1
|
Süsal C, Alvarez CM, Benning L, Daniel V, Zeier M, Schaier M, Morath C, Speer C. The balance between memory and regulatory cell populations in kidney transplant recipients with operational tolerance. Clin Exp Immunol 2024; 216:318-330. [PMID: 38393856 PMCID: PMC11097908 DOI: 10.1093/cei/uxae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024] Open
Abstract
Donor-reactive memory cells represent a barrier to long-term kidney graft survival. A better understanding of regulatory mechanisms that counterbalance alloreactive memory responses may help to identify patients with operational tolerance. This prospective study investigated the equilibrium between memory T-cell subsets and regulatory T or B cells (Tregs, Bregs) in peripheral blood of kidney transplant recipients with operational tolerance (N = 8), chronic rejection (N = 8), and different immunosuppressive treatment regimens (N = 81). Patients on hemodialysis and healthy individuals served as controls (N = 50). In addition, the expression of Treg- and Breg-associated molecule genes was analyzed. Patients with chronic rejection showed a disrupted memory T-cell composition with a significantly higher frequency of circulating CD8+ terminally differentiated effector memory (TEMRA) T cells than patients with operational tolerance, patients on hemodialysis, or healthy controls (P < 0.001). Low frequency of CD8+ TEMRA and high frequency of Tregs and transitional Bregs were found in operationally tolerant patients. Consequently, operationally tolerant patients showed, as compared to all other transplant recipients with different immunosuppressive regiments, the lowest ratios between CD8+ TEMRA T cells and Tregs or Bregs (for both P < 0.001). Moreover, a specific peripheral blood transcription pattern was found in operationally tolerant patients with an increased expression of Breg- and Treg-associated genes CD22 and FoxP3 and a decreased FcγRIIA/FcγRIIB transcript ratio (for all P < 0.001). In conclusion, monitoring the balance between circulating CD8+ TEMRA T cells and regulatory cell subsets and their transcripts may help to distinguish transplant recipients with operational tolerance from recipients at risk of graft loss.
Collapse
Affiliation(s)
- Caner Süsal
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
- Transplant Immunology Research Center of Excellence, Koç University Hospital, Istanbul, Turkey
| | - Cristiam M Alvarez
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Louise Benning
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Christian Morath
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Lee WC, Wang YC, Hsu HY, Hsu PY, Cheng CH, Lee CF, Wu TJ, Chan KM. Immunological discrepancy in aged mice facilitates skin allograft survival. Aging (Albany NY) 2021; 13:16219-16228. [PMID: 34157682 PMCID: PMC8266325 DOI: 10.18632/aging.203152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/14/2021] [Indexed: 04/29/2023]
Abstract
More and more aged people are undergoing organ transplantation. Understanding aging effects on immunity will be helpful for post-transplantation care and adjustment of immunosuppressants for aged recipients. A mouse model, using C3H mice as donors and aged/young C57BL/10J mice as recipients, was employed to study aging effects on immunity. The results showed that frequency of myeloid-derived suppressor cells (MDSC) and level of TGF-β was higher in aged mice than in young mice (4.4 ± 1.4% versus 1.6 ± 1.1%, p = 0.026 for MDSC; 21.04 ± 3.91 ng/ml versus 15.26 ± 5.01 ng/ml, p = 0.026 for TGF-β). In vivo, skin allograft survived longer on the aged than on young mice (19.7 ± 5.2 days versus 11.9 ± 4.1 days, p = 0.005). When entinostat was applied to block MDSC, the survival of skin allografts on aged mice was shorten to 13.5 ± 4.7 days which was not different from the survival on young mice (p = 0.359). In conclusion, allogeneic immunity was different in aged from young mice in high frequency of MDSC and high serum level of TGF-β. Blocking the function of MDSC reversed the low immunity in aged mice and caused skin allograft rejection similar to young recipients.
Collapse
Affiliation(s)
- Wei-Chen Lee
- Division of Liver and Transplantation Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Yu-Chao Wang
- Division of Liver and Transplantation Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsiu-Ying Hsu
- Division of Liver and Transplantation Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Pao-Yueh Hsu
- Division of Liver and Transplantation Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Hsien Cheng
- Division of Liver and Transplantation Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Chen-Fang Lee
- Division of Liver and Transplantation Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Ting-Jung Wu
- Division of Liver and Transplantation Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Kun-Ming Chan
- Division of Liver and Transplantation Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
3
|
Siu JHY, Surendrakumar V, Richards JA, Pettigrew GJ. T cell Allorecognition Pathways in Solid Organ Transplantation. Front Immunol 2018; 9:2548. [PMID: 30455697 PMCID: PMC6230624 DOI: 10.3389/fimmu.2018.02548] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/17/2018] [Indexed: 02/02/2023] Open
Abstract
Transplantation is unusual in that T cells can recognize alloantigen by at least two distinct pathways: as intact MHC alloantigen on the surface of donor cells via the direct pathway; and as self-restricted processed alloantigen via the indirect pathway. Direct pathway responses are viewed as strong but short-lived and hence responsible for acute rejection, whereas indirect pathway responses are typically thought to be much longer lasting and mediate the progression of chronic rejection. However, this is based on surprisingly scant experimental evidence, and the recent demonstration that MHC alloantigen can be re-presented intact on recipient dendritic cells-the semi-direct pathway-suggests that the conventional view may be an oversimplification. We review recent advances in our understanding of how the different T cell allorecognition pathways are triggered, consider how this generates effector alloantibody and cytotoxic CD8 T cell alloresponses and assess how these responses contribute to early and late allograft rejection. We further discuss how this knowledge may inform development of cellular and pharmacological therapies that aim to improve transplant outcomes, with focus on the use of induced regulatory T cells with indirect allospecificity and on the development of immunometabolic strategies. KEY POINTS Acute allograft rejection is likely mediated by indirect and direct pathway CD4 T cell alloresponses.Chronic allograft rejection is largely mediated by indirect pathway CD4 T cell responses. Direct pathway recognition of cross-dressed endothelial derived MHC class II alloantigen may also contribute to chronic rejection, but the extent of this contribution is unknown.Late indirect pathway CD4 T cell responses will be composed of heterogeneous populations of allopeptide specific T helper cell subsets that recognize different alloantigens and are at various stages of effector and memory differentiation.Knowledge of the precise indirect pathway CD4 T cell responses active at late time points in a particular individual will likely inform the development of alloantigen-specific cellular therapies and will guide immunometabolic modulation.
Collapse
|
4
|
Mota APL, Menezes CA, Alpoim PN, Cardoso CN, Martins SR, Alves LV, de A Martins-Filho O, Gomes KB, Dusse LMS. Regulatory and pro-inflammatory cytokines in Brazilian living-related renal transplant recipients according to creatinine plasma levels. Nephrology (Carlton) 2018; 23:867-875. [DOI: 10.1111/nep.13114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Ana PL Mota
- Faculty of Pharmacy, Department of Clinical and Toxicological Analysis; Federal University of Minas Gerais - UFMG; Belo Horizonte Minas Gerais Brazil
| | - Cristiane A Menezes
- Faculty of Pharmacy, Department of Clinical and Toxicological Analysis; Federal University of Minas Gerais - UFMG; Belo Horizonte Minas Gerais Brazil
| | - Patrícia N Alpoim
- Faculty of Pharmacy, Department of Clinical and Toxicological Analysis; Federal University of Minas Gerais - UFMG; Belo Horizonte Minas Gerais Brazil
| | - Carolina N Cardoso
- Faculty of Pharmacy, Department of Clinical and Toxicological Analysis; Federal University of Minas Gerais - UFMG; Belo Horizonte Minas Gerais Brazil
| | - Suellen R Martins
- Faculty of Pharmacy, Department of Clinical and Toxicological Analysis; Federal University of Minas Gerais - UFMG; Belo Horizonte Minas Gerais Brazil
| | - Lorraine V Alves
- Faculty of Pharmacy, Department of Clinical and Toxicological Analysis; Federal University of Minas Gerais - UFMG; Belo Horizonte Minas Gerais Brazil
| | - Olindo de A Martins-Filho
- Laboratory of Diagnostic and Monitoring Biomarkers; Oswaldo Cruz Foundation - FIOCRUZ; Belo Horizonte Minas Gerais Brazil
| | - Karina B Gomes
- Faculty of Pharmacy, Department of Clinical and Toxicological Analysis; Federal University of Minas Gerais - UFMG; Belo Horizonte Minas Gerais Brazil
| | - Luci MS Dusse
- Faculty of Pharmacy, Department of Clinical and Toxicological Analysis; Federal University of Minas Gerais - UFMG; Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
5
|
Gallon L, Mathew JM, Bontha SV, Dumur CI, Dalal P, Nadimpalli L, Maluf DG, Shetty AA, Ildstad ST, Leventhal JR, Mas VR. Intragraft Molecular Pathways Associated with Tolerance Induction in Renal Transplantation. J Am Soc Nephrol 2017; 29:423-433. [PMID: 29191961 DOI: 10.1681/asn.2017030348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/07/2017] [Indexed: 11/03/2022] Open
Abstract
The modern immunosuppression regimen has greatly improved short-term allograft outcomes but not long-term allograft survival. Complications associated with immunosuppression, specifically nephrotoxicity and infection risk, significantly affect graft and patient survival. Inducing and understanding pathways underlying clinical tolerance after transplantation are, therefore, necessary. We previously showed full donor chimerism and immunosuppression withdrawal in highly mismatched allograft recipients using a bioengineered stem cell product (FCRx). Here, we evaluated the gene expression and microRNA expression profiles in renal biopsy samples from tolerance-induced FCRx recipients, paired donor organs before implant, and subjects under standard immunosuppression (SIS) without rejection and with acute rejection. Unlike allograft samples showing acute rejection, samples from FCRx recipients did not show upregulation of T cell- and B cell-mediated rejection pathways. Gene expression pathways differed slightly between FCRx samples and the paired preimplantation donor organ samples, but most of the functional gene networks overlapped. Notably, compared with SIS samples, FCRx samples showed upregulation of genes involved in pathways, like B cell receptor signaling. Additionally, prediction analysis showed inhibition of proinflammatory regulators and activation of anti-inflammatory pathways in FCRx samples. Furthermore, integrative analyses (microRNA and gene expression profiling from the same biopsy sample) identified the induction of regulators with demonstrated roles in the downregulation of inflammatory pathways and maintenance of tissue homeostasis in tolerance-induced FCRx samples compared with SIS samples. This pilot study highlights the utility of molecular intragraft evaluation of pathways related to FCRx-induced tolerance and the use of integrative analyses for identifying upstream regulators of the affected downstream molecular pathways.
Collapse
Affiliation(s)
- Lorenzo Gallon
- Departments of Medicine-Nephrology, .,Comprehensive Transplant Center, Northwestern University, Chicago, Illinois
| | - James M Mathew
- Comprehensive Transplant Center, Northwestern University, Chicago, Illinois.,Surgery.,Microbiology-Immunology and
| | - Sai Vineela Bontha
- Translational Genomics Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Catherine I Dumur
- Molecular Diagnostics Laboratory, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia; and
| | - Pranav Dalal
- Comprehensive Transplant Center, Northwestern University, Chicago, Illinois.,Surgery
| | - Lakshmi Nadimpalli
- Comprehensive Transplant Center, Northwestern University, Chicago, Illinois.,Surgery
| | - Daniel G Maluf
- Translational Genomics Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Aneesha A Shetty
- Departments of Medicine-Nephrology.,Comprehensive Transplant Center, Northwestern University, Chicago, Illinois
| | - Suzanne T Ildstad
- Departments of Surgery.,Physiology, and.,Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky
| | - Joseph R Leventhal
- Comprehensive Transplant Center, Northwestern University, Chicago, Illinois.,Surgery
| | - Valeria R Mas
- Translational Genomics Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
6
|
Alessandrini A, Turka LA. FOXP3-Positive Regulatory T Cells and Kidney Allograft Tolerance. Am J Kidney Dis 2017; 69:667-674. [PMID: 28049555 PMCID: PMC5403573 DOI: 10.1053/j.ajkd.2016.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/22/2016] [Indexed: 11/11/2022]
Abstract
Normal immune homeostasis is achieved by several mechanisms, and prominent among them is immunoregulation. Although several types of regulatory lymphocyte populations have been described, CD4 T cells expressing the FOXP3 transcription factor (FOXP3-positive regulatory T cells [FOXP3+ Tregs]) are the best understood. This population of cells is critical for maintaining self-tolerance throughout the life of the organism. FOXP3+ Tregs can develop within the thymus, but also under select circumstances, naive peripheral T cells can be induced to express FOXP3 and become stable Tregs as well. Abundant evidence from animal systems, as well as limited evidence in humans, implicates Tregs in transplant tolerance, although whether these Tregs recognize allo- or self-antigens is not clear. New translational approaches to promote immunosuppression minimization and/or actual tolerance are being designed to exploit these observations. These include strategies to boost the generation, maintenance, and stability of endogenous Tregs, as well as adoptive cellular therapy with exogenous Tregs.
Collapse
Affiliation(s)
- Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA.
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
7
|
Daly KP, Stack M, Eisenga MF, Keane JF, Zurakowski D, Blume ED, Briscoe DM. Vascular endothelial growth factor A is associated with the subsequent development of moderate or severe cardiac allograft vasculopathy in pediatric heart transplant recipients. J Heart Lung Transplant 2016; 36:434-442. [PMID: 27865734 DOI: 10.1016/j.healun.2016.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Cardiac allograft vasculopathy (CAV) is the leading cause of chronic allograft loss after pediatric heart transplantation. We hypothesized that biomarkers of endothelial injury and repair would predict CAV development in pediatric heart transplant recipients. METHODS Blood was collected from pediatric heart transplant recipients at the time of routine annual coronary angiography, and the concentrations of 13 angiogenesis-related molecules were determined. The primary end point was the presence of moderate or severe CAV by angiography during a 5-year follow-up period. RESULTS The study enrolled 48 recipients (57% male) with a median age of 15.5 years (range, 2-22 years) and median time post-transplant of 5.8 years (range, 2-15 years). Eight recipients developed moderate/severe CAV at a median follow-up of 4.7 years, of whom 3 died, 3 underwent retransplantation, 1 had a myocardial infarction, and 1 was listed for retransplantation. Clinical characteristics associated with the development of moderate/severe CAV included prednisone use at enrollment (p = 0.03) and positive recipient cytomegalovirus immunoglobulin G at the time of transplant (p = < 0.01). Multivariable Cox proportional hazards regression identified plasma vascular endothelial growth factor (VEGF)-A concentration greater than 90 pg/ml at the time of blood draw as a significant predictor of time to moderate or severe CAV (hazard ratio, 14.3; 95% confidence interval, 1.3-163). Receiver operating characteristic curve analysis demonstrated that VEGF-A shows moderate performance for association with the subsequent development of CAV (area under the curve, 0.77; 95% confidence interval, 0.61-0.92). CONCLUSIONS VEGF-A levels in pediatric heart transplant recipients are associated with clinically important CAV progression within the subsequent 5 years.
Collapse
Affiliation(s)
- Kevin P Daly
- Transplant Research Program, Department of Medicine, Boston, Massachusetts; Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Maria Stack
- Transplant Research Program, Department of Medicine, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Division of Nephrology, Department of Medicine, Boston, Massachusetts
| | - Michele F Eisenga
- Transplant Research Program, Department of Medicine, Boston, Massachusetts; Division of Nephrology, Department of Medicine, Boston, Massachusetts
| | - John F Keane
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - David Zurakowski
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Department of Anesthesia, Boston Children's Hospital, Boston, Massachusetts; Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth D Blume
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - David M Briscoe
- Transplant Research Program, Department of Medicine, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Division of Nephrology, Department of Medicine, Boston, Massachusetts.
| |
Collapse
|
8
|
Ali JM, Negus MC, Conlon TM, Harper IG, Qureshi MS, Motallebzadeh R, Willis R, Saeb-Parsy K, Bolton EM, Bradley JA, Pettigrew GJ. Diversity of the CD4 T Cell Alloresponse: The Short and the Long of It. Cell Rep 2016; 14:1232-1245. [PMID: 26804905 PMCID: PMC5405053 DOI: 10.1016/j.celrep.2015.12.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 01/03/2023] Open
Abstract
MHC alloantigen is recognized by two pathways: "directly," intact on donor cells, or "indirectly," as self-restricted allopeptide. The duration of each pathway, and its relative contribution to allograft vasculopathy, remain unclear. Using a murine model of chronic allograft rejection, we report that direct-pathway CD4 T cell alloresponses, as well as indirect-pathway responses against MHC class II alloantigen, are curtailed by rapid elimination of donor hematopoietic antigen-presenting cells. In contrast, persistent presentation of epitope resulted in continual division and less-profound contraction of the class I allopeptide-specific CD4 T cell population, with approximately 10,000-fold more cells persisting than following acute allograft rejection. This expanded population nevertheless displayed sub-optimal anamnestic responses and was unable to provide co-stimulation-independent help for generating alloantibody. Indirect-pathway CD4 T cell responses are heterogeneous. Appreciation that responses against particular alloantigens dominate at late time points will likely inform development of strategies aimed at improving transplant outcomes.
Collapse
Affiliation(s)
- Jason M Ali
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Margaret C Negus
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Thomas M Conlon
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Ines G Harper
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - M Saeed Qureshi
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Reza Motallebzadeh
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Richard Willis
- NIH Tetramer Facility, Emory/Yerkes, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Kourosh Saeb-Parsy
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Eleanor M Bolton
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - J Andrew Bradley
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Gavin J Pettigrew
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK.
| |
Collapse
|
9
|
Castellaneta A, Massaro A, Rendina M, D'Errico F, Carparelli S, Rizzi SF, Thomson AW, Di Leo A. Immunomodulating effects of the anti-viral agent Silibinin in liver transplant patients with HCV recurrence. Transplant Res 2016; 5:1. [PMID: 26798454 PMCID: PMC4721199 DOI: 10.1186/s13737-016-0030-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/05/2016] [Indexed: 01/27/2023] Open
Abstract
Background Silibinin has been shown to have anti-HCV activity and immune-modulating properties by regulating dendritic cell (DC) function. DCs are antigen-presenting cells that, together with regulatory T cells (Treg), play a pivotal role in controlling alloimmune, as well as anti-HCV immune responses. Methods Twelve liver transplant patients with HCV recurrence received iv infusion of Silibinin (iv-SIL) for 14 consecutive days. Using flow cytometry, before and at the end of treatment, we determined the frequencies of circulating myeloid (m) and plasmacytoid (p) DC and Treg and the expression of costimulatory/coregulatory molecules by the DC subsets and Treg. Statistical analysis was performed using the paired Student’s t test and Pearson correlation test. Results After iv-SIL treatment, we observed an elevated plasmacytoid dendritic cell (pDC)/myeloid dendritic cell (mDC) ratio, while pDC displayed lower HLA-DR and higher immunoglobulin-like transcript 4 (ILT4), CD39, and HLA-G expression compared to the pretreatment baseline. In addition, after iv-SIL, mDC showed increased inducible costimulator ligand (ICOSL) expression. No changes were detected in Treg frequency or programed death (PD)-1 expression by these cells. Moreover, several correlations between DC/Treg markers and clinical parameters were detected. Conclusions This descriptive study, in liver transplant patients with HCV recurrence, reveals the impact of iv-SIL on DC and Treg. The changes observed in circulating pDC and mDC that have previously been associated with tolerogenic conditions shed new light on how iv-SIL may regulate anti-viral and alloimmunity. We have also observed multiple clinical correlations that could improve the clinical management of liver transplant patients and that deserve further analysis.
Collapse
Affiliation(s)
- Antonino Castellaneta
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Antonio Massaro
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Maria Rendina
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Francesca D'Errico
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Sonia Carparelli
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Salvatore Fabio Rizzi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Angus W Thomson
- Department of Emergency and Organ Transplantation, Unit of Gastroenterology, University Hospital, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Alfredo Di Leo
- Department of Emergency and Organ Transplantation, Unit of Gastroenterology, University Hospital, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| |
Collapse
|
10
|
Sarwal MM. Fingerprints of transplant tolerance suggest opportunities for immunosuppression minimization. Clin Biochem 2016; 49:404-10. [PMID: 26794635 DOI: 10.1016/j.clinbiochem.2016.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Abstract
HLA incompatible organ transplant tolerance is the holy grail of transplantation. Stable engraftment of an HLA mismatched allograft and life-long tolerance induction, though feasible in highly selected cohorts with depletional protocols, is not ready for generalized application to the entire transplant recipient pool. It has thus been important to harness biomarkers that can uncover mechanisms and tools for monitoring HLA mismatched recipients that develop a state of operational tolerance, during accidental immunosuppression withdrawal secondary to problems of over-immunosuppression (infection or malignancy) or toxicity (mostly cosmetic or cardiovascular). A restricted and unpredictable group of patients can demonstrate a clinical state of operational tolerance, manifested by state of stable graft function of a graft with HLA mismatches between recipient and donor, intact immune responses to third party antigens and no measurable immunosuppression. These patients have served as the basis for the discovery of clinically correlative biomarkers, in distal biofluids (mainly blood), that can define the existing state of operational clinical tolerance. Operationally tolerant patients are rare, as withdrawal of immunosuppression most often results in rejection and graft loss. Nevertheless, operationally tolerant kidney, liver and heart allograft recipients have been reported. The presence of similar biomarker signature profiles in HLA mismatched transplant recipients on immunosuppression, suggests the feasibility of utilizing these biomarkers for educated immunosuppression minimization with a view to retaining immunological quiescence, while reducing the maintenance immunosuppression burden to a "safe" alloimmune threshold. Though clinical operational tolerance is rare, as immunosuppression cessation most often results in increased alloimmunity and rejection, the biomarker profile studies that have harnessed whole genome profiling suggest that the frequency of this state may be ~8% in kidney allograft recipients, and even more frequent in pediatric recipients and in liver transplantation: 25% in adult liver allograft recipients and ~60% in pediatric liver allograft recipients. In this review we discuss putative molecular mechanisms, cellular players and correlative biomarkers that have been developed through clinically associative studies of tolerant and non-tolerant patients. Through mechanisms of carefully constructed and monitored randomized, prospective clinical trials, the transplant community stands at the cusp of improved quality of recipient life through educated immunosuppression minimization.
Collapse
Affiliation(s)
- Minnie M Sarwal
- Division of Transplant Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
|
12
|
Baron D, Giral M, Brouard S. Reconsidering the detection of tolerance to individualize immunosuppression minimization and to improve long-term kidney graft outcomes. Transpl Int 2015; 28:938-59. [DOI: 10.1111/tri.12578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/03/2015] [Accepted: 04/02/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Daniel Baron
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- Faculté de Médecine; Université de Nantes; Nantes France
| | - Magali Giral
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- Faculté de Médecine; Université de Nantes; Nantes France
| | - Sophie Brouard
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- Faculté de Médecine; Université de Nantes; Nantes France
| |
Collapse
|
13
|
Maguire O, Tario JD, Shanahan TC, Wallace PK, Minderman H. Flow cytometry and solid organ transplantation: a perfect match. Immunol Invest 2014; 43:756-74. [PMID: 25296232 PMCID: PMC4357273 DOI: 10.3109/08820139.2014.910022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the field of transplantation, flow cytometry serves a well-established role in pre-transplant crossmatching and monitoring immune reconstitution following hematopoietic stem cell transplantation. The capabilities of flow cytometers have continuously expanded and this combined with more detailed knowledge of the constituents of the immune system, their function and interaction and newly developed reagents to study these parameters have led to additional utility of flow cytometry-based analyses, particularly in the post-transplant setting. This review discusses the impact of flow cytometry on managing alloantigen reactions, monitoring opportunistic infections and graft rejection and gauging immunosuppression in the context of solid organ transplantation.
Collapse
Affiliation(s)
- Orla Maguire
- Laboratory of Flow and Image Cytometry, Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Joseph D. Tario
- Laboratory of Flow and Image Cytometry, Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Thomas C. Shanahan
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, New York, USA
| | - Paul K. Wallace
- Laboratory of Flow and Image Cytometry, Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Hans Minderman
- Laboratory of Flow and Image Cytometry, Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
14
|
Salisbury EM, Game DS, Lechler RI. Transplantation tolerance. Pediatr Nephrol 2014; 29:2263-72. [PMID: 24213880 PMCID: PMC4212135 DOI: 10.1007/s00467-013-2659-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 01/26/2023]
Abstract
Although transplantation has been a standard medical practice for decades, marked morbidity from the use of immunosuppressive drugs and poor long-term graft survival remain important limitations in the field. Since the first solid organ transplant between the Herrick twins in 1954, transplantation immunology has sought to move away from harmful, broad-spectrum immunosuppressive regimens that carry with them the long-term risk of potentially life-threatening opportunistic infections, cardiovascular disease, and malignancy, as well as graft toxicity and loss, towards tolerogenic strategies that promote long-term graft survival. Reports of "transplant tolerance" in kidney and liver allograft recipients whose immunosuppressive drugs were discontinued for medical or non-compliant reasons, together with results from experimental models of transplantation, provide the proof-of-principle that achieving tolerance in organ transplantation is fundamentally possible. However, translating the reconstitution of immune tolerance into the clinical setting is a daunting challenge fraught with the complexities of multiple interacting mechanisms overlaid on a background of variation in disease. In this article, we explore the basic science underlying mechanisms of tolerance and review the latest clinical advances in the quest for transplantation tolerance.
Collapse
Affiliation(s)
- Emma M. Salisbury
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, Exhibition Road, London, SW7 2AZ UK
| | - David S. Game
- Department of Renal Medicine, Guy’s and St. Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
| | - Robert I. Lechler
- King’s Health Partners Academic Health Sciences Centre, King’s College London, London, WC2R 2LS UK
| |
Collapse
|
15
|
Abstract
With the advent of cellular therapies, it has become clear that the success of future therapies in prolonging allograft survival will require an intimate understanding of the allorecognition pathways and effector mechanisms that are responsible for chronic rejection and late graft loss.Here, we consider current understanding of T-cell allorecognition pathways and discuss the most likely mechanisms by which these pathways collaborate with other effector mechanisms to cause allograft rejection. We also consider how this knowledge may inform development of future strategies to prevent allograft rejection.Although both direct and indirect pathway CD4 T cells appear active immediately after transplantation, it has emerged that indirect pathway CD4 T cells are likely to be the dominant alloreactive T-cell population late after transplantation. Their ability to provide help for generating long-lived alloantibody is likely one of the main mechanisms responsible for the progression of allograft vasculopathy and chronic rejection.Recent work has suggested that regulatory T cells may be an effective cellular therapy in transplantation. Given the above, adoptive therapy with CD4 regulatory T cells with indirect allospecificity is a rational first choice in attempting to attenuate the development and progression of chronic rejection; those with additional properties that enable inhibition of germinal center alloantibody responses hold particular appeal.
Collapse
|
16
|
Huang H, Ma Y, Dawicki W, Zhang X, Gordon JR. Comparison of induced versus natural regulatory T cells of the same TCR specificity for induction of tolerance to an environmental antigen. THE JOURNAL OF IMMUNOLOGY 2013; 191:1136-43. [PMID: 23817420 DOI: 10.4049/jimmunol.1201899] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent evidence shows that natural CD25(+)Foxp3(+) regulatory T cells (nTreg) and induced CD25(+)Foxp3(+) regulatory T cells (iTreg) both contribute to tolerance in mouse models of colitis and asthma, but there is little evidence regarding their relative contributions to this tolerance. We compared the abilities of nTreg and iTreg, both from OVA-TCR-transgenic OTII mice, to mediate tolerance in OVA-asthmatic C57BL/6 mice. The iTreg were differentiated from Th2 effector T cells by exposure to IL-10-differentiated dendritic cells (DC10) in vitro or in vivo, whereas we purified nTreg from allergen-naive mice and exposed them to DC10 before use. Each Treg population was subsequently repurified and tested for its therapeutic efficacy in vitro and in vivo. DC10 engaged the nTreg in a cognate fashion in Forster (or fluorescence) resonance energy transfer assays, and these nTreg reduced in vitro OVA-asthmatic Th2 effector T cell responses by 41-56%, whereas the comparator iTreg reduced these responses by 72-86%. Neutralization of IL-10, but not TGF-β, eliminated the suppressive activities of iTreg but not nTreg. Delivery of 5 × 10(5) purified nTreg reduced allergen challenge-induced airway IL-4 (p ≤ 0.03) and IL-5 (p ≤ 0.001) responses of asthmatic recipients by ≤ 23% but did not affect airway hyperresponsiveness or IgE levels, whereas equal numbers of iTreg of identical TCR specificity reduced all airway responses to allergen challenge by 82-96% (p ≤ 0.001) and fully normalized airway hyperresponsiveness. These data confirm that allergen-specific iTreg and nTreg have active roles in asthma tolerance and that iTreg are substantially more tolerogenic in this setting.
Collapse
Affiliation(s)
- Hui Huang
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | | | | | | | | |
Collapse
|
17
|
Coelho V, Saitovitch D, Kalil J, Silva HM. Rethinking the multiple roles of B cells in organ transplantation. Curr Opin Organ Transplant 2013; 18:13-21. [DOI: 10.1097/mot.0b013e32835c8043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Loewendorf A, Csete M. Concise review: immunologic lessons from solid organ transplantation for stem cell-based therapies. Stem Cells Transl Med 2013; 2:136-42. [PMID: 23349327 DOI: 10.5966/sctm.2012-0125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Clinical organ transplantation became possible only after powerful immunosuppressive drugs became available to suppress the alloimmune response. After decades of solid organ transplantation, organ rejection is still a major challenge. However, significant insight into allorecognition has emerged from this vast experience and should be used to inform future stem cell-based therapies. For this reason, we review the current understanding of selected topics in transplant immunology that have not been prominent in the stem cell literature, including immune responses to ischemia/reperfusion injuries, natural killer cells, the adaptive immune response, some unresolved issues in T-cell allorecognition, costimulatory molecules, and the anticipated role of regulatory T cells in graft tolerance.
Collapse
Affiliation(s)
- Andrea Loewendorf
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
19
|
CD28 family and chronic rejection: "to belatacept...And beyond!". J Transplant 2012; 2012:203780. [PMID: 22720132 PMCID: PMC3376773 DOI: 10.1155/2012/203780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/19/2012] [Accepted: 03/26/2012] [Indexed: 12/15/2022] Open
Abstract
Kidneys are one of the most frequently transplanted human organs. Immunosuppressive agents may prevent or reverse most acute rejection episodes; however, the graft may still succumb to chronic rejection. The immunological response involved in the chronic rejection process depends on both innate and adaptive immune response. T lymphocytes have a pivotal role in chronic rejection in adaptive immune response. Meanwhile, we aim to present a general overview on the state-of-the-art knowledge of the strategies used for manipulating the lymphocyte activation mechanisms involved in allografts, with emphasis on T-lymphocyte costimulatory and coinhibitory molecules of the B7-CD28 superfamily. A deeper understanding of the structure and function of these molecules improves both the knowledge of the immune system itself and their potential action as rejection inducers or tolerance promoters. In this context, the central role played by CD28 family, especially the relationship between CD28 and CTLA-4, becomes an interesting target for the development of immune-based therapies aiming to increase the survival rate of allografts and to decrease autoimmune phenomena. Good results obtained by the recent development of abatacept and belatacept with potential clinical use aroused better expectations concerning the outcome of transplanted patients.
Collapse
|