1
|
Sanchez-Martinez A, Moore T, Freitas TS, Benzaken TR, O'Hagan S, Millar E, Groves HE, Drysdale SB, Broadbent L. Recent advances in the prevention and treatment of respiratory syncytial virus disease. J Gen Virol 2025; 106. [PMID: 40202895 DOI: 10.1099/jgv.0.002095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Respiratory syncytial virus (RSV) is associated with considerable healthcare burden; as such, prevention and treatment of RSV have long been considered a priority. Historic failures in RSV vaccine development had slowed the research field. However, the discovery of the conformational change in the RSV fusion protein (F) has led to considerable advancements in the field. The RSV pharmaceutical landscape has drastically changed in recent years with successful trials of both vaccines and second-generation mAbs leading to licensing and roll-out of these agents in several countries. RSV preventative and therapeutic measures will likely have a significant impact on RSV-related morbidity and mortality. However, there are still gaps in the protection that these immunizations offer that should be addressed. Many unanswered questions about RSV infection dynamics and subsequent disease should be a focus of ongoing research. This review discusses the currently licensed RSV pharmaceuticals and others that have recently progressed to clinical trials.
Collapse
Affiliation(s)
| | - Tom Moore
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Medical Radiation Physics Group, The National Physical Laboratory, Teddington, UK
- School of Mathematics and Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Telma Sancheira Freitas
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Tami R Benzaken
- Immunisations and Vaccine Preventable Disease Division, United Kingdom Health Security Agency, London, UK
| | - Shaun O'Hagan
- Department of Paediatric Infectious Diseases, Royal Belfast Hospital for Sick Children, 274 Grosvenor Rd, Belfast, BT12 6BA, UK
| | - Emma Millar
- Acute Paediatric Medical Services, Antrim Area Hospital, Bush Road, Antrim, BT41 2RL, UK
| | - Helen E Groves
- Department of Paediatric Infectious Diseases, Royal Belfast Hospital for Sick Children, 274 Grosvenor Rd, Belfast, BT12 6BA, UK
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- The NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lindsay Broadbent
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
2
|
Mukhopadhyay S, Manolaridis I, Warren C, Tang A, O’Donnell G, Luo B, Staupe RP, Vora KA, Chen Z. Anti-Idiotypic Antibody as a Booster Vaccine Against Respiratory Syncytial Virus. Vaccines (Basel) 2025; 13:35. [PMID: 39852814 PMCID: PMC11768756 DOI: 10.3390/vaccines13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children and adults. With nearly everyone infected by the age of five, there is an opportunity to develop booster vaccines that enhance B-cell immunity, promoting potent and broadly neutralizing antibodies. One potential approach involves using anti-idiotypic antibodies (anti-IDs) to mimic specific antigenic sites and enhance preexisting immunity in an epitope-specific manner. RB1, a monoclonal antibody (mAb) that binds to site IV of the RSV fusion (RSV F) protein, is a potent and broadly neutralizing against RSV A and B viruses. It is the precursor for MK1654 (clesrovimab), which successfully completed a Phase III clinical trial. Methods: In this study, we isolated two anti-IDs, 1A6 and 1D4, targeting RB1 CDR regions, demonstrating that 1A6 competes fully with RSV F in binding to RB1. Results: We resolved the RB1-1A6 and RB1-1D4 Fab-Fab complex structures and proved that 1A6 mimics the RSV F site IV better than 1D4. In an immunogenicity study, mice primed with RSV F and boosted with 1A6 Fab showed a site IV-specific antibody response with a concurrent increase in RSV virus neutralization. Conclusions: These results suggest that anti-IDs could be potentially used as booster vaccines for specific epitopes.
Collapse
Affiliation(s)
- Shreya Mukhopadhyay
- Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA; (S.M.); (C.W.); (A.T.)
| | | | - Christopher Warren
- Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA; (S.M.); (C.W.); (A.T.)
| | - Aimin Tang
- Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA; (S.M.); (C.W.); (A.T.)
| | - Gregory O’Donnell
- Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (G.O.); (B.L.)
| | - Bin Luo
- Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (G.O.); (B.L.)
| | - Ryan P. Staupe
- Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA; (S.M.); (C.W.); (A.T.)
| | - Kalpit A. Vora
- Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA; (S.M.); (C.W.); (A.T.)
| | - Zhifeng Chen
- Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA; (S.M.); (C.W.); (A.T.)
| |
Collapse
|
3
|
Goswami J, Baqui AH, Doreski PA, Perez Marc G, Jimenez G, Ahmed S, Zaman K, Duncan CJA, Ujiie M, Rämet M, Pérez–Breva L, Lan L, Du J, Kapoor A, Mehta S, Tomassini JE, Huang W, Zhou H, Stoszek SK, Priddy F, Lin N, Le Cam N, Shaw CA, Slobod K, Wilson E, Miller JM, Das R. Humoral Immunogenicity of mRNA-1345 RSV Vaccine in Older Adults. J Infect Dis 2024; 230:e996-e1006. [PMID: 38889247 PMCID: PMC11566230 DOI: 10.1093/infdis/jiae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The mRNA-1345 vaccine demonstrated efficacy against respiratory syncytial virus (RSV) disease with acceptable safety in adults aged ≥60 years in the ConquerRSV trial. Here, humoral immunogenicity results from the trial are presented. METHODS This phase 2/3 trial randomly assigned adults (≥60 years) to mRNA-1345 50-µg encoding prefusion F (preF) glycoprotein (n = 17 793) vaccine or placebo (n = 17 748). RSV-A and RSV-B neutralizing antibody (nAb) and preF binding antibody (bAb) levels at baseline and day 29 postvaccination were assessed in a per-protocol immunogenicity subset (PPIS; mRNA-1345, n = 1515; placebo, n = 333). RESULTS Day 29 nAb geometric mean titers (GMTs) increased 8.4-fold against RSV-A and 5.1-fold against RSV-B from baseline. Seroresponses (4-fold rise from baseline) in the mRNA-1345 groups were 74.2% and 56.5% for RSV-A and RSV-B, respectively. Baseline GMTs were lower among participants who met the seroresponse criteria than those who did not. mRNA-1345 induced preF bAbs at day 29, with a pattern similar to nAbs. Day 29 antibody responses across demographic and risk subgroups were generally consistent with the overall PPIS. CONCLUSIONS mRNA-1345 enhanced RSV-A and RSV-B nAbs and preF bAbs in adults (≥60 years) across various subgroups, including those at risk for severe disease, consistent with its demonstrated efficacy in the prevention of RSV disease. CLINICAL TRIALS REGISTRATION NCT05127434.
Collapse
Affiliation(s)
- Jaya Goswami
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Abdullah H Baqui
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | - Salahuddin Ahmed
- Department of International Health, Johns Hopkins University, Zakiganj, Sylhet, Bangladesh
| | - Khalequz Zaman
- Infectious Diseases Division, Matlab Health Research Center, Matlab Bazar, Bangladesh
| | - Christopher J A Duncan
- Department of Infectious Diseases, Royal Victoria Infirmary, Newcastle upon Tyne, Northumberland, United Kingdom
| | - Mugen Ujiie
- Center for Global Health and Medicine, Shinjuku-Ku, Japan
| | - Mika Rämet
- Finnish Vaccine Research Ltd
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Lan Lan
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Jiejun Du
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Archana Kapoor
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Shraddah Mehta
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Joanne E Tomassini
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Wenmei Huang
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Honghong Zhou
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Sonia K Stoszek
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Frances Priddy
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Nina Lin
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Nancy Le Cam
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Christine A Shaw
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Karen Slobod
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Eleanor Wilson
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Jacqueline M Miller
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| | - Rituparna Das
- Infectious Disease, Research and Development, Moderna, Inc., Cambridge, Massachusetts
| |
Collapse
|
4
|
Kawahara E, Shibata T, Hirai T, Yoshioka Y. Non-glycosylated G protein with CpG ODN provides robust protection against respiratory syncytial virus without inducing eosinophilia. Front Immunol 2023; 14:1282016. [PMID: 38169867 PMCID: PMC10758452 DOI: 10.3389/fimmu.2023.1282016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Respiratory syncytial virus (RSV) vaccines targeting the fusion glycoprotein (F protein) are highly effective clinically in preventing RSV challenges. The attachment glycoprotein (G protein) is a potentially effective vaccine antigen candidate, as it is important for cell adhesion during infection. However, vaccine-associated enhanced diseases in mice, such as eosinophilic lung inflammation following RSV challenge, are a concern with G protein vaccines. This study aimed to design an effective G protein vaccine with enhanced safety and efficacy by evaluating the efficacy and adverse reactions of vaccines composed of different recombinant G proteins and adjuvants in mice. Methods Mice were subcutaneously immunized with glycosylated G protein expressed in mammalian cells (mG), non-glycosylated G protein expressed in Escherichia coli (eG), or F protein with or without aluminum salts (alum), CpG oligodeoxynucleotide (CpG ODN), or AddaVax. After vaccination, the levels of G-specific antibody and T-cell responses were measured. The immunized mice were challenged with RSV and examined for the viral load in the lungs and nasal turbinates, lung-infiltrating cells, and lung pathology. Results mG with any adjuvant was ineffective at inducing G-specific antibodies and had difficulty achieving both protection against RSV challenge and eosinophilia suppression. In particular, mG+CpG ODN induced G-specific T helper 1 (Th1) cells but only a few G-specific antibodies and did not protect against RSV challenge. However, eG+CpG ODN induced high levels of G-specific antibodies and Th1 cells and protected against RSV challenge without inducing pulmonary inflammation. Moreover, the combination vaccine of eG+F+CpG ODN showed greater protection against upper respiratory tract RSV challenge than using each single antigen vaccine alone. Discussion These results indicate that the efficacy of recombinant G protein vaccines can be enhanced without inducing adverse reactions by using appropriate antigens and adjuvants, and their efficacy is further enhanced in the combination vaccine with F protein. These data provide valuable information for the clinical application of G protein vaccines.
Collapse
Affiliation(s)
- Eigo Kawahara
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takehiko Shibata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Toshiro Hirai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Ruckwardt TJ. The road to approved vaccines for respiratory syncytial virus. NPJ Vaccines 2023; 8:138. [PMID: 37749081 PMCID: PMC10519952 DOI: 10.1038/s41541-023-00734-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
After decades of work, several interventions to prevent severe respiratory syncytial virus (RSV) disease in high-risk infant and older adult populations have finally been approved. There were many setbacks along the road to victory. In this review, I will discuss the impact of RSV on human health and how structure-based vaccine design set the stage for numerous RSV countermeasures to advance through late phase clinical evaluation. While there are still many RSV countermeasures in preclinical and early-stage clinical trials, this review will focus on products yielding long-awaited efficacy results. Finally, I will discuss some challenges and next steps needed to declare a global victory against RSV.
Collapse
Affiliation(s)
- Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Sacconnay L, De Smedt J, Rocha-Perugini V, Ong E, Mascolo R, Atas A, Vanden Abeele C, de Heusch M, De Schrevel N, David MP, Bouzya B, Stobbelaar K, Vanloubbeeck Y, Delputte PL, Mallett CP, Dezutter N, Warter L. The RSVPreF3-AS01 vaccine elicits broad neutralization of contemporary and antigenically distant respiratory syncytial virus strains. Sci Transl Med 2023; 15:eadg6050. [PMID: 37611082 DOI: 10.1126/scitranslmed.adg6050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023]
Abstract
The RSVPreF3-AS01 vaccine, containing the respiratory syncytial virus (RSV) prefusion F protein and the AS01 adjuvant, was previously shown to boost neutralization responses against historical RSV strains and to be efficacious in preventing RSV-associated lower respiratory tract diseases in older adults. Although RSV F is highly conserved, variation does exist between strains. Here, we characterized variations in the major viral antigenic sites among contemporary RSV sequences when compared with RSVPreF3 and showed that, in older adults, RSVPreF3-AS01 broadly boosts neutralization responses against currently dominant and antigenically distant RSV strains. RSV-neutralizing responses are thought to play a central role in preventing RSV infection. Therefore, the breadth of RSVPreF3-AS01-elicited neutralization responses may contribute to vaccine efficacy against contemporary RSV strains and those that may emerge in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Kim Stobbelaar
- Department of Biomedical Sciences and Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Peter L Delputte
- Department of Biomedical Sciences and Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | | | | | | |
Collapse
|
7
|
Janse M, Sesa G, van de Burgwal L. A Case Study of European Collaboration between the Veterinary and Human Field for the Development of RSV Vaccines. Vaccines (Basel) 2023; 11:1137. [PMID: 37514953 PMCID: PMC10385505 DOI: 10.3390/vaccines11071137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The One Health (OH) approach describes the interconnection between the health of animals, humans, and the environment. The need for collaboration between the veterinary and human fields is increasing due to the rise in several infectious diseases that cross human-animal barriers and need to be addressed jointly. However, such collaboration is not evident in practice, especially for non-zoonotic diseases. A qualitative research approach was used to explore the barriers and enablers influencing collaborative efforts on the development of vaccines for the non-zoonotic RSV virus. It was found that in the European context, most veterinary and human health professionals involved in RSV vaccine development see themselves as belonging to two distinct groups, indicating a lack of a common goal for collaboration. Next to this, the different conceptualizations of the OH approach, and the fact that RSV is not a zoonotic disease, strengthens the opinion that there is no shared need for collaboration. This paper adds insights on how, for a non-zoonotic situation, collaboration between human and veterinary professionals shaped the development of vaccines in both areas; thus, improving public health requires awareness, mutual appreciation, and shared goal setting.
Collapse
Affiliation(s)
- Marga Janse
- Athena Institute, VU Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Giulia Sesa
- Athena Institute, VU Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Malik S, Ahmad T, Muhammad K, Waheed Y. Respiratory Syncytial Virus Infection: Treatments and Clinical Management. Vaccines (Basel) 2023; 11:491. [PMID: 36851368 PMCID: PMC9962240 DOI: 10.3390/vaccines11020491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/29/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major healthcare concern, especially for immune-compromised individuals and infants below 5 years of age. Worldwide, it is known to be associated with incidences of morbidity and mortality in infants. Despite the seriousness of the issue and continuous rigorous scientific efforts, no approved vaccine or available drug is fully effective against RSV. The purpose of this review article is to provide insights into the past and ongoing efforts for securing effective vaccines and therapeutics against RSV. The readers will be able to confer the mechanism of existing therapies and the loopholes that need to be overcome for future therapeutic development against RSV. A methodological approach was applied to collect the latest data and updated results regarding therapeutics and vaccine development against RSV. We outline the latest throughput vaccination technologies and prophylactic development efforts linked with RSV. A range of vaccination approaches with the already available vaccine (with limited use) and those undergoing trials are included. Moreover, important drug regimens used alone or in conjugation with adjuvants or vaccines are also briefly discussed. After reading this article, the audience will be able to understand the current standing of clinical management in the form of the vaccine, prophylactic, and therapeutic candidates against RSV. An understanding of the biological behavior acting as a reason behind the lack of effective therapeutics against RSV will also be developed. The literature indicates a need to overcome the limitations attached to RSV clinical management, drugs, and vaccine development that could be explained by dealing with the challenges of current study designs with continuous improvement and further work and approval on novel therapeutic applications.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
9
|
Understanding the SARS-CoV-2 Virus Neutralizing Antibody Response: Lessons to Be Learned from HIV and Respiratory Syncytial Virus. Viruses 2023; 15:v15020504. [PMID: 36851717 PMCID: PMC9961721 DOI: 10.3390/v15020504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The SARS-CoV-2 pandemic commenced in 2019 and is still ongoing. Neither infection nor vaccination give long-lasting immunity and, here, in an attempt to understand why this might be, we have compared the neutralizing antibody responses to SARS-CoV-2 with those specific for human immunodeficiency virus type 1 (HIV-1) and respiratory syncytial virus (RSV). Currently, most of the antibodies specific for the SARS-CoV-2 S protein map to three broad antigenic sites, all at the distal end of the S trimer (receptor-binding site (RBD), sub-RBD and N-terminal domain), whereas the structurally similar HIV-1 and the RSV F envelope proteins have six antigenic sites. Thus, there may be several antigenic sites on the S trimer that have not yet been identified. The epitope mapping, quantitation and longevity of the SARS-CoV-2 S-protein-specific antibodies produced in response to infection and those elicited by vaccination are now being reported for specific groups of individuals, but much remains to be determined about these aspects of the host-virus interaction. Finally, there is a concern that the SARS-CoV-2 field may be reprising the HIV-1 experience, which, for many years, used a virus for neutralization studies that did not reflect the neutralizability of wild-type HIV-1. For example, the widely used VSV-SARS-CoV-2-S protein pseudotype has 10-fold more S trimers per virion and a different configuration of the trimers compared with the SARS-CoV-2 wild-type virus. Clarity in these areas would help in advancing understanding and aid countermeasures of the SARS-CoV-2 pandemic.
Collapse
|
10
|
Sacco RE, Mena I, Palmer MV, Durbin RK, García-Sastre A, Durbin JE. An intranasal recombinant NDV-BRSV F opt vaccine is safe and reduces lesion severity in a colostrum-deprived calf model of RSV infection. Sci Rep 2022; 12:22552. [PMID: 36581658 PMCID: PMC9800378 DOI: 10.1038/s41598-022-26938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is a major cause of severe lower respiratory tract disease in infants and the elderly, yet no safe, effective vaccine is commercially available. Closely related bovine RSV (BRSV) causes respiratory disease in young calves, with many similar features to those seen in HRSV. We previously showed that a Newcastle disease virus (NDV)-vectored vaccine expressing the F glycoprotein of HRSV reduced viral loads in lungs of mice and cotton rats and protected from HRSV. However, clinical signs and pathogenesis of disease in laboratory animals following HRSV infection differs from that observed in human infants. Thus, we examined whether a similar vaccine would protect neonatal calves from BRSV infection. Codon-optimized rNDV vaccine (rNDV-BRSV Fopt) was constructed and administered to colostrum-deprived calves. The rNDV-BRSV Fopt vaccine was well-tolerated and there was no evidence of vaccine-enhanced disease in the upper airways or lungs of these calves compared to the non-vaccinated calves. We found two intranasal doses reduces severity of gross and microscopic lesions and decreases viral load in the lungs. Furthermore, serum neutralizing antibodies were generated in vaccinated calves. Finally, reduced lung CXC chemokine levels were observed in vaccinated calves after BRSV challenge. In summary, we have shown that rNDV-BRSV Fopt vaccine is safe in colostrum-deprived calves, and is effective in reducing lung lesions, and decreasing viral load in upper respiratory tract and lungs after challenge.
Collapse
Affiliation(s)
- Randy E. Sacco
- grid.512856.d0000 0000 8863 1587Ruminant Diseases and Immunology Research Unit, National Animal Disease Center/USDA/ARS, 1920 Dayton Ave., Ames, IA 50010 USA
| | - Ignacio Mena
- grid.59734.3c0000 0001 0670 2351Departments of Microbiology and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1124, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai, Global Health and Emergent Pathogens Institute, One Gustave Levy Place, Box 1124, New York, NY 10029 USA
| | - Mitchell V. Palmer
- grid.512856.d0000 0000 8863 1587Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA/ARS, 1920 Dayton Ave., Ames, IA 50010 USA
| | - Russell K. Durbin
- grid.430387.b0000 0004 1936 8796Department of Pathology, Rutgers-New Jersey Medical School, 185 S. Orange Ave., Newark, NJ 07103 USA
| | - Adolfo García-Sastre
- grid.59734.3c0000 0001 0670 2351Departments of Microbiology and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1124, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai, Global Health and Emergent Pathogens Institute, One Gustave Levy Place, Box 1124, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1124, New York, NY 10029 USA ,grid.516104.70000 0004 0408 1530Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, One Gustave Levy Place, Box 1124, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1124, New York, NY 10029 USA
| | - Joan E. Durbin
- grid.430387.b0000 0004 1936 8796Department of Pathology, Rutgers-New Jersey Medical School, 185 S. Orange Ave., Newark, NJ 07103 USA
| |
Collapse
|
11
|
Janse M, Soekhradj SD, de Jong R, van de Burgwal LHM. Identifying Cross-Utilization of RSV Vaccine Inventions across the Human and Veterinary Field. Pathogens 2022; 12:pathogens12010046. [PMID: 36678394 PMCID: PMC9865526 DOI: 10.3390/pathogens12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
The respiratory syncytial virus (RSV) has two main variants with similar impact, a human and a bovine variant. The human respiratory syncytial virus (HRSV) is the most frequent cause of acute respiratory disease (pneumonia) in children, leading to hospitalization and causing premature death. In Europe, lower respiratory tract infections caused by HRSV are responsible for 42-45 percent of hospital admissions in children under two. Likewise, the bovine respiratory syncytial virus (BRSV) is a significant cause of acute viral broncho-pneumonia in calves. To date no licensed HRSV vaccine has been developed, despite the high burden of the disease. In contrast, BRSV vaccines have been on the market since the 1970s, but there is still an articulated unmet need for improved BRSV vaccines with greater efficacy. HRSV/BRSV vaccine development was chosen as a case to assess whether collaboration and knowledge-sharing between human and veterinary fields is taking place, benefiting the development of new vaccines in both fields. The genetic relatedness, comparable pathogeneses, and similar severity of the diseases suggests much can be gained by sharing knowledge and experiences between the human and veterinary fields. We analyzed patent data, as most of pharmaceutical inventions, such as the development of vaccines, are protected by patents. Our results show only little cross-utilization of inventions and no collaborations, as in shared IP as an exchange of knowledge. This suggests that, despite the similarities in the genetics and antigenicity of HRSV and BRSV, each fields follows its own process in developing new vaccines.
Collapse
Affiliation(s)
- Marga Janse
- Athena Institute, Faculteit der Bètawetenschappen W&N Gebouw, VU Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| | - Swasti D. Soekhradj
- Athena Institute, Faculteit der Bètawetenschappen W&N Gebouw, VU Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Rineke de Jong
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Linda H. M. van de Burgwal
- Athena Institute, Faculteit der Bètawetenschappen W&N Gebouw, VU Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
12
|
Byrne PO, McLellan JS. Principles and practical applications of structure-based vaccine design. Curr Opin Immunol 2022; 77:102209. [PMID: 35598506 PMCID: PMC9611442 DOI: 10.1016/j.coi.2022.102209] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
Viral proteins fold into a variety of
structures as they perform their functions. Structure-based vaccine
design aims to exploit knowledge of an antigen’s architecture to
stabilize it in a vulnerable conformation. We summarize the general
principles of structure-based vaccine design, with a focus on the major
types of sequence modifications: proline, disulfide, cavity-filling,
electrostatic and hydrogen-bond substitution, as well as domain deletion.
We then review recent applications of these principles to vaccine-design
efforts across five viral families: Coronaviridae,
Orthomyxoviridae, Paramyxoviridae, Pneumoviridae, and
Filoviridae. Outstanding challenges include
continued application of proven design principles to pathogens of
interest, as well as development of new strategies for those pathogens
that resist traditional techniques.
Collapse
|
13
|
Shang Z, Tan S, Ma D. Respiratory syncytial virus: from pathogenesis to potential therapeutic strategies. Int J Biol Sci 2021; 17:4073-4091. [PMID: 34671221 PMCID: PMC8495404 DOI: 10.7150/ijbs.64762] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/18/2021] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most important viral pathogens causing respiratory tract infection in infants, the elderly and people with poor immune function, which causes a huge disease burden worldwide every year. It has been more than 60 years since RSV was discovered, and the palivizumab monoclonal antibody, the only approved specific treatment, is limited to use for passive immunoprophylaxis in high-risk infants; no other intervention has been approved to date. However, in the past decade, substantial progress has been made in characterizing the structure and function of RSV components, their interactions with host surface molecules, and the host innate and adaptive immune response to infection. In addition, basic and important findings have also piqued widespread interest among researchers and pharmaceutical companies searching for effective interventions for RSV infection. A large number of promising monoclonal antibodies and inhibitors have been screened, and new vaccine candidates have been designed for clinical evaluation. In this review, we first briefly introduce the structural composition, host cell surface receptors and life cycle of RSV virions. Then, we discuss the latest findings related to the pathogenesis of RSV. We also focus on the latest clinical progress in the prevention and treatment of RSV infection through the development of monoclonal antibodies, vaccines and small-molecule inhibitors. Finally, we look forward to the prospects and challenges of future RSV research and clinical intervention.
Collapse
Affiliation(s)
- Zifang Shang
- Institute of Pediatrics, Shenzhen Children's Hospital, 518026 Shenzhen, Guangdong Province, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101Beijing, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101Beijing, China
| | - Dongli Ma
- Institute of Pediatrics, Shenzhen Children's Hospital, 518026 Shenzhen, Guangdong Province, China
| |
Collapse
|
14
|
Harshbarger W, Abeyrathne PD, Tian S, Huang Y, Chandramouli S, Bottomley MJ, Malito E. Improved epitope resolution of the prefusion trimer-specific antibody AM14 bound to the RSV F glycoprotein. MAbs 2021; 13:1955812. [PMID: 34420474 PMCID: PMC8386734 DOI: 10.1080/19420862.2021.1955812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory tract infections resulting in medical intervention and hospitalizations during infancy and early childhood, and vaccination against RSV remains a public health priority. The RSV F glycoprotein is a major target of neutralizing antibodies, and the prefusion stabilized form of F (DS-Cav1) is under investigation as a vaccine antigen. AM14 is a human monoclonal antibody with the exclusive capacity of binding an epitope on prefusion F (PreF), which spans two F protomers. The quality of recognizing a trimer-specific epitope makes AM14 valuable for probing PreF-based immunogen conformation and functionality during vaccine production. Currently, only a low-resolution (5.5 Å) X-ray structure is available of the PreF-AM14 complex, revealing few reliable details of the interface. Here, we perform complementary structural studies using X-ray crystallography and cryo-electron microscopy (cryo-EM) to provide improved resolution structures at 3.6 Å and 3.4 Å resolutions, respectively. Both X-ray and cryo-EM structures provide clear side-chain densities, which allow for accurate mapping of the AM14 epitope on DS-Cav1. The structures help rationalize the molecular basis for AM14 loss of binding to RSV F monoclonal antibody-resistant mutants and reveal flexibility for the side chain of a key antigenic residue on PreF. This work provides the basis for a comprehensive understanding of RSV F trimer specificity with implications in vaccine design and quality assessment of PreF-based immunogens.
Collapse
Affiliation(s)
| | | | - Sai Tian
- GSK, Vaccine Design and Cellular Immunology, Rockville, MD, USA
| | - Ying Huang
- GSK, Vaccine Design and Cellular Immunology, Rockville, MD, USA
| | | | | | - Enrico Malito
- GSK, Vaccine Design and Cellular Immunology, Rockville, MD, USA
| |
Collapse
|
15
|
Andreano E, Paciello I, Bardelli M, Tavarini S, Sammicheli C, Frigimelica E, Guidotti S, Torricelli G, Biancucci M, D’Oro U, Chandramouli S, Bottomley MJ, Rappuoli R, Finco O, Buricchi F. The respiratory syncytial virus (RSV) prefusion F-protein functional antibody repertoire in adult healthy donors. EMBO Mol Med 2021; 13:e14035. [PMID: 33998144 PMCID: PMC8185550 DOI: 10.15252/emmm.202114035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of death from lower respiratory tract infection in infants and children, and is responsible for considerable morbidity and mortality in older adults. Vaccines for pregnant women and elderly which are in phase III clinical studies target people with pre-existing natural immunity against RSV. To investigate the background immunity which will be impacted by vaccination, we single cell-sorted human memory B cells and dissected functional and genetic features of neutralizing antibodies (nAbs) induced by natural infection. Most nAbs recognized both the prefusion and postfusion conformations of the RSV F-protein (cross-binders) while a smaller fraction bound exclusively to the prefusion conformation. Cross-binder nAbs used a wide array of gene rearrangements, while preF-binder nAbs derived mostly from the expansion of B-cell clonotypes from the IGHV1 germline. This latter class of nAbs recognizes an epitope located between Site Ø, Site II, and Site V on the F-protein, identifying an important site of pathogen vulnerability.
Collapse
Affiliation(s)
- Emanuele Andreano
- Department of Life SciencesUniversity of SienaSienaItaly
- GSK VaccinesSienaItaly
- Present address:
Monoclonal Antibody Discovery (MAD) LabFondazione Toscana Life SciencesSienaItaly
| | - Ida Paciello
- GSK VaccinesSienaItaly
- Present address:
Monoclonal Antibody Discovery (MAD) LabFondazione Toscana Life SciencesSienaItaly
| | | | | | | | | | | | | | | | | | - Sumana Chandramouli
- GSK VaccinesRockvilleMDUSA
- Present address:
Moderna Therapeutics IncCambridgeMAUSA
| | | | - Rino Rappuoli
- GSK VaccinesSienaItaly
- Faculty of MedicineImperial CollegeLondonUK
- Monoclonal Antibody Discovery (MAD) LabFondazione Toscana Life SciencesSienaItaly
| | | | | |
Collapse
|
16
|
King T, Mejias A, Ramilo O, Peeples ME. The larger attachment glycoprotein of respiratory syncytial virus produced in primary human bronchial epithelial cultures reduces infectivity for cell lines. PLoS Pathog 2021; 17:e1009469. [PMID: 33831114 PMCID: PMC8057581 DOI: 10.1371/journal.ppat.1009469] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/20/2021] [Accepted: 03/12/2021] [Indexed: 12/03/2022] Open
Abstract
Respiratory syncytial virus (RSV) infects the upper and lower respiratory tracts and can cause lower respiratory tract infections in children and elders. RSV has traditionally been isolated, grown, studied and quantified in immortalized cell lines, most frequently HEp-2 cells. However, in vivo RSV infection is modeled more accurately in primary well differentiated human bronchial epithelial (HBE) cultures where RSV targets the ciliated cells and where the putative RSV receptor differs from the receptor on HEp-2 cells. The RSV attachment (G) glycoprotein in virions produced by HEp-2 cells is a highly glycosylated 95 kDa protein with a 32 kDa peptide core. However, virions produced in HBE cultures, RSV (HBE), contain an even larger, 170 kDa, G protein (LgG). Here we show that LgG is found in virions from both subgroups A and B lab-adapted and clinical isolates. Unexpectedly, RSV (HBE) virions were approximately 100-fold more infectious for HBE cultures than for HEp-2 cells. Surprisingly, the cause of this differential infectivity, was reduced infectivity of RSV (HBE) on HEp-2 cells rather than enhanced infectivity on HBE cultures. The lower infectivity of RSV(HBE) for HEp-2 cells is caused by the reduced ability of LgG to interact with heparan sulfate proteoglycans (HSPG), the RSV receptor on HEp-2 cells. The discovery of different infectivity corresponding with the larger form of the RSV attachment protein when produced by HBE cultures highlights the importance of studying a virus produced by its native host cell and the potential impact on quantifying virus infectivity on cell lines where the virus entry mechanisms differ from their natural target cell.
Collapse
Affiliation(s)
- Tiffany King
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, United States of America
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark E. Peeples
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
17
|
Pavot V, Bisceglia H, Guillaume F, Montano S, Zhang L, Boudet F, Haensler J. A novel vaccine adjuvant based on straight polyacrylate potentiates vaccine-induced humoral and cellular immunity in cynomolgus macaques. Hum Vaccin Immunother 2021; 17:2336-2348. [PMID: 33427044 PMCID: PMC8189108 DOI: 10.1080/21645515.2020.1855956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Adjuvants are central to the efficacy of subunit vaccines. Although several new adjuvants have been approved in human vaccines over the last decade, the panel of adjuvants in licensed human vaccines remains small. There is still a need for novel adjuvants that can be safely used in humans, easy to source and to formulate with a wide range of antigens and would be broadly applicable to a wide range of vaccines. In this article, using the Respiratory Syncytial Virus (RSV) nanoparticulate prefusion F model antigen developed by Sanofi, we demonstrate in the macaque model that the polyacrylate (PAA)-based adjuvant SPA09 is well tolerated and increases vaccine antigen-specific humoral immunity (sustained neutralizing antibodies, memory B cells and mucosal immunity) and elicits strong TH1-type responses (based on IFNγ and IL-2 ELISpots) in a dose-dependent manner. These data warrant further development of the SPA09 adjuvant for evaluation in clinical trials.
Collapse
Affiliation(s)
- Vincent Pavot
- Sanofi Pasteur, Research & Development Department, Marcy L'Etoile, France
| | - Hélène Bisceglia
- Sanofi Pasteur, Research & Development Department, Marcy L'Etoile, France
| | - Florine Guillaume
- Sanofi Pasteur, Research & Development Department, Marcy L'Etoile, France
| | - Sandrine Montano
- Sanofi Pasteur, Research & Development Department, Marcy L'Etoile, France
| | - Linong Zhang
- Sanofi Pasteur, Research & Development Department, Cambridge, MA, USA
| | - Florence Boudet
- Sanofi Pasteur, Research & Development Department, Marcy L'Etoile, France
| | - Jean Haensler
- Sanofi Pasteur, Research & Development Department, Marcy L'Etoile, France
| |
Collapse
|
18
|
Campbell PT, Geard N, Hogan AB. Modelling the household-level impact of a maternal respiratory syncytial virus (RSV) vaccine in a high-income setting. BMC Med 2020; 18:319. [PMID: 33176774 PMCID: PMC7661211 DOI: 10.1186/s12916-020-01783-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infects almost all children by the age of 2 years, with the risk of hospitalisation highest in the first 6 months of life. Development and licensure of a vaccine to prevent severe RSV illness in infants is a public health priority. A recent phase 3 clinical trial estimated the efficacy of maternal vaccination at 39% over the first 90 days of life. Households play a key role in RSV transmission; however, few estimates of population-level RSV vaccine impact account for household structure. METHODS We simulated RSV transmission within a stochastic, individual-based model framework, using an existing demographic model, structured by age and household and parameterised with Australian data, as an exemplar of a high-income country. We modelled vaccination by immunising pregnant women and explicitly linked the immune status of each mother-infant pair. We quantified the impact on children for a range of vaccine properties and uptake levels. RESULTS We found that a maternal immunisation strategy would have the most substantial impact in infants younger than 3 months, reducing RSV infection incidence in this age group by 16.6% at 70% vaccination coverage. In children aged 3-6 months, RSV infection was reduced by 5.3%. Over the first 6 months of life, the incidence rate for infants born to unvaccinated mothers was 1.26 times that of infants born to vaccinated mothers. The impact in older age groups was more modest, with evidence of infections being delayed to the second year of life. CONCLUSIONS Our findings show that while individual benefit from maternal RSV vaccination could be substantial, population-level reductions may be more modest. Vaccination impact was sensitive to the extent that vaccination prevented infection, highlighting the need for more vaccine trial data.
Collapse
Affiliation(s)
- Patricia T. Campbell
- Epidemiology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
- School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Nicholas Geard
- Epidemiology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
- School of Computing and Information Systems, Melbourne School of Engineering, The University of Melbourne, Melbourne, Australia
| | - Alexandra B. Hogan
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
19
|
Harshbarger W, Tian S, Wahome N, Balsaraf A, Bhattacharya D, Jiang D, Pandey R, Tungare K, Friedrich K, Mehzabeen N, Biancucci M, Chinchilla-Olszar D, Mallett CP, Huang Y, Wang Z, Bottomley MJ, Malito E, Chandramouli S. Convergent structural features of respiratory syncytial virus neutralizing antibodies and plasticity of the site V epitope on prefusion F. PLoS Pathog 2020; 16:e1008943. [PMID: 33137810 PMCID: PMC7660905 DOI: 10.1371/journal.ppat.1008943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/12/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a global public health burden for which no licensed vaccine exists. To aid vaccine development via increased understanding of the protective antibody response to RSV prefusion glycoprotein F (PreF), we performed structural and functional studies using the human neutralizing antibody (nAb) RSB1. The crystal structure of PreF complexed with RSB1 reveals a conformational, pre-fusion specific site V epitope with a unique cross-protomer binding mechanism. We identify shared structural features between nAbs RSB1 and CR9501, elucidating for the first time how diverse germlines obtained from different subjects can develop convergent molecular mechanisms for recognition of the same PreF site of vulnerability. Importantly, RSB1-like nAbs were induced upon immunization with PreF in naturally-primed cattle. Together, this work reveals new details underlying the immunogenicity of site V and further supports PreF-based vaccine development efforts. Respiratory syncytial virus (RSV) is a persistent, contagious seasonal pathogen and a serious public health threat. While infants are the most at-risk population, with infections potentially leading to bronchiolitis, adults, especially the elderly, are also burdened by RSV-induced respiratory infections. The only treatment currently available for RSV is passive immunization for high-risk infants. Thus, there is a critical need to develop a vaccine for the vast majority of the vulnerable population for which there is no preventative treatment. The RSV fusion protein in its prefusion form (PreF) is the target of the majority of naturally-induced neutralizing antibodies, and several clinical trials are currently evaluating PreF as a promising vaccine candidate. In this study, we solved the X-ray structure of PreF bound to the Fab fragment of a human neutralizing antibody. The structure reveals plasticity of the epitope, as well as a unique molecular signature for antibodies elicited towards this region of PreF. We also find that similar antibodies are induced upon immunization of naturally-primed cattle with a PreF vaccine antigen, suggesting that this epitope is highly immunogenic. These results will help us better understand the human immune response to RSV infection and vaccination, and guide future vaccine-design efforts.
Collapse
Affiliation(s)
| | - Sai Tian
- GSK, Rockville, MD, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | - Ying Huang
- GSK, Rockville, MD, United States of America
| | - Zihao Wang
- GSK, Rockville, MD, United States of America
| | | | - Enrico Malito
- GSK, Rockville, MD, United States of America
- * E-mail: (EM); (SC)
| | | |
Collapse
|
20
|
Aliprantis AO, Shaw CA, Griffin P, Farinola N, Railkar RA, Cao X, Liu W, Sachs JR, Swenson CJ, Lee H, Cox KS, Spellman DS, Winstead CJ, Smolenov I, Lai E, Zaks T, Espeseth AS, Panther L. A phase 1, randomized, placebo-controlled study to evaluate the safety and immunogenicity of an mRNA-based RSV prefusion F protein vaccine in healthy younger and older adults. Hum Vaccin Immunother 2020; 17:1248-1261. [PMID: 33121346 DOI: 10.1080/21645515.2020.1829899] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) causes lower respiratory tract infections that can be severe and sometimes fatal. The risk for severe RSV infection is highest in infants and older adults. A safe and effective RSV vaccine for older adults represents a serious unmet medical need due to higher morbidity and mortality in this age group. In this randomized, partially double-blind, placebo-controlled, phase 1 dose-escalation study, we evaluated the safety, tolerability and immunogenicity of an investigational messenger ribonucleic acid (mRNA) vaccine encoding the RSV fusion protein (F) stabilized in the prefusion conformation. The study was conducted in healthy younger adults (ages ≥18 and ≤49 years) and healthy older adults (ages ≥60 and ≤79 years). Participants received mRNA-1777 (V171) or placebo as a single intramuscular dose. For each dose level, three sentinel participants were administered open-label mRNA-1777 (V171). Seventy-two younger adults were randomized and administered 25, 100, or 200 µg mRNA-1777 (V171) or placebo, and 107 older adults were randomized and administered 25, 100, 200 or 300 µg mRNA-1777 (V171) or placebo. Primary objectives were safety and tolerability and secondary objectives included humoral and cell-mediated immunogenicity. All dose levels of mRNA-1777 (V171) were generally well tolerated and no serious adverse events related to the vaccine were reported. Immunization with mRNA-1777 (V171) elicited a humoral immune response as measured by increases in RSV neutralizing antibody titers, serum antibody titers to RSV prefusion F protein, D25 competing antibody titers to RSV prefusion F protein, and cell-mediated immune responses to RSV-F peptides.
Collapse
Affiliation(s)
| | | | - Paul Griffin
- QPharm, Herston, Australia.,The University of Queensland, Brisbane, Australia.,Mater Research Raymond Terrace, South Brisbane, Australia
| | | | | | - Xin Cao
- Merck & Co., Inc., Kenilworth, NJ, USA
| | - Wen Liu
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | | | | | | | | - Eseng Lai
- Merck & Co., Inc., Kenilworth, NJ, USA
| | - Tal Zaks
- Moderna, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
21
|
Zhang B, Chao CW, Tsybovsky Y, Abiona OM, Hutchinson GB, Moliva JI, Olia AS, Pegu A, Phung E, Stewart-Jones GBE, Verardi R, Wang L, Wang S, Werner A, Yang ES, Yap C, Zhou T, Mascola JR, Sullivan NJ, Graham BS, Corbett KS, Kwong PD. A platform incorporating trimeric antigens into self-assembling nanoparticles reveals SARS-CoV-2-spike nanoparticles to elicit substantially higher neutralizing responses than spike alone. Sci Rep 2020; 10:18149. [PMID: 33097791 PMCID: PMC7584627 DOI: 10.1038/s41598-020-74949-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Antigens displayed on self-assembling nanoparticles can stimulate strong immune responses and have been playing an increasingly prominent role in structure-based vaccines. However, the development of such immunogens is often complicated by inefficiencies in their production. To alleviate this issue, we developed a plug-and-play platform using the spontaneous isopeptide-bond formation of the SpyTag:SpyCatcher system to display trimeric antigens on self-assembling nanoparticles, including the 60-subunit Aquifex aeolicus lumazine synthase (LuS) and the 24-subunit Helicobacter pylori ferritin. LuS and ferritin coupled to SpyTag expressed well in a mammalian expression system when an N-linked glycan was added to the nanoparticle surface. The respiratory syncytial virus fusion (F) glycoprotein trimer-stabilized in the prefusion conformation and fused with SpyCatcher-could be efficiently conjugated to LuS-SpyTag or ferritin-SpyTag, enabling multivalent display of F trimers with prefusion antigenicity. Similarly, F-glycoprotein trimers from human parainfluenza virus-type 3 and spike-glycoprotein trimers from SARS-CoV-2 could be displayed on LuS nanoparticles with decent yield and antigenicity. Notably, murine vaccination with 0.08 µg of SARS-CoV-2 spike-LuS nanoparticle elicited similar neutralizing responses as 2.0 µg of spike, which was ~ 25-fold higher on a weight-per-weight basis. The versatile platform described here thus allows for multivalent plug-and-play presentation on self-assembling nanoparticles of trimeric viral antigens, with SARS-CoV-2 spike-LuS nanoparticles inducing particularly potent neutralizing responses.
Collapse
Affiliation(s)
- Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Olubukola M Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Geoffrey B Hutchinson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Institute for Biomedical Sciences, George Washington University, Washington, DC, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anne Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
van Boven M, Teirlinck AC, Meijer A, Hooiveld M, van Dorp CH, Reeves RM, Campbell H, van der Hoek W. Estimating Transmission Parameters for Respiratory Syncytial Virus and Predicting the Impact of Maternal and Pediatric Vaccination. J Infect Dis 2020; 222:S688-S694. [PMID: 32821916 PMCID: PMC7751153 DOI: 10.1093/infdis/jiaa424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a leading cause of respiratory tract illness in young children and a major cause of hospital admissions globally. METHODS Here we fit age-structured transmission models with immunity propagation to data from the Netherlands (2012-2017). Data included nationwide hospitalizations with confirmed RSV, general practitioner (GP) data on attendance for care from acute respiratory infection, and virological testing of acute respiratory infections at the GP. The transmission models, equipped with key parameter estimates, were used to predict the impact of maternal and pediatric vaccination. RESULTS Estimates of the basic reproduction number were generally high (R0 > 10 in scenarios with high statistical support), while susceptibility was estimated to be low in nonelderly adults (<10% in persons 20-64 years) and was higher in older adults (≥65 years). Scenario analyses predicted that maternal vaccination reduces the incidence of infection in vulnerable infants (<1 year) and shifts the age of first infection from infants to young children. CONCLUSIONS Pediatric vaccination is expected to reduce the incidence of infection in infants and young children (0-5 years), slightly increase incidence in 5 to 9-year-old children, and have minor indirect benefits.
Collapse
Affiliation(s)
- Michiel van Boven
- Centre for Infectious Disease Control, National institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Anne C Teirlinck
- Centre for Infectious Disease Control, National institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Adam Meijer
- Centre for Infectious Disease Control, National institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | - Christiaan H van Dorp
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Rachel M Reeves
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry Campbell
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Wim van der Hoek
- Centre for Infectious Disease Control, National institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
23
|
Zhang B, Chao CW, Tsybovsky Y, Abiona OM, Hutchinson GB, Moliva JI, Olia AS, Pegu A, Phung E, Stewart-Jones G, Verardi R, Wang L, Wang S, Werner A, Yang ES, Yap C, Zhou T, Mascola JR, Sullivan NJ, Graham BS, Corbett KS, Kwong PD. A Platform Incorporating Trimeric Antigens into Self-Assembling Nanoparticles Reveals SARS-CoV-2-Spike Nanoparticles to Elicit Substantially Higher Neutralizing Responses than Spike Alone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.11.147496. [PMID: 32676596 PMCID: PMC7359518 DOI: 10.1101/2020.06.11.147496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antigens displayed on self-assembling nanoparticles can stimulate strong immune responses and have been playing an increasingly prominent role in structure-based vaccines. However, the development of such immunogens is often complicated by inefficiencies in their production. To alleviate this issue, we developed a plug-and-play platform using the spontaneous isopeptide-bond formation of the SpyTag:SpyCatcher system to display trimeric antigens on self-assembling nanoparticles, including the 60-subunit Aquifex aeolicus lumazine synthase (LuS) and the 24-subunit Helicobacter pylori ferritin. LuS and ferritin coupled to SpyTag expressed well in a mammalian expression system when an N-linked glycan was added to the nanoparticle surface. The respiratory syncytial virus fusion (F) glycoprotein trimer - stabilized in the prefusion conformation and fused with SpyCatcher - could be efficiently conjugated to LuS-SpyTag or ferritin-SpyTag, enabling multivalent display of F trimers with prefusion antigenicity. Similarly, F-glycoprotein trimers from human parainfluenza virus-type 3 and spike-glycoprotein trimers from SARS-CoV-2 could be displayed on LuS nanoparticles with decent yield and antigenicity. Notably, murine vaccination with the SARS-CoV-2 spike-LuS nanoparticles elicited ~25-fold higher neutralizing responses, weight-per-weight relative to spike alone. The versatile platform described here thus allows for multivalent plug-and-play presentation on self-assembling nanoparticles of trimeric viral antigens, with SARS-CoV-2 spike-LuS nanoparticles inducing particularly potent neutralizing responses.
Collapse
Affiliation(s)
- Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cara W. Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Olubukola M. Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Geoffrey B. Hutchinson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Juan I. Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Institute for Biomedical Sciences, George Washington University, Washington, DC, USA
| | - Guillaume Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kizzmekia S. Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Ha B, Yang JE, Chen X, Jadhao SJ, Wright ER, Anderson LJ. Two RSV Platforms for G, F, or G+F Proteins VLPs. Viruses 2020; 12:E906. [PMID: 32824936 PMCID: PMC7551478 DOI: 10.3390/v12090906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes substantial lower respiratory tract disease in children and at-risk adults. Though there are no effective anti-viral drugs for acute disease or licensed vaccines for RSV, palivizumab prophylaxis is available for some high risk infants. To support anti-viral and vaccine development efforts, we developed an RSV virus-like particle (VLP) platform to explore the role RSV F and G protein interactions in disease pathogenesis. Since VLPs are immunogenic and a proven platform for licensed human vaccines, we also considered these VLPs as potential vaccine candidates. We developed two RSV VLP platforms, M+P and M+M2-1 that had F and G, F and a G peptide, or a truncated F and G on their surface. Immunoblots of sucrose gradient purified particles showed co-expression of M, G, and F with both VLP platforms. Electron microscopy imaging and immunogold labeling confirmed VLP-like structures with surface exposed projections consistent with F and G proteins. In mice, the VLPs induced both anti-F and -G protein antibodies and, on challenge, reduced lung viral titer and inflammation. These data show that these RSV VLP platforms provide a tool to study the structure of F and G and their interactions and flexible platforms to develop VLP vaccines in which all components contribute to RSV-specific immune responses.
Collapse
Affiliation(s)
- Binh Ha
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (B.H.); (X.C.); (S.J.J.)
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA;
| | - Xuemin Chen
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (B.H.); (X.C.); (S.J.J.)
| | - Samadhan J. Jadhao
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (B.H.); (X.C.); (S.J.J.)
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA;
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Larry J. Anderson
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (B.H.); (X.C.); (S.J.J.)
| |
Collapse
|
25
|
Boyoglu-Barnum S, Tripp RA. Up-to-date role of biologics in the management of respiratory syncytial virus. Expert Opin Biol Ther 2020; 20:1073-1082. [PMID: 32264720 DOI: 10.1080/14712598.2020.1753696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in young children and a substantial contributor to respiratory tract disease throughout life. Despite RSV being a high priority for vaccine development, there is currently no safe and effective vaccine available. There are many challenges to developing an RSV vaccine and there are limited antiviral drugs or biologics available for the management of infection. In this article, we review the antiviral treatments, vaccination strategies along with alternative therapies for RSV. AREAS COVERED This review is a summary of the current antiviral and RSV vaccination approaches noting strategies and alternative therapies that may prevent or decrease the disease severity in RSV susceptible populations. EXPERT OPINION This review discusses anti-RSV strategies given that no safe and efficacious vaccines are available, and therapeutic treatments are limited. Various biologicals that target for RSV are considered for disease intervention, as it is likely that it may be necessary to develop separate vaccines or therapeutics for each at-risk population.
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia , Athens, GA, USA
| |
Collapse
|
26
|
Killikelly A, Tunis M, House A, Quach C, Vaudry W, Moore D. Overview of the respiratory syncytial virus vaccine candidate pipeline in Canada. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2020; 46:56-61. [PMID: 32510521 PMCID: PMC7273503 DOI: 10.14745/ccdr.v46i04a01] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
A vaccine for respiratory syncytial virus (RSV) has been actively sought for over 60 years due to the health impacts of RSV disease in infants, but currently the only available preventive measure in Canada and elsewhere is limited to passive immunization for high-risk infants and children with a monoclonal antibody. RSV vaccine development has faced many challenges, including vaccine-induced enhancement of RSV disease in infants. Several key developments in the last decade in the fields of cellular immunology and protein structure have led to new products entering late-stage clinical development. As of July 2019, RSV vaccine development is being pursued by 16 organizations in 121 clinical trials. Five technologies dominate the field of RSV vaccine development, four active immunizing agents (live-attenuated, particle-based, subunit-based and vector-based vaccines) and one new passive immunizing agent (monoclonal antibody). Phase 3 clinical trials of vaccine candidates for pregnant women, infants, children and older adults are under way. The next decade will see a dramatic transformation of the RSV prevention landscape.
Collapse
Affiliation(s)
- April Killikelly
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Matthew Tunis
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Althea House
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Caroline Quach
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC
| | - Wendy Vaudry
- Stollery Children's Hospital, University of Alberta, Edmonton, AB
| | | |
Collapse
|
27
|
The journey to a respiratory syncytial virus vaccine. Ann Allergy Asthma Immunol 2020; 125:36-46. [PMID: 32217187 DOI: 10.1016/j.anai.2020.03.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The high burden associated with respiratory syncytial virus (RSV) has made the development of RSV vaccine(s) a global health high priority. This review summarizes the journey to an RSV vaccine, the different strategies and challenges associated with the development of preventive strategies for RSV, and the diverse products that are undergoing clinical testing. DATA SOURCES Studies on RSV biology, immunology, epidemiology, and monoclonal antibodies (mAbs) and vaccines were searched using MEDLINE. We also searched PATH.org and ClinicalTrials.gov for updated information regarding the status of RSV vaccines and mAbs undergoing clinical trials. STUDY SELECTIONS We selected relevant studies conducted in infants and young children, pregnant women, and elderly population for the prevention of RSV infection. RESULTS Identification of a safe and immunogenic vaccine has been an important but elusive initiative for more than 60 years for different reasons, including the legacy of formalin-inactivated vaccine, our limited understanding of the immune response to RSV and how it relates to clinical disease severity, or the need for different end points according to the different vaccine platforms. Nevertheless, there are currently 39 vaccines and mAbs under development and 19 undergoing clinical trials. CONCLUSION Over the past decade, there have been significant advances in our knowledge of RSV molecular and structural biology and in understanding the human immune response to RSV. Despite the barriers, there are several promising mAbs and RSV vaccines undergoing clinical trials that hope to offer protection to the most vulnerable populations.
Collapse
|