1
|
Al-Maamari A, Sultan M, Ding S, Yuxin D, Wang MY, Su S. Mechanisms and implications of histamine-induced reactions and complications. Allergol Immunopathol (Madr) 2025; 53:122-139. [PMID: 40342122 DOI: 10.15586/aei.v53i3.1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/23/2025] [Indexed: 05/11/2025]
Abstract
Histamine, classified as a biogenic amine, plays a crucial role in both pro-inflammatory and immune regulatory processes, thereby establishing itself as a key mediator in allergic diseases and immune responses. This review provides an exhaustive analysis of the structure, function, and regulation of histamine, with particular emphasis on its interaction with four receptor subtypes: histamine H1 receptor (H1R), histamine H2 receptor (H2R), histamine H3 receptor (H3R), and histamine H4 receptor (H4R), all of which are instrumental in mediating a variety of physiological processes, including neurotransmitter release, modulation of immune responses, and gastric acid secretion. The review explores intracellular signaling pathways mediated by the activation of these receptors, highlighting the complex cascades involved in immediate- and delayed-type hypersensitivity reactions. It also examines the broad spectrum of histamine-induced complications, focusing on their effects on the gastrointestinal, cardiovascular, respiratory, and central nervous systems, and emphasizes histamine's potential to cause vascular dysfunction and other pathological changes. Furthermore, the role of histamine in inflammation and immune responses is explored, particularly in the context of allergic diseases such as asthma, allergic rhinitis, and atopic dermatitis. The review also covers pharmacological interventions targeting histamine receptors, including the use of antihistamines and mast cell stabilizers, which are critical for the treatment of symptoms and the inhibition of the progression of histamine-related conditions. Finally, the review addresses emerging research and future directions, identifying potential areas for innovation and improved therapeutic strategies. This comprehensive overview not only deepens understanding of histamine's multifaceted roles in health and disease, but also underscores the importance of developing advanced diagnostic tools and targeted treatments for histamine-associated disorders.
Collapse
Affiliation(s)
- Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Marwa Sultan
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Shanshan Ding
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Duan Yuxin
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Meng-Yao Wang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Suwen Su
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China;
| |
Collapse
|
2
|
Domingo C, Busse WW, Hanania NA, Ertugrul M, Millette LA, Maio‐Twofoot T, Jaumont X, Palomares O. The Direct and Indirect Role of IgE on Airway Epithelium in Asthma. Allergy 2025; 80:919-931. [PMID: 39963805 PMCID: PMC11969325 DOI: 10.1111/all.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 04/05/2025]
Abstract
Asthma is a chronic airway inflammatory disorder, affecting over 350 million people worldwide, with allergic asthma being the most common form of the disease. Allergic asthma is characterized by a type 2 (T2) inflammatory response triggered by numerous allergens beginning in the airway epithelium, which acts as a physical barrier to allergens as well as other external irritants including infectious agents, and atmospheric pollutants. T2 inflammation is propagated by several key cell types including T helper 2 (Th2) cells, eosinophils, mast cells, and B cells. Immunoglobulin E (IgE), produced by B cells, is a key molecule in allergic airway disease and plays an important role in T2 inflammation, as well as being central to remodeling processes within the airway epithelium. Blocking IgE with omalizumab has been shown to be efficacious in treating allergic asthma however, the role of IgE on airway epithelial cells is less communicated. Developing a deeper explanation of the complex network of interactions between IgE and the airway epithelium will facilitate an improved understanding of asthma pathophysiology. This review discusses the indirect and direct roles of IgE on airway epithelial cells, with a focus on allergic asthma disease.
Collapse
Affiliation(s)
- Christian Domingo
- Department of Pulmonary Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT‐CERCA)Universitat Autònoma de BarcelonaSabadellSpain
| | - William W. Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Nicola A. Hanania
- Section of Pulmonary, Critical Care and Sleep MedicineBaylor College of MedicineHoustonTexasUSA
| | | | | | | | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| |
Collapse
|
3
|
Kosins AE, Gao H, Blankenship RL, Emmerson LN, Ochoa JA, Cook-Mills JM. Maternal supplementation with α-tocopherol inhibits the development of offspring food allergy, H1R signaling and ultimately anaphylaxis early in life. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:199-210. [PMID: 40073242 PMCID: PMC11879001 DOI: 10.1093/jimmun/vkae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/02/2024] [Indexed: 03/14/2025]
Abstract
Food allergy has had a rapid rise in prevalence, and thus it is important to identify approaches to limit the development of food allergy early in life. Because maternal dietary supplementation with α-tocopherol (α-T), an isoform of vitamin E, during pregnancy and nursing increases neonate plasma levels of α-T and can limit neonate development of other allergies, we hypothesized that α-T can limit development of food allergy. To assess this, male mice with mutations in their skin barrier genes (FT-/- mice) were mated with wild-type females that received a diet supplemented with α-tocopherol or a control diet. Starting at postnatal day 3, these FT+/- pups were sensitized 4 to 5 times over 2.5 weeks by skin co-exposure to the food allergen peanut extract (PNE) and the environmental allergen Alternaria alternata (Alt). Control pups were exposed to saline, PNE only or Alt only. Supplementation with α-T blocked Alt+PNE sensitization (anti-PNE-specific IgE), without blocking Alt+PNE-stimulated skin IL33, Areg, OSM, CCL11, TSLP or plasma MCPT1. However, supplementation with α-T blocked mast cell activation, the increase in plasma histamine in Alt+PNE sensitized pups, histamine receptor stimulation of endothelial PKCα signaling, and ultimately oral PNE-induced anaphylaxis in Alt+PNE sensitized mice. Thus, maternal supplementation with α-tocopherol reduced development of food allergy and anaphylaxis in neonates. These results have implications for supplementation of mothers with α-tocopherol to limit development of food allergy in neonates with skin barrier mutations.
Collapse
Affiliation(s)
- Allison E Kosins
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Haoran Gao
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ross L Blankenship
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lauren N Emmerson
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joel A Ochoa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joan M Cook-Mills
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Sonder SU, Plassmeyer M, Schroeder N, Peyton S, Paige M, Girgis M, Safi H, Alpan O. Basophil activation test; User's manual. J Immunol Methods 2025; 537:113815. [PMID: 39855544 DOI: 10.1016/j.jim.2025.113815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/11/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Immediate allergic responses, orchestrated by basophils and mast cells, are pivotal in severe allergic reactions. The flow cytometry-based Basophil Activation Test (BAT) is a clinically important assay for testing allergic reactions using CD63 and CD203c as endpoints. The test measures the concentration dependent response to the allergens providing a functional readout of the patients' allergies. BAT is presently in clinical use within the Unites States as well as several other countries for the diagnosis and monitoring of allergies, most commonly against food allergens. This article details assay validation, both analytical and clinical with reference to existing regulations/recommendations through CAP, CLIA, NYS and CLSI on issues including accuracy, precision, linearity, reportable range, reference range, analytical sensitivity & specificity, pre-analytical considerations, the utility of the assay in diagnosis or monitoring and interpretation of the results; and the assay's limitations. The BAT plays a crucial role in assessing patient suitability for food challenges and therapies such as oral immunotherapy, sublingual immunotherapy or omalizumab and can aid in predicting treatment outcomes. We further review the current research on advancing the test, focused on improvements in its clinical utility. Continuous efforts are warranted for enhanced regulatory oversight and comprehensive clinical validation, ensuring BAT's seamless integration into diverse clinical settings.
Collapse
Affiliation(s)
| | | | - Nikhila Schroeder
- Allergenuity Health, 10235 Hickorywood Hill Ave, Suite A, Huntersville NC-28078, USA
| | - Steven Peyton
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - Mikell Paige
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - Michael Girgis
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - Hamed Safi
- Department of Chemistry, George Mason University, Fairfax, VA, USA
| | - Oral Alpan
- Amerimmune LLC, 8260 Greensboro Dr, McLean VA-22102, USA.
| |
Collapse
|
5
|
Saunders MN, Rad LM, Williams LA, Landers JJ, Urie RR, Hocevar SE, Quiros M, Chiang M, Angadi AR, Janczak KW, Bealer EJ, Crumley K, Benson OE, Griffin KV, Ross BC, Parkos CA, Nusrat A, Miller SD, Podojil JR, O'Konek JJ, Shea LD. Allergen-Encapsulating Nanoparticles Reprogram Pathogenic Allergen-Specific Th2 Cells to Suppress Food Allergy. Adv Healthc Mater 2025; 14:e2400237. [PMID: 38691819 PMCID: PMC11527797 DOI: 10.1002/adhm.202400237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/10/2024] [Indexed: 05/03/2024]
Abstract
Food allergy is a prevalent, potentially deadly disease caused by inadvertent sensitization to benign food antigens. Pathogenic Th2 cells are a major driver for disease, and allergen-specific immunotherapies (AIT) aim to increase the allergen threshold required to elicit severe allergic symptoms. However, the majority of AIT approaches require lengthy treatments and convey transient disease suppression, likely due to insufficient targeting of pathogenic Th2 responses. Here, the ability of allergen-encapsulating nanoparticles to directly suppress pathogenic Th2 responses and reactivity is investigated in a mouse model of food allergy. NPs associate with pro-tolerogenic antigen presenting cells, provoking accumulation of antigen-specific, functionally suppressive regulatory T cells in the small intestine lamina propria. Two intravenous doses of allergen encapsulated in poly(lactide-co-glycolide) nanoparticles (NPs) significantly reduces oral food challenge (OFC)-induced anaphylaxis. Importantly, NP treatment alters the fates of pathogenic allergen-specific Th2 cells, reprogramming these cells toward CD25+FoxP3+ regulatory and CD73+FR4+ anergic phenotypes. NP-mediated reductions in the frequency of effector cells in the gut and mast cell degranulation following OFC are also demonstrated. These studies reveal mechanisms by which an allergen-encapsulating NP therapy and, more broadly, allergen-specific immunotherapies, can rapidly attenuate allergic responses by targeting pathogenic Th2 cells.
Collapse
Affiliation(s)
- Michael N. Saunders
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Laila M. Rad
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Laura A. Williams
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Jeffrey J. Landers
- Mary H. Weiser Food Allergy CenterUniversity of MichiganAnn ArborMI48109USA
| | - Russell R. Urie
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Sarah E. Hocevar
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborMI48109USA
| | - Miguel Quiros
- Department of PathologyUniversity of MichiganAnn ArborMI48109USA
| | - Ming‐Yi Chiang
- Department of Microbiology‐ImmunologyNorthwestern UniversityChicagoIL60611USA
| | - Amogh R. Angadi
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | | | - Elizabeth J. Bealer
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Kelly Crumley
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Olivia E. Benson
- Mary H. Weiser Food Allergy CenterUniversity of MichiganAnn ArborMI48109USA
| | - Kate V. Griffin
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Brian C. Ross
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | | | - Asma Nusrat
- Department of PathologyUniversity of MichiganAnn ArborMI48109USA
| | - Stephen D. Miller
- Department of Microbiology‐ImmunologyNorthwestern UniversityChicagoIL60611USA
- Center for Human ImmunobiologyNorthwestern UniversityChicagoIL60611USA
- Interdepartmental Immunobiology CenterFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Joseph R. Podojil
- Department of Microbiology‐ImmunologyNorthwestern UniversityChicagoIL60611USA
- Center for Human ImmunobiologyNorthwestern UniversityChicagoIL60611USA
- Cour Pharmaceuticals Development CompanyNorthbrookIL60077USA
| | - Jessica J. O'Konek
- Mary H. Weiser Food Allergy CenterUniversity of MichiganAnn ArborMI48109USA
| | - Lonnie D. Shea
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
6
|
Tiligada E, Stefanaki C, Ennis M, Neumann D. Opportunities and challenges in the therapeutic exploitation of histamine and histamine receptor pharmacology in inflammation-driven disorders. Pharmacol Ther 2024; 263:108722. [PMID: 39306197 DOI: 10.1016/j.pharmthera.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Inflammation-driven diseases encompass a wide array of pathological conditions characterised by immune system dysregulation leading to tissue damage and dysfunction. Among the myriad of mediators involved in the regulation of inflammation, histamine has emerged as a key modulatory player. Histamine elicits its actions through four rhodopsin-like G-protein-coupled receptors (GPCRs), named chronologically in order of discovery as histamine H1, H2, H3 and H4 receptors (H1-4R). The relatively low affinity H1R and H2R play pivotal roles in mediating allergic inflammation and gastric acid secretion, respectively, whereas the high affinity H3R and H4R are primarily linked to neurotransmission and immunomodulation, respectively. Importantly, however, besides the H4R, both H1R and H2R are also crucial in driving immune responses, the H2R tending to promote yet ill-defined and unexploited suppressive, protective and/or resolving processes. The modulatory action of histamine via its receptors on inflammatory cells is described in detail. The potential therapeutic value of the most recently discovered H4R in inflammatory disorders is illustrated via a selection of preclinical models. The clinical trials with antagonists of this receptor are discussed and possible reasons for their lack of success described.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Charikleia Stefanaki
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Madeleine Ennis
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Shim D, Bak Y, Choi HG, Lee S, Park SC. Effects of Panax species and their bioactive components on allergic airway diseases. J Ginseng Res 2024; 48:354-365. [PMID: 39036733 PMCID: PMC11258390 DOI: 10.1016/j.jgr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 07/23/2024] Open
Abstract
Panax species include Panax ginseng Meyer, Panax quinquefolium L., Panax notoginseng, Panax japonicum, Panax trifolium, and Panax pseudoginseng, which contain bioactive components (BCs) such as ginsenosides and polysaccharides. Recently, growing evidence has revealed the pharmacological effects of Panax species and their BCs on allergic airway diseases (AADs), including allergic asthma (AA) and allergic rhinitis (AR). AADs are characterized by damaged epithelium, sustained acquired immune responses with enforced Th2 responses, allergen-specific IgE production, and enhanced production of histamine and leukotrienes by activated mast cells and basophils. In this review, we summarize how Panax species and their BCs modulate acquired immune responses involving interactions between dendritic cells and T cells, reduce the pro-inflammatory responses of epithelial cells, and reduce allergenic responses from basophils and mast cells in vitro. In addition, we highlight the current understanding of the alleviative effects of Panax species and their BCs against AA and AR in vivo. Moreover, we discuss the unmet needs of research and considerations for the treatment of patients to provide basic scientific knowledge for the treatment of AADs using Panax species and their BCs.
Collapse
Affiliation(s)
- Dahee Shim
- Industry-Academic Cooperation Foundation, Hallym University, Chuncheon, Republic of Korea
| | - Yeeun Bak
- Department of Biomedical Science, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seunghyun Lee
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Chul Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Kannen V, Grant DM, Matthews J. The mast cell-T lymphocyte axis impacts cancer: Friend or foe? Cancer Lett 2024; 588:216805. [PMID: 38462035 DOI: 10.1016/j.canlet.2024.216805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Crosstalk between mast cells (MCs) and T lymphocytes (TLs) releases specific signals that create an environment conducive to tumor development. Conversely, they can protect against cancer by targeting tumor cells for destruction. Although their role in immunity and cancer is complex, their potential in anticancer strategies is often underestimated. When peripheral MCs are activated, they can affect cancer development. Tumor-infiltrating TLs may malfunction and contribute to aggressive cancer and poor prognoses. One promising approach for cancer patients is TL-based immunotherapies. Recent reports suggest that MCs modulate TL activity in solid tumors and may be a potential therapeutic layer in multitargeting anticancer strategies. Pharmacologically modulating MC activity can enhance the anticancer cytotoxic TL response in tumors. By identifying tumor-specific targets, it has been possible to genetically alter patients' cells into fully humanized anticancer cellular therapies for autologous transplantation, including the engineering of TLs and MCs to target and kill cancer cells. Hence, recent scientific evidence provides a broader understanding of MC-TL activity in cancer.
Collapse
Affiliation(s)
- Vinicius Kannen
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Denis M Grant
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Matthews
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Jia B, Zeng HL, Shang J, Wang X, Xu L, Fang M, Zeng F, Yang Q. Inhibitory effect of rosmarinic acid on IgE-trigged mast cell degranulation in vitro and in vivo. Mol Biol Rep 2024; 51:194. [PMID: 38270683 DOI: 10.1007/s11033-023-09164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Rosmarinic acid (RA), a polyphenol from edible-medical Lamiaceae herbs, is known to possess a variety of pharmacological activity, like anti-inflammatory, hepatoprotective and immunoregulation activities. METHODS AND RESULTS Hereon, we investigated the anti-allergic activity of RA on immunoglobulin E (IgE)-mediated anaphylaxis responses in rat basophilic leukemia (RBL)-2H3 mast cell. RA hindered the morphological changes of IgE-induced degranulated RBL-2H3 cells. The release of two key biomarkers (β-hexosaminidase (β-HEX) and histamine) of IgE-induced degranulated mast cells was also remarkably down-regulated by RA intervention in a dose dependent manner. Moreover, RA inhibited IgE-induced ROS overproduction and flux of intracellular Ca2+ in IgE-mediated degranulated mast cells. The q-PCR analysis showed that the expressions of genes (COX 2, PGD 2, LTC 4, HDC, Nrf2, HO-1 and NQO1) involved in MAPK and oxidative stress signaling pathways were significantly regulated by RA intervention. Moreover, the degranulation inhibitory effect of rosmarinic acid was investigated on the anti-DNP IgE/DNP-HSA induced passive cutaneous anaphylaxis (PCA) mice model in vivo. It showed that RA significantly inhibited the PCA reaction and allergic edema of ears in anti-DNP IgE/DNP-HSA stimulated mice. CONCLUSION These findings suggest that RA has the potential to be used as a therapeutic candidate for allergic diseases by inhibiting mast cell degranulation. This indicates a possible role for RA in managing allergic reactions and related conditions.
Collapse
Affiliation(s)
- Binmei Jia
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, 430023, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, 430023, China
| | - Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jieli Shang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, 430023, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, 430023, China
| | - Xuanpei Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, 430023, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, 430023, China
| | - Lin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, 430023, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, 430023, China
| | - Min Fang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, 430023, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, 430023, China
| | - Fengbo Zeng
- Wuhan BioCSi Tech Laboratory Co., LTD, Wuhan, 430000, China
| | - Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, 430023, China.
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, 430023, China.
| |
Collapse
|
10
|
Lotfi A, Hajian P, Abbasi L, Gargari MK, Fard NNG, Naderi D. A Review on Role of Inflammation in Coronavirus Disease. Endocr Metab Immune Disord Drug Targets 2024; 24:1488-1505. [PMID: 38303532 DOI: 10.2174/0118715303265274231204075802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
The respiratory illness known as COVID-19 is caused by the novel coronavirus, SARS-CoV-2. While the precise pathogenic mechanism of COVID-19 remains unclear, the occurrence of a cytokine storm subsequent to viral infection plays a pivotal role in the initiation and advancement of the disease. The infection of SARS-CoV-2 induces a state of immune system hyperactivity, leading to an excessive production of inflammatory cytokines. Consequently, the identification of the various signaling pathways implicated in the inflammation induced by COVID-19 will enable researchers to investigate new targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Pouran Hajian
- Department of Anesthesiology, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Delaram Naderi
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
11
|
Yao H, Wang L, Zhou X, Jia X, Xiang Q, Zhang W. Predicting the therapeutic efficacy of AIT for asthma using clinical characteristics, serum allergen detection metrics, and machine learning techniques. Comput Biol Med 2023; 166:107544. [PMID: 37866086 DOI: 10.1016/j.compbiomed.2023.107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Bronchial asthma is a prevalent non-communicable disease among children. The study collected clinical data from 390 children aged 4-17 years with asthma, with or without rhinitis, who received allergen immunotherapy (AIT). Combining these data, this paper proposed a predictive framework for the efficacy of mite subcutaneous immunotherapy in asthma based on machine learning techniques. Introducing the dispersed foraging strategy into the Salp Swarm Algorithm (SSA), a new improved algorithm named DFSSA is proposed. This algorithm effectively alleviates the imbalance between search speed and traversal caused by the fixed partitioning pattern in traditional SSA. Utilizing the fusion of boosting algorithm and kernel extreme learning machine, an AIT performance prediction model was established. To further investigate the effectiveness of the DFSSA-KELM model, this study conducted an auxiliary diagnostic experiment using the immunotherapy predictive medical data collected by the hospital. The findings indicate that selected indicators, such as blood basophil count, sIgE/tIgE (Der p) and sIgE/tIgE (Der f), play a crucial role in predicting treatment outcome. The classification results showed an accuracy of 87.18% and a sensitivity of 93.55%, indicating that the prediction model is an effective and accurate intelligent tool for evaluating the efficacy of AIT.
Collapse
Affiliation(s)
- Hao Yao
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lingya Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyu Zhou
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoxiao Jia
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiangwei Xiang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
12
|
Yanase Y, Matsubara D, Takahagi S, Tanaka A, Ozawa K, Hide M. Basophil Characteristics as a Marker of the Pathogenesis of Chronic Spontaneous Urticaria in Relation to the Coagulation and Complement Systems. Int J Mol Sci 2023; 24:10320. [PMID: 37373468 DOI: 10.3390/ijms241210320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic spontaneous urticaria (CSU) is a common skin disorder characterized by daily or almost daily recurring skin edema and flare with itch and pruritus anywhere on the body for more than 6 weeks. Although basophil- and mast cell-released inflammatory mediators, such as histamine, play important roles in the pathogenesis of CSU, the detailed underlying mechanism is not clear. Since several auto-antibodies, IgGs which recognize IgE or the high-affinity IgE receptor (FcεRI) and IgEs against other self-antigens, are detected in CSU patients, they are considered to activate both mast cells in the skin and basophils circulating in the blood. In addition, we and other groups demonstrated that the coagulation and complement system also contribute to the development of urticaria. Here, we summarized the behaviors, markers and targets of basophils in relation to the coagulation-complement system, and for the treatment of CSU.
Collapse
Affiliation(s)
- Yuhki Yanase
- Department of Pharmacotherapy, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-0046, Japan
| | - Daiki Matsubara
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-0046, Japan
| | - Shunsuke Takahagi
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-0046, Japan
| | - Akio Tanaka
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-0046, Japan
| | - Koichiro Ozawa
- Department of Pharmacotherapy, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-0046, Japan
| | - Michihiro Hide
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-0046, Japan
- Hiroshima City Hiroshima Citizens Hospital, Hiroshima 730-8518, Japan
| |
Collapse
|
13
|
Miyake K, Ito J, Nakabayashi J, Shichino S, Ishiwata K, Karasuyama H. Single cell transcriptomics clarifies the basophil differentiation trajectory and identifies pre-basophils upstream of mature basophils. Nat Commun 2023; 14:2694. [PMID: 37202383 DOI: 10.1038/s41467-023-38356-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/27/2023] [Indexed: 05/20/2023] Open
Abstract
Basophils are the rarest granulocytes and are recognized as critical cells for type 2 immune responses. However, their differentiation pathway remains to be fully elucidated. Here, we assess the ontogenetic trajectory of basophils by single-cell RNA sequence analysis. Combined with flow cytometric and functional analyses, we identify c-Kit-CLEC12Ahi pre-basophils located downstream of pre-basophil and mast cell progenitors (pre-BMPs) and upstream of CLEC12Alo mature basophils. The transcriptomic analysis predicts that the pre-basophil population includes previously-defined basophil progenitor (BaP)-like cells in terms of gene expression profile. Pre-basophils are highly proliferative and respond better to non-IgE stimuli but less to antigen plus IgE stimulation than do mature basophils. Although pre-basophils usually remain in the bone marrow, they emerge in helminth-infected tissues, probably through IL-3-mediated inhibition of their retention in the bone marrow. Thus, the present study identifies pre-basophils that bridge the gap between pre-BMPs and mature basophils during basophil ontogeny.
Collapse
Grants
- 20K16277 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K007115 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H05064 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19H01025 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H02845 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21gm6210025 Japan Agency for Medical Research and Development (AMED)
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection & Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Junya Ito
- Inflammation, Infection & Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jun Nakabayashi
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Kenji Ishiwata
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hajime Karasuyama
- Inflammation, Infection & Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
14
|
Tsai JJ, Yen CY, Hsu CH, Yu SJ, Chen CH, Liao EC. Immunomodulatory effects of modified Liu-Wei-Di-Huang-Wan Traditional Chinese medicine on allergic asthmatic mice. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:35. [PMID: 37101296 PMCID: PMC10134635 DOI: 10.1186/s13223-023-00792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Allergic asthma occurs worldwide and is particularly prevalent in westernized countries characterized by chronic airway inflammation resulting in airway hyperresponsiveness. The house dust mites (HDM) including Dermatophagoides pteronyssinus are major sources of sensitization and triggering allergic symptoms in asthmatic patients. The Der p 2 is a major allergen and the predominant source of causative respiratory disorders which induce airway inflammation and bronchial constriction in mite-allergic patients. Few studies evaluate the ameliorating effects of modified Liu-Wei-Di-Huang-Wan (modified LWDHW) on allergic asthma. METHODS This study aimed to investigate the immunological mechanisms of modified LWDHW on the reductions of airway inflammation, signal transduction, inflammatory cytokine production, Th2 cell proliferation, and bronchial obstruction in Der p 2-induced asthmatic mice. RESULTS At least ten active ingredients were contained in the formula of modified LWDHW- 1217A and 1217B. Results showed that the immunoglobulin generations (Der p 2 specific- IgE and IgG1), inflammatory cytokine productions (IL-5 and IL-13) in the Sera and BALF could be down-regulated, and the Th1-cytokine productions (IL-12 and IFN-γ) be increased after immunotherapy with modified LWDHW of 1217A or 1217B. The inflammatory cell infiltrations (macrophages, eosinophils, and neutrophils) in the airway and the expressions of TH2-related genes (IL-4, IL-5, and IL-13), TH2-related transcription factor (GATA-3), and neutrophil chemotactic chemokine (IL-8) in the lung tissue of asthmatic mice were significantly decreased after the immunotherapy. The Th1/Th2 polarization had been identified that the IL-4+/CD4+ T cells were downregulated and IFN-γ+/CD4+ T cells were increased. The airway hyperresponsiveness to methacholine inhalation of Penh values was significantly decreased in the treated groups. There were significant improvements in the bronchus histopathology after immunotherapy with 1217A or 1217B which were evaluated by tracheal thickness, inflammatory cell count, and tracheal rupture of mouse lung. CONCLUSION It revealed that 1217A or 1217B could regulate the immune responses and improve pulmonary function. Data suggests that modified LWDHW of 1217A or 1217B have the potential for use as a therapeutic intervention for the treatment of mite allergen Der p 2-induced allergic asthma.
Collapse
Affiliation(s)
- Jaw-Ji Tsai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan
| | - Chung-Yang Yen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Hsien Hsu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- Department of Family Medicine, Heping Fuyou Branch, Taipei City Hospital, Taipei, Taiwan
- Department of Family Medicine, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Sheng-Jie Yu
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chao-Hsien Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, No.46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan
| | - En-Chih Liao
- Department of Medicine, MacKay Medical College, No.46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
15
|
Maeng J, Lee K. Inhibitors of dimerized translationally controlled tumor protein, a histamine releasing factor, may serve as anti-allergic drug candidates. Biochimie 2023; 211:141-152. [PMID: 36963558 DOI: 10.1016/j.biochi.2023.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
It has been established that translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF), exhibits cytokine-like activities associated with initiation of allergic responses only after forming dimers (dTCTP). Agents that inhibit dTCTP by preventing its dimerization or otherwise block its function, also block development of allergic reactions, thereby serving as potential drugs to treat allergic diseases. Several lines of evidence have proven that peptides and antibodies that specifically inhibit the interactions between dTCTP and either its putative receptor or immunoglobulins exhibit significant in vivo efficacy as potential anti-inflammatory agents in murine models of allergic inflammatory diseases. This review highlights the development of several inhibitors targeting dTCTP and discusses how they affect the pathophysiologic processes of allergic and inflammatory diseases in several animal models and offers new perspectives on anti-allergic drug discovery.
Collapse
Affiliation(s)
- Jeehye Maeng
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
A New Artificial Intelligence Approach Using Extreme Learning Machine as the Potentially Effective Model to Predict and Analyze the Diagnosis of Anemia. Healthcare (Basel) 2023; 11:healthcare11050697. [PMID: 36900702 PMCID: PMC10000789 DOI: 10.3390/healthcare11050697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
The procedure to diagnose anemia is time-consuming and resource-intensive due to the existence of a multitude of symptoms that can be felt physically or seen visually. Anemia also has several forms, which can be distinguished based on several characteristics. It is possible to diagnose anemia through a quick, affordable, and easily accessible laboratory test known as the complete blood count (CBC), but the method cannot directly identify different kinds of anemia. Therefore, further tests are required to establish a gold standard for the type of anemia in a patient. These tests are uncommon in settings that offer healthcare on a smaller scale because they require expensive equipment. Moreover, it is also difficult to discern between beta thalassemia trait (BTT), iron deficiency anemia (IDA), hemoglobin E (HbE), and combination anemias despite the presence of multiple red blood cell (RBC) formulas and indices with differing optimal cutoff values. This is due to the existence of several varieties of anemia in individuals, making it difficult to distinguish between BTT, IDA, HbE, and combinations. Therefore, a more precise and automated prediction model is proposed to distinguish these four types to accelerate the identification process for doctors. Historical data were retrieved from the Laboratory of the Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia for this purpose. Furthermore, the model was developed using the algorithm for the extreme learning machine (ELM). This was followed by the measurement of the performance using the confusion matrix and 190 data representing the four classes, and the results showed 99.21% accuracy, 98.44% sensitivity, 99.30% precision, and an F1 score of 98.84%.
Collapse
|
17
|
Sericin-Based Poly(Vinyl) Alcohol Relieves Plaque and Epidermal Lesions in Psoriasis; a Chance for Dressing Development in a Specific Area. Int J Mol Sci 2022; 24:ijms24010145. [PMID: 36613589 PMCID: PMC9820396 DOI: 10.3390/ijms24010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The noncontagious immune-mediated skin disease known as psoriasis is regarded as a chronic skin condition with a 0.09-11.4% global prevalence. The main obstacle to the eradication of the disease continues to be insufficient treatment options. Sericin, a natural biopolymer from Bombyx mori cocoons, can improve skin conditions via its immunomodulatory effect. Many external therapeutic methods are currently used to treat psoriasis, but sericin-based hydrogel is not yet used to treat plaques of eczema. Through the use of an imiquimod rat model, this study sought to identify the physical and chemical characteristics of a silk sericin-based poly(vinyl) alcohol (SS/PVA) hydrogel and assess both its therapeutic and toxic effects on psoriasis. The cytokines, chemokines, and genes involved in the pathogenesis of psoriasis were investigated, focusing on the immuno-pathological relationships. We discovered that the SS/PVA had a stable fabrication and proper release. Additionally, the anti-inflammatory, antioxidant, and anti-apoptotic properties of SS/PVA reduced the severity of psoriasis in both gross and microscopic skin lesions. This was demonstrated by a decrease in the epidermal histopathology score, upregulation of nuclear factor erythroid 2-related factor 2 and interleukin (IL)-10, and a decrease in the expression of tumor necrosis factor (TNF)-α and IL-20. Moreover, the genes S100a7a and S100a14 were downregulated. Additionally, in rats given the SS/PVA treatment, blood urea nitrogen, creatinine, and serum glutamic oxaloacetic transaminase levels were within normal limits. Our findings indicate that SS/PVA is safe and may be potentiated to treat psoriasis in a variety of forms and locations of plaque because of its physical, chemical, and biological characteristics.
Collapse
|
18
|
Poto R, Gambardella AR, Marone G, Schroeder JT, Mattei F, Schiavoni G, Varricchi G. Basophils from allergy to cancer. Front Immunol 2022; 13:1056838. [PMID: 36578500 PMCID: PMC9791102 DOI: 10.3389/fimmu.2022.1056838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Human basophils, first identified over 140 years ago, account for just 0.5-1% of circulating leukocytes. While this scarcity long hampered basophil studies, innovations during the past 30 years, beginning with their isolation and more recently in the development of mouse models, have markedly advanced our understanding of these cells. Although dissimilarities between human and mouse basophils persist, the overall findings highlight the growing importance of these cells in health and disease. Indeed, studies continue to support basophils as key participants in IgE-mediated reactions, where they infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine, leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the pathogenesis of allergic diseases. Studies now report basophils infiltrating various human cancers where they play diverse roles, either promoting or hampering tumorigenesis. Likewise, this activity bears remarkable similarity to the mounting evidence that basophils facilitate wound healing. In fact, both activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with these cytokines polarizing macrophages toward the M2 phenotype. Basophils also secrete several angiogenic factors (vascular endothelial growth factor: VEGF-A, amphiregulin) consistent with these activities. In this review, we feature these newfound properties with the goal of unraveling the increasing importance of basophils in these diverse pathobiological processes.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Adriana Rosa Gambardella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - John T. Schroeder
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| |
Collapse
|
19
|
Sim S, Choi Y, Park HS. Immunologic Basis of Type 2 Biologics for Severe Asthma. Immune Netw 2022; 22:e45. [PMID: 36627938 PMCID: PMC9807964 DOI: 10.4110/in.2022.22.e45] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/30/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease characterized by reversible airway obstruction and airway hyperreactivity to various environmental stimuli, leading to recurrent cough, dyspnea, and wheezing episodes. Regarding inflammatory mechanisms, type 2/eosinophilic inflammation along with activated mast cells is the major one; however, diverse mechanisms, including structural cells-derived and non-type 2/neutrophilic inflammations are involved, presenting heterogenous phenotypes. Although most asthmatic patients could be properly controlled by the guided treatment, patients with severe asthma (SA; classified as a treatment-refractory group) suffer from uncontrolled symptoms with frequent asthma exacerbations even on regular anti-inflammatory medications, raising needs for additional controllers, including biologics that target specific molecules found in asthmatic airway, and achieving the precision medicine for asthma. This review summarizes the immunologic basis of airway inflammatory mechanisms and current biologics for SA in order to address unmet needs for future targets.
Collapse
Affiliation(s)
- Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| |
Collapse
|
20
|
Tomiaki C, Miyauchi K, Ki S, Suzuki Y, Suzuki N, Morimoto H, Mukoyama Y, Kubo M. Role of FK506-sensitive signals in asthmatic lung inflammation. Front Immunol 2022; 13:1014462. [PMID: 36439133 PMCID: PMC9683035 DOI: 10.3389/fimmu.2022.1014462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/20/2022] [Indexed: 04/02/2025] Open
Abstract
Asthma is airway inflammatory diseases caused by the activation of group 2 innate lymphoid cells (ILC2s) and type 2 helper T (TH2) cells. Cysteine proteases allergen cause tissue damage to airway epithelial cells and activate ILC2-mediated type 2 airway inflammation. FK506 is an immunosuppressive agent against calcium-dependent NFAT activation that is also effective against asthmatic inflammation. However, the effects of FK506 on cysteine protease allergen-mediated airway inflammation remain unclear. In this study, we investigated the suppressive effects of FK506 on airway inflammation. FK506 had a partial inhibitory effect on ILC2-dependent eosinophil inflammation and a robust inhibitory effect on T cell-dependent eosinophil inflammation in a cysteine protease-induced mouse asthma model. The infiltration of T1/ST2+ CD4 T cells in the lungs contributed to the persistence of eosinophil infiltration in the airway; FK506 completely inhibited the infiltration of T1/ST2+ CD4 T cells. In the initial phase, FK506 treatment targeted lung ILC2 activation induced by leukotriene B4 (LTB4)-mediated calcium signaling, but not IL-33 signaling. FK506 also inhibited the IL-13-dependent accumulation of T1/ST2+ CD4 T cells in the lungs of the later responses. These results indicated that FK506 potently suppressed airway inflammation by targeting ILC2 activation and T1/ST2+ CD4 T cell accumulation.
Collapse
Affiliation(s)
- Chihiro Tomiaki
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Sewon Ki
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Yoshie Suzuki
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Narumi Suzuki
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | | | - Yohei Mukoyama
- Global Business Development Department, Maruho Co., Ltd., Kyoto, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
21
|
Zhu H, Tang K, Chen G, Liu Z. Biomarkers in oral immunotherapy. J Zhejiang Univ Sci B 2022; 23:705-731. [PMID: 36111569 PMCID: PMC9483607 DOI: 10.1631/jzus.b2200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food allergy (FA) is a global health problem that affects a large population, and thus effective treatment is highly desirable. Oral immunotherapy (OIT) has been showing reasonable efficacy and favorable safety in most FA subjects. Dependable biomarkers are needed for treatment assessment and outcome prediction during OIT. Several immunological indicators have been used as biomarkers in OIT, such as skin prick tests, basophil and mast cell reactivity, T cell and B cell responses, allergen-specific antibody levels, and cytokines. Other novel indicators also could be potential biomarkers. In this review, we discuss and assess the application of various immunological indicators as biomarkers for OIT.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Kaifa Tang
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guoqiang Chen
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| |
Collapse
|
22
|
Ashikari T, Hachisu M, Nagata K, Ando D, Iizuka Y, Ito N, Ito K, Ikeda Y, Matsubara H, Yashiro T, Kasakura K, Nishiyama C. Salicylaldehyde Suppresses IgE-Mediated Activation of Mast Cells and Ameliorates Anaphylaxis in Mice. Int J Mol Sci 2022; 23:ijms23158826. [PMID: 35955959 PMCID: PMC9368859 DOI: 10.3390/ijms23158826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Mast cells (MCs) play key roles in IgE-mediated immunoresponses, including in the protection against parasitic infections and the onset and/or symptoms of allergic diseases. IgE-mediated activation induces MCs to release mediators, including histamine and leukotriene, as an early response, and to produce cytokines as a late phase response. Attempts have been made to identify novel antiallergic compounds from natural materials such as Chinese medicines and food ingredients. We herein screened approximately 60 compounds and identified salicylaldehyde, an aromatic aldehyde isolated from plant essential oils, as an inhibitor of the IgE-mediated activation of MCs. A degranulation assay, flow cytometric analyses, and enzyme-linked immunosorbent assays revealed that salicylaldehyde inhibited the IgE-mediated degranulation and cytokine expression of bone-marrow-derived MCs (BMMCs). The salicylaldehyde treatment reduced the surface expression level of FcεRI, the high affinity receptor for IgE, on BMMCs, and suppressed the IgE-induced phosphorylation of tyrosine residues in intercellular proteins, possibly Lyn, Syk, and Fyn, in BMMCs. We also examined the effects of salicylaldehyde in vivo using passive anaphylaxis mouse models and found that salicylaldehyde administration significantly enhanced the recovery of a reduced body temperature due to systemic anaphylaxis and markedly suppressed ear swelling, footpad swelling, and vascular permeability in cutaneous anaphylaxis.
Collapse
|
23
|
Laggner M, Acosta GS, Kitzmüller C, Copic D, Gruber F, Altenburger LM, Vorstandlechner V, Gugerell A, Direder M, Klas K, Bormann D, Peterbauer A, Shibuya A, Bohle B, Ankersmit HJ, Mildner M. The secretome of irradiated peripheral blood mononuclear cells attenuates activation of mast cells and basophils. EBioMedicine 2022; 81:104093. [PMID: 35671621 PMCID: PMC9168057 DOI: 10.1016/j.ebiom.2022.104093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND IgE-mediated hypersensitivity is becoming increasingly prevalent and activation of mast cells and basophils represent key events in the pathophysiology of allergy. We have previously reported that the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCsec) exerts beneficial anti-inflammatory effects. Yet, its ability to alleviate allergic symptoms has not been investigated so far. METHODS Several experimental in vitro and in vivo models have been used in this basic research study. A murine ear swelling model was used to study the effects of PBMCsec on 48/80-induced mast cell degranulation in vivo. The transcriptional profile of murine mast cells was analysed by single cell RNA sequencing (scRNAseq). Mast cell activation was studied in vitro using primary skin mast cells. Basophils from individuals allergic to birch pollens were used to investigate basophile activation by allergens. Transcriptomic and lipidomic analyses were used to identify mRNA expression and lipid species present in PBMCsec, respectively. FINDINGS Topical application of PBMCsec on mouse ears (C57BL/6) significantly reduced tissue swelling following intradermal injection of compound 48/80, an inducer of mast cell degranulation. Single cell RNA sequencing of PBMCsec-treated murine dermal mast cells (Balb/c) revealed a downregulation of genes involved in immune cell degranulation and Fc-receptor signalling. In addition, treatment of primary human dermal mast cells with PBMCsec strongly inhibited compound 48/80- and α-IgE-induced mediator release in vitro. Furthermore, PBMCsec remarkably attenuated allergen driven activation of basophils from allergic individuals. Transcriptomic analysis of these basophils showed that PBMCsec downregulated a distinct gene battery involved in immune cell degranulation and Fc-receptor signalling, corroborating results obtained from dermal mast cells. Finally, we identified the lipid fraction of PBMCsec as the major active ingredient involved in effector cell inhibition. INTERPRETATION Collectively, our data demonstrate that PBMCsec is able to reduce activation of mast cells and basophils, encouraging further studies on the potential use of PBMCsec for treating allergy. FUNDING Austrian Research Promotion Agency (852748 and 862068, 2015-2019), Vienna Business Agency (2343727, 2018-2020), Aposcience AG, Austrian Federal Ministry of Education, Science and Research (SPA06/055), Danube Allergy Research Cluster, Austrian Science Fund (I4437 and P32953).
Collapse
Affiliation(s)
- Maria Laggner
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria
| | - Gabriela Sánchez Acosta
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Claudia Kitzmüller
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dragan Copic
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | | | - Vera Vorstandlechner
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria; Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Alfred Gugerell
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria
| | - Martin Direder
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria
| | - Katharina Klas
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria
| | - Daniel Bormann
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria
| | - Anja Peterbauer
- Aposcience AG, Vienna, Austria; Austrian Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria.
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria.
| |
Collapse
|
24
|
Li Y, Sun X, Juan Z, Guan X, Wang M, Meng Y, Ma R. Propofol pretreatment alleviates mast cell degranulation by inhibiting SOC to protect the myocardium from ischemia-reperfusion injury. Biomed Pharmacother 2022; 150:113014. [PMID: 35658248 DOI: 10.1016/j.biopha.2022.113014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022] Open
Abstract
Propofol (PPF) has a protective effect on myocardial ischemia-reperfusion (I/R) injury (MIRI). The purpose of this study was to investigate whether the myocardial protective effect of propofol is related to the inhibition of mast cell degranulation and explore the possible mechanisms involved. Our in vivo results showed that compared with the sham group, cardiac function, infarct size, histopathological damage, apoptosis, and markers of myocardial necrosis were significantly increased in the ischemia-reperfusion group, and propofol pretreatment alleviated these effects. In the coculture system, propofol-treated mast cells reduced their tryptase activity, resulting in cardiomyocyte protective effects, such as decreased apoptosis of cardiomyocytes and decreased expression of myocardial necrosis markers. Finally, experimental results in vitro revealed that thapsigargin (TG) can increase mast cell degranulation, tryptase release, calcium ion concentration, and the expression of STIM1 and Orai1 induced by H/R, but propofol pretreatment can partially reverse the above effects. These results suggested that the cardioprotective effect of propofol is achieved in part by inhibiting calcium influx through store-operated Ca2+ channels (SOCs) and thus alleviating mast cell degranulation.
Collapse
Affiliation(s)
- Yaozu Li
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China
| | - Xiaotong Sun
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China
| | - Zhaodong Juan
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China.
| | - Xuehao Guan
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China
| | - Mingling Wang
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China
| | - Yanmei Meng
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China
| | - Ruijin Ma
- School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
25
|
Arizmendi N, Alam SB, Azyat K, Makeiff D, Befus AD, Kulka M. The Complexity of Sesquiterpene Chemistry Dictates Its Pleiotropic Biologic Effects on Inflammation. Molecules 2022; 27:2450. [PMID: 35458648 PMCID: PMC9032002 DOI: 10.3390/molecules27082450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Sesquiterpenes (SQs) are volatile compounds made by plants, insects, and marine organisms. SQ have a large range of biological properties and are potent inhibitors and modulators of inflammation, targeting specific components of the nuclear factor-kappaB (NF-κB) signaling pathway and nitric oxide (NO) generation. Because SQs can be isolated from over 1600 genera and 2500 species grown worldwide, they are an attractive source of phytochemical therapeutics. The chemical structure and biosynthesis of SQs is complex, and the SQ scaffold represents extraordinary structural variety consisting of both acyclic and cyclic (mono, bi, tri, and tetracyclic) compounds. These structures can be decorated with a diverse range of functional groups and substituents, generating many stereospecific configurations. In this review, the effect of SQs on inflammation will be discussed in the context of their complex chemistry. Because inflammation is a multifactorial process, we focus on specific aspects of inflammation: the inhibition of NF-kB signaling, disruption of NO production and modulation of dendritic cells, mast cells, and monocytes. Although the molecular targets of SQs are varied, we discuss how these pathways may mediate the effects of SQs on inflammation.
Collapse
Affiliation(s)
- Narcy Arizmendi
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Syed Benazir Alam
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Khalid Azyat
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Darren Makeiff
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - A Dean Befus
- Alberta Respiratory Centre, Department of Medicine, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
26
|
Cui H, Liu F, Fang Y, Wang T, Yuan B, Ma C. Neuronal FcεRIα directly mediates ocular itch via IgE-immune complex in a mouse model of allergic conjunctivitis. J Neuroinflammation 2022; 19:55. [PMID: 35197064 PMCID: PMC8867756 DOI: 10.1186/s12974-022-02417-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Background Classical understanding of allergic conjunctivitis (ACJ) suggests that ocular itch results from a mast cell-dependent inflammatory process. However, treatments that target inflammatory mediators or immune cells are often unsatisfying in relieving the stubborn itch symptom. This suggests that additional mechanisms are responsible for ocular itch in ACJ. In this study, we aim to determine the role of neuronal FcεRIa in allergic ocular itch. Methods Calcium imaging was applied to observe the effect of IgE-immune complex in trigeminal neurons. Genomic FcεRIa knockout mice and adeno-associated virus (AAV) mediated sensory neuron FcεRIa knockdown mice were used in conjunction with behavioral tests to determine ocular itch. In addition, immunohistochemistry, Western blot and quantitative RT-PCR were used for in vitro experiments. Results We found that FcεRIα was expressed in a subpopulation of conjunctiva sensory neurons. IgE-IC directly activated trigeminal neurons and evoked acute ocular itch without detectible conjunctival inflammation. These effects were attenuated in both a global FcεRIa-knockout mice and after sensory neuronal-specific FcεRIa-knockdown in the mouse trigeminal ganglion. In an ovalbumin (OVA) induced murine ACJ model, FcεRIα was found upregulated in conjunctiva-innervating CGRP+ sensory neurons. Sensory neuronal-specific knockdown of FcεRIa significantly alleviated ocular itch in the ACJ mice without affecting the immune cell infiltration and mast cell activation in conjunctiva. Although FcεRIα mRNA expression was not increased by IgE in dissociated trigeminal ganglion neurons, FcεRIα protein level was enhanced by IgE in a cycloheximide-resistance manner, with concordant enhancement of neuronal responses to IgE-IC. In addition, incremental sensitization gradually enhanced the expression of FcεRIα in small-sized trigeminal neurons and aggravated OVA induced ocular itch. Conclusions Our study demonstrates that FcεRIα in pruriceptive neurons directly mediates IgE-IC evoked itch and plays an important role in ocular itch in a mouse model of ACJ. These findings reveal another axis of neuroimmune interaction in allergic itch condition independent to the classical IgE-mast cell pathway, and might suggest novel therapeutic strategies for the treatment of pruritus in ACJ and other immune-related disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02417-x.
Collapse
Affiliation(s)
- Huan Cui
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fan Liu
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yehong Fang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bo Yuan
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China. .,National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China. .,Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
27
|
Yen CY, Yu CH, Tsai JJ, Tseng HK, Liao EC. Effects of Local Nasal Immunotherapy with FIP-fve Peptide and Denatured Tyrophagus putrescentiae for Storage Mite-Induced Airway Inflammation. Arch Immunol Ther Exp (Warsz) 2022; 70:6. [PMID: 35099617 DOI: 10.1007/s00005-022-00645-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Allergic diseases are affecting public health and have increased over the last decade. Sensitization to mite allergens is a considerable trigger for allergy development. Storage mite-Tyrophagus putrescentiae shows great significance of allergenic potential and clinical relevance. The fungal immunomodulatory peptide FIP-fve has been reported to possess immunomodulatory activity. We aimed to determine whether T. putrescentiae-induced sensitization and airway inflammation in mice could be downregulated by FIP-fve in conjunction with denatured T. putrescentiae (FIP-fve and DN-Tp). Immune responses and physiologic variations in immunoglobulins, leukocyte subpopulations, cytokine productions, pulmonary function, lung pathology, cytokines in CD4+ and Treg cells were evaluated after local nasal immunotherapy (LNIT). After the LNIT with FIP-fve and DN-Tp, levels of specific IgE, IgG1, and IgG2a in the sera and IgA in the bronchoalveolar lavage fluid (BALF) were significantly reduced. Infiltrations of inflammatory leukocytes (eosinophils, neutrophils, and lymphocytes) in the airway decreased significantly. Production of proinflammatory cytokines (IL-5, IL-13, IL-17F and IL-23) and chemokine (IL-8) were significantly reduced, and Th1-cytokine (IL-12) increased in the airway BALF after LNIT. Pulmonary functions of Penh values were significantly decreased after the methacholine challenge, which resulted in a reduction of airway hypersensitivity after LNIT. Bronchus pathology showed a reduction of inflammatory cell infiltration and epithelium damage after LNIT. The IL-4+/CD4+ T cells could be downregulated and the IFN-γ+/CD4+ T cells upregulated. The Treg-related immunity of IL-10 and Foxp3 expressions in CD4+CD25+ cells were both upregulated after LNIT. In conclusion, LNIT with FIP-fve and DN-Tp had an anti-inflammatory effect on mite-induced airway inflammations and possesses potential as an immunomodulatory therapy agent for allergic airway diseases.
Collapse
Affiliation(s)
- Chung-Yang Yen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Hsiang Yu
- Department of Medicine, MacKay Medical College, No. 46, Sec.3, Jhong-Jheng Rd. San-Jhih, New Taipei City, 24245, Taiwan.,Department of Medical Education, MacKay Memorial Hospital, Taipei, Taiwan
| | - Jaw-Ji Tsai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan
| | - Hsiang-Kuang Tseng
- Department of Medicine, MacKay Medical College, No. 46, Sec.3, Jhong-Jheng Rd. San-Jhih, New Taipei City, 24245, Taiwan.,Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - En-Chih Liao
- Department of Medicine, MacKay Medical College, No. 46, Sec.3, Jhong-Jheng Rd. San-Jhih, New Taipei City, 24245, Taiwan. .,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
28
|
Zhang Z, Li Z, Lin H. Reducing the Allergenicity of Shrimp Tropomyosin and Allergy Desensitization Based on Glycation Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14742-14750. [PMID: 34427086 DOI: 10.1021/acs.jafc.1c03953] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shrimp is a major allergic food that could trigger severe food allergy, with the most significant and potent allergen of shrimp referred to as tropomyosin (TM). Glycation modification (Maillard reaction) could reportedly weaken the allergenicity of TM and generate hypoallergenic TM, while up to now, there is still a lack of investigations on the hypoallergenic glycated tropomyosin (GTM) as a candidate immunotherapy for desensitizing the shrimp TM-induced allergy. This study analyzed the effects of glycation modification on decreasing the allergenicity of TM and generated hypoallergenic GTM and how GTM absorbed to the Al(OH)3 function as a candidate immunotherapy for desensitizing allergy. As the results, in comparison to TM, the saccharides of smaller molecular sizes could lead to more advanced glycation end products in GTMs than saccharides of greater molecular sizes, and TM glycated by saccharides of different molecular sizes (glucose, maltose, maltotriose, maltopentaose, and maltoheptaose) exhibited lower allergenicity as a hypoallergen upon activating the allergic reactions of the mast cell and mouse model, while TM glycated by maltose had insignificant allergenicity changes upon activating the allergic reactions of the mast cell and mouse model. In addition, the hypoallergenic GTM + Al(OH)3 was efficient as a candidate immunotherapy; this work intended to offer preclinical data to promote GTM + Al(OH)3 as a candidate allergen-specific immunotherapy for desensitizing the allergy reactions for patients allergic to shrimp food.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| |
Collapse
|
29
|
Marti E, Novotny EN, Cvitas I, Ziegler A, Wilson AD, Torsteinsdottir S, Fettelschoss‐Gabriel A, Jonsdottir S. Immunopathogenesis and immunotherapy of
Culicoides
hypersensitivity in horses: an update. Vet Dermatol 2021. [DOI: 10.1111/vde.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eliane Marti
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
- Dermfocus, Vetsuisse Faculty University of Bern Langgassstrasse 120 Bern 3001 Switzerland
| | - Ella N. Novotny
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - Iva Cvitas
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - Anja Ziegler
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - A. Douglas Wilson
- School of Clinical Veterinary Sciences University of Bristol Langford House Bristol BS40 5DU UK
| | | | - Antonia Fettelschoss‐Gabriel
- Department of Dermatology University Hospital Zurich Wagistrasse 12 Schlieren 8952 Switzerland
- Faculty of Medicine University of Zurich Switzerland
- Evax AG Hörnlistrasse 3 Münchwilen 9542 Switzerland
| | - Sigridur Jonsdottir
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
- Institute for Experimental Pathology, Keldur Biomedical Center University of Iceland Reykjavik Iceland
| |
Collapse
|
30
|
Kamal MA, Franchetti Y, Lai C, Xu C, Wang CQ, Radin AR, O'Brien MP, Ruddy M, Davis JD. Pharmacokinetics and Concentration-Response of Dupilumab in Patients with Seasonal Allergic Rhinitis. J Clin Pharmacol 2021; 62:689-695. [PMID: 34791679 PMCID: PMC9303412 DOI: 10.1002/jcph.2004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/13/2021] [Indexed: 11/07/2022]
Abstract
Patients with moderate to severe allergic rhinitis may benefit from subcutaneous immunotherapy (SCIT), despite the risk of systemic allergic reaction. Dupilumab is a fully human monoclonal antibody that blocks the shared receptor component for interleukin (IL)-4 and IL-13, key drivers of the type 2 inflammation seen in allergic rhinitis, thereby inhibiting their signaling. In the LIBERTY Grass AID trial (NCT03558997), 16 weeks of treatment with 300 mg dupilumab every 2 weeks plus Timothy grass (TG) SCIT did not reduce TG allergen challenge nasal symptom scores compared with SCIT only but did improve tolerability of SCIT up-titration in patients with a history of grass pollen-induced seasonal allergic rhinitis. Here we present the pharmacokinetics of functional serum dupilumab and concentration-response relationships in 52 patients enrolled in this trial. Functional dupilumab concentrations and concentrations of TG-specific immunoglobulin E (IgE) and IgG4 were assessed in blood samples collected from dupilumab-only and SCIT+dupilumab-treated groups. Mean functional dupilumab concentrations were similar in both groups and reached a steady state of approximately 70-80 mg/L at week 5. One week after the end of treatment, TG-specific IgG4 concentrations were increased in the SCIT+dupilumab group, but not in the dupilumab-only group, over the range of dupilumab concentrations evaluated, whereas no changes were seen for TG-specific IgE concentrations. This study demonstrates that SCIT does not alter functional concentrations of serum dupilumab, and the impact of SCIT on TG-specific immunoglobulins is not affected by functional dupilumab concentrations over the range studied, indicating that maximum response was achieved in all patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | - Ching‐Ha Lai
- Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | | | | | | | | | | | | |
Collapse
|
31
|
Liao B, Ouyang Q, Song H, Wang Z, Ou J, Huang J, Liu L. The transcriptional characteristics of mast cells derived from skin tissue in type 2 diabetes patients at the single-cell level. Acta Histochem 2021; 123:151789. [PMID: 34560403 DOI: 10.1016/j.acthis.2021.151789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 09/11/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The mechanisms underlying the role of mast cells in wound healing have not been thoroughly studied, and even fewer data are available on studies related to mast cells in the skin of patients with type 2 diabetes mellitus (T2DM). Therefore, this study aims to explore the transcriptional characteristics of mast cells at the single-cell level in patients with T2DM and provide experimental data for studying mast cell behaviors under abnormal glucose metabolism. METHODS Two patients with T2DM and one trauma patient without diabetes were enrolled. Samples were derived from skin tissue resected at the time of surgery and were isolated by single cell capture technology on BD platform to prepare single cell cDNA library. Seurat was used to process raw reads and analyze data downstream of single-cell RNA sequencing, including removal of low-quality cells, identification of cell clusters at the single-cell level, and screening for differential genes with fold change > 1.5 and p < 0.05 by two-sided t-test. We performed single-cell RNA sequencing on skin tissues of T2DM patients and non-diabetics and identified the cell cluster of skin, single-cell subsets, and transcriptional characteristics of mast cells at a single-cell level. Meanwhile, gene set enrichment(GSEA) analysis was performed on the differentially expressed genes. RESULTS A total of 8888 cells were obtained from skin tissue. Clustering analysis revealed eight-cell clusters, identified as smooth muscle cells, dendritic cells, mast cells, and T cells, respectively. Cluster 6 was identified as mast cells with the marker genes TPSAB1, CPA3, TPSB2, MS4A2,KIT, etc., which accounting for 2.7% of the total cell number.Compared with the control group, the genes highly expressed in MCs from T2DM patients, include ADH1C, PAXIP1, HAS1, ARG1, etc., and the low expression genes include PHACTR2, GGA1, RASSF2, etc. GSEA analysis suggested that the signal pathways of MCS in T2DM patients included VEGF signaling pathway, Fc gamma R-mediated phagocytosis, the B cell receptor signaling pathway, natural killer cell-mediated cytotoxicity. CONCLUSIONS The characteristic genes of MCs in the skin tissues of T2DM patients were described at the single-cell level. These genes and enriched signaling pathways provide a theoretical basis and data support for further researches on dermatopathy in patients with diabetes mellitus.
Collapse
|
32
|
Buelow LM, Hoji A, Tat K, Schroeder-Carter LM, Carroll DJ, Cook-Mills JM. Mechanisms for Alternaria alternata Function in the Skin During Induction of Peanut Allergy in Neonatal Mice With Skin Barrier Mutations. FRONTIERS IN ALLERGY 2021; 2:677019. [PMID: 35387035 PMCID: PMC8974772 DOI: 10.3389/falgy.2021.677019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2023] Open
Abstract
Neonatal mice with heterozygous mutations in genes encoding the skin barrier proteins filaggrin and mattrin (flaky tail mice [FT+/-]) exhibit oral peanut-induced anaphylaxis after skin sensitization. As we have previously reported, sensitization in this model is achieved via skin co- exposure to the environmental allergen Alternaria alternata (Alt), peanut extract (PNE), and detergent. However, the function of Alt in initiation of peanut allergy in this model is little understood. The purpose of this study was to investigate candidate cytokines induced by Alt in the skin and determine the role of these cytokines in the development of food allergy, namely oncostatin M (Osm), amphiregulin (Areg), and IL-33. RT-qPCR analyses demonstrated that skin of FT+/- neonates expressed Il33 and Osm following Alt or Alt/PNE but not PNE exposure. By contrast, expression of Areg was induced by either Alt, PNE, or Alt/PNE sensitization in FT+/- neonates. In scRNAseq analyses, Osm, Areg, and Il33 were expressed by several cell types, including a keratinocyte cluster that was expanded in the skin of Alt/PNE-exposed FT+/- pups as compared to Alt/PNE-exposed WT pups. Areg and OSM were required for oral PNE-induced anaphylaxis since anaphylaxis was inhibited by administration of neutralizing anti-Areg or anti-OSM antibodies prior to each skin sensitization with Alt/PNE. It was then determined if intradermal injection of recombinant IL33 (rIL33), rAreg, or rOSM in the skin could substitute for Alt during skin sensitization to PNE. PNE skin sensitization with intradermal rIL33 was sufficient for oral PNE-induced anaphylaxis, whereas skin sensitization with intradermal rAreg or rOSM during skin exposure to PNE was not sufficient for anaphylaxis to oral PNE challenge. Based on these studies a pathway for IL33, Areg and OSM in Alt/PNE sensitized FT+/- skin was defined for IgE induction and anaphylaxis. Alt stimulated two pathways, an IL33 pathway and a pathway involving OSM and Areg. These two pathways acted in concert with PNE to induce food allergy in pups with skin barrier mutations.
Collapse
|
33
|
Xue Z, Zhang Y, Zeng Y, Hu S, Bai H, Wang J, Jing H, Wang N. Licochalcone A inhibits MAS-related GPR family member X2-induced pseudo-allergic reaction by suppressing nuclear migration of nuclear factor-κB. Phytother Res 2021; 35:6270-6280. [PMID: 34486187 DOI: 10.1002/ptr.7272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Licochalcone A (Lico A) is a natural flavonoid belonging to the class of substituted chalcone that has various biological effects. Mast cells (MCs) are innate immune cells that mediate hypersensitivity and pseudo-allergic reactions. MAS-related GPR family member X2 (MRGPRX2) on MCs has been recognized as the main receptor for pseudo-allergic reactions. In this study, we investigated the anti-pseudo-allergy effect of Lico A and its underlying mechanism. Substance P (SP), as an MC activator, was used to establish an in vitro and in vivo model of pseudo-allergy. The in vivo effect of Lico A was investigated using passive cutaneous anaphylaxis (PCA) and active systemic allergy, along with degranulation, Ca2+ influx in vitro. SP-induced laboratory of allergic disease 2 (LAD2) cell mRNA expression was explored using RNA-seq, and Lico A inhibited LAD2 cell activation by reverse transcription polymerase chain reaction (RT-PCR), western blotting, and immunofluorescence staining. Lico A showed an inhibitory effect on SP-induced MC activation and pseudo-allergy both in vitro and in vivo. The nuclear factor (NF)-κB pathway is involved in MRGPRX2 induced MC activation, which is inhibited by Lico A. In conclusion, Lico A inhibited the pseudo-allergic reaction mediated by MRGPRX2 by blocking NF-κB nuclear migration.
Collapse
Affiliation(s)
- Zhuoyin Xue
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yongjing Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yingnan Zeng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Shiling Hu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Haoyun Bai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jue Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Huiling Jing
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.,Pazhou Lab, Guangzhou, China
| |
Collapse
|
34
|
Saracino MP, Vila CC, Baldi PC, González Maglio DH. Searching for the one(s): Using Probiotics as Anthelmintic Treatments. Front Pharmacol 2021; 12:714198. [PMID: 34434110 PMCID: PMC8381770 DOI: 10.3389/fphar.2021.714198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
Helminths are a major health concern as over one billion people are infected worldwide and, despite the multiple efforts made, there is still no effective human vaccine against them. The most important drugs used nowadays to control helminth infections belong to the benzimidazoles, imidazothiazoles (levamisole) and macrocyclic lactones (avermectins and milbemycins) families. However, in the last 20 years, many publications have revealed increasing anthelmintic resistance in livestock which is both an economical and a potential health problem, even though very few have reported similar findings in human populations. To deal with this worrying limitation of anthelmintic drugs, alternative treatments based on plant extracts or probiotics have been developed. Probiotics are defined by the Food and Agriculture Organization as live microorganisms, which, when consumed in adequate amounts, confer a health benefit to the host. It has been proven that probiotic microbes have the ability to exert an immunomodulatory effect both at the mucosa and the systemic level. The immune response against gastrointestinal helminths is characterized as a type 2 response, with high IgE levels, increased numbers and/or activity of Th2 cells, type 2 innate lymphoid cells, eosinophils, basophils, mast cells, and alternatively activated macrophages. The oral administration of probiotics may contribute to controlling gastrointestinal helminth infections since it has been demonstrated that these microorganisms stimulate dendritic cells to elicit a type 2 or regulatory immune response, among other effects on the host immune system. Here we review the current knowledge about the use of probiotic bacteria as anthelmintic therapy or as a complement to traditional anthelmintic treatments. Considering all research papers reviewed, we may conclude that the effect generated by probiotics on helminth infection depends not only on the parasite species, their stage and localization but also on the administration scheme.
Collapse
Affiliation(s)
- Maria Priscila Saracino
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Celeste Vila
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo César Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Horacio González Maglio
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
35
|
Sernoskie SC, Jee A, Uetrecht JP. The Emerging Role of the Innate Immune Response in Idiosyncratic Drug Reactions. Pharmacol Rev 2021; 73:861-896. [PMID: 34016669 DOI: 10.1124/pharmrev.120.000090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiosyncratic drug reactions (IDRs) range from relatively common, mild reactions to rarer, potentially life-threatening adverse effects that pose significant risks to both human health and successful drug discovery. Most frequently, IDRs target the liver, skin, and blood or bone marrow. Clinical data indicate that most IDRs are mediated by an adaptive immune response against drug-modified proteins, formed when chemically reactive species of a drug bind to self-proteins, making them appear foreign to the immune system. Although much emphasis has been placed on characterizing the clinical presentation of IDRs and noting implicated drugs, limited research has focused on the mechanisms preceding the manifestations of these severe responses. Therefore, we propose that to address the knowledge gap between drug administration and onset of a severe IDR, more research is required to understand IDR-initiating mechanisms; namely, the role of the innate immune response. In this review, we outline the immune processes involved from neoantigen formation to the result of the formation of the immunologic synapse and suggest that this framework be applied to IDR research. Using four drugs associated with severe IDRs as examples (amoxicillin, amodiaquine, clozapine, and nevirapine), we also summarize clinical and animal model data that are supportive of an early innate immune response. Finally, we discuss how understanding the early steps in innate immune activation in the development of an adaptive IDR will be fundamental in risk assessment during drug development. SIGNIFICANCE STATEMENT: Although there is some understanding that certain adaptive immune mechanisms are involved in the development of idiosyncratic drug reactions, the early phase of these immune responses remains largely uncharacterized. The presented framework refocuses the investigation of IDR pathogenesis from severe clinical manifestations to the initiating innate immune mechanisms that, in contrast, may be quite mild or clinically silent. A comprehensive understanding of these early influences on IDR onset is crucial for accurate risk prediction, IDR prevention, and therapeutic intervention.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Alison Jee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Jack Paul Uetrecht
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| |
Collapse
|
36
|
Rajani HF, Shahidi S, Gomari MM. Protein and Antibody Engineering: Suppressing Degranulation of the Mast Cells and Type I Hypersensitivity Reaction. Curr Protein Pept Sci 2021; 21:831-841. [PMID: 32392111 DOI: 10.2174/1389203721666200511094717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/09/2020] [Accepted: 04/23/2020] [Indexed: 11/22/2022]
Abstract
With an increase in atopic cases and owing to a significant role of mast cells in type I hypersensitivity, a therapeutic need to inhibit degranulation of mast cells has risen. Mast cells are notorious for IgE-mediated allergic response. Advancements have allowed researchers to improve clinical outcomes of already available therapies. Engineered peptides and antibodies can be easily manipulated to attain desired characteristics as per the biological environment. A number of these molecules are designed to target mast cells in order to regulate the release of histamine and other mediators, thereby controlling type I hypersensitivity response. The aim of this review paper is to highlight some of the significant molecules designed for the purpose.
Collapse
Affiliation(s)
- Huda Fatima Rajani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical
Sciences, Tehran, Iran
| | - Solmaz Shahidi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical
Sciences, Tehran, Iran
| |
Collapse
|
37
|
Zhang Z, Li XM, Li Z, Lin H. Investigation of glycated shrimp tropomyosin as a hypoallergen for potential immunotherapy. Food Funct 2021; 12:2750-2759. [PMID: 33683237 DOI: 10.1039/d0fo03039b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tropomyosin (TM) is the most important allergen in shrimps that could cause food allergy. Glycation is reported to be effective in reducing TM allergenicity and produce hypoallergen; however, up to now, there are very few reports on the potential of hypoallergenic glycated TM (GTM) as allergen immunotherapy for shrimp TM-induced food allergy. This study investigated the glycation of TM-produced hypoallergen and the immunotherapeutic efficacy of GTM + Al(OH)3 as potential allergen immunotherapy. Compared to TM, the TM glycated by glucose (TM-G), maltotriose (TM-MTS), maltopentaose (TM-MPS) and maltoheptaose (TM-MHS) had weaker allergy activation on mast cells and mouse model as a hypoallergen. However, the TM glycated by maltose (TM-M) insignificantly affected the allergenicity. In addition, the GTM absorbed into Al(OH)3 could be efficacious as potential allergen immunotherapy, particularly for the TM glycated by the saccharides having larger molecular size (e.g., TM-MHS), which could provide preclinical data to develop GTM + Al(OH)3 as a candidate immunotherapy for shrimp allergic patients.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | | | | | | |
Collapse
|
38
|
Boulanger N, Wikel S. Induced Transient Immune Tolerance in Ticks and Vertebrate Host: A Keystone of Tick-Borne Diseases? Front Immunol 2021; 12:625993. [PMID: 33643313 PMCID: PMC7907174 DOI: 10.3389/fimmu.2021.625993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Ticks and tick transmitted infectious agents are increasing global public health threats due to increasing abundance, expanding geographic ranges of vectors and pathogens, and emerging tick-borne infectious agents. Greater understanding of tick, host, and pathogen interactions will contribute to development of novel tick control and disease prevention strategies. Tick-borne pathogens adapt in multiple ways to very different tick and vertebrate host environments and defenses. Ticks effectively pharmacomodulate by its saliva host innate and adaptive immune defenses. In this review, we examine the idea that successful synergy between tick and tick-borne pathogen results in host immune tolerance that facilitates successful tick infection and feeding, creates a favorable site for pathogen introduction, modulates cutaneous and systemic immune defenses to establish infection, and contributes to successful long-term infection. Tick, host, and pathogen elements examined here include interaction of tick innate immunity and microbiome with tick-borne pathogens; tick modulation of host cutaneous defenses prior to pathogen transmission; how tick and pathogen target vertebrate host defenses that lead to different modes of interaction and host infection status (reservoir, incompetent, resistant, clinically ill); tick saliva bioactive molecules as important factors in determining those pathogens for which the tick is a competent vector; and, the need for translational studies to advance this field of study. Gaps in our understanding of these relationships are identified, that if successfully addressed, can advance the development of strategies to successfully disrupt both tick feeding and pathogen transmission.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Fédération de Médecine Translationnelle - UR7290, Early Bacterial Virulence, Group Borrelia, Université de Strasbourg, Strasbourg, France.,Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| | - Stephen Wikel
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine, Quinnipiac University, Hamden, CT, United States
| |
Collapse
|
39
|
Nonlethal Plasmodium yoelii Infection Drives Complex Patterns of Th2-Type Host Immunity and Mast Cell-Dependent Bacteremia. Infect Immun 2020; 88:IAI.00427-20. [PMID: 32958528 PMCID: PMC7671899 DOI: 10.1128/iai.00427-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Malaria strongly predisposes to bacteremia, which is associated with sequestration of parasitized red blood cells and increased gastrointestinal permeability. The mechanisms underlying this disruption are poorly understood. Here, we evaluated the expression of factors associated with mast cell activation and malaria-associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmodium yoeliiyoelli 17XNL, and blood and tissues were collected over time to assay for circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal permeability. Malaria strongly predisposes to bacteremia, which is associated with sequestration of parasitized red blood cells and increased gastrointestinal permeability. The mechanisms underlying this disruption are poorly understood. Here, we evaluated the expression of factors associated with mast cell activation and malaria-associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmodium yoeliiyoelli 17XNL, and blood and tissues were collected over time to assay for circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal permeability. The anti-inflammatory cytokines (interleukin-4 [IL-4], IL-6, and IL-10) and MCP-1/CCL2 were detected early after P. yoeliiyoelii 17XNL infection. This was followed by the appearance of IL-9 and IL-13, cytokines known for their roles in mast cell activation and growth-enhancing activity as well as IgE production. Later increases in circulating IgE, which can induce mast cell degranulation, as well as Mcpt-1 and Mcpt-4, were observed concurrently with bacteremia and increased intestinal permeability. These results suggest that P. yoeliiyoelii 17XNL infection induces the production of early cytokines that activate mast cells and drive IgE production, followed by elevated IgE, IL-9, and IL-13 that maintain and enhance mast cell activation while disrupting the protease/antiprotease balance in the intestine, contributing to epithelial damage and increased permeability.
Collapse
|
40
|
Yang H, Sun W, Ma P, Yao C, Fan Y, Li S, Yuan J, Zhang Z, Li X, Lin M, Hou Q. Multiple Components Rapidly Screened from Perilla Leaves Attenuate Asthma Airway Inflammation by Synergistic Targeting on Syk. J Inflamm Res 2020; 13:897-911. [PMID: 33223845 PMCID: PMC7671475 DOI: 10.2147/jir.s281393] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Perilla frutescens (L.) Britt., a classic medicinal plant, has been demonstrated to have anti-inflammatory and anti-allergic effects in asthma. Perilla leaves extract (PLE) exerted significant therapeutic effect against allergic asthma inflammation through Syk inhibition. But the active chemical ingredients from PLE are complex and unclear, it is difficult to fully elucidate its pharmacological mechanisms. Methods A method was established for rapid screening and characterization of active ingredients from PLE that targeted Syk, with which three potential active ingredients were identified. By using OVA-induced allergic asthma mouse model in vivo, OVA-induced human PBMCs inflammation model and DNP-IgE/BSA-induced RBL-2H3 cells model in vitro, the effects and mechanisms of PLE and its active components were evaluated. Results Using Syk-affinity screening method, roseoside (RosS), vicenin-2 (Vic-2) and rosmarinic acid (RosA) were identified from PLE. In vitro, PLE and its ingredients showed significant inhibitory activities against Syk, with their mixture (Mix, prepared by RosS, Vic-2 and RosA in accordance with their ratio in Syk-conjugated beads bound fraction) showing a stronger inhibitory activity. RosS, Vic-2 and RosA also showed significant effects on allergic asthma, and a synergistic effect of Mix was observed. Moreover, treatment with PLE, RosS, Vic-2, RosA, and Mix significantly inhibited the expression and phosphorylation of Syk, PKC, NF-κB p65, and cPLA2 in allergic mice lung tissue and in RBL-2H3 cells. Conclusion PLE may alleviate allergic airway inflammation partly through the multiple components synergistic targeting on Syk and its downstream inflammatory pathway.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Wei Sun
- Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Pei Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Chunsuo Yao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yannan Fan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Shuyi Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jiqiao Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Ziqian Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xuyu Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Mingbao Lin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Hou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
41
|
Schoos AMM, Bullens D, Chawes BL, Costa J, De Vlieger L, DunnGalvin A, Epstein MM, Garssen J, Hilger C, Knipping K, Kuehn A, Mijakoski D, Munblit D, Nekliudov NA, Ozdemir C, Patient K, Peroni D, Stoleski S, Stylianou E, Tukalj M, Verhoeckx K, Zidarn M, van de Veen W. Immunological Outcomes of Allergen-Specific Immunotherapy in Food Allergy. Front Immunol 2020; 11:568598. [PMID: 33224138 PMCID: PMC7670865 DOI: 10.3389/fimmu.2020.568598] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022] Open
Abstract
IgE-mediated food allergies are caused by adverse immunologic responses to food proteins. Allergic reactions may present locally in different tissues such as skin, gastrointestinal and respiratory tract and may result is systemic life-threatening reactions. During the last decades, the prevalence of food allergies has significantly increased throughout the world, and considerable efforts have been made to develop curative therapies. Food allergen immunotherapy is a promising therapeutic approach for food allergies that is based on the administration of increasing doses of culprit food extracts, or purified, and sometime modified food allergens. Different routes of administration for food allergen immunotherapy including oral, sublingual, epicutaneous and subcutaneous regimens are being evaluated. Although a wealth of data from clinical food allergen immunotherapy trials has been obtained, a lack of consistency in assessed clinical and immunological outcome measures presents a major hurdle for evaluating these new treatments. Coordinated efforts are needed to establish standardized outcome measures to be applied in food allergy immunotherapy studies, allowing for better harmonization of data and setting the standards for the future research. Several immunological parameters have been measured in food allergen immunotherapy, including allergen-specific immunoglobulin levels, basophil activation, cytokines, and other soluble biomarkers, T cell and B cell responses and skin prick tests. In this review we discuss different immunological parameters and assess their applicability as potential outcome measures for food allergen immunotherapy that may be included in such a standardized set of outcome measures.
Collapse
Affiliation(s)
- Ann-Marie Malby Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - Dominique Bullens
- Allergy and Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Clinical Division of Pediatrics, UZ Leuven, Leuven, Belgium
| | - Bo Lund Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Liselot De Vlieger
- Allergy and Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Audrey DunnGalvin
- School of Applied Psychology, University College Cork, Cork, Ireland
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Michelle M. Epstein
- Experimental Allergy Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Centre of Excellence Immunology, Danone Nutricia research, Utrecht, Netherlands
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Karen Knipping
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Centre of Excellence Immunology, Danone Nutricia research, Utrecht, Netherlands
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Dragan Mijakoski
- Institute of Occupational Health of RNM, Skopje, North Macedonia
- Faculty of Medicine, Ss. Cyril and Methodius, University in Skopje, Skopje, North Macedonia
| | - Daniel Munblit
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Inflammation, Repair and Development Section, NHLI, Imperial College London, London, United Kingdom
| | - Nikita A. Nekliudov
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Turkey
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Karine Patient
- SPI—Food Allergy Unit, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Diego Peroni
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sasho Stoleski
- Institute of Occupational Health of RNM, Skopje, North Macedonia
- Faculty of Medicine, Ss. Cyril and Methodius, University in Skopje, Skopje, North Macedonia
| | - Eva Stylianou
- Regional Unit for Asthma, Allergy and Hypersensitivity, Department of Pulmonary Diseases, Oslo University Hospital, Oslo, Norway
| | - Mirjana Tukalj
- Children’s Hospital, Department of Allergology and Pulmonology, Zagreb, Croatia
- Faculty of Medicine, University of Osijek, Osijek, Croatia
- Catholic University of Croatia, Zagreb, Croatia
| | - Kitty Verhoeckx
- Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mihaela Zidarn
- University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik, Slovenia, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
42
|
Yap PG, Gan CY. In vivo challenges of anti-diabetic peptide therapeutics: Gastrointestinal stability, toxicity and allergenicity. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
Arock M, Blank U, Charles N, Gaudenzio N, Georgin-Lavialle S, Li M, Ménasché G, Reber L, Vitte J. The "Mast Cell and Basophil Club" of the French Society for Immunology. Eur J Immunol 2020; 50:1430-1431. [PMID: 33016329 DOI: 10.1002/eji.202070105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michel Arock
- Sorbonne Université - UMRS 1138 - Centre de Recherche des Cordeliers, Paris, 75006, France
| | - Ulrich Blank
- Université de Paris, Laboratoire d'excellence INFLAMEX, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, 16 rue Henri Huchard, Paris, 75018, France
| | - Nicolas Charles
- Université de Paris, Laboratoire d'excellence INFLAMEX, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, 16 rue Henri Huchard, Paris, 75018, France
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), INSERM UMR 1056, Université de Toulouse, 31 059 Toulouse CEDEX 9, France
| | - Sophie Georgin-Lavialle
- Service de Médecine Interne et Centre de Références des Maladies AutoInflammatoires et des Amyloses inflammatoires, Hôpital TENON, 4 rue de la Chine, Paris & INSERM U938, Paris, France
| | - Mei Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) - CNRS UMR 7014 - Inserm U 1258 - Université de Strasbourg, France
| | - Gaël Ménasché
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, Paris, 75015, France
| | - Laurent Reber
- Center of Physiopathology Toulouse Purpan (CPTP), INSERM UMR 1049, Université de Toulouse, 31 024 Toulouse CEDEX 3, France
| | - Joana Vitte
- Aix-Marseille University, Faculty of Medicine, Marseille, France
| |
Collapse
|
44
|
Szczepek AJ, Dudnik T, Karayay B, Sergeeva V, Olze H, Smorodchenko A. Mast Cells in the Auditory Periphery of Rodents. Brain Sci 2020; 10:brainsci10100697. [PMID: 33019672 PMCID: PMC7601519 DOI: 10.3390/brainsci10100697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are densely granulated cells of myeloid origin and are a part of immune and neuroimmune systems. MCs have been detected in the endolymphatic sac of the inner ear and are suggested to regulate allergic hydrops. However, their existence in the cochlea has never been documented. In this work, we show that MCs are present in the cochleae of C57BL/6 mice and Wistar rats, where they localize in the modiolus, spiral ligament, and stria vascularis. The identity of MCs was confirmed in cochlear cryosections and flat preparations using avidin and antibodies against c-Kit/CD117, chymase, tryptase, and FcεRIα. The number of MCs decreased significantly during postnatal development, resulting in only a few MCs present in the flat preparation of the cochlea of a rat. In addition, exposure to 40 µM cisplatin for 24 h led to a significant reduction in cochlear MCs. The presence of MCs in the cochlea may shed new light on postnatal maturation of the auditory periphery and possible involvement in the ototoxicity of cisplatin. Presented data extend the current knowledge about the physiology and pathology of the auditory periphery. Future functional studies should expand and translate this new basic knowledge to clinics.
Collapse
Affiliation(s)
- Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (T.D.); (B.K.); (H.O.)
- Correspondence: ; Tel.: +49-30-450-555-224
| | - Tatyana Dudnik
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (T.D.); (B.K.); (H.O.)
| | - Betül Karayay
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (T.D.); (B.K.); (H.O.)
| | - Valentina Sergeeva
- Department of Medical Biology with Course of Microbiology and Virology, Chuvash State University, 428034 Cheboksary, Russia;
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (T.D.); (B.K.); (H.O.)
| | - Alina Smorodchenko
- Department of Human Medicine, MSH Medical School Hamburg, University of Applied Sciences and Medical University, 20457 Hamburg, Germany;
| |
Collapse
|
45
|
Marone G, Schroeder JT, Mattei F, Loffredo S, Gambardella AR, Poto R, de Paulis A, Schiavoni G, Varricchi G. Is There a Role for Basophils in Cancer? Front Immunol 2020; 11:2103. [PMID: 33013885 PMCID: PMC7505934 DOI: 10.3389/fimmu.2020.02103] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years ago. Human basophils represent <1% of peripheral blood leukocytes. During the last decades, basophils have been described also in mice, guinea pigs, rabbits, and monkeys. There are many similarities, but also several immunological differences between human and mouse basophils. There are currently several strains of mice with profound constitutive or inducible basophil deficiency useful to prove that these cells have specific roles in vivo. However, none of these mice are solely and completely devoid of all basophils. Therefore, the relevance of these findings to humans remains to be established. It has been known for some time that basophils have the propensity to migrate into the site of inflammation. Recent observations indicate that tissue resident basophils contribute to lung development and locally promote M2 polarization of macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit a specific phenotype, different from circulating basophils. Activated human and mouse basophils synthesize restricted and distinct profiles of cytokines. Human basophils produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl leukotriene C4) angiogenic factors. Activated human and mouse basophils release extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia vera. Basophils are present in the immune landscape of human lung adenocarcinoma and pancreatic cancer and can promote inflammation-driven skin tumor growth. The few studies conducted thus far using different models of basophil-deficient mice have provided informative results on the roles of these cells in tumorigenesis. Much more remains to be discovered before we unravel the hitherto mysterious roles of basophils in human and experimental cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - John T Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | | | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
46
|
Tavares LP, Peh HY, Tan WSD, Pahima H, Maffia P, Tiligada E, Levi-Schaffer F. Granulocyte-targeted therapies for airway diseases. Pharmacol Res 2020; 157:104881. [PMID: 32380052 PMCID: PMC7198161 DOI: 10.1016/j.phrs.2020.104881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022]
Abstract
The average respiration rate for an adult is 12-20 breaths per minute, which constantly exposes the lungs to allergens and harmful particles. As a result, respiratory diseases, which includes asthma, chronic obstructive pulmonary disease (COPD) and acute lower respiratory tract infections (LTRI), are a major cause of death worldwide. Although asthma, COPD and LTRI are distinctly different diseases with separate mechanisms of disease progression, they do share a common feature - airway inflammation with intense recruitment and activation of granulocytes and mast cells. Neutrophils, eosinophils, basophils, and mast cells are crucial players in host defense against pathogens and maintenance of lung homeostasis. Upon contact with harmful particles, part of the pulmonary defense mechanism is to recruit these cells into the airways. Despite their protective nature, overactivation or accumulation of granulocytes and mast cells in the lungs results in unwanted chronic airway inflammation and damage. As such, understanding the bright and the dark side of these leukocytes in lung physiology paves the way for the development of therapies targeting this important mechanism of disease. Here we discuss the role of granulocytes in respiratory diseases and summarize therapeutic strategies focused on granulocyte recruitment and activation in the lungs.
Collapse
Affiliation(s)
- Luciana P Tavares
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hong Yong Peh
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, 117600, Singapore
| | - Wan Shun Daniel Tan
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, 117600, Singapore
| | - Hadas Pahima
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pasquale Maffia
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ekaterini Tiligada
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Levi-Schaffer
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
47
|
Han H, Xu Y, Liao S, Xiao H, Chen X, Lu X, Wang S, Yang C, Liu H, Pan Q. Increased number and activation of peripheral basophils in adult-onset minimal change disease. J Cell Mol Med 2020; 24:7841-7849. [PMID: 32510738 PMCID: PMC7348159 DOI: 10.1111/jcmm.15417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Nowadays, the pathogenesis of minimal change disease (MCD) is still not well-known, and the current understanding on MCD is mainly based on data derived from children, and very few adults. Here, we comprehensively analysed the correlation between the changes of peripheral basophils and the incidence rate and relapse of adult-onset MCD. The results showed that in patients at the onset of MCD, the ratio and activation of basophils were all higher than those of healthy controls (all P < .05). In vitro test results showed that basophils from healthy controls can be activated by the serum taken from patients with MCD. Among 62 patients at the onset of MCD, with complete remission after treatment and 1 year of follow-up, the relative and absolute basophil counts before treatment were higher in the long-term remission group (n = 33) than that of the relapse group (n = 29). The basophil counts were significantly higher in the infrequent relapse group (n = 13) than that of the frequent relapse group (n = 16; P < .05). These findings suggested that basophil may play a pathogenic role in adult-onset MCD, and the increased number and activation of peripheral basophils could predict recurrence in adult MCD.
Collapse
Affiliation(s)
- Huanqin Han
- Infectious Diseases CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Yong‐Zhi Xu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Haiyan Xiao
- College of NursingDepartment of Anesthesiology and Perioperative MedicineAugusta UniversityAugustaGAUSA
| | - Xiaoqun Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Xing Lu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Shujun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Hua‐feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
48
|
Okayama Y, Matsumoto H, Odajima H, Takahagi S, Hide M, Okubo K. Roles of omalizumab in various allergic diseases. Allergol Int 2020; 69:167-177. [PMID: 32067933 DOI: 10.1016/j.alit.2020.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
IgE and mast cells play a pivotal role in various allergic diseases, including asthma, allergic rhinitis, and urticaria. Treatment with omalizumab, a monoclonal anti-IgE antibody, has significantly improved control of these allergic diseases and introduced a new era for the management of severe allergic conditions. About 10 years of experience with omalizumab treatment for severe allergic asthma confirmed its effectiveness and safety, reducing symptoms, frequency of reliever use, and severe exacerbations in patients with intractable conditions. Omalizumab is particularly useful in childhood asthma, where atopic conditions often determine clinical courses of asthma. Recently, omalizumab is approved for the treatment of chronic spontaneous urticaria (CSU) with the fixed dose of 300 mg. Although the mechanisms underlying the actions of omalizumab in CSU are not fully clarified, nearly 90% of patients with CSU showed a complete or a partial response to omalizumab treatment. Furthermore, omalizumab is just approved for the treatment of severe Japanese cedar pollinosis (JC) based on the successful results of an add-on study of omalizumab for inadequately controlled severe pollinosis despite antihistamines and nasal corticosteroids. For proper use of omalizumab to treat severe JC, co-administration of antihistamines is necessary, while patients should meet the criteria including strong sensitization to Japanese cedar pollen (≥class 3) and poor control under standard treatment. In the management of severe allergic diseases using omalizumab, issues including cost and concerns about relapse after its discontinuation should be overcome. At the same time, possibilities for application to other intractable allergic diseases should be considered.
Collapse
|
49
|
Killer Immunoglobulin-Like Receptor 2DL4 (CD158d) Regulates Human Mast Cells both Positively and Negatively: Possible Roles in Pregnancy and Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21030954. [PMID: 32023940 PMCID: PMC7037260 DOI: 10.3390/ijms21030954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Killer immunoglobulin-like receptor (KIR) 2DL4 (CD158d) was previously thought to be a human NK cell-specific protein. Mast cells are involved in allergic reactions via their KIT-mediated and FcɛRI-mediated responses. We recently detected the expression of KIR2DL4 in human cultured mast cells established from peripheral blood of healthy volunteers (PB-mast), in the human mast cell line LAD2, and in human tissue mast cells. Agonistic antibodies against KIR2DL4 negatively regulate the KIT-mediated and FcɛRI-mediated responses of PB-mast and LAD2 cells. In addition, agonistic antibodies and human leukocyte antigen (HLA)-G, a natural ligand for KIR2DL4, induce the secretion of leukemia inhibitory factor and serine proteases from human mast cells, which have been implicated in pregnancy establishment and cancer metastasis. Therefore, KIR2DL4 stimulation with agonistic antibodies and recombinant HLA-G protein may enhance both processes, in addition to suppressing mast-cell-mediated allergic reactions.
Collapse
|
50
|
Zhang S, Vieth JA, Krzyzanowska A, Henry EK, Denzin LK, Siracusa MC, Sant'Angelo DB. The Transcription Factor PLZF Is Necessary for the Development and Function of Mouse Basophils. THE JOURNAL OF IMMUNOLOGY 2019; 203:1230-1241. [PMID: 31366712 DOI: 10.4049/jimmunol.1900068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/04/2019] [Indexed: 01/21/2023]
Abstract
Basophils are innate immune cells associated with type 2 immunity, allergic reactions, and host defense against parasite infections. In this study, we show that the transcription factor PLZF, which is known for its essential role in the function and development of several innate lymphocyte subsets, is also important for the myeloid-derived basophil lineage. PLZF-deficient mice had decreased numbers of basophil progenitors in the bone marrow and mature basophils in multiple peripheral tissues. Functionally, PLZF-deficient basophils were less responsive to IgE activation and produced reduced amounts of IL-4. The altered function of basophils resulted in a blunted Th2 T cell response to a protein allergen. Additionally, PLZF-deficient basophils had reduced expression of the IL-18 receptor, which impacted migration to lungs. PLZF, therefore, is a major player in controlling type 2 immune responses mediated not only by innate lymphocytes but also by myeloid-derived cells.
Collapse
Affiliation(s)
- Sai Zhang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901.,Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854
| | - Joshua A Vieth
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Agata Krzyzanowska
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901.,Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854
| | - Everett K Henry
- Department of Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103; and
| | - Lisa K Denzin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901.,Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Mark C Siracusa
- Department of Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103; and
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901; .,Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|