1
|
Nduati EW, Gorman MJ, Sein Y, Hermanus T, Yuan D, Oyaro I, Muema DM, Ndung’u T, Alter G, Moore PL. Coordinated Fc-effector and neutralization functions in HIV-infected children define a window of opportunity for HIV vaccination. AIDS 2021; 35:1895-1905. [PMID: 34115644 PMCID: PMC8462450 DOI: 10.1097/qad.0000000000002976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Antibody function has been extensively studied in HIV-infected adults but is relatively understudied in children. Emerging data suggests enhanced development of broadly neutralizing antibodies (bNAbs) in children but Fc effector functions in this group are less well defined. Here, we profiled overall antibody function in HIV-infected children. DESIGN Plasma samples from a cross-sectional study of 50 antiretroviral therapy-naive children (aged 1-11 years) vertically infected with HIV-1 clade A were screened for HIV-specific binding antibody levels and neutralizing and Fc-mediated functions. METHODS Neutralization breadth was determined against a globally representative panel of 12 viruses. HIV-specific antibody levels were determined using a multiplex assay. Fc-mediated antibody functions measured were antibody-dependent: cellular phagocytosis (ADCP); neutrophil phagocytosis (ADNP); complement deposition (ADCD) and natural killer function (ADNK). RESULTS All children had HIV gp120-specific antibodies, largely of the IgG1 subtype. Fifty-four percent of the children exhibited more than 50% neutralization breadth, with older children showing significantly broader neutralization activity. Apart from ADCC, observed only in 16% children, other Fc-mediated functions were common (>58% children). Neutralization breadth correlated with Fc-mediated functions suggesting shared determinants of enhanced antibody function exist. CONCLUSIONS These results are consistent with previous observations that children may develop high levels of neutralization breadth. Furthermore, the striking association between neutralization breadth and Fc effector function suggests that HIV vaccination in children could yield multifunctional antibodies. Paediatric populations may therefore provide an ideal window of opportunity for HIV vaccination strategies.
Collapse
Affiliation(s)
| | | | - Yiakon Sein
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg
| | - Dansu Yuan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ian Oyaro
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Daniel M. Muema
- Africa Health Research Institute, Durban
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung’u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Africa Health Research Institute, Durban
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Penny L. Moore
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg
- Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Fu M, Hu K, Hu H, Ni F, Du T, Shattock RJ, Hu Q. Antigenicity and immunogenicity of HIV-1 gp140 with different combinations of glycan mutation and V1/V2 region or V3 crown deletion. Vaccine 2019; 37:7501-7508. [PMID: 31564450 DOI: 10.1016/j.vaccine.2019.09.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
The carbohydrate moieties on HIV-1 envelope glycoprotein (Env) act as shields to mask conserved neutralizing epitopes, while the hyperimmunogenic variable regions are immunodominant in inducing non-neutralizing antibodies, representing the major challenge for using Env as a vaccine candidate to induce broadly neutralizing antibodies (bNAbs). In this study, we designed a series of HIV-1 gp140 constructs with the removal of N276/N463 glycans, deletion of the V1/V2 region and the V3 crown, alone or in combination. We first demonstrated that all the constructs had a comparable level of expression and were mainly expressed as trimers. Following purification of gp140s from mammalian cells, we measured their binding to bNAbs and non-NAbs in vitro and capability in inducing bNAbs in vivo. Antibody binding assay showed that removal of N276/N463 glycans together with the deletion of V1/V2 region enhanced the binding of gp140s to CD4-binding site-targeting bNAbs VRC01 and 3BNC117, and CD4-induced epitopes-targeting non-NAbs A32, 17b and F425 A1g8, whereas further deletion of V3 crown in the gp140 mutants demonstrated slightly compromised binding capability to these Abs. Immunogenicity study showed that the above mutations did not lead to the induction of a higher Env-specific IgG response via either DNA-DNA or DNA-protein prime-boost strategies in mice, while neutralization assay did not show an apparent difference between wild type and mutated gp140s. Taken together, our results indicate that removal of glycans at N276/N463 and deletion of the V1/V2 region can expose the CD4-binding site and CD4-induced epitopes, but such exposure alone appears incapable of enhancing the induction of bNAbs in mice, informing that additional modification or/and immunization strategies are needed. In addition, the strategies which we established for producing gp140 proteins and for analyzing the antigenicity and immunogenicity of gp140 provide useful means for further vaccine design and assessment.
Collapse
Affiliation(s)
- Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Institute for Infection and Immunity, St George's University of London, London SW17 0RE, United Kingdom
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Robin J Shattock
- Section of Infectious Diseases, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Institute for Infection and Immunity, St George's University of London, London SW17 0RE, United Kingdom.
| |
Collapse
|
3
|
Cheedarla N, Hemalatha B, Anangi B, Muthuramalingam K, Selvachithiram M, Sathyamurthi P, Kailasam N, Varadarajan R, Swaminathan S, Tripathy SP, Vaniambadi SK, Vadakkupattu DR, Hanna LE. Evolution of Neutralization Response in HIV-1 Subtype C-Infected Individuals Exhibiting Broad Cross-Clade Neutralization of HIV-1 Strains. Front Immunol 2018; 9:618. [PMID: 29662494 PMCID: PMC5890096 DOI: 10.3389/fimmu.2018.00618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/12/2018] [Indexed: 01/04/2023] Open
Abstract
Strain-specific neutralizing antibodies develop in all human immunodeficiency virus type 1 (HIV-1)-infected individuals. However, only 10–30% of infected individuals produce broadly neutralizing antibodies (bNAbs). Identification and characterization of these bNAbs and understanding their evolution dynamics are critical for obtaining useful clues for the development of an effective HIV vaccine. Very recently, we published a study in which we identified 12 HIV-1 subtype C-infected individuals from India whose plasma showed potent and broad cross-clade neutralization (BCN) ability (1). In the present study, we report our findings on the evolution of host bNAb response over a period of 4 years in a subset of these individuals. Three of the five individuals (NAB033, NAB059, and NAB065) demonstrated a significant increase (p < 0.05) in potency. Interestingly, two of the three samples also showed a significant increase in CD4 binding site-specific antibody response, maintained stable CD4+ T cell counts (>350 cells/mm3) and continued to remain ART-naïve for more than 10 years after initial diagnosis, implying a strong clinical correlation with the development and evolution of broadly neutralizing antibody response against HIV-1.
Collapse
Affiliation(s)
- Narayanaiah Cheedarla
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - Babu Hemalatha
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - Brahmaiah Anangi
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | | | | | | - Soumya Swaminathan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | | | | | | | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
4
|
Abstract
HIV employs multiple means to evade the humoral immune response, particularly the elicitation of and recognition by broadly neutralizing antibodies (bnAbs). Such antibodies can act antivirally against a wide spectrum of viruses by targeting relatively conserved regions on the surface HIV envelope trimer spike. Elicitation of and recognition by bnAbs are hindered by the arrangement of spikes on virions and the relatively difficult access to bnAb epitopes on spikes, including the proximity of variable regions and a high density of glycans. Yet, in a small proportion of HIV-infected individuals, potent bnAb responses do develop, and isolation of the corresponding monoclonal antibodies has been facilitated by identification of favorable donors with potent bnAb sera and by development of improved methods for human antibody generation. Molecular studies of recombinant Env trimers, alone and in interaction with bnAbs, are providing new insights that are fueling the development and testing of promising immunogens aimed at the elicitation of bnAbs.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037; , .,Neutralizing Antibody Center, International AIDS Vaccine Initiative, The Scripps Research Institute, La Jolla, California 92037.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Boston, Massachusetts 02142
| | - Lars Hangartner
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037; , .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
5
|
Erwin S, Ciupe SM. Germinal center dynamics during acute and chronic infection. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2017; 14:655-671. [PMID: 28092957 DOI: 10.3934/mbe.2017037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of the immune system to clear pathogens is limited during chronic virus infections where potent long-lived plasma and memory B-cells are produced only after germinal center B-cells undergo many rounds of somatic hypermutations. In this paper, we investigate the mechanisms of germinal center B-cell formation by developing mathematical models for the dynamics of B-cell somatic hypermutations. We use the models to determine how B-cell selection and competition for T follicular helper cells and antigen influences the size and composition of germinal centers in acute and chronic infections. We predict that the T follicular helper cells are a limiting resource in driving large numbers of somatic hypermutations and present possible mechanisms that can revert this limitation in the presence of non-mutating and mutating antigen.
Collapse
Affiliation(s)
- Samantha Erwin
- 460 McBryde Hall, Virginia Tech, Blacksburg, VA 24061, United States .
| | | |
Collapse
|
6
|
New concepts in HIV-1 vaccine development. Curr Opin Immunol 2016; 41:39-46. [PMID: 27268856 DOI: 10.1016/j.coi.2016.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 01/13/2023]
Abstract
With 2 million people newly infected with HIV-1 in 2014, an effective HIV-1 vaccine remains a major public health priority. HIV-1 vaccine efficacy trials in humans, complemented by active and passive immunization studies in non-human primates, have identified several key vaccine-induced immunological responses that may correlate with protection against HIV-1 infection. Potential correlates of protection in these studies include V2-specific, polyfunctional, and broadly neutralizing antibody responses, as well as effector memory T cell responses. Here we review how these correlates of protection are guiding current approaches to HIV-1 vaccine development. These approaches include improvements on the ALVAC-HIV/AIDSVAX B/E vaccine regimen used in the RV144 clinical trial in Thailand, adenovirus serotype 26 vectors with gp140 boosting, intravenous infusions of bNAbs, and replicating viral vectors.
Collapse
|
7
|
Qi Y, Jo S, Im W. Roles of glycans in interactions between gp120 and HIV broadly neutralizing antibodies. Glycobiology 2015; 26:251-60. [PMID: 26537503 DOI: 10.1093/glycob/cwv101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022] Open
Abstract
Many novel broadly neutralizing antibodies against human immunodeficiency virus (HIV) have been identified during the past decade, providing promising templates for the development of an effective HIV-1 vaccine. Structural studies reveal that the epitopes of some of these antibodies involve one or more crucial glycans, without which the binding is completely abolished. In this study, we have investigated the critical roles of glycans in interactions between HIV-1 gp120 and two broadly neutralizing antibodies PG9 (targeting V1/V2) and PGT128 (targeting V3) that are able to neutralize more than 70% of HIV-1 isolates. We have performed molecular dynamics simulations of a number of systems including antibody-gp120 complex with and without glycans, antibody, gp120 with and without glycans, and glycan-only systems. The simulation results show that the complex structures are stabilized by the glycans, and the multivalent interactions between the antibody and gp120 promote cooperativities to further enhance the binding. In the free gp120, the glycans increase the flexibility of the V1/V2 and V3 loops, which likely increases the entropy cost of the antibody recognition. However, the antibodies are able to bind the flexible interface by recognizing the preexisting glycan conformation, and penetrating the glycan shield with flexible complementarity determining region loops that sample the bound conformations occasionally.
Collapse
Affiliation(s)
- Yifei Qi
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Sunhwan Jo
- Leadership Computing Facility, Argonne National Laboratory, 9700 Cass Ave Bldg. 240, Argonne, IL 60439, USA
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| |
Collapse
|
8
|
Burton DR, Mascola JR. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat Immunol 2015; 16:571-6. [PMID: 25988889 DOI: 10.1038/ni.3158] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
Abstract
Antibody responses to the HIV-1 envelope glycoproteins can be classified into three groups. Binding but non-neutralizing responses are directed to epitopes that are expressed on isolated envelope glycoproteins but not on the native envelope trimer found on the surface of virions and responsible for mediating the entry of virus into target cells. Strain-specific responses and broadly neutralizing responses, in contrast, target epitopes that are expressed on the native trimer, as revealed by recently resolved structures. The past few years have seen the isolation of many broadly neutralizing antibodies of remarkable potency that have shown prophylactic and therapeutic activities in animal models. These antibodies are helping to guide rational vaccine design and therapeutic strategies for HIV-1.
Collapse
Affiliation(s)
- Dennis R Burton
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA. [2] International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA. [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA. [4] Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Yu HT, Tian D, Wang JY, Guo CX, Li Y, Wang X, Li D, Zhang FM, Zhuang M, Ling H. An HIV-1 envelope immunogen with W427S mutation in CD4 binding site induced more T follicular helper memory cells and reduced non-specific antibody responses. PLoS One 2014; 9:e115047. [PMID: 25546013 PMCID: PMC4278894 DOI: 10.1371/journal.pone.0115047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/18/2014] [Indexed: 11/25/2022] Open
Abstract
The CD4 binding site (CD4BS) of the HIV-1 envelope glycoprotein (Env) contains epitopes for broadly neutralizing antibody (nAb) and is the target for the vaccine development. However, the CD4BS core including residues 425-430 overlaps the B cell superantigen site and may be related to B cell exhaustion in HIV-1 infection. Furthermore, production of nAb and high-affinity plasma cells needs germinal center reaction and the help of T follicular helper (Tfh) cells. We believe that strengthening the ability of Env CD4BS in inducing Tfh response and decreasing the effects of the superantigen are the strategies for eliciting nAb and development of HIV-1 vaccine. We constructed a gp120 mutant W427S of an HIV-1 primary R5 strain and examined its ability in the elicitation of Ab and the production of Tfh by immunization of BALB/c mice. We found that the trimeric wild-type gp120 can induce more non-specific antibody-secreting plasma cells, higher serum IgG secretion, and more Tfh cells by splenocyte. The modified W427S gp120 elicits higher levels of specific binding antibodies as well as nAbs though it produces less Tfh cells. Furthermore, higher Tfh cell frequency does not correlate to the specific binding Abs or nAbs indicating that the wild-type gp120 induced some non-specific Tfh that did not contribute to the production of specific Abs. This gp120 mutant led to more memory Tfh production, especially, the effector memory Tfh cells. Taken together, W427S gp120 could induce higher level of specific binding and neutralizing Ab production that may be associated with the reduction of non-specific Tfh but strengthening of the memory Tfh.
Collapse
Affiliation(s)
- Hao-Tong Yu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Dan Tian
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab for Infection and Immunity, Key Lab of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Cai-Xia Guo
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab for Infection and Immunity, Key Lab of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Xin Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Di Li
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab for Infection and Immunity, Key Lab of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Feng-Min Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab for Infection and Immunity, Key Lab of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab for Infection and Immunity, Key Lab of Etiology of Heilongjiang Province Education Bureau, Harbin, China
- * E-mail: (MZ); (HL)
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab for Infection and Immunity, Key Lab of Etiology of Heilongjiang Province Education Bureau, Harbin, China
- Department of Parasitology, Harbin Medical University, Harbin, China
- * E-mail: (MZ); (HL)
| |
Collapse
|
10
|
Abstract
Although some success was achieved in recent years in HIV prevention, an effective vaccine remains the means with the most potential of curtailing HIV-1 infections worldwide. Despite multiple failed attempts, a recent HIV vaccine regimen demonstrated modest protection from infection. Although the protective efficacy in this trial was not sufficient to warrant licensure, it spurred renewed optimism in the field and has provided valuable insights for improving future vaccine designs. This review summarizes the pertinent details of vaccine development and discusses ways the field is moving forward to develop a vaccine to prevent HIV infection and disease progression.
Collapse
Affiliation(s)
- Paul Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 908, 20th Street South, CCB 328, Birmingham, AL 35294, USA.
| | - Anju Bansal
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 845, 19th Street South, BBRB 557, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Finton KAK, Friend D, Jaffe J, Gewe M, Holmes MA, Larman HB, Stuart A, Larimore K, Greenberg PD, Elledge SJ, Stamatatos L, Strong RK. Ontogeny of recognition specificity and functionality for the broadly neutralizing anti-HIV antibody 4E10. PLoS Pathog 2014; 10:e1004403. [PMID: 25254371 PMCID: PMC4177983 DOI: 10.1371/journal.ppat.1004403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/16/2014] [Indexed: 01/07/2023] Open
Abstract
The process of antibody ontogeny typically improves affinity, on-rate, and thermostability, narrows polyspecificity, and rigidifies the combining site to the conformer optimal for binding from the broader ensemble accessible to the precursor. However, many broadly-neutralizing anti-HIV antibodies incorporate unusual structural elements and recognition specificities or properties that often lead to autoreactivity. The ontogeny of 4E10, an autoreactive antibody with unexpected combining site flexibility, was delineated through structural and biophysical comparisons of the mature antibody with multiple potential precursors. 4E10 gained affinity primarily by off-rate enhancement through a small number of mutations to a highly conserved recognition surface. Controverting the conventional paradigm, the combining site gained flexibility and autoreactivity during ontogeny, while losing thermostability, though polyspecificity was unaffected. Details of the recognition mechanism, including inferred global effects due to 4E10 binding, suggest that neutralization by 4E10 may involve mechanisms beyond simply binding, also requiring the ability of the antibody to induce conformational changes distant from its binding site. 4E10 is, therefore, unlikely to be re-elicited by conventional vaccination strategies.
Collapse
Affiliation(s)
- Kathryn A. K. Finton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Della Friend
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James Jaffe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mesfin Gewe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Margaret A. Holmes
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - H. Benjamin Larman
- Department of Genetics, Harvard University Medical School, and Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Andrew Stuart
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Kevin Larimore
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Philip D. Greenberg
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Program in Immunology, Cancer Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Stephen J. Elledge
- Department of Genetics, Harvard University Medical School, and Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Leonidas Stamatatos
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Roland K. Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
12
|
Early preservation of CXCR5+ PD-1+ helper T cells and B cell activation predict the breadth of neutralizing antibody responses in chronic HIV-1 infection. J Virol 2014; 88:13310-21. [PMID: 25210168 DOI: 10.1128/jvi.02186-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Much is known about the characteristics of broadly neutralizing antibodies (bNAbs) generated during HIV-1 infection, but little is known about immunological mechanisms responsible for their development in only a minority of those infected by HIV-1. By monitoring longitudinally a cohort of HIV-1-infected subjects, we observed that the preservation of CXCR5(+) CD4(+) T helper cell frequencies and activation status of B cells during the first year of infection correlates with the maximum breadth of plasma neutralizing antibody responses during chronic infection independently of viral load. Although, during the first year of infection, no differences were observed in the abilities of peripheral CXCR5(+) CD4(+) T helper cells to induce antibody secretion by autologous naive B cells, higher frequencies of class-switched antibodies were detected in cocultures of CXCR5(+) CD4(+) T and B cells from the subjects who later developed broadly neutralizing antibody responses than those who did not. Furthermore, B cells from the former subjects had higher expression of AICDA than B cells from the latter subjects, and transcript levels correlated with the frequency of CXCR5(+) CD4(+) T cells. Thus, the early preservation of CXCR5(+) CD4(+) T cells and B cell function are central to the development of bNAbs. Our study provides a possible explanation for their infrequent generation during HIV-1 infection. IMPORTANCE Broadly neutralizing antibodies are developed by HIV-1-infected subjects, but so far (and despite intensive efforts over the past 3 decades) they have not been elicited by immunization. Understanding how bNAbs are generated during natural HIV-1 infection and why only some HIV-1-infected subjects generate such antibodies will assist our efforts to elicit bNAbs by immunization. CXCR5(+) PD-1(+) CD4(+) T cells are critical for the development of high-affinity antigen-specific antibody responses. In our study, we found that the HIV-1-infected subjects who develop bNAbs have a higher frequency of peripheral CXCR5(+) PD-1(+) CD4(+) T cells in early infection and also that this frequency mirrored what was observed in uninfected subjects and correlated with the level of B cell activation across subjects. Our study highlights the critical role helper T cell function has in the elicitation of broadly neutralizing antibody responses in the context of HIV infection.
Collapse
|
13
|
Gao F, Bonsignori M, Liao HX, Kumar A, Xia SM, Lu X, Cai F, Hwang KK, Song H, Zhou T, Lynch RM, Alam SM, Moody MA, Ferrari G, Berrong M, Kelsoe G, Shaw GM, Hahn BH, Montefiori DC, Kamanga G, Cohen MS, Hraber P, Kwong PD, Korber BT, Mascola JR, Kepler TB, Haynes BF. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell 2014; 158:481-91. [PMID: 25065977 PMCID: PMC4150607 DOI: 10.1016/j.cell.2014.06.022] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/05/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
Development of strategies for induction of HIV-1 broadly neutralizing antibodies (bnAbs) by vaccines is a priority. Determining the steps of bnAb induction in HIV-1-infected individuals who make bnAbs is a key strategy for immunogen design. Here, we study the B cell response in a bnAb-producing individual and report cooperation between two B cell lineages to drive bnAb development. We isolated a virus-neutralizing antibody lineage that targeted an envelope region (loop D) and selected virus escape mutants that resulted in both enhanced bnAb lineage envelope binding and escape mutant neutralization-traits associated with increased B cell antigen drive. Thus, in this individual, two B cell lineages cooperated to induce the development of bnAbs. Design of vaccine immunogens that simultaneously drive both helper and broadly neutralizing B cell lineages may be important for vaccine-induced recapitulation of events that transpire during the maturation of neutralizing antibodies in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Feng Gao
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA.
| | - Mattia Bonsignori
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Hua-Xin Liao
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Amit Kumar
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Shi-Mao Xia
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Xiaozhi Lu
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Fangping Cai
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Kwan-Ki Hwang
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Hongshuo Song
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca M Lynch
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Munir Alam
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - M Anthony Moody
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Guido Ferrari
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Mark Berrong
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Garnett Kelsoe
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David C Montefiori
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Gift Kamanga
- UNC Project, Lilongwe, Malawi; Departments of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Myron S Cohen
- Departments of Medicine, Epidemiology and Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter Hraber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bette T Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University, Boston, MA 02215, USA
| | - Barton F Haynes
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA.
| |
Collapse
|
14
|
Yu L, Guan Y. Immunologic Basis for Long HCDR3s in Broadly Neutralizing Antibodies Against HIV-1. Front Immunol 2014; 5:250. [PMID: 24917864 PMCID: PMC4040451 DOI: 10.3389/fimmu.2014.00250] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/12/2014] [Indexed: 01/18/2023] Open
Abstract
A large number of potent broadly neutralizing antibodies (bnAbs) against HIV-1 have been reported in recent years, raising hope for the possibility of an effective vaccine based on epitopes recognized by these protective antibodies. However, many of these bnAbs contain the long heavy chain complementarity-determining region 3 (HCDR3), which is viewed as an obstacle to the development of an HIV-1 vaccine targeting the bnAb responses. This mini-review summarizes the current literature and discusses the different potential immunologic mechanisms for generating long HCDR3, including D–D fusion, VH replacement, long N region addition, and skewed D–J gene usage, among which potential VH replacement products appear to be significant contributors. VH replacement occurs through recombinase activated gene-mediated secondary recombination and contributes to the diversified naïve B cell repertoire. During VH replacement, a short stretch of nucleotides from previously rearranged VH genes remains within the newly formed HCDR3, thus elongating its length. Accumulating evidence suggests that long HCDR3s are present in significant numbers in the human mature naïve B cell repertoire and are primarily generated by recombination during B cell development. These new observations indicate that long HCDR3s, though low in frequency, are a normal feature of the human antibody naïve repertoire and they appear to be selected to target conserved epitopes located in deep, partially obscured regions of the HIV-1 envelope trimer. Therefore, the presence of long HCDR3 sequences should not necessarily be viewed as an obstacle to the development of an HIV-1 vaccine based upon bnAb responses.
Collapse
Affiliation(s)
- Lei Yu
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Yongjun Guan
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
15
|
Rao M, Peachman KK, Kim J, Gao G, Alving CR, Michael NL, Rao VB. HIV-1 variable loop 2 and its importance in HIV-1 infection and vaccine development. Curr HIV Res 2014; 11:427-38. [PMID: 24191938 DOI: 10.2174/1570162x113116660064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
A vaccine that can prevent the transmission of HIV-1 at the site of exposure to the host is one of the best hopes to control the HIV-1 pandemic. The trimeric envelope spike consisting of heterodimers, gp120 and gp41, is essential for virus entry and thus has been a key target for HIV-1 vaccine development. However, it has been extremely difficult to identify the types of antibodies required to block the transmission of various HIV-1 strains and the immunogens that can elicit such antibodies due to the high genetic diversity of the HIV-1 envelope. The modest efficacy of the gp120 HIV-1 vaccine used in the RV144 Thai trial, including the studies on the immune correlates of protection, and the discovery of vaccine-induced immune responses to certain signature regions of the envelope have shown that the gp120 variable loop 2 (V2) is an important region. Since there is evidence that the V2 region interacts with the integrin α4β7 receptor of the host cell, and that this interaction might be important for virus capture, induction of antibodies against V2 loop could be postulated as one of the mechanisms to prevent the acquisition of HIV-1. Immunogens that can induce these antibodies should therefore be taken into consideration when designing HIV-1 vaccine formulations.
Collapse
Affiliation(s)
- Mangala Rao
- Laboratory of Adjuvant and Antigen Research, USMHRP at the Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Rm 2A08, Sliver Spring, MD 20910, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
A global human immunodeficiency virus-1 (HIV-1) vaccine will have to elicit immune responses capable of providing protection against a tremendous diversity of HIV-1 variants. In this review, we first describe the current state of the HIV-1 vaccine field, outlining the immune responses that are desired in a global HIV-1 vaccine. In particular, we emphasize the likely importance of Env-specific neutralizing and non-neutralizing antibodies for protection against HIV-1 acquisition and the likely importance of effector Gag-specific T lymphocytes for virologic control. We then highlight four strategies for developing a global HIV-1 vaccine. The first approach is to design specific vaccines for each geographic region that include antigens tailor-made to match local circulating HIV-1 strains. The second approach is to design a vaccine that will elicit Env-specific antibodies capable of broadly neutralizing all HIV-1 subtypes. The third approach is to design a vaccine that will elicit cellular immune responses that are focused on highly conserved HIV-1 sequences. The fourth approach is to design a vaccine to elicit highly diverse HIV-1-specific responses. Finally, we emphasize the importance of conducting clinical efficacy trials as the only way to determine which strategies will provide optimal protection against HIV-1 in humans.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | |
Collapse
|
17
|
de Cassan SC, Draper SJ. Recent advances in antibody-inducing poxviral and adenoviral vectored vaccine delivery platforms for difficult disease targets. Expert Rev Vaccines 2014; 12:365-78. [DOI: 10.1586/erv.13.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Evolutionarily conserved epitopes on human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus reverse transcriptases detected by HIV-1-infected subjects. J Virol 2013; 87:10004-15. [PMID: 23824804 DOI: 10.1128/jvi.00359-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anti-human immunodeficiency virus (HIV) cytotoxic T lymphocyte (CTL)-associated epitopes, evolutionarily conserved on both HIV type 1 (HIV-1) and feline immunodeficiency virus (FIV) reverse transcriptases (RT), were identified using gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) and carboxyfluorescein diacetate succinimide ester (CFSE) proliferation assays followed by CTL-associated cytotoxin analysis. The peripheral blood mononuclear cells (PBMC) or T cells from HIV-1-seropositive (HIV(+)) subjects were stimulated with overlapping RT peptide pools. The PBMC from the HIV(+) subjects had more robust IFN-γ responses to the HIV-1 peptide pools than to the FIV peptide pools, except for peptide-pool F3. In contrast, much higher and more frequent CD8(+) T-cell proliferation responses were observed with the FIV peptide pools than with the HIV peptide pools. HIV-1-seronegative subjects had no proliferation or IFN-γ responses to the HIV and FIV peptide pools. A total of 24% (40 of 166) of the IFN-γ responses to HIV pools and 43% (23 of 53) of the CD8(+) T-cell proliferation responses also correlated to responses to their counterpart FIV pools. Thus, more evolutionarily conserved functional epitopes were identified by T-cell proliferation than by IFN-γ responses. In the HIV(+) subjects, peptide-pool F3, but not the HIV H3 counterpart, induced the most IFN-γ and proliferation responses. These reactions to peptide-pool F3 were highly reproducible and persisted over the 1 to 2 years of testing. All five individual peptides and epitopes of peptide-pool F3 induced IFN-γ and/or proliferation responses in addition to inducing CTL-associated cytotoxin responses (perforin, granzyme A, granzyme B). The epitopes inducing polyfunctional T-cell activities were highly conserved among human, simian, feline, and ungulate lentiviruses, which indicated that these epitopes are evolutionarily conserved. These results suggest that FIV peptides could be used in an HIV-1 vaccine.
Collapse
|
19
|
Abstract
Low-income countries typically lag behind industrialised nations, where the introduction of new vaccines is commonly tailored to the pressures of the commercial market. Happily in recent years this paradigm has started to change with the introduction of a univalent meningococcal A conjugate vaccine that is specifically targeted for the prevention of epidemic meningitis in Africa. The declaration of the 2010s as a New Decade of Vaccines, together with Millennium Development Goals 4 and 5, provide a strong mandate for a new approach to the development of vaccines for low-income countries, so that there has never been a more exciting time to work in this field. This review considers the opportunities and challenges of developing these new vaccines in the context of innovations in vaccinology, the need to induce protective immunity in the populations at risk and the requirement for strong partnership between the countries that will use these vaccines and different elements of the vaccine industry.
Collapse
|
20
|
Choi YS, Yang JA, Crotty S. Dynamic regulation of Bcl6 in follicular helper CD4 T (Tfh) cells. Curr Opin Immunol 2013; 25:366-72. [PMID: 23688737 DOI: 10.1016/j.coi.2013.04.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 12/11/2022]
Abstract
Our bodies are continuously exposed to various types of infectious pathogens. Vaccinations are the most cost effective way to protect our bodies against a variety of infectious microbes. The efficacy of most vaccines relies on protective antibody production and generation of memory B cells. These two key components develop mostly from B cells that participate in germinal center reactions. Recent efforts have highlighted the critical role of follicular helper CD4 T (Tfh) cells in the generation of germinal centers. Given that Bcl6 is a major transcription factor for Tfh differentiation, here we review recent developments in the understanding of signaling molecules that regulate Bcl6 expression in CD4 T cells, as a potential target for development of more efficacious vaccines.
Collapse
Affiliation(s)
- Youn Soo Choi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, United States
| | | | | |
Collapse
|
21
|
Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 2013; 496:469-76. [PMID: 23552890 PMCID: PMC3637846 DOI: 10.1038/nature12053] [Citation(s) in RCA: 814] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/07/2013] [Indexed: 01/03/2023]
Abstract
Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation could provide a roadmap for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from time of infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies and provide insights into strategies to elicit similar antibodies via vaccination.
Collapse
|
22
|
McGuire AT, Hoot S, Dreyer AM, Lippy A, Stuart A, Cohen KW, Jardine J, Menis S, Scheid JF, West AP, Schief WR, Stamatatos L. Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies. ACTA ACUST UNITED AC 2013; 210:655-63. [PMID: 23530120 PMCID: PMC3620356 DOI: 10.1084/jem.20122824] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eliminating key glycosylation sites on HIV envelope (Env) restores binding of the germline versions of known broadly neutralizing anti-Env antibodies. Broadly neutralizing antibodies (bnAbs) against HIV are believed to be a critical component of the protective responses elicited by an effective HIV vaccine. Neutralizing antibodies against the evolutionarily conserved CD4-binding site (CD4-BS) on the HIV envelope glycoprotein (Env) are capable of inhibiting infection of diverse HIV strains, and have been isolated from HIV-infected individuals. Despite the presence of anti–CD4-BS broadly neutralizing antibody (bnAb) epitopes on recombinant Env, Env immunization has so far failed to elicit such antibodies. Here, we show that Env immunogens fail to engage the germline-reverted forms of known bnAbs that target the CD4-BS. However, we found that the elimination of a conserved glycosylation site located in Loop D and two glycosylation sites located in variable region 5 of Env allows Env-binding to, and activation of, B cells expressing the germline-reverted BCRs of two potent broadly neutralizing antibodies, VRC01 and NIH45-46. Our results offer a possible explanation as to why Env immunogens have been ineffective in stimulating the production of such bNAbs. Importantly, they provide key information as to how such immunogens can be engineered to initiate the process of antibody-affinity maturation against one of the most conserved Env regions.
Collapse
|