1
|
Boehm T. Understanding vertebrate immunity through comparative immunology. Nat Rev Immunol 2025; 25:141-152. [PMID: 39317775 DOI: 10.1038/s41577-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary immunology has entered a new era. Classical studies, using just a handful of model animal species, combined with clinical observations, provided an outline of how innate and adaptive immunity work together to ensure tissue homeostasis and to coordinate the fight against infections. However, revolutionary advances in cellular and molecular biology, genomics and methods of genetic modification now offer unprecedented opportunities. They provide immunologists with the possibility to consider, at unprecedented scale, the impact of the astounding phenotypic diversity of vertebrates on immune system function. This Perspective is intended to highlight some of the many interesting, but largely unexplored, biological phenomena that are related to immune function among the roughly 60,000 existing vertebrate species. Importantly, hypotheses arising from such wide-ranging comparative studies can be tested in representative and genetically tractable species. The emerging general principles and the discovery of their evolutionarily selected variations may inspire the future development of novel therapeutic strategies for human immune disorders.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Freiburg, Germany.
- Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Passos GA, Genari AB, Assis AF, Monteleone-Cassiano AC, Donadi EA, Oliveira EH, Duarte MJ, Machado MV, Tanaka PP, Mascarenhas R. The Thymus as a Mirror of the Body's Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:247-268. [PMID: 40067590 DOI: 10.1007/978-3-031-77921-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The thymus, a complex organ formed by different cell types that establish close interaction, serves a unique function of significant interest. The role played by the thymic stroma is not only a connective tissue or a support structure, but it also involves the stromal thymic epithelial cells (TECs) establishing physical and functional interaction with developing thymocytes. This interaction culminates in the induction of central tolerance, a function that sets this organ apart. The role played by the medullary thymic epithelial cells (mTECs) is noteworthy and is the focus of many studies. The transcriptome of mTEC cells is also very complex. These cells express nearly the functional genome without altering morphological and functional features. Among the thousand mRNAs expressed, a particular set encodes all peripheral tissue antigens (PTAs), representing the body's different tissues and organs. The consequence of ectopic proteins translated from these mRNAs in the thymus is immunological and is associated with self-nonself-discrimination and induction of central tolerance. Due to the wide variety of PTAs, this process was termed promiscuous gene expression (PGE), whose control is shared between autoimmune regulator (human AIRE/murine Aire), a transcriptional modulator, and forebrain-expressed zinc finger 2 (FEZF2/Fezf2), a transcription factor. Therefore, this molecular-genetic process is closely linked to eliminating autoreactive thymocytes in the thymus through negative selection. In this chapter, we review PGE in mTECs and its immunologic implication, the role of the Aire and Fezf2genes, the role of Aire on the expression of miRNAs in mTECs, its consequence on PGE and the manipulation of the Aire expression either by siRNA or by genome editing using the Crispr-Cas9 system.
Collapse
Affiliation(s)
- Geraldo A Passos
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry (FORP-USP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Adriana B Genari
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda F Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana C Monteleone-Cassiano
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Max J Duarte
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mayara V Machado
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro P Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Romário Mascarenhas
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Del Castillo D, Lo DD. Deciphering the M-cell niche: insights from mouse models on how microfold cells "know" where they are needed. Front Immunol 2024; 15:1400739. [PMID: 38863701 PMCID: PMC11165056 DOI: 10.3389/fimmu.2024.1400739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Known for their distinct antigen-sampling abilities, microfold cells, or M cells, have been well characterized in the gut and other mucosa including the lungs and nasal-associated lymphoid tissue (NALT). More recently, however, they have been identified in tissues where they were not initially suspected to reside, which raises the following question: what external and internal factors dictate differentiation toward this specific role? In this discussion, we will focus on murine studies to determine how these cells are identified (e.g., markers and function) and ask the broader question of factors triggering M-cell localization and patterning. Then, through the consideration of unconventional M cells, which include villous M cells, Type II taste cells, and medullary thymic epithelial M cells (microfold mTECs), we will establish the M cell as not just a player in mucosal immunity but as a versatile niche cell that adapts to its home tissue. To this end, we will consider the lymphoid structure relationship and apical stimuli to better discuss how the differing cellular programming and the physical environment within each tissue yield these cells and their unique organization. Thus, by exploring this constellation of M cells, we hope to better understand the multifaceted nature of this cell in its different anatomical locales.
Collapse
Affiliation(s)
| | - David D. Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
4
|
He Y, Yu H, Dai S, He M, Ma L, Xu Z, Luo F, Wang L. Immune checkpoint inhibitors break whose heart? Perspectives from cardio-immuno-oncology. Genes Dis 2024; 11:807-818. [PMID: 37692505 PMCID: PMC10491874 DOI: 10.1016/j.gendis.2023.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 03/30/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are monoclonal antibody antagonists, which can block cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed death-1/ligand-1 (PD-1/PD-L1) pathways, and other molecules exploited by tumor cells to evade T cell-mediated immune response. ICIs have transformed the treatment landscape for various cancers due to their amazing efficacy. Many anti-tumor therapies, including targeted therapy, radiotherapy, and chemotherapy, combine ICIs to make the treatment more effective. However, the off-target immune activation caused by ICIs may lead to a broad spectrum of immune-related adverse events (irAEs) affecting multiple organ systems. Among irAEs, cardiotoxicity induced by ICIs, uncommon but fatal, has greatly offset survival benefits from ICIs, which is heartbreaking for both patients and clinicians. Consequently, such cardiotoxicity requires special vigilance, and it has become a common challenge both for patients and clinicians. This article reviewed the clinical manifestations and influence of cardiotoxicity from the view of patients and clinicians, elaborated on the underlying mechanisms in conjunction with animal studies, and then attempted to propose management strategies from a cardio-immuno-oncology multidisciplinary perspective.
Collapse
Affiliation(s)
- Yingying He
- Oncology Department, Deyang People's Hospital, Deyang, Sichuan 618000, China
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Hui Yu
- Cardiovascular Department, Mianyang Central Hospital, Mianyang, Sichuan 621000, China
| | - Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Miao He
- Oncology Department, Deyang People's Hospital, Deyang, Sichuan 618000, China
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Ling Ma
- Department of Rheumatology and Immunology, Deyang People's Hospital, Deyang, Sichuan 618000, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Li Wang
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| |
Collapse
|
5
|
Corral-Ruiz GM, Pérez-Vega MJ, Galán-Salinas A, Mancilla-Herrera I, Barrios-Payán J, Fabila-Castillo L, Hernández-Pando R, Sánchez-Torres LE. Thymic atrophy induced by Plasmodium berghei ANKA and Plasmodium yoelii 17XL infection. Immunol Lett 2023; 264:4-16. [PMID: 37875239 DOI: 10.1016/j.imlet.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
The thymus is the anatomical site where T cells undergo a complex process of differentiation, proliferation, selection, and elimination of autorreactive cells which involves molecular signals in different intrathymic environment. However, the immunological functions of the thymus can be compromised upon exposure to different infections, affecting thymocyte populations. In this work, we investigated the impact of malaria parasites on the thymus by using C57BL/6 mice infected with Plasmodium berghei ANKA and Plasmodium yoelii 17XL; these lethal infection models represent the most severe complications, cerebral malaria, and anemia respectively. Data showed a reduction in the thymic weight and cellularity involving different T cell maturation stages, mainly CD4-CD8- and CD4+CD8+ thymocytes, as well as an increased presence of apoptotic cells, leading to significant thymic cortex reduction. Thymus atrophy showed no association with elevated serum cytokines levels, although increased glucocorticoid levels did. The severity of thymic damage in both models reached the same extend although it occurs at different stages of infection, showing that thymic atrophy does not depend on parasitemia level but on the specific host-parasite interaction.
Collapse
Affiliation(s)
- G M Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M J Pérez-Vega
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - A Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - I Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - J Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L Fabila-Castillo
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - R Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L E Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
6
|
Wang L, Li X, Yang S, Chen X, Li J, Wang S, Zhang M, Zheng Z, Zhou J, Wang L, Wu Y. Proteomic identification of MHC class I-associated peptidome derived from non-obese diabetic mouse thymus and pancreas. J Proteomics 2023; 270:104746. [PMID: 36210013 DOI: 10.1016/j.jprot.2022.104746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
The peptides repertoire presented to CD8+ T cells by major histocompatibility complex (MHC) class I molecules is referred to as the MHC I-associated peptidome (MIP), which regulates thymus development, peripheral survival and function during lifetime of CD8+ T cells. Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by pancreatic β cells destruction mediated primarily by autoreactive CD8+ T cells. Non-obese diabetic (NOD) mouse is an important animal model of T1D. Here, we deeply analyzed the MIP derived from NOD mice thymus and pancreas, and demonstrated that the thymus MIP source proteins partially shared with the MIP source proteins derived from NOD mice pancreas and β cell line. One H-2Kd restricted peptide SLC35B126-34 which was shared by MIP derived from both NOD mice pancreatic tissues and islet β-cell line, but absent in MIP from NOD thymus tissues, showed ability to stimulate IFN-γ secretion and proliferation of NOD mice splenic CD8+ T cells. The global view of the MHC I-associated self-peptides repertoire in the thymus and pancreas of NOD mice may serve as a biological reference to identify potential autoantigens targeted by autoreactive CD8+ T cells in T1D. Data are available via ProteomeXchange with identifier PXD031966. SIGNIFICANCE: The peptides repertoire presented to CD8+ T cells by major histocompatibility complex (MHC) class I molecules is referred to as the MHC I-associated peptidome (MIP). The MIP presented by thymic antigen presenting cells (APCs) is crucial for shaping CD8+ T cell repertoire and self-tolerance, while the MIP presented by peripheral tissues and organs is not only involved in maintaining periphery CD8+ T cell survival and homeostasis, but also mediates immune surveillance and autoimmune responses of CD8+ T cells under pathological conditions. Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by the destruction of pancreatic β cells, mediated primarily by autoreactive CD8+ T cells. Non-obese diabetic (NOD) mouse is one of important animal models of spontaneous autoimmune diabetes that shares several key features with human T1D. The global view of the MHC I-associated self-peptides repertoire in the thymus and pancreas of NOD mice may serve as a good biological reference to identify potential autoantigens targeted by autoreactive CD8+ T cells in T1D. It has great significance for further clarifying the immune recognition and effect mechanism of autoreactive CD8+ T cells in the pathogenesis of T1D, and then developing antigen-specific immune intervention strategies.
Collapse
Affiliation(s)
- Lina Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, China; Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Immunology, College of Basic Medicine, Weifang Medical University, Weifang 261053, China
| | - Xiangqian Li
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shushu Yang
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaoling Chen
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jie Li
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shufeng Wang
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mengjun Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhengni Zheng
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jie Zhou
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Li Wang
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Yuzhang Wu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, China; Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
7
|
Carter JA, Strömich L, Peacey M, Chapin SR, Velten L, Steinmetz LM, Brors B, Pinto S, Meyer HV. Transcriptomic diversity in human medullary thymic epithelial cells. Nat Commun 2022; 13:4296. [PMID: 35918316 PMCID: PMC9345899 DOI: 10.1038/s41467-022-31750-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
The induction of central T cell tolerance in the thymus depends on the presentation of peripheral self-epitopes by medullary thymic epithelial cells (mTECs). This promiscuous gene expression (pGE) drives mTEC transcriptomic diversity, with non-canonical transcript initiation, alternative splicing, and expression of endogenous retroelements (EREs) representing important but incompletely understood contributors. Here we map the expression of genome-wide transcripts in immature and mature human mTECs using high-throughput 5' cap and RNA sequencing. Both mTEC populations show high splicing entropy, potentially driven by the expression of peripheral splicing factors. During mTEC maturation, rates of global transcript mis-initiation increase and EREs enriched in long terminal repeat retrotransposons are up-regulated, the latter often found in proximity to differentially expressed genes. As a resource, we provide an interactive public interface for exploring mTEC transcriptomic diversity. Our findings therefore help construct a map of transcriptomic diversity in the healthy human thymus and may ultimately facilitate the identification of those epitopes which contribute to autoimmunity and immune recognition of tumor antigens.
Collapse
Affiliation(s)
- Jason A. Carter
- grid.225279.90000 0004 0387 3667Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA ,grid.36425.360000 0001 2216 9681Medical Scientist Training Program, Stony Brook University, Stony Brook, NY USA ,grid.34477.330000000122986657Department of Surgery, University of Washington, Seattle, WA USA
| | - Léonie Strömich
- grid.7497.d0000 0004 0492 0584German Cancer Research Center, Heidelberg, Germany ,grid.7445.20000 0001 2113 8111Present Address: Imperial College London, London, UK
| | - Matthew Peacey
- grid.225279.90000 0004 0387 3667School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | - Sarah R. Chapin
- grid.225279.90000 0004 0387 3667Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | - Lars Velten
- grid.473715.30000 0004 6475 7299Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lars M. Steinmetz
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany ,grid.168010.e0000000419368956Department of Genetics, Stanford University School of Medicine, Stanford, CA USA ,grid.168010.e0000000419368956Stanford Genome Technology Center, Palo Alto, CA USA
| | - Benedikt Brors
- grid.7497.d0000 0004 0492 0584German Cancer Research Center, Heidelberg, Germany
| | - Sheena Pinto
- grid.7497.d0000 0004 0492 0584German Cancer Research Center, Heidelberg, Germany
| | - Hannah V. Meyer
- grid.225279.90000 0004 0387 3667Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| |
Collapse
|
8
|
Ohigashi I, Tanaka Y, Kondo K, Fujimori S, Kondo H, Palin AC, Hoffmann V, Kozai M, Matsushita Y, Uda S, Motosugi R, Hamazaki J, Kubota H, Murata S, Tanaka K, Katagiri T, Kosako H, Takahama Y. Trans-omics Impact of Thymoproteasome in Cortical Thymic Epithelial Cells. Cell Rep 2020; 29:2901-2916.e6. [PMID: 31775054 PMCID: PMC6897492 DOI: 10.1016/j.celrep.2019.10.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/27/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
The thymic function to produce self-protective and self-tolerant T cells is chiefly mediated by cortical thymic epithelial cells (cTECs) and medullary TECs (mTECs). Recent studies including single-cell transcriptomic analyses have highlighted a rich diversity in functional mTEC subpopulations. Because of their limited cellularity, however, the biochemical characterization of TECs, including the proteomic profiling of cTECs and mTECs, has remained unestablished. Utilizing genetically modified mice that carry enlarged but functional thymuses, here we show a combination of proteomic and transcriptomic profiles for cTECs and mTECs, which identified signature molecules that characterize a developmental and functional contrast between cTECs and mTECs. Our results reveal a highly specific impact of the thymoproteasome on proteasome subunit composition in cTECs and provide an integrated trans-omics platform for further exploration of thymus biology. Ohigashi et al. show that the use of cyclin D1-transgenic mice allows quantitative proteomic analysis of cortical and medullary thymic epithelial cells (TECs). Results provide a trans-omics platform for further exploration of TEC biology and reveal the specific impact of the thymoproteasome on proteasome subunit composition in cortical TECs.
Collapse
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yu Tanaka
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kenta Kondo
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sayumi Fujimori
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Hiroyuki Kondo
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Amy C Palin
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Victoria Hoffmann
- Division of Veterinary Resources, Office of Research Services, NIH, Bethesda, MD 20892, USA
| | - Mina Kozai
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Shinsuke Uda
- Division of Integrated Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Motosugi
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keiji Tanaka
- Tokyo Metropolitan Institute for Medical Science, Tokyo 156-8506, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Kondo K, Ohigashi I, Takahama Y. Thymus machinery for T-cell selection. Int Immunol 2020; 31:119-125. [PMID: 30476234 DOI: 10.1093/intimm/dxy081] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
An immunocompetent and self-tolerant pool of naive T cells is formed in the thymus through the process of repertoire selection. T cells that are potentially capable of responding to foreign antigens are positively selected in the thymic cortex and are further selected in the thymic medulla to help prevent self-reactivity. The affinity between T-cell antigen receptors expressed by newly generated T cells and self-peptide-major histocompatibility complexes displayed in the thymic microenvironments plays a key role in determining the fate of developing T cells during thymic selection. Recent advances in our knowledge of the biology of thymic epithelial cells have revealed unique machinery that contributes to positive and negative selection in the thymus. In this article, we summarize recent findings on thymic T-cell selection, focusing on the machinery unique to thymic epithelial cells.
Collapse
Affiliation(s)
- Kenta Kondo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| |
Collapse
|
10
|
Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol 2018; 54:407-419. [PMID: 30570109 PMCID: PMC6317661 DOI: 10.3892/ijo.2018.4661] [Citation(s) in RCA: 559] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/01/2018] [Indexed: 12/15/2022] Open
Abstract
The side effects of systemic chemotherapy used to treat cancer are often severe. For decades, oncologists have focused on treating the tumor, which may result in damage to the tumor-bearing host and its immune system. Recently, much attention has been paid to the immune system of patients and its activation via biological therapies. Biological therapies, including immunotherapy and oncolytic virus (OV) therapy, are often more physiological and well tolerated. The present review elucidated how these therapies work and why these therapies may be better tolerated: i) In contrast to chemotherapy, immunotherapies induce a memory function of the adaptive immunity system; ii) immunotherapies aim to specifically activate the immune system against cancer; side effects are low due to immune tolerance mechanisms, which maintain the integrity of the body in the presence of B and T lymphocytes with their antigen-receptor specificities and; iii) the type I interferon response, which is evoked by OVs, is an ancient innate immune defense system. Biological and physiological therapies, which support the immune system, may therefore benefit cancer treatment. The present review focused on immunotherapy, with the aim of reducing side effects and increasing long-lasting efficacy in cancer therapy.
Collapse
Affiliation(s)
- Volker Schirrmacher
- Immunological and Oncological Center Cologne (IOZK), D-50674 Cologne, Germany
| |
Collapse
|
11
|
Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics 2018; 71:171-187. [PMID: 30421030 DOI: 10.1007/s00251-018-1095-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
Presentation of peptide antigens by MHC-II proteins is prerequisite to effective CD4 T cell tolerance to self and to recognition of foreign antigens. Antigen uptake and processing pathways as well as expression of the peptide exchange factors HLA-DM and HLA-DO differ among the various professional and non-professional antigen-presenting cells and are modulated by cell developmental state and activation. Recent studies have highlighted the importance of these cell-specific factors in controlling the source and breadth of peptides presented by MHC-II under different conditions. During inflammation, increased presentation of selected self-peptides has implications for maintenance of peripheral tolerance and autoimmunity.
Collapse
|
12
|
das Neves SP, Serre-Miranda C, Nobrega C, Roque S, Cerqueira JJ, Correia-Neves M, Marques F. Immune Thymic Profile of the MOG-Induced Experimental Autoimmune Encephalomyelitis Mouse Model. Front Immunol 2018; 9:2335. [PMID: 30369926 PMCID: PMC6194318 DOI: 10.3389/fimmu.2018.02335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease that affects the neurons of the central nervous system. Activated T cells, specific for myelin epitopes, cross the brain barriers, and react against the myelin sheath, leading to demyelination. Since T cells are generated within the thymus, here we explored, in mice, the alterations occurring in this organ throughout the different phases of the disease. We induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 females and sacrifice them at the onset (day 16) and chronic phases of disease (day 23), along with non-induced controls. We observed thymic atrophy in EAE mice at the onset that remained until the chronic phase of disease. This atrophy was associated with a preferential loss of the CD4+CD8+ double positive thymocytes, an intermediate population between the more immature CD4−CD8− double negative and the most mature single positive thymocytes. This was accompanied by an increase in the thymic medullary/cortical ratio and by an altered expression levels of genes important for T cell survival. During the chronic phase, the thymi remained atrophic, but reacquired the normal proportion of the main four thymocyte populations and the normal medullary/cortical ratio. Importantly, at the onset phase, and accompanying these thymic alterations, EAE animals presented an increased percentage of demyelinating lesion area in the cerebellum, and an increased expression of interferon gamma (Ifng), interleukin (Il) 12a, and Il17a. This study suggests dynamic thymic alterations occurring in response to EAE, from the induction to the chronic phase, that might help to elucidate the MS pathophysiology.
Collapse
Affiliation(s)
- Sofia P das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cláudia Serre-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Claudia Nobrega
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João J Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga, Braga, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
13
|
Hart DP, Uzun N, Skelton S, Kakoschke A, Househam J, Moss DS, Shepherd AJ. Factor VIII cross-matches to the human proteome reduce the predicted inhibitor risk in missense mutation hemophilia A. Haematologica 2018; 104:599-608. [PMID: 30266735 PMCID: PMC6395325 DOI: 10.3324/haematol.2018.195669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
Single missense mutations in the F8 gene encoding the coagulation protein factor VIII give rise predominantly to non-severe hemophilia A. Despite only a single amino acid sequence difference between the replacement, therapeutic factor VIII and the patient's endogenous factor VIII, therapeutic factor VIII may still be perceived as foreign by the recipient's immune system and trigger an immune response (inhibitor). Inhibitor formation is a life-long risk for patients with non-severe hemophilia A treated with therapeutic factor VIII, but remains difficult to predict. The aim of this study was to understand whether fortuitous, primary sequence cross-matches between therapeutic factor VIII and proteins in the human proteome are the reason why certain F8 mutations are not associated with inhibitor formation. We predicted which therapeutic factor VIII differences are potentially perceived as foreign by helper T cells - a necessary precursor to inhibitor development - and then scanned potentially immunogenic peptides against more than 100,000 proteins in the proteome. As there are hundreds of disease-causing F8 missense mutations and the human leukocyte antigen gene complex governing peptide presentation to helper T cells is highly polymorphic, these calculations pose a huge combinatorial challenge that we addressed computationally. We found that cross-matches between therapeutic factor VIII and the human proteome are commonplace and have a profound impact on the predicted risk of inhibitor development. Our results emphasize the importance of knowing both the F8 missense mutation and the human leukocyte antigen alleles of a patient with missense mutation hemophilia A if his underlying risk of inhibitor development is to be estimated.
Collapse
Affiliation(s)
- Daniel P Hart
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London.,The Royal London Hospital Haemophilia Centre, Barts Health NHS Trust, London
| | - Nazmiye Uzun
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, UK
| | - Stuart Skelton
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London.,Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, UK
| | - Alison Kakoschke
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, UK
| | - Jacob Househam
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, UK
| | - David S Moss
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, UK
| | - Adrian J Shepherd
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, UK
| |
Collapse
|
14
|
Assis AF, Li J, Donate PB, Dernowsek JA, Manley NR, Passos GA. Predicted miRNA-mRNA-mediated posttranscriptional control associated with differences in cervical and thoracic thymus function. Mol Immunol 2018; 99:39-52. [DOI: 10.1016/j.molimm.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
|
15
|
Hu Z, Li Y, Van Nieuwenhuijze A, Selden HJ, Jarrett AM, Sorace AG, Yankeelov TE, Liston A, Ehrlich LIR. CCR7 Modulates the Generation of Thymic Regulatory T Cells by Altering the Composition of the Thymic Dendritic Cell Compartment. Cell Rep 2018; 21:168-180. [PMID: 28978470 DOI: 10.1016/j.celrep.2017.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 07/21/2017] [Accepted: 09/01/2017] [Indexed: 12/29/2022] Open
Abstract
Upon recognition of auto-antigens, thymocytes are negatively selected or diverted to a regulatory T cell (Treg) fate. CCR7 is required for negative selection of auto-reactive thymocytes in the thymic medulla. Here, we describe an unanticipated contribution of CCR7 to intrathymic Treg generation. Ccr7-/- mice have increased Treg cellularity because of a hematopoietic but non-T cell autonomous CCR7 function. CCR7 expression by thymic dendritic cells (DCs) promotes survival of mature Sirpα- DCs. Thus, CCR7 deficiency results in apoptosis of Sirpα- DCs, which is counterbalanced by expansion of immature Sirpα+ DCs that efficiently induce Treg generation. CCR7 deficiency results in enhanced intrathymic generation of Tregs at the neonatal stage and in lymphopenic adults, when Treg differentiation is critical for establishing self-tolerance. Together, these results reveal a complex function for CCR7 in thymic tolerance induction, where CCR7 not only promotes negative selection but also governs intrathymic Treg generation via non-thymocyte intrinsic mechanisms.
Collapse
Affiliation(s)
- Zicheng Hu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yu Li
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Annemarie Van Nieuwenhuijze
- Translational Immunology Laboratory, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, University of Leuven, Leuven 3000, Belgium
| | - Hilary J Selden
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Angela M Jarrett
- Departments of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna G Sorace
- Departments of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas E Yankeelov
- Departments of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Adrian Liston
- Translational Immunology Laboratory, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, University of Leuven, Leuven 3000, Belgium
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
16
|
Cosway EJ, Ohigashi I, Schauble K, Parnell SM, Jenkinson WE, Luther S, Takahama Y, Anderson G. Formation of the Intrathymic Dendritic Cell Pool Requires CCL21-Mediated Recruitment of CCR7 + Progenitors to the Thymus. THE JOURNAL OF IMMUNOLOGY 2018; 201:516-523. [PMID: 29784760 PMCID: PMC6036229 DOI: 10.4049/jimmunol.1800348] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
During αβ T cell development in the thymus, migration of newly selected CD4+ and CD8+ thymocytes into medullary areas enables tolerance mechanisms to purge the newly selected αβ TCR repertoire of autoreactive specificities. Thymic dendritic cells (DC) play key roles in this process and consist of three distinct subsets that differ in their developmental origins. Thus, plasmacytoid DC and Sirpα+ conventional DC type 2 are extrathymically derived and enter into the thymus via their respective expression of the chemokine receptors CCR9 and CCR2. In contrast, although Sirpα− conventional DC type 1 (cDC1) are known to arise intrathymically from immature progenitors, the precise nature of such thymus-colonizing progenitors and the mechanisms controlling their thymus entry are unclear. In this article, we report a selective reduction in thymic cDC1 in mice lacking the chemokine receptor CCR7. In addition, we show that the thymus contains a CD11c+MHC class II−Sirpα−Flt3+ cDC progenitor population that expresses CCR7, and that migration of these cells to the thymus is impaired in Ccr7−/− mice. Moreover, thymic cDC1 defects in Ccr7−/− mice are mirrored in plt/plt mice, with further analysis of mice individually lacking the CCR7 ligands CCL21Ser (Ccl21a−/−) or CCL19 (Ccl19−/−) demonstrating an essential role for CCR7-CCL21Ser during intrathymic cDC1 development. Collectively, our data support a mechanism in which CCR7-CCL21Ser interactions guide the migration of cDC progenitors to the thymus for correct formation of the intrathymic cDC1 pool.
Collapse
Affiliation(s)
- Emilie J Cosway
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan; and
| | - Karin Schauble
- Department of Biochemistry, Centre for Immunity and Infection Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Sonia M Parnell
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - William E Jenkinson
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sanjiv Luther
- Department of Biochemistry, Centre for Immunity and Infection Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan; and
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
17
|
Lopes N, Charaix J, Cédile O, Sergé A, Irla M. Lymphotoxin α fine-tunes T cell clonal deletion by regulating thymic entry of antigen-presenting cells. Nat Commun 2018; 9:1262. [PMID: 29593265 PMCID: PMC5872006 DOI: 10.1038/s41467-018-03619-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Abstract
Medullary thymic epithelial cells (mTEC) purge the T cell repertoire of autoreactive thymocytes. Although dendritic cells (DC) reinforce this process by transporting innocuous peripheral self-antigens, the mechanisms that control their thymic entry remain unclear. Here we show that mTEC-CD4+ thymocyte crosstalk regulates the thymus homing of SHPS-1+ conventional DCs (cDC), plasmacytoid DCs (pDC) and macrophages. This homing process is controlled by lymphotoxin α (LTα), which negatively regulates CCL2, CCL8 and CCL12 chemokines in mTECs. Consequently, Ltα-deficient mice have increased expression of these chemokines that correlates with augmented classical NF-κB subunits and increased thymic recruitment of cDCs, pDCs and macrophages. This enhanced migration depends mainly on the chemokine receptor CCR2, and increases thymic clonal deletion. Altogether, this study identifies a fine-tuning mechanism of T cell repertoire selection and paves the way for therapeutic interventions to treat autoimmune disorders.
Collapse
Affiliation(s)
- Noëlla Lopes
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France
| | - Jonathan Charaix
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France
| | - Oriane Cédile
- Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, J.B. Winsløwsvej 25, 5000, Odense C, Denmark
| | - Arnauld Sergé
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Aix-Marseille Université UM105, 13273 cedex 09, Marseille, France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France.
| |
Collapse
|
18
|
T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat Commun 2018; 9:353. [PMID: 29367624 PMCID: PMC5783942 DOI: 10.1038/s41467-017-02763-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022] Open
Abstract
Establishing effective central tolerance requires the promiscuous expression of tissue-restricted antigens by medullary thymic epithelial cells. However, whether central tolerance also extends to post-translationally modified proteins is not clear. Here we show a mouse model of autoimmunity in which disease development is dependent on post-translational modification (PTM) of the tissue-restricted self-antigen collagen type II. T cells specific for the non-modified antigen undergo efficient central tolerance. By contrast, PTM-reactive T cells escape thymic selection, though the PTM variant constitutes the dominant form in the periphery. This finding implies that the PTM protein is absent in the thymus, or present at concentrations insufficient to induce negative selection of developing thymocytes and explains the lower level of tolerance induction against the PTM antigen. As the majority of self-antigens are post-translationally modified, these data raise the possibility that T cells specific for other self-antigens naturally subjected to PTM may escape central tolerance induction by a similar mechanism. Post-translational modifications are associated with autoimmune diseases but definitive evidence of their contribution to escape from central tolerance mechanisms is needed. Here, the authors show that T cells specific for post-translational modifications of type II collagen escape intrathymic tolerance induction in a mouse model of rheumatoid arthritis.
Collapse
|
19
|
't Hart BA, Dunham J, Faber BW, Laman JD, van Horssen J, Bauer J, Kap YS. A B Cell-Driven Autoimmune Pathway Leading to Pathological Hallmarks of Progressive Multiple Sclerosis in the Marmoset Experimental Autoimmune Encephalomyelitis Model. Front Immunol 2017; 8:804. [PMID: 28744286 PMCID: PMC5504154 DOI: 10.3389/fimmu.2017.00804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
The absence of pathological hallmarks of progressive multiple sclerosis (MS) in commonly used rodent models of experimental autoimmune encephalomyelitis (EAE) hinders the development of adequate treatments for progressive disease. Work reviewed here shows that such hallmarks are present in the EAE model in marmoset monkeys (Callithrix jacchus). The minimal requirement for induction of progressive MS pathology is immunization with a synthetic peptide representing residues 34–56 from human myelin oligodendrocyte glycoprotein (MOG) formulated with a mineral oil [incomplete Freund’s adjuvant (IFA)]. Pathological aspects include demyelination of cortical gray matter with microglia activation, oxidative stress, and redistribution of iron. When the peptide is formulated in complete Freund’s adjuvant, which contains mycobacteria that relay strong activation signals to myeloid cells, oxidative damage pathways are strongly boosted leading to more intensive pathology. The proven absence of immune potentiating danger signals in the MOG34–56/IFA formulation implies that a narrow population of antigen-experienced T cells present in the monkey’s immune repertoire is activated. This novel pathway involves the interplay of lymphocryptovirus-infected B cells with MHC class Ib/Caja-E restricted CD8+ CD56+ cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Jordon Dunham
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Bart W Faber
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Jon D Laman
- Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands.,MS Center Noord-Nederland, Groningen, Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Jan Bauer
- Department of Neuroimmunology, Brain Research Institute, Medical University Vienna, Vienna, Austria
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
20
|
Pezzi N, Assis AF, Cotrim-Sousa LC, Lopes GS, Mosella MS, Lima DS, Bombonato-Prado KF, Passos GA. Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction. Mol Immunol 2016; 77:157-73. [PMID: 27505711 DOI: 10.1016/j.molimm.2016.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/12/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022]
Abstract
We demonstrate that even a partial reduction of Aire mRNA levels by siRNA-induced Aire knockdown (Aire KD) has important consequences to medullary thymic epithelial cells (mTECs). Aire knockdown is sufficient to reduce Aire protein levels, impair its nuclear location, and cause an imbalance in large-scale gene expression, including genes that encode cell adhesion molecules. These genes drew our attention because adhesion molecules are implicated in the process of mTEC-thymocyte adhesion, which is critical for T cell development and the establishment of central self-tolerance. Accordingly, we consider the following: 1) mTECs contribute to the elimination of self-reactive thymocytes through adhesion; 2) Adhesion molecules play a crucial role during physical contact between these cells; and 3) Aire is an important transcriptional regulator in mTECs. However, its role in controlling mTEC-thymocyte adhesion remains unclear. Because Aire controls adhesion molecule genes, we hypothesized that the disruption of its expression could influence mTEC-thymocyte interaction. To test this hypothesis, we used a murine Aire(+) mTEC cell line as a model system to reproduce mTEC-thymocyte adhesion in vitro. Transcriptome analysis of the mTEC cell line revealed that Aire KD led to the down-modulation of more than 800 genes, including those encoding for proteins involved in cell adhesion, i.e., the extracellular matrix constituent Lama1, the CAM family adhesion molecules Vcam1 and Icam4, and those that encode peripheral tissue antigens. Thymocytes co-cultured with Aire KD mTECs had a significantly reduced capacity to adhere to these cells. This finding is the first direct evidence that Aire also plays a role in controlling mTEC-thymocyte adhesion.
Collapse
Affiliation(s)
- Nicole Pezzi
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Amanda Freire Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Larissa Cotrim Cotrim-Sousa
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gabriel Sarti Lopes
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Maritza Salas Mosella
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Djalma Sousa Lima
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Karina F Bombonato-Prado
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
21
|
Juan-Mateu J, Villate O, Eizirik DL. MECHANISMS IN ENDOCRINOLOGY: Alternative splicing: the new frontier in diabetes research. Eur J Endocrinol 2016; 174:R225-38. [PMID: 26628584 PMCID: PMC5331159 DOI: 10.1530/eje-15-0916] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/01/2015] [Indexed: 12/30/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic β cells are killed by infiltrating immune cells and by cytokines released by these cells. This takes place in the context of a dysregulated dialogue between invading immune cells and target β cells, but the intracellular signals that decide β cell fate remain to be clarified. Alternative splicing (AS) is a complex post-transcriptional regulatory mechanism affecting gene expression. It regulates the inclusion/exclusion of exons into mature mRNAs, allowing individual genes to produce multiple protein isoforms that expand the proteome diversity. Functionally related transcript populations are co-ordinately spliced by master splicing factors, defining regulatory networks that allow cells to rapidly adapt their transcriptome in response to intra and extracellular cues. There is a growing interest in the role of AS in autoimmune diseases, but little is known regarding its role in T1D. In this review, we discuss recent findings suggesting that splicing events occurring in both immune and pancreatic β cells contribute to the pathogenesis of T1D. Splicing switches in T cells and in lymph node stromal cells are involved in the modulation of the immune response against β cells, while β cells exposed to pro-inflammatory cytokines activate complex splicing networks that modulate β cell viability, expression of neoantigens and susceptibility to immune-induced stress. Unveiling the role of AS in β cell functional loss and death will increase our understanding of T1D pathogenesis and may open new avenues for disease prevention and therapy.
Collapse
Affiliation(s)
- Jonàs Juan-Mateu
- Medical FacultyULB Center for Diabetes Research and Welbio, Université Libre de Bruxelles (ULB), Route de Lennik, 808 - CP618, B-1070 Brussels, Belgium
| | - Olatz Villate
- Medical FacultyULB Center for Diabetes Research and Welbio, Université Libre de Bruxelles (ULB), Route de Lennik, 808 - CP618, B-1070 Brussels, Belgium
| | - Décio L Eizirik
- Medical FacultyULB Center for Diabetes Research and Welbio, Université Libre de Bruxelles (ULB), Route de Lennik, 808 - CP618, B-1070 Brussels, Belgium
| |
Collapse
|
22
|
Gozzard P, Chapman C, Vincent A, Lang B, Maddison P. Novel Humoral Prognostic Markers in Small-Cell Lung Carcinoma: A Prospective Study. PLoS One 2015; 10:e0143558. [PMID: 26606748 PMCID: PMC4659625 DOI: 10.1371/journal.pone.0143558] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/05/2015] [Indexed: 01/01/2023] Open
Abstract
Purpose Favourable small cell lung carcinoma (SCLC) survival outcomes have been reported in patients with paraneoplastic neurological disorders (PNDs) associated with neuronal antibodies (Neur-Abs), but the presence of a PND might have expedited diagnosis. Our aim was to establish whether neuronal antibodies, independent of clinical neurological features, correlate with SCLC survival. Experimental Design 262 consecutive SCLC patients were examined: of these, 24 with neurological disease were excluded from this study. The remaining 238 were tested for a broad array of Neur-Abs at the time of cancer diagnosis; survival time was established from follow-up clinical data. Results Median survival of the non-PND cohort (n = 238) was 9.5 months. 103 patients (43%) had one or more antigen-defined Neur-Abs. We found significantly longer median survival in 23 patients (10%) with HuD/anti-neuronal nuclear antibody type 1 (ANNA-1, 13.0 months P = 0.037), but not with any of the other antigen-defined antibodies, including the PND-related SOX2 (n = 56, 24%). An additional 28 patients (12%) had uncharacterised anti-neuronal nuclear antibodies (ANNA-U); their median survival time was longer still (15.0 months, P = 0.0048), contrasting with the survival time in patients with non-neuronal anti-nuclear antibodies (detected using HEp-2 cells, n = 23 (10%), 9.25 months). In multivariate analyses, both ANNA-1 and ANNA-U independently reduced the mortality hazard by a ratio of 0.532 (P = 0.01) and 0.430 (P<0.001) respectively. Conclusions ANNAs, including the newly described ANNA-U, may be key components of the SCLC immunome and have a potential role in predicting SCLC survival; screening for them could add prognostic value that is similar in magnitude to that of limited staging at diagnosis.
Collapse
Affiliation(s)
- Paul Gozzard
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- * E-mail:
| | - Caroline Chapman
- Division of Medical Sciences & Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Bethan Lang
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Paul Maddison
- Division of Clinical Neuroscience, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
23
|
Linhares-Lacerda L, Palu CC, Ribeiro-Alves M, Paredes BD, Morrot A, Garcia-Silva MR, Cayota A, Savino W. Differential Expression of microRNAs in Thymic Epithelial Cells from Trypanosoma cruzi Acutely Infected Mice: Putative Role in Thymic Atrophy. Front Immunol 2015; 6:428. [PMID: 26347748 PMCID: PMC4543887 DOI: 10.3389/fimmu.2015.00428] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/06/2015] [Indexed: 12/21/2022] Open
Abstract
A common feature seen in acute infections is a severe atrophy of the thymus. This occurs in the murine model of acute Chagas disease. Moreover, in thymuses from Trypanosoma cruzi acutely infected mice, thymocytes exhibit an increase in the density of fibronectin and laminin integrin-type receptors, with an increase in migratory response ex vivo. Thymic epithelial cells (TEC) play a major role in the intrathymic T cell differentiation. To date, the consequences of molecular changes promoted by parasite infection upon thymus have not been elucidated. Considering the importance of microRNA for gene expression regulation, 85 microRNAs (mRNAs) were analyzed in TEC from T. cruzi acutely infected mice. The infection significantly modulated 29 miRNAs and modulation of 9 was also dependent whether TEC sorted out from the thymus exhibited cortical or medullary phenotype. In silico analysis revealed that these miRNAs may control target mRNAs known to be responsible for chemotaxis, cell adhesion, and cell death. Considering that we sorted TEC in the initial phase of thymocyte loss, it is conceivable that changes in TEC miRNA expression profile are functionally related to thymic atrophy, providing new clues to better understanding the mechanisms of the thymic involution seen in experimental Chagas disease.
Collapse
Affiliation(s)
- Leandra Linhares-Lacerda
- Laboratory on Thymus Research, Institute Oswaldo Cruz, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Cintia Cristina Palu
- Laboratory on Thymus Research, Institute Oswaldo Cruz, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectious Diseases, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Bruno Diaz Paredes
- The National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Alexandre Morrot
- Department of Immunology, Microbiology Institute, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | | | - Alfonso Cayota
- Functional Genomics Unit, Institut Pasteur de Montevideo , Montevideo , Uruguay
| | - Wilson Savino
- Laboratory on Thymus Research, Institute Oswaldo Cruz, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| |
Collapse
|
24
|
Lopes N, Sergé A, Ferrier P, Irla M. Thymic Crosstalk Coordinates Medulla Organization and T-Cell Tolerance Induction. Front Immunol 2015; 6:365. [PMID: 26257733 PMCID: PMC4507079 DOI: 10.3389/fimmu.2015.00365] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022] Open
Abstract
The thymus ensures the generation of a functional and highly diverse T-cell repertoire. The thymic medulla, which is mainly composed of medullary thymic epithelial cells (mTECs) and dendritic cells (DCs), provides a specialized microenvironment dedicated to the establishment of T-cell tolerance. mTECs play a privileged role in this pivotal process by their unique capacity to express a broad range of peripheral self-antigens that are presented to developing T cells. Reciprocally, developing T cells control mTEC differentiation and organization. These bidirectional interactions are commonly referred to as thymic crosstalk. This review focuses on the relative contributions of mTEC and DC subsets to the deletion of autoreactive T cells and the generation of natural regulatory T cells. We also summarize current knowledge regarding how hematopoietic cells conversely control the composition and complex three-dimensional organization of the thymic medulla.
Collapse
Affiliation(s)
- Noëlla Lopes
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| | - Arnauld Sergé
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Aix-Marseille Université UM105 , Marseille , France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| |
Collapse
|
25
|
Passos GA, Mendes-da-Cruz DA, Oliveira EH. The Thymic Orchestration Involving Aire, miRNAs, and Cell-Cell Interactions during the Induction of Central Tolerance. Front Immunol 2015; 6:352. [PMID: 26236310 PMCID: PMC4500981 DOI: 10.3389/fimmu.2015.00352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/29/2015] [Indexed: 01/23/2023] Open
Abstract
Developing thymocytes interact sequentially with two distinct structures within the thymus: the cortex and medulla. Surviving single-positive and double-positive thymocytes from the cortex migrate into the medulla, where they interact with medullary thymic epithelial cells (mTECs). These cells ectopically express a vast set of peripheral tissue antigens (PTAs), a property termed promiscuous gene expression that is associated with the presentation of PTAs by mTECs to thymocytes. Thymocyte clones that have a high affinity for PTAs are eliminated by apoptosis in a process termed negative selection, which is essential for tolerance induction. The Aire gene is an important factor that controls the expression of a large set of PTAs. In addition to PTAs, Aire also controls the expression of miRNAs in mTECs. These miRNAs are important in the organization of the thymic architecture and act as posttranscriptional controllers of PTAs. Herein, we discuss recent discoveries and highlight open questions regarding the migration and interaction of developing thymocytes with thymic stroma, the ectopic expression of PTAs by mTECs, the association between Aire and miRNAs and its effects on central tolerance.
Collapse
Affiliation(s)
- Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, São Paulo , Brazil ; Disciplines of Genetics and Molecular Biology, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro, Rio de Janeiro , Brazil
| | - Ernna Hérida Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| |
Collapse
|
26
|
Generation of Adducts of 4-Hydroxy-2-nonenal with Heat Shock 60 kDa Protein 1 in Human Promyelocytic HL-60 and Monocytic THP-1 Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:296146. [PMID: 26078803 PMCID: PMC4452872 DOI: 10.1155/2015/296146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022]
Abstract
Heat shock 60 kDa protein 1 (HSP60) is a chaperone and stress response protein responsible for protein folding and delivery of endogenous peptides to antigen-presenting cells and also a target of autoimmunity implicated in the pathogenesis of atherosclerosis. By two-dimensional electrophoresis and mass spectrometry, we found that exposure of human promyelocytic HL-60 cells to a nontoxic concentration (10 μM) of 4-hydroxy-2-nonenal (HNE) yielded a HSP60 modified with HNE. We also detected adducts of HNE with putative uncharacterized protein CXorf49, the product of an open reading frame identified in various cell and tissue proteomes. Moreover, exposure of human monocytic THP-1 cells differentiated with phorbol 12-myristate 13-acetate to 10 μM HNE, and to light density lipoprotein modified with HNE (HNE-LDL) or by copper-catalyzed oxidation (oxLDL), but not to native LDL, stimulated the formation of HNE adducts with HSP60, as detected by immunoprecipitation and western blot, well over basal levels. The identification of HNE-HSP60 adducts outlines a framework of mutually reinforcing interactions between endothelial cell stressors, like oxLDL and HSP60, whose possible outcomes, such as the amplification of endothelial dysfunction, the spreading of lipoxidative damage to other proteins, such as CXorf49, the activation of antigen-presenting cells, and the breaking of tolerance to HSP60 are discussed.
Collapse
|
27
|
Lovewell TRJ, McDonagh AJ, Messenger AG, Azzouz M, Tazi-Ahnini R. The AIRE -230Y Polymorphism Affects AIRE Transcriptional Activity: Potential Influence on AIRE Function in the Thymus. PLoS One 2015; 10:e0127476. [PMID: 25978041 PMCID: PMC4433237 DOI: 10.1371/journal.pone.0127476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/15/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The autoimmune regulator (AIRE) is expressed in the thymus, particularly in thymic medullary epithelial cells (mTECs), and is required for the ectopic expression of a diverse range of peripheral tissue antigens by mTECs, facilitating their ability to perform negative selection of auto-reactive immature T-cells. The expression profile of peripheral tissue antigens is affected not only by AIRE deficiency but also with variation of AIRE activity in the thymus. METHOD AND RESULTS Therefore we screened 591bp upstream of the AIRE transcription start site including AIRE minimal promoter for single nucleotide polymorphism (SNPs) and identified two SNPs -655R (rs117557896) and -230Y (rs751032) respectively. To study the effect of these variations on AIRE promoter activity we generated a Flp-In host cell line which was stably transfected with a single copy of the reporter vector. Relative promoter activity was estimated by comparing the luciferase specific activity for lysates of the different reporter AIRE promoter-reporter gene constructs including AIRE-655G AIRE-230C, AIRE-655G AIRE-230T and AIRE-655A AIRE-230C. The analysis showed that the commonest haplotype AIRE-655G AIRE-230C has the highest luciferase specific activity (p<0.001). Whereas AIRE-655G AIRE-230T has a luciferase specific activity value that approaches null. Both AIRE promoter polymorphic sites have one allele that forms a CpG methylation site which we determined can be methylated in methylation assays using the M.SssI CpG methyltransferase. CONCLUSION AIRE-230Y is in a conserved region of the promoter and is adjacent to a predicted WT1 transcription factor binding site, suggesting that AIRE-230Y affects AIRE expression by influencing the binding of biochemical factors to this region. Our findings show that AIRE-655GAIRE-230T haplotype could dramatically alter AIRE transcription and so have an effect on the process of negative selection and affect susceptibility to autoimmune conditions.
Collapse
Affiliation(s)
- Thomas R. J. Lovewell
- School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J. McDonagh
- Dermatology Department, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Andrew G. Messenger
- Dermatology Department, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Department of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rachid Tazi-Ahnini
- School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
28
|
Immunohistological analysis of the jun family and the signal transducers and activators of transcription in thymus. ANATOMY RESEARCH INTERNATIONAL 2015; 2015:541582. [PMID: 25866678 PMCID: PMC4381968 DOI: 10.1155/2015/541582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/25/2015] [Accepted: 03/06/2015] [Indexed: 12/26/2022]
Abstract
The Jun family and the signal transducers and activators of transcription (STAT) are involved in proliferation and apoptosis. Moreover, c-Jun and STAT3 cooperate to regulate apoptosis. Therefore, we used double immunostaining to investigate the immunotopographical distribution of phospho-c-Jun (p-c-Jun), JunB, JunD, p-STAT3, p-STAT5, and p-STAT6 in human thymus. JunD was frequently expressed by thymocytes with higher expression in medullary compared to cortical thymocytes. p-c-Jun was frequently expressed by cortical and medullary thymic epithelial cells (TEC) and Hassall bodies (HB). p-STAT3 was frequently expressed by TEC with higher expression in cortical compared to medullary TEC and HB. p-c-Jun, JunB, p-STAT3, p-STAT5, and p-STAT6 were rarely expressed by thymocytes. JunB and JunD were expressed by rare cortical TEC with higher expression in medullary TEC. p-STAT5 and p-STAT6 were expressed by rare cortical and medullary TEC. Double immunostaining revealed p-c-Jun and JunD expression in rare CD11c positive dendritic cells. Our findings suggest a notable implication of JunD in the physiology of thymocytes and p-c-Jun and p-STAT3 in the physiology of TEC. The diversity of the immunotopographical distribution and the expression levels of p-c-Jun, JunB, JunD, p-STAT3, p-STAT5, and p-STAT6 indicates that they are differentially involved in the differentiation of TEC, thymocytes, and dendritic cells.
Collapse
|
29
|
Pignata C, D'Assante R, Sousa AE. Thymic stromal alterations and genetic disorders of immune system. Front Immunol 2015; 6:81. [PMID: 25767471 PMCID: PMC4341118 DOI: 10.3389/fimmu.2015.00081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/11/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Claudio Pignata
- Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Roberta D'Assante
- Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
30
|
Rodriguez SN, Jiang M, Bujo H, Allen PM. Self-pMHCII complexes are variably expressed in the thymus and periphery independent of mRNA expression but dependent on the activation state of the APCs. Mol Immunol 2015; 63:428-36. [PMID: 25451972 PMCID: PMC4254551 DOI: 10.1016/j.molimm.2014.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022]
Abstract
Self-peptide MHCII ligands are critical for selection of CD4+ T cells in the thymus, and maintenance in the periphery. To date, no investigation as to the exact thymic and peripheral expression of a naturally occurring positive selecting self-peptide MHCII (self-pMHCII) complex has taken place. We have generated a sensitive T cell hybridoma to functionally detect the endogenous presentation of a confirmed positive selecting self-pMHCII complex for a CD4+ transgenic T cell. Using this tool to survey and quantify the expression selecting of self-pMHCII, we have shown unequivocal proof that a known CD4+ selecting ligand can be presented on both positive and negative selecting thymic APCs. We also show that peripheral presentation of this same selecting ligand is affected by the activation state of the APCs. Furthermore, discrepancies between the gene expression and self-pMHCII complex presentation of this bona fide selecting ligand suggest that functional detection self-ligand complexes will be required to establish a complete view of the naturally presented endogenous self-pMHC landscape.
Collapse
Affiliation(s)
- Stephanie N Rodriguez
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura, Japan
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura, Japan
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
31
|
Melichar HJ, Ross JO, Taylor KT, Robey EA. Stable interactions and sustained TCR signaling characterize thymocyte-thymocyte interactions that support negative selection. THE JOURNAL OF IMMUNOLOGY 2014; 194:1057-1061. [PMID: 25520400 DOI: 10.4049/jimmunol.1400169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Negative selection is one of the primary mechanisms that render T cells tolerant to self. Thymic dendritic cells play an important role in negative selection, in line with their ability to induce migratory arrest and sustained TCR signals. Thymocytes themselves display self-peptide/MHC class I complexes, and although there is evidence that they can support clonal deletion, it is not clear whether they do so directly via stable cell-cell contacts and sustained TCR signals. In this study, we show that murine thymocytes can support surprisingly efficient negative selection of Ag-specific thymocytes. Furthermore, we observe that agonist-dependent thymocyte-thymocyte interactions occurred as stable, motile conjugates led by the peptide-presenting thymocyte and in which the trailing peptide-specific thymocyte exhibited persistent elevations in intracellular calcium concentration. These data confirm that self-Ag presentation by thymocytes is an additional mechanism to ensure T cell tolerance and further strengthen the correlation between stable cellular contacts, sustained TCR signals, and efficient negative selection.
Collapse
Affiliation(s)
- Heather J Melichar
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jenny O Ross
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Kayleigh T Taylor
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
32
|
Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay IC, Deadman ME, Heger A, Ponting CP, Holländer GA. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res 2014; 24:1918-31. [PMID: 25224068 PMCID: PMC4248310 DOI: 10.1101/gr.171645.113] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 09/12/2014] [Indexed: 12/18/2022]
Abstract
Promiscuous gene expression (PGE) by thymic epithelial cells (TEC) is essential for generating a diverse T cell antigen receptor repertoire tolerant to self-antigens, and thus for avoiding autoimmunity. Nevertheless, the extent and nature of this unusual expression program within TEC populations and single cells are unknown. Using deep transcriptome sequencing of carefully identified mouse TEC subpopulations, we discovered a program of PGE that is common between medullary (m) and cortical TEC, further elaborated in mTEC, and completed in mature mTEC expressing the autoimmune regulator gene (Aire). TEC populations are capable of expressing up to 19,293 protein-coding genes, the highest number of genes known to be expressed in any cell type. Remarkably, in mouse mTEC, Aire expression alone positively regulates 3980 tissue-restricted genes. Notably, the tissue specificities of these genes include known targets of autoimmunity in human AIRE deficiency. Led by the observation that genes induced by Aire expression are generally characterized by a repressive chromatin state in somatic tissues, we found these genes to be strongly associated with H3K27me3 marks in mTEC. Our findings are consistent with AIRE targeting and inducing the promiscuous expression of genes previously epigenetically silenced by Polycomb group proteins. Comparison of the transcriptomes of 174 single mTEC indicates that genes induced by Aire expression are transcribed stochastically at low cell frequency. Furthermore, when present, Aire expression-dependent transcript levels were 16-fold higher, on average, in individual TEC than in the mTEC population.
Collapse
Affiliation(s)
- Stephen N Sansom
- MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom;
| | - Noriko Shikama-Dorn
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland
| | - Saule Zhanybekova
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland
| | - Gretel Nusspaumer
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland
| | - Iain C Macaulay
- Wellcome Trust Sanger Institute-EBI Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Mary E Deadman
- Developmental Immunology, Department of Paediatrics, and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Andreas Heger
- MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Chris P Ponting
- MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; Wellcome Trust Sanger Institute-EBI Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Georg A Holländer
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland; Developmental Immunology, Department of Paediatrics, and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
33
|
Thymus-deriving natural regulatory T cell generation in vitro: role of the source of activation signals. Immunol Lett 2014; 162:199-209. [PMID: 25445615 DOI: 10.1016/j.imlet.2014.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/09/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022]
Abstract
In this research we have examined different sources of activation signals in order to optimize culture conditions for in vitro generation of thymus-deriving natural regulatory T cells (nTregs). We have established a novel model using JAWS II dendritic cell line of immature phenotype and compared it to commonly used methods for the generation of Tregs from peripheral lymphoid organs or blood T cells. In our model the first activation signal is provided by anti-CD3 monoclonal antibodies while the second is delivered by costimulatory molecules expressed on JAWS II cells. The presence of JAWS II cells co-cultured in vitro with unsorted thymocytes directly isolated from the thymus gland creates environment favoring SP CD4+ differentiation, provides the apoptotic cells clearance, maintains the survival of thymocytes and facilitate nTreg generation. Moreover the usage of immature dendritic cells stimuli enables to conduct research on agents affecting nTreg survival, proliferation and development in conditions of cell-to-cell contact of undifferentiated thymocytes with dendritic cells.
Collapse
|
34
|
Wolff ASB, Kärner J, Owe JF, Oftedal BEV, Gilhus NE, Erichsen MM, Kämpe O, Meager A, Peterson P, Kisand K, Willcox N, Husebye ES. Clinical and serologic parallels to APS-I in patients with thymomas and autoantigen transcripts in their tumors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3880-90. [PMID: 25230752 PMCID: PMC4190667 DOI: 10.4049/jimmunol.1401068] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with the autoimmune polyendocrine syndrome type I (APS-I), caused by mutations in the autoimmune regulator (AIRE) gene, and myasthenia gravis (MG) with thymoma, show intriguing but unexplained parallels. They include uncommon manifestations like autoimmune adrenal insufficiency (AI), hypoparathyroidism, and chronic mucocutaneous candidiasis plus autoantibodies neutralizing IL-17, IL-22, and type I IFNs. Thymopoiesis in the absence of AIRE is implicated in both syndromes. To test whether these parallels extend further, we screened 247 patients with MG, thymoma, or both for clinical features and organ-specific autoantibodies characteristic of APS-I patients, and we assayed 26 thymoma samples for transcripts for AIRE and 16 peripheral tissue-specific autoantigens (TSAgs) by quantitative PCR. We found APS-I-typical autoantibodies and clinical manifestations, including chronic mucocutaneous candidiasis, AI, and asplenia, respectively, in 49 of 121 (40%) and 10 of 121 (8%) thymoma patients, but clinical features seldom occurred together with the corresponding autoantibodies. Both were rare in other MG subgroups (n = 126). In 38 patients with APS-I, by contrast, we observed neither autoantibodies against muscle Ags nor any neuromuscular disorders. Whereas relative transcript levels for AIRE and 7 of 16 TSAgs showed the expected underexpression in thymomas, levels were increased for four of the five TSAgs most frequently targeted by these patients' autoantibodies. Therefore, the clinical and serologic parallels to APS-I in patients with thymomas are not explained purely by deficient TSAg transcription in these aberrant AIRE-deficient tumors. We therefore propose additional explanations for the unusual autoimmune biases they provoke. Thymoma patients should be monitored for potentially life-threatening APS-I manifestations such as AI and hypoparathyroidism.
Collapse
Affiliation(s)
- Anette S B Wolff
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
| | - Jaanika Kärner
- Molecular Pathology Group, Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Jone F Owe
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | | | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Martina M Erichsen
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Olle Kämpe
- Department of Medicine, Solna, Karolinska University Hospital, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Anthony Meager
- Biotherapeutics Group, The National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom; and
| | - Pärt Peterson
- Molecular Pathology Group, Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Kai Kisand
- Molecular Pathology Group, Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Nick Willcox
- Department of Clinical Neurology, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
35
|
Perry JSA, Lio CWJ, Kau AL, Nutsch K, Yang Z, Gordon JI, Murphy KM, Hsieh CS. Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity 2014; 41:414-426. [PMID: 25220213 PMCID: PMC4175925 DOI: 10.1016/j.immuni.2014.08.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/18/2014] [Indexed: 02/07/2023]
Abstract
The contribution of thymic antigen-presenting-cell (APC) subsets in selecting a self-tolerant T cell population remains unclear. We show that bone marrow (BM) APCs and medullary thymic epithelial cells (mTECs) played nonoverlapping roles in shaping the T cell receptor (TCR) repertoire by deletion and regulatory T (Treg) cell selection of distinct TCRs. Aire, which induces tissue-specific antigen expression in mTECs, affected the TCR repertoire in a manner distinct from mTEC presentation. Approximately half of Aire-dependent deletion or Treg cell selection utilized a pathway dependent on antigen presentation by BM APCs. Batf3-dependent CD8α⁺ dendritic cells (DCs) were the crucial BM APCs for Treg cell selection via this pathway, showing enhanced ability to present antigens from stromal cells. These results demonstrate the division of function between thymic APCs in shaping the self-tolerant TCR repertoire and reveal an unappreciated cooperation between mTECs and CD8α⁺ DCs for presentation of Aire-induced self-antigens to developing thymocytes.
Collapse
Affiliation(s)
- Justin S A Perry
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chan-Wang J Lio
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L Kau
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Katherine Nutsch
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhuo Yang
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Kenneth M Murphy
- Howard Hughes Medical Institute and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Cédile O, Løbner M, Toft-Hansen H, Frank I, Wlodarczyk A, Irla M, Owens T. Thymic CCL2 influences induction of T-cell tolerance. J Autoimmun 2014; 55:73-85. [PMID: 25129504 DOI: 10.1016/j.jaut.2014.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022]
Abstract
Thymic epithelial cells (TEC) and dendritic cells (DC) play a role in T cell development by controlling the selection of the T cell receptor repertoire. DC have been described to take up antigens in the periphery and migrate into the thymus where they mediate tolerance via deletion of autoreactive T cells, or by induction of natural regulatory T cells. Migration of DC to thymus is driven by chemokine receptors. CCL2, a major ligand for the chemokine receptor CCR2, is an inflammation-associated chemokine that induces the recruitment of immune cells in tissues. CCL2 and CCR2 are implicated in promoting experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis. We here show that CCL2 is constitutively expressed by endothelial cells and TEC in the thymus. Transgenic mice overexpressing CCL2 in the thymus showed an increased number of thymic plasmacytoid DC and pronounced impairment of T cell development. Consequently, CCL2 transgenic mice were resistant to EAE. These findings demonstrate that expression of CCL2 in thymus regulates DC homeostasis and controls development of autoreactive T cells, thus preventing development of autoimmune diseases.
Collapse
Affiliation(s)
- O Cédile
- Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, J.B. Winsløwsvej 25, DK-5000 Odense C, Denmark
| | - M Løbner
- Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, J.B. Winsløwsvej 25, DK-5000 Odense C, Denmark
| | - H Toft-Hansen
- Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, J.B. Winsløwsvej 25, DK-5000 Odense C, Denmark
| | - I Frank
- Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, J.B. Winsløwsvej 25, DK-5000 Odense C, Denmark
| | - A Wlodarczyk
- Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, J.B. Winsløwsvej 25, DK-5000 Odense C, Denmark
| | - M Irla
- Centre d'Immunologie de Marseille-Luminy - CIML, Institut National de la Santé et de la Recherche Médicale, U1104, Centre National de la Recherche Scientifique, UMR7280 and Aix Marseille Université, UM2, F-13009 Marseille, France
| | - T Owens
- Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, J.B. Winsløwsvej 25, DK-5000 Odense C, Denmark.
| |
Collapse
|
37
|
Cowan JE, McCarthy NI, Parnell SM, White AJ, Bacon A, Serge A, Irla M, Lane PJL, Jenkinson EJ, Jenkinson WE, Anderson G. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive αβT cells in the adult thymus. THE JOURNAL OF IMMUNOLOGY 2014; 193:1204-12. [PMID: 24990081 PMCID: PMC4105241 DOI: 10.4049/jimmunol.1400993] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
αβT cell development depends upon serial migration of thymocyte precursors through cortical and medullary microenvironments, enabling specialized stromal cells to provide important signals at specific stages of their development. Although conventional αβT cells are subject to clonal deletion in the medulla, entry into the thymus medulla also fosters αβT cell differentiation. For example, during postnatal periods, the medulla is involved in the intrathymic generation of multiple αβT cell lineages, notably the induction of Foxp3(+) regulatory T cell development and the completion of invariant NKT cell development. Although migration of conventional αβT cells to the medulla is mediated by the chemokine receptor CCR7, how other T cell subsets gain access to medullary areas during their normal development is not clear. In this study, we show that combining a panel of thymocyte maturation markers with cell surface analysis of CCR7 and CCR4 identifies distinct stages in the development of multiple αβT cell lineages in the thymus. Although Aire regulates expression of the CCR4 ligands CCL17 and CCL22, we show that CCR4 is dispensable for thymocyte migration and development in the adult thymus, demonstrating defective T cell development in Aire(-/-) mice is not because of a loss of CCR4-mediated migration. Moreover, we reveal that CCR7 controls the development of invariant NKT cells by enabling their access to IL-15 trans-presentation in the thymic medulla and influences the balance of early and late intrathymic stages of Foxp3(+) regulatory T cell development. Collectively, our data identify novel roles for CCR7 during intrathymic T cell development, highlighting its importance in enabling multiple αβT cell lineages to access the thymic medulla.
Collapse
Affiliation(s)
- Jennifer E Cowan
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Nicholas I McCarthy
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sonia M Parnell
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Andrea J White
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Andrea Bacon
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Arnauld Serge
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM Unité Mixte de Recherche 1068, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7258, Aix-Marseille University, UM 105, F-13009 Marseille, France; and
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM Unité Mixte de Recherche 631, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6102, Aix-Marseille University, UM 2, F-13009 Marseille, France
| | - Peter J L Lane
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Eric J Jenkinson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - William E Jenkinson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Graham Anderson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
38
|
A regulatory role for TGF-β signaling in the establishment and function of the thymic medulla. Nat Immunol 2014; 15:554-61. [DOI: 10.1038/ni.2869] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/11/2014] [Indexed: 12/16/2022]
|
39
|
Hopp AK, Rupp A, Lukacs-Kornek V. Self-antigen presentation by dendritic cells in autoimmunity. Front Immunol 2014; 5:55. [PMID: 24592266 PMCID: PMC3923158 DOI: 10.3389/fimmu.2014.00055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/30/2014] [Indexed: 11/13/2022] Open
Abstract
The operation of both central and peripheral tolerance ensures the prevention of autoimmune diseases. The maintenance of peripheral tolerance requires self-antigen presentation by professional antigen presenting cells (APCs). Dendritic cells (DCs) are considered as major APCs involved in this process. The current review discusses the role of DCs in autoimmune diseases, the various factors involved in the induction and maintenance of tolerogenic DC phenotype, and pinpoints their therapeutic capacity as well as potential novel targets for future clinical studies.
Collapse
Affiliation(s)
- Ann-Katrin Hopp
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | - Anne Rupp
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | | |
Collapse
|
40
|
Khailaie S, Bahrami F, Janahmadi M, Milanez-Almeida P, Huehn J, Meyer-Hermann M. A mathematical model of immune activation with a unified self-nonself concept. Front Immunol 2013; 4:474. [PMID: 24409179 PMCID: PMC3872974 DOI: 10.3389/fimmu.2013.00474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/06/2013] [Indexed: 12/14/2022] Open
Abstract
The adaptive immune system reacts against pathogenic nonself, whereas it normally remains tolerant to self. The initiation of an immune response requires a critical antigen(Ag)-stimulation and a critical number of Ag-specific T cells. Autoreactive T cells are not completely deleted by thymic selection and partially present in the periphery of healthy individuals that respond in certain physiological conditions. A number of experimental and theoretical models are based on the concept that structural differences discriminate self from nonself. In this article, we establish a mathematical model for immune activation in which self and nonself are not distinguished. The model considers the dynamic interplay of conventional T cells, regulatory T cells (Tregs), and IL-2 molecules and shows that the renewal rate ratio of resting Tregs to naïve T cells as well as the proliferation rate of activated T cells determine the probability of immune stimulation. The actual initiation of an immune response, however, relies on the absolute renewal rate of naïve T cells. This result suggests that thymic selection reduces the probability of autoimmunity by increasing the Ag-stimulation threshold of self reaction which is established by selection of a low number of low-avidity autoreactive T cells balanced with a proper number of Tregs. The stability analysis of the ordinary differential equation model reveals three different possible immune reactions depending on critical levels of Ag-stimulation: a subcritical stimulation, a threshold stimulation inducing a proper immune response, and an overcritical stimulation leading to chronic co-existence of Ag and immune activity. The model exhibits oscillatory solutions in the case of persistent but moderate Ag-stimulation, while the system returns to the homeostatic state upon Ag clearance. In this unifying concept, self and nonself appear as a result of shifted Ag-stimulation thresholds which delineate these three regimes of immune activation.
Collapse
Affiliation(s)
- Sahamoddin Khailaie
- Department of Systems Immunology, Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Fariba Bahrami
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran , Tehran , Iran
| | - Mahyar Janahmadi
- Neuroscience Research Centre and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Pedro Milanez-Almeida
- Department of Experimental Immunology, Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Helmholtz Centre for Infection Research , Braunschweig , Germany ; Bio Centre for Life Science, Technische Universität Braunschweig , Braunschweig , Germany
| |
Collapse
|
41
|
Bayer AL, Pugliese A, Malek TR. The IL-2/IL-2R system: from basic science to therapeutic applications to enhance immune regulation. Immunol Res 2013; 57:197-209. [PMID: 24214027 PMCID: PMC3990437 DOI: 10.1007/s12026-013-8452-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IL-2 plays a critical role in the normal function of the immune system. A trophic factor for lymphocytes, IL-2 is required for mounting and sustaining adaptive T cell responses; however, IL-2 is also critical for immune regulation via its effects on regulatory T cells (Treg cells). Over the years, we have contributed to the understanding of the biology of IL-2 and its signaling through the IL-2 receptor and helped define the key role played by IL-2 in Treg development and function. Our data show that Treg cells have a heightened sensitivity to IL-2, which may create a therapeutic window to promote immune regulation by selective stimulation of Treg cells. We are now developing new efforts to translate this knowledge to the clinical arena, through our focused interest in Type 1 diabetes as a prototypic autoimmune disease. Specifically, we aim at developing IL-2-based therapeutic regimens and incorporate means to enhance antigen-specific Treg responses, for improved and more selective regulation of islet autoimmunity. In parallel, we are pursuing studies in preclinical models of autoimmunity and transplantation to define critical factors for successful adoptive Treg therapy and develop clinically applicable therapeutic protocols.
Collapse
Affiliation(s)
- Allison L. Bayer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Alberto Pugliese
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Thomas R. Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| |
Collapse
|
42
|
Linnemann C, Heemskerk B, Kvistborg P, Kluin RJC, Bolotin DA, Chen X, Bresser K, Nieuwland M, Schotte R, Michels S, Gomez-Eerland R, Jahn L, Hombrink P, Legrand N, Shu CJ, Mamedov IZ, Velds A, Blank CU, Haanen JBAG, Turchaninova MA, Kerkhoven RM, Spits H, Hadrup SR, Heemskerk MHM, Blankenstein T, Chudakov DM, Bendle GM, Schumacher TNM. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat Med 2013; 19:1534-41. [DOI: 10.1038/nm.3359] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 02/06/2013] [Indexed: 01/08/2023]
|
43
|
Laan M, Peterson P. The many faces of aire in central tolerance. Front Immunol 2013; 4:326. [PMID: 24130560 PMCID: PMC3795325 DOI: 10.3389/fimmu.2013.00326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/24/2013] [Indexed: 11/13/2022] Open
Abstract
Although the role that Autoimmune Regulator (Aire) plays in the induction of central tolerance is well known, the precise cellular and molecular mechanisms are still unclear and debated. In the prevailing view, Aire serves mainly as a direct inducer of tissue-specific antigens. However, there is a growing amount of evidence suggesting that Aire modulates the differentiation program of medullary thymic epithelial cells, which may directly contribute to the negative selection of self-reactive thymocytes. In addition, Aire has been shown to regulate the expression of many intrathymic chemokines that are required for the proper localization of thymocytes and dendritic cells, and thus are potentially important for direct and indirect self-antigen presentation in the thymic medulla. Further, recent evidence suggests that the induction of certain antigen-specific regulatory T-cells that translocate to tumors and peripheral tissues can be Aire dependent and may contribute to tissue-specific tolerance. This review summarizes the current understanding of the effects of Aire on these alternative mechanisms for the induction of Aire-induced central tolerance.
Collapse
Affiliation(s)
- Martti Laan
- Molecular Pathology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, Tartu University , Tartu , Estonia
| | | |
Collapse
|
44
|
Nowak J, Wozniak J, Mendek-Czajkowska E, Dlugokecka A, Mika-Witkowska R, Rogatko-Koros M, Graczyk-Pol E, Marosz-Rudnicka A, Dziopa J, Golec A, Kopec-Szlezak J, Warzocha K. Potential link between MHC-self-peptide presentation and hematopoiesis; the analysis of HLA-DR expression in CD34-positive cells and self-peptide presentation repertoires of MHC molecules associated with paroxysmal nocturnal hemoglobinuria. Cell Biochem Biophys 2013; 65:321-33. [PMID: 23076633 PMCID: PMC3601265 DOI: 10.1007/s12013-012-9435-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanisms of MHC allele associations with paroxysmal nocturnal hemoglobinuria (PNH) and its aplastic anemia subtype (AA/PNH) remain unclear. It might be dependent on MHC molecule functional properties, such as a scope and frequency of antigen sampling and presentation. For documented PNH-associated MHC alleles we analyzed current reference databases on MHC molecule-eluted peptide presentation repertoires and searched for a range of presented peptides. MHC class II expression was measured on CD34+ cells and appeared to be increased in PNH patients. Two class I alleles (HLA-A*24:02 and B*18:01) have been previously confirmed to associate with protection and increased risk of AA/PNH, respectively. Their product molecules presented immunodominant epitopes derived from proapoptotic (serine/threonine–protein phosphatase) and antiapoptotic (phospholipase D), respectively, intracellular enzymes dependent on phosphoinositide (PI) content. For total PNH and non-aplastic PNH (n/PNH) subtype-associated DRB1*15:01 and DRB1*04:01 class II molecules presentation of exceptionally broad arrays of their own peptide fragments has been found. We conclude that self antigen peptides presented with high frequency in the context of MHC molecules of increased expression may be involved in the immune recognition and the regulation of HSC in the periphery. The block in the normal plasma membrane PI production due to the PIG-A mutation can help explain the differences in the activation of intracellular regulatory pathways observed between PNH and normal HSC. This is evident in the variation in MHC association patterns and peptide presentation repertoires between these two groups of patients.
Collapse
Affiliation(s)
- Jacek Nowak
- Department of Immunogenetics Institute of Hematology and Transfusion Medicine, 14 Indira Gandhi Street, 02-776, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Akiyama T, Shinzawa M, Qin J, Akiyama N. Regulations of gene expression in medullary thymic epithelial cells required for preventing the onset of autoimmune diseases. Front Immunol 2013; 4:249. [PMID: 23986760 PMCID: PMC3752772 DOI: 10.3389/fimmu.2013.00249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/09/2013] [Indexed: 11/13/2022] Open
Abstract
Elimination of potential self-reactive T cells in the thymus is crucial for preventing the onset of autoimmune diseases. Epithelial cell subsets localized in thymic medulla [medullary thymic epithelial cells (mTECs)] contribute to this process by supplying a wide range of self-antigens that are otherwise expressed in a tissue-specific manner (TSAs). Expression of some TSAs in mTECs is controlled by the autoimmune regulator (AIRE) protein, of which dysfunctional mutations are the causative factor of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). In addition to the elimination of self-reactive T cells, recent studies indicated roles of mTECs in the development of Foxp3-positive regulatory T cells, which suppress autoimmunity and excess immune reactions in peripheral tissues. The TNF family cytokines, RANK ligand, CD40 ligand, and lymphotoxin were found to promote the differentiation of AIRE- and TSA-expressing mTECs. Furthermore, activation of NF-κB is essential for mTEC differentiation. In this mini-review, we focus on molecular mechanisms that regulate induction of AIRE and TSA expression and discuss possible contributions of these mechanisms to prevent the onset of autoimmune diseases.
Collapse
Affiliation(s)
- Taishin Akiyama
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | | | | | | |
Collapse
|
46
|
Hadeiba H, Butcher EC. Thymus-homing dendritic cells in central tolerance. Eur J Immunol 2013; 43:1425-9. [PMID: 23616226 PMCID: PMC3774955 DOI: 10.1002/eji.201243192] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 04/18/2013] [Accepted: 04/18/2013] [Indexed: 12/31/2022]
Abstract
Central tolerance is critical in establishing a peripheral T-cell repertoire purged of functional autoreactive T cells. One of the major requirements for effective central tolerance is the presentation of self and other innocuous antigens (Ags), including food, gut flora, or airway allergens, to developing T cells in the thymus. This seemingly challenging task can be mediated in some cases by ectopic expression of tissue-specific Ags by thymic epithelial cells or by entry of systemic blood-borne Ags into the thymus. More recently, thymic homing peripheral dendritic cells (DCs) have been proposed as cellular transporters of peripheral tissue-specific Ags or foreign innocuous Ags. The aim of this viewpoint is to discuss the three principal thymic DC populations and their trafficking properties in the context of central tolerance. We will first discuss the importance of peripheral DC trafficking to the thymus and then compare and contrast the three DC subsets. We will describe how they were characterized, describe their trafficking to and their microenvironmental positioning in the thymus, and discuss the functional consequence of thymic trafficking and localization on thymic selection events.
Collapse
Affiliation(s)
- Husein Hadeiba
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | | |
Collapse
|
47
|
Shi Y, Zhu M. Medullary thymic epithelial cells, the indispensable player in central tolerance. SCIENCE CHINA. LIFE SCIENCES 2013; 56:392-8. [PMID: 23633070 DOI: 10.1007/s11427-013-4482-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/21/2013] [Indexed: 02/06/2023]
Abstract
Crosstalk between thymocytes and thymic epithelial cells is critical for T cell development and the establishment of central tolerance. Medullary thymic epithelial cells (mTECs) play important roles in the late stage of T cell development, especially negative selection and Treg generation. The function of mTECs is highly dependent on their characteristic features such as ectopic expression of peripheral tissue restricted antigens (TRAs) and their master regulator-autoimmune regulator (Aire), expression of various chemokines and cytokines. In this review, we summarize the current understanding of cellular and molecular mechanisms of mTEC development and its functions in T cell development and the establishment of central tolerance. The open questions in this field are also discussed. Understanding the function and underlying mechanisms of mTECs will contribute to the better control of autoimmune diseases and the improvement of immune reconstitution during aging or after infection, chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Yaoyao Shi
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
48
|
Forrester JV, Steptoe RJ, Klaska IP, Martin-Granados C, Dua HS, Degli-Esposti MA, Wikstrom ME. Cell-based therapies for ocular inflammation. Prog Retin Eye Res 2013; 35:82-101. [PMID: 23542232 DOI: 10.1016/j.preteyeres.2013.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 12/13/2022]
Abstract
Since the plasticity and the potential for re-programming cells has become widely accepted, there has been great interest in cell-based therapies. These are being applied to a range of diseases, not least ocular diseases, where it is assumed that there is a reduced risk of immune rejection although this may be more perceived than real. There are two broad classes of cell-based therapies: those aimed at restoring structure and function of specific tissues and cells; and those directed towards restoring immunological homeostasis by controlling the damaging effects of inflammatory disease. Stem cells of all types represent the first group and prototypically have been used with the aim of regenerating failing cells. In contrast, immune cells have been suggested as potential modulators of inflammation. However, there is functional overlap in these two applications, with some types of stem cells, such as mesenchymal stem cells, demonstrating a potent immunomodulatory effect. This review summarises recent information on cell based therapies for ocular disease, with special emphasis on ocular inflammatory disease, and explores current uses, potential and limitations.
Collapse
Affiliation(s)
- John V Forrester
- Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
49
|
Murine thymic selection quantified using a unique method to capture deleted T cells. Proc Natl Acad Sci U S A 2013; 110:4679-84. [PMID: 23487759 DOI: 10.1073/pnas.1217532110] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Thymic positive and negative selection events generate a T-cell repertoire that is MHC restricted and self-tolerant. The number of T cells undergoing positive and negative selection in normal mice has never been firmly established. We generated mice that lack the proapoptotic molecule Bim (bcl2l11) together with a Nur77(GFP) transgene, which allowed the identification and enumeration of T cells that would normally undergo clonal deletion. Using this method, we report the striking observation that six times more cells undergo negative selection than complete positive selection. Seventy-five percent of the negatively selected cells are deleted at the double positive stage in the thymic cortex, compared with 25% at the single positive stage in the medulla. The fact that more thymocytes are highly reactive to MHC than are weakly reactive is inconsistent with a random model of recognition and suggests that T-cell recognition is MHC biased. Furthermore, Bim(-/-) mice had an increased number of GFP(hi) cells in the peripheral lymphoid tissue and a corresponding increase in antigen experienced or anergic cell phenotype. Our data also show that the CD4+ T cells that are clonally deleted experienced only slightly stronger T-cell receptor signaling than those that developed into regulatory T cells.
Collapse
|
50
|
Yin Y, Li Y, Mariuzza RA. Structural basis for self-recognition by autoimmune T-cell receptors. Immunol Rev 2013; 250:32-48. [PMID: 23046121 DOI: 10.1111/imr.12002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
T-cell receptors (TCRs) recognize peptides presented by major histocompatibility complex molecules (pMHC) to discriminate between foreign and self-antigens. Whereas T-cell recognition of foreign peptides is essential for protection against microbial pathogens, recognition of self-peptides by T cells that have escaped negative selection in the thymus can lead to autoimmune disease. Structural studies of autoimmune TCR-pMHC complexes have provided insights into the mechanisms underlying self-recognition and escape from thymic deletion. Two broad categories of self-reactive TCRs can be clearly distinguished: (i) TCRs with altered binding topologies to self-pMHC and (ii) TCRs that bind self-pMHC in the canonical diagonal orientation, but where there are structural defects or suboptimal anchors in the self-ligand. For both categories, however, the overall stability of the autoimmune TCR-pMHC complex is markedly reduced compared to anti-microbial complexes, allowing the autoreactive T cells to evade negative selection, yet retain the ability to be activated by self-antigens in target organs. Additionally, the structures provide insights into TCR cross-reactivity, which can contribute to autoimmunity by increasing the likelihood of self-pMHC recognition. Efforts are now underway to understand the impact of structural alterations in autoimmune TCR-pMHC complexes on higher order assemblies involved in TCR signaling, as well as on immunological synapse formation.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | | | | |
Collapse
|