estrogens, and progesterone, resulting in a complex network of steroid hormone interactions. Evidence from animal knockout studies, in vitro experiments, and human data indicate that androgen receptor expression is cell-specific and menstrual cycle stage-dependent, with important regulatory roles in the menstrual cycle, endometrial biology, and follicular development in the ovaries. This review will discuss the expression and co-regulatory interactions of androgen receptors, highlighting the complexity of the androgen signalling pathway in the endometrium and ovaries, and the synthesis of androgens from additional alternative pathways previously disregarded as male-specific. Moreover, it will illustrate the challenges faced when studying androgens in female biology, and the need for a more in-depth, integrative view of androgen metabolism and signalling in the female reproductive system.
Collapse
Affiliation(s)
- Abbey C Lissaman
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jane E Girling
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Lynsey M Cree
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Rebecca E Campbell
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Anna P Ponnampalam
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pūtahi Manawa-Healthy Hearts for Aotearoa New Zealand, Centre of Research Excellence, New Zealand
| |
Collapse
|
20
|
The Role of Serum Anti-Mullerian Hormone Measurement in the Diagnosis of Polycystic Ovary Syndrome. Diagnostics (Basel) 2023; 13:diagnostics13050907. [PMID: 36900051 PMCID: PMC10000702 DOI: 10.3390/diagnostics13050907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinological disorder in women with significant reproductive, metabolic, and psychological health implications. The lack of a specific diagnostic test poses challenges in making the diagnosis of PCOS, resulting in underdiagnosis and undertreatment. Anti-Mullerian hormone (AMH) synthesized by the pre-antral and small antral ovarian follicles appears to play an important role in the pathophysiology of PCOS, and serum AMH levels are often elevated in women with PCOS. The aim of this review is to inform the possibility of utilizing anti-Mullerian hormone either as a diagnostic test for PCOS or as an alternative diagnostic criterion in place of polycystic ovarian morphology, hyperandrogenism, and oligo-anovulation. Increased levels of serum AMH correlate highly with PCOS, polycystic ovarian morphology, hyperandrogenism, and oligo/amenorrhea. Additionally, serum AMH has high diagnostic accuracy as an isolated marker for PCOS or as a replacement for polycystic ovarian morphology.
Collapse
|
21
|
Recent advances in emerging PCOS therapies. Curr Opin Pharmacol 2023; 68:102345. [PMID: 36621270 DOI: 10.1016/j.coph.2022.102345] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 01/08/2023]
Abstract
Polycystic ovary syndrome is a prevalent endocrinopathy involving androgen excess, and anovulatory infertility. The disorder is also associated with many comorbidities such as obesity and hyperinsulinemia, and an increased risk of cardiovascular complications. Reproductive, endocrine, and metabolic symptoms are highly variable, with heterogenous phenotypes adding complexity to clinical management of symptoms. This review highlights recent findings regarding emerging therapies for treating polycystic ovary syndrome, including i) pharmacological agents to target androgen excess, ii) modulation of kisspeptin signalling to target central neuroendocrine dysregulation, and iii) novel insulin sensitisers to combat peripheral metabolic dysfunction.
Collapse
|
22
|
Kim SH, Lundgren JA, Patrie JT, Burt Solorzano CM, McCartney CR. Acute progesterone feedback on gonadotropin secretion is not demonstrably altered in estradiol-pretreated women with polycystic ovary syndrome. Physiol Rep 2022; 10:e15233. [PMID: 35384387 PMCID: PMC8981178 DOI: 10.14814/phy2.15233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023] Open
Abstract
Women with polycystic ovary syndrome (PCOS) demonstrate gonadotropin-releasing hormone (GnRH) pulse generator resistance to suppression with 7 days of progesterone and estradiol administration. It remains unknown whether such women demonstrate impairments in acute progesterone negative feedback on LH pulse frequency or progesterone positive feedback on gonadotropin release. This was a randomized, double-blind, placebo-controlled crossover study designed to test the hypothesis that acute, progesterone-related suppression of LH pulse frequency and progesterone-related augmentation of gonadotropin release are impaired in PCOS. Twelve normally cycling women and 12 women with PCOS completed study. Volunteers were pretreated with transdermal estradiol (0.2 mg/day) for 3 days and then underwent a frequent blood sampling study (20:00-20:00 h), during which they received micronized progesterone (100 mg) or placebo at 06:00 h. In a second study admission, volunteers received the intervention they did not receive during the first admission, but the protocol was otherwise identical. The primary outcome measures were LH secretory characteristics and circulating gonadotropin concentrations. Exogenous progesterone did not reduce LH pulse frequency in either group. Mean LH, pulsatile LH secretion, LH pulse mass, and mean FSH increased more with progesterone compared to placebo in both groups. Although trends toward less pronounced changes in LH pulse mass and pulsatile LH secretion were observed in the PCOS group, these differences were not statistically significant. In summary, exogenous progesterone did not suppress LH pulse frequency within 12 hours in estradiol-pretreated women, and the positive feedback effect of progesterone on gonadotropin release was not demonstrably impaired in PCOS. NEW & NOTEWORTHY: This study indicated that exogenous progesterone does not reduce LH pulse frequency within 12 h in women with PCOS, but progesterone acutely increased gonadotropin in these women. This study suggested that progesterone-related augmentation of gonadotropin release may be impaired in PCOS compared to normally cycling women, but this finding was not statistically significant.
Collapse
Affiliation(s)
- Su Hee Kim
- Center for Research in ReproductionUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Division of EndocrinologyDepartment of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Jessica A. Lundgren
- Center for Research in ReproductionUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Division of EndocrinologyDepartment of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - James T. Patrie
- Department of Public Health SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Christine M. Burt Solorzano
- Center for Research in ReproductionUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Division of EndocrinologyDepartment of PediatricsUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Christopher R. McCartney
- Center for Research in ReproductionUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Division of EndocrinologyDepartment of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| |
Collapse
|
23
|
Esquivel-Zuniga MR, Kirschner CK, McCartney CR, Solorzano CMB. Non-PCOS Hyperandrogenic Disorders in Adolescents. Semin Reprod Med 2022; 40:42-52. [PMID: 35052005 PMCID: PMC11875083 DOI: 10.1055/s-0041-1742259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hyperandrogenism-clinical features resulting from increased androgen production and/or action-is not uncommon in peripubertal girls. Hyperandrogenism affects 3 to 20% of adolescent girls and often is associated with hyperandrogenemia. In prepubertal girls, the most common etiologies of androgen excess are premature adrenarche (60%) and congenital adrenal hyperplasia (CAH; 4%). In pubertal girls, polycystic ovary syndrome (PCOS; 20-40%) and CAH (14%) are the most common diagnoses related to androgen excess. Androgen-secreting ovarian or adrenal tumors are rare (0.2%). Early pubic hair, acne, and/or hirsutism are the most common clinical manifestations, but signs of overt virilization in adolescent girls-rapid progression of pubic hair or hirsutism, clitoromegaly, voice deepening, severe cystic acne, growth acceleration, increased muscle mass, and bone age advancement past height age-should prompt detailed evaluation. This article addresses the clinical manifestations of and management considerations for non-PCOS-related hyperandrogenism in adolescent girls. We propose an algorithm to aid diagnostic evaluation of androgen excess in this specific patient population.
Collapse
Affiliation(s)
- M. Rebeca Esquivel-Zuniga
- Department of Pediatrics, Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Cassandra K. Kirschner
- Department of Pediatrics, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Christopher R McCartney
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Center for Research in Reproduction, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Christine M. Burt Solorzano
- Department of Pediatrics, Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Center for Research in Reproduction, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
24
|
Wang D, He B. Current Perspectives on Nonalcoholic Fatty Liver Disease in Women with Polycystic Ovary Syndrome. Diabetes Metab Syndr Obes 2022; 15:1281-1291. [PMID: 35494531 PMCID: PMC9048954 DOI: 10.2147/dmso.s362424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 12/29/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common reproductive, endocrine, and metabolic disorders in premenopausal women. Clinically, PCOS is mainly caused by androgen excess and ovarian dysfunction, manifested by anovulatory menstrual cycles, infertility, and hirsutism. In addition, PCOS increases the risk of insulin resistance, obesity, cardiovascular disease, anxiety and depression, dyslipidemia, and endometrial cancer. Nonalcoholic fatty liver disease (NAFLD) is defined as ≥5% fat accumulation in the liver in the absence of remaining secondary causes and has become one of the most common chronic liver diseases worldwide. The prevalence of NAFLD is significantly higher and more severe in women with PCOS, and its pathogenesis can be associated with various risk factors such as hyperandrogenemia, insulin resistance, obesity, chronic low-grade inflammation, and genetic factors. Although there is no definitive solution for the management of NAFLD in PCOS, some progress has been made. Lifestyle modification should be the basis of management, and drugs to improve metabolism, such as insulin sensitizers and glucagon-like peptide-1 agonists, may show better efficacy. Bariatric surgery may also be a treatment of NAFLD in obese women with PCOS. This paper reviews three aspects of prevalence, risk factors, and management, in order to better understand the current state of research on NAFLD in PCOS, to explore the pathogenesis of NAFLD in PCOS, and to encourage further research on the application of drugs in this field.
Collapse
Affiliation(s)
- Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Correspondence: Bing He, Department of Endocrinology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, People’s Republic of China, Tel/Fax +86-24-96615-23111, Email
| |
Collapse
|
25
|
Watanabe Y, Prescott M, Campbell RE, Jasoni CL. Prenatal androgenization causes expression changes of progesterone and androgen receptor mRNAs in the arcuate nucleus of female mice across development. J Neuroendocrinol 2021; 33:e13058. [PMID: 34748236 DOI: 10.1111/jne.13058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Prenatal exposure to excess androgens is associated with the development of polycystic ovary syndrome (PCOS). In prenatally androgenised (PNA) mice, a model of PCOS, progesterone receptor (PR) protein expression is reduced in arcuate nucleus (ARC) GABA neurons. This suggests a mechanism for PCOS-related impaired steroid hormone feedback and implicates androgen excess with respect to inducing transcriptional repression of the PR-encoding gene Pgr in the ARC. However, the androgen sensitivity of ARC neurons and the relative gene expression of PRs over development and following prenatal androgen exposure remain unknown. Here, we used a quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) of microdissected ARC to determine the relative androgen receptor (Ar) and progesterone receptor (Pgr) gene expression in PNA and control mice at five developmental timepoints. In a two-way analysis of variance, none of the genes examined showed expression changes with a statistically significant interaction between treatment and age, although PgrA showed a borderline interaction. For all genes, there was a statistically significant main effect of age on expression levels, reflecting a general increase in expression with increasing age, regardless of treatment. For PgrB and Ar, there was a statistically significant main effect of treatment, indicating a change in expression following PNA (increased for PgrB and decreased for Ar), regardless of age. For PgrA, there was a borderline main effect of treatment, suggesting a possible change in expression following PNA, regardless of age. PgrAB gene expression changes showed no significant main effect of treatment. We additionally examined androgen and progesterone responsiveness specifically in P60 ARC GABA neurons using RNAScope® (Advanced Cell Diagnostics, Inc.) in situ hybridization. This analysis revealed that Pgr and Ar were expressed in the majority of ARC GABA neurons in normal adult females. However, our RNAScope® analysis did not show significant changes in Pgr or Ar expression within ARC GABA neurons following PNA. Lastly, because GABA drive to gonadotropin-releasing hormone neurons is increased in PNA, we hypothesised that PNA mice would show increased expression of glutamic acid decarboxylase (GAD), the rate-limiting enzyme in GABA production. However, the RT-qPCR showed that the expression of GAD encoding genes (Gad1 and Gad2) was unchanged in adult PNA mice compared to controls. Our findings indicate that PNA treatment can impact Pgr and Ar mRNA expression in adulthood. This may reflect altered circulating steroid hormones in PNA mice or PNA-induced epigenetic changes in the regulation of Pgr and Ar gene expression in ARC neurons.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arcuate Nucleus of Hypothalamus/growth & development
- Arcuate Nucleus of Hypothalamus/metabolism
- Embryo, Mammalian
- Female
- Gene Expression Regulation, Developmental
- Growth and Development/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Pregnancy
- Prenatal Exposure Delayed Effects/genetics
- Prenatal Exposure Delayed Effects/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Virilism/embryology
- Virilism/genetics
- Virilism/metabolism
Collapse
Affiliation(s)
- Yugo Watanabe
- Department of Anatomy, Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Melanie Prescott
- Department of Physiology, Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Rebecca E Campbell
- Department of Physiology, Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Christine L Jasoni
- Department of Anatomy, Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| |
Collapse
|
26
|
Sati A, Prescott M, Holland S, Jasoni CL, Desroziers E, Campbell RE. Morphological evidence indicates a role for microglia in shaping the PCOS-like brain. J Neuroendocrinol 2021; 33:e12999. [PMID: 34216402 DOI: 10.1111/jne.12999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
Although polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility worldwide, the aetiology of the disorder remains poorly defined. Animal-based evidence highlights the brain as a prime suspect in both the development and maintenance of PCOS. Prenatally androgenised (PNA) models of PCOS exhibit excessive GABAergic wiring associated with PCOS-like reproductive deficits in adulthood, with aberrant brain wiring detected as early as postnatal day (P) 25, prior to disease onset, in the PNA mouse. The mechanisms underlying this aberrant brain wiring remain unknown. Microglia, the immune cells of the brain, are regulators of neuronal wiring across development, mediating both the formation and removal of neuronal inputs. Here, we tested the hypothesis that microglia play a role in the excessive GABAergic wiring that leads to PCOS-like features in the PNA brain. Using specific immunolabelling, microglia number and morphology associated with activation states were analysed in PNA and vehicle-treated controls across developmental timepoints, including embryonic day 17.5, P0, P25 and P60 (n = 7-14 per group), and in two regions of the hypothalamus implicated in fertility regulation. At P0, fewer amoeboid microglia were observed in the rostral preoptic area (rPOA) of PNA mice. However, the greatest changes were observed at P25, with PNA mice exhibiting fewer total microglia, and specifically fewer "sculpting" microglia, in the rPOA. Based on these findings, we assessed microglia-mediated refinement of GABAergic synaptic terminals at two developmental stages of peak synaptic refinement: P7 and P15 (n = 7 per group). PNA mice showed a reduction in the uptake of GABAergic synaptic material at P15. These findings reveal time-specific changes in the microglia population and refinement of GABAergic inputs in a mouse model of PCOS driven by prenatal androgen excess and suggest a role for microglia in shaping the atypical brain wiring associated with the development of PCOS features.
Collapse
Affiliation(s)
- Aisha Sati
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sarah Holland
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Christine L Jasoni
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Elodie Desroziers
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
27
|
Dinsdale NL, Crespi BJ. Endometriosis and polycystic ovary syndrome are diametric disorders. Evol Appl 2021; 14:1693-1715. [PMID: 34295358 PMCID: PMC8288001 DOI: 10.1111/eva.13244] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/15/2022] Open
Abstract
Evolutionary and comparative approaches can yield novel insights into human adaptation and disease. Endometriosis and polycystic ovary syndrome (PCOS) each affect up to 10% of women and significantly reduce the health, fertility, and quality of life of those affected. PCOS and endometriosis have yet to be considered as related to one another, although both conditions involve alterations to prenatal testosterone levels and atypical functioning of the hypothalamic-pituitary-gonadal (HPG) axis. Here, we propose and evaluate the novel hypothesis that endometriosis and PCOS represent extreme and diametric (opposite) outcomes of variation in HPG axis development and activity, with endometriosis mediated in notable part by low prenatal and postnatal testosterone, while PCOS is mediated by high prenatal testosterone. This diametric disorder hypothesis predicts that, for characteristics shaped by the HPG axis, including hormonal profiles, reproductive physiology, life-history traits, and body morphology, women with PCOS and women with endometriosis will manifest opposite phenotypes. To evaluate these predictions, we review and synthesize existing evidence from developmental biology, endocrinology, physiology, life history, and epidemiology. The hypothesis of diametric phenotypes between endometriosis and PCOS is strongly supported across these diverse fields of research. Furthermore, the contrasts between endometriosis and PCOS in humans parallel differences among nonhuman animals in effects of low versus high prenatal testosterone on female reproductive traits. These findings suggest that PCOS and endometriosis represent maladaptive extremes of both female life-history variation and expression of sexually dimorphic female reproductive traits. The diametric disorder hypothesis for endometriosis and PCOS provides novel, unifying, proximate, and evolutionary explanations for endometriosis risk, synthesizes diverse lines of research concerning the two most common female reproductive disorders, and generates future avenues of research for improving the quality of life and health of women.
Collapse
Affiliation(s)
| | - Bernard J. Crespi
- Department of Biological SciencesSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
28
|
Polycystic Ovary Syndrome in Insulin-Resistant Adolescents with Obesity: The Role of Nutrition Therapy and Food Supplements as a Strategy to Protect Fertility. Nutrients 2021; 13:nu13061848. [PMID: 34071499 PMCID: PMC8228678 DOI: 10.3390/nu13061848] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in young reproductive-aged women. PCOS is often associated with obesity and impairs reproductive health. Even though several theories have been proposed to explain the pathogenic mechanism of PCOS, the role of insulin resistance (IR) as a key etiological component, independently of (but amplified by) obesity, is well recognized. The consequent hyperinsulinemia activates excessive ovarian androgen production, leading to PCOS. Additionally, the state of chronic inflammation related to obesity impacts ovarian physiology due to insulin sensitivity impairment. The first-line treatment for adolescents with obesity and PCOS includes lifestyle changes; personalized dietary interventions; and, when needed, weight loss. Medical nutrition therapy (MNT) and the use of specific food supplements in these patients aim at improving symptoms and signs, including insulin resistance and metabolic and reproductive functions. The purpose of this narrative review is to present and discuss PCOS in adolescents with obesity, its relationship with IR and the role of MNT and food supplements in treatment. Appropriate early dietary intervention for the management of adolescents with obesity and PCOS should be considered as the recommended approach to restore ovulation and to protect fertility.
Collapse
|
29
|
Abstract
The pathophysiology of symptomatic polycystic ovary syndrome (PCOS) often unfolds across puberty, but the ontogeny of PCOS is difficult to study because, in general, its pathophysiology is well entrenched before the diagnosis can be confirmed. However, the study of high-risk groups (daughters of women with PCOS, girls with premature pubarche, and girls with obesity) can offer insight in this regard. Available data support the hypothesis that the pubertal development of PCOS involves various combinations of genetic predisposition, intrauterine programming, hyperinsulinism, and numerous other abnormalities that provoke reproductive symptoms (eg, hyperandrogenism, ovulatory dysfunction) in response to the pubertal increase in gonadotropin secretion.
Collapse
Affiliation(s)
- Christine M Burt Solorzano
- Center for Research in Reproduction, University of Virginia School of Medicine, OMS Suhling Building, Room 6921, Hospital Drive, Charlottesville, VA 22908, USA; Department of Pediatrics, Division of Endocrinology and Metabolism, University of Virginia School of Medicine, University of Virginia Health, Box 800386, Charlottesville, VA 22908, USA
| | - Christopher R McCartney
- Center for Research in Reproduction, University of Virginia School of Medicine, OMS Suhling Building, Room 6921, Hospital Drive, Charlottesville, VA 22908, USA; Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia School of Medicine, University of Virginia Health, Box 801406, Charlottesville, VA 22908, USA.
| |
Collapse
|
30
|
da Costa CS, Oliveira TF, Freitas-Lima LC, Padilha AS, Krause M, Carneiro MTWD, Salgado BS, Graceli JB. Subacute cadmium exposure disrupts the hypothalamic-pituitary-gonadal axis, leading to polycystic ovarian syndrome and premature ovarian failure features in female rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116154. [PMID: 33280922 DOI: 10.1016/j.envpol.2020.116154] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/22/2020] [Indexed: 05/22/2023]
Abstract
Cadmium (Cd), a toxic heavy metal, is a known endocrine disruptor that is associated with reproductive complications. However, few studies have explored the effects of Cd exposure on features of polycystic ovary syndrome (PCOS) and premature ovary failure (POF). In this study, we assessed whether doses found in workers occupationally exposed to Cd and subacute exposure result in hypothalamic-pituitary-gonadal (HPG) axis and other irregularities. We administered CdCl2 to female rats (100 ppm in drinking water for 30 days) and then assessed Cd levels in the blood, HPG axis and uterus. Metabolic features, HPG axis function, reproductive tract (RT) morphophysiology, inflammation, oxidative stress (OS), and fibrosis were evaluated. Cd exposure increased Cd levels in the serum, HPG axis, and uterus. Cd rats displayed metabolic impairments, such as a reduction in adiposity, dyslipidemia, and insulin resistance (IR). Cd exposure also caused improper functioning in the HPG. Specifically, Cd exposure caused irregular estrous cyclicity, abnormal hypothalamic gene expression (upregulated - Kiss1, AR and mTOR; downregulated - Kiss1R, LepR and TNF-α), high LH levels, low AMH levels and abnormal ovarian follicular development, coupled with a reduction in ovarian reserve and antral follicle number was observed, suggesting ovarian depletion. Further, Cd exposure caused a reduction in corpora lutea (CL) and granulosa layer thickness together with an increase in cystic/atretic follicles. In addition, Cd exposure caused RT inflammation, OS and fibrosis. Finally, strong positive correlations were observed between serum, RT Cd levels, IR, dyslipidemia and estrous cycle length, cystic, atretic follicles, LH levels, and RT inflammation. Thus, these data suggest that subacute Cd exposure using doses found in workers occupationally exposed to Cd disrupt the HPG axis function, leading to PCOS and POF features and other abnormalities in female rats.
Collapse
Affiliation(s)
- Charles S da Costa
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090, Vitória, ES, Brazil.
| | - Thiago F Oliveira
- Department of Physiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090, Vitória, ES, Brazil
| | - Leandro C Freitas-Lima
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090, Vitória, ES, Brazil.
| | - Alessandra S Padilha
- Department of Physiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090, Vitória, ES, Brazil.
| | - Maiara Krause
- Department of Chemistry, Federal University of Espirito Santo, Av. Fernando Ferrari, 514 Campos, 1468, CEP: 29075-910, Vitória, ES, Brazil.
| | - Maria Tereza W D Carneiro
- Department of Chemistry, Federal University of Espirito Santo, Av. Fernando Ferrari, 514 Campos, 1468, CEP: 29075-910, Vitória, ES, Brazil.
| | - Breno S Salgado
- Department of Pathology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090, Vitória, ES, Brazil.
| | - Jones B Graceli
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090, Vitória, ES, Brazil.
| |
Collapse
|
31
|
Shpakov AO. Improvement Effect of Metformin on Female and Male Reproduction in Endocrine Pathologies and Its Mechanisms. Pharmaceuticals (Basel) 2021; 14:ph14010042. [PMID: 33429918 PMCID: PMC7826885 DOI: 10.3390/ph14010042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin (MF), a first-line drug to treat type 2 diabetes mellitus (T2DM), alone and in combination with other drugs, restores the ovarian function in women with polycystic ovary syndrome (PCOS) and improves fetal development, pregnancy outcomes and offspring health in gestational diabetes mellitus (GDM) and T2DM. MF treatment is demonstrated to improve the efficiency of in vitro fertilization and is considered a supplementary drug in assisted reproductive technologies. MF administration shows positive effect on steroidogenesis and spermatogenesis in men with metabolic disorders, thus MF treatment indicates prospective use for improvement of male reproductive functions and fertility. MF lacks teratogenic effects and has positive health effect in newborns. The review is focused on use of MF therapy for restoration of female and male reproductive functions and improvement of pregnancy outcomes in metabolic and endocrine disorders. The mechanisms of MF action are discussed, including normalization of metabolic and hormonal status in PCOS, GDM, T2DM and metabolic syndrome and restoration of functional activity and hormonal regulation of the gonadal axis.
Collapse
Affiliation(s)
- Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| |
Collapse
|
32
|
Duică F, Dănilă CA, Boboc AE, Antoniadis P, Condrat CE, Onciul S, Suciu N, Creţoiu SM, Varlas VN, Creţoiu D. Impact of Increased Oxidative Stress on Cardiovascular Diseases in Women With Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2021; 12:614679. [PMID: 33679617 PMCID: PMC7930620 DOI: 10.3389/fendo.2021.614679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder that affects around 5% to 10% of women of childbearing age worldwide, making it the most common source of anovulatory infertility. PCOS is defined by increased levels of androgens, abnormal ovulation, irregular menstrual cycles, and polycystic ovarian morphology in one or both ovaries. Women suffering from this condition have also been shown to frequently associate certain cardiovascular comorbidities, including obesity, hypertension, atherosclerosis, and vascular disease. These factors gradually lead to endothelial dysfunction and coronary artery calcification, thus posing an increased risk for adverse cardiac events. Traditional markers such as C-reactive protein (CRP) and homocysteine, along with more novel ones, specifically microRNAs (miRNAs), can accurately signal the risk of cardiovascular disease (CVD) in PCOS women. Furthermore, studies have also reported that increased oxidative stress (OS) coupled with poor antioxidant status significantly add to the increased cardiovascular risk among these patients. OS additionally contributes to the modified ovarian steroidogenesis, consequently leading to hyperandrogenism and infertility. The present review is therefore aimed not only at bringing together the most significant information regarding the role of oxidative stress in promoting CVD among PCOS patients, but also at highlighting the need for determining the efficiency of antioxidant therapy in these patients.
Collapse
Affiliation(s)
- Florentina Duică
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Cezara Alina Dănilă
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Andreea Elena Boboc
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Panagiotis Antoniadis
- Division of Molecular Diagnostics and Biotechnology, Antisel RO SRL, Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
- Doctoral School of Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- *Correspondence: Carmen Elena Condrat,
| | - Sebastian Onciul
- Department of Cardiology, Clinical Emergency Hospital, Bucharest, Romania
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Valentin Nicolae Varlas
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, Bucharest, Romania
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragoş Creţoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|