1
|
Chenuet P, Mellier M, Messaoud-Nacer Y, Culerier E, Marquant Q, Fauconnier L, Rouxel N, Ledru A, Rose S, Ryffel B, Apetoh L, Quesniaux VF, Togbe D. Birch pollen allergen-induced dsDNA release activates cGAS-STING signaling and type 2 immune response in mice. iScience 2025; 28:112324. [PMID: 40276777 PMCID: PMC12018559 DOI: 10.1016/j.isci.2025.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Detecting cytoplasmic or extracellular DNA from host or pathogen origin by DNA sensor cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) triggers immune responses with secretion of type I interferons and inflammatory cytokines. However, STING agonists function as type-2 adjuvant promoting allergic asthma. Here, we asked how cGAS/STING signaling pathway influences allergen-induced type-2 immune responses in models of allergic airway diseases induced by birch pollen extract, house dust mite, or ovalbumin plus Alum. We report increased extracellular dsDNA in the airways, together with cGAS and STING gene expression, following allergen challenge in these models, correlating dsDNA and type-2 cytokine IL-4, IL-5, and IL-13 release. Allergen-induced type-2 immune responses were reduced in cGAS- or STING-deficient mice. Further, blocking cGAS function with the specific inhibitor RU.521 protected mice from birch pollen allergen-induced airway inflammation and type-2 immune responses. Thus, DNA sensing by cGAS contributes to type-2 immune responses and may represent a therapeutic target for allergic lung inflammation.
Collapse
Affiliation(s)
| | - Manon Mellier
- Artimmune SAS, 13 Avenue Buffon, 45100 Orléans, France
| | - Yasmine Messaoud-Nacer
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
| | - Elodie Culerier
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
| | - Quentin Marquant
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
| | | | | | - Aurélie Ledru
- Artimmune SAS, 13 Avenue Buffon, 45100 Orléans, France
| | - Stéphanie Rose
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
| | - Bernhard Ryffel
- Artimmune SAS, 13 Avenue Buffon, 45100 Orléans, France
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Valérie F.J. Quesniaux
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
| | - Dieudonnée Togbe
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
- University of Orleans, 45000 Orleans, France
| |
Collapse
|
2
|
Cancado de Faria R, Silva L, Teodoro-Castro B, McCommis KS, Shashkova EV, Gonzalo S. A non-canonical cGAS-STING pathway drives cellular and organismal aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.645994. [PMID: 40236012 PMCID: PMC11996560 DOI: 10.1101/2025.04.03.645994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Accumulation of cytosolic DNA has emerged as a hallmark of aging, inducing sterile inflammation. STING (Stimulator of Interferon Genes) protein translates the sensing of cytosolic DNA by cGAS (cyclic-GMP-AMP synthase) into an inflammatory response. However, the molecular mechanisms whereby cytosolic DNA-induced cGAS-STING pathway leads to aging remain poorly understood. We show that STING does not follow the canonical pathway of activation in human fibroblasts passaged (aging) in culture, senescent fibroblasts, or progeria fibroblasts (from Hutchinson Gilford Progeria Syndrome patients). Despite cytosolic DNA buildup, features of the canonical cGAS-STING pathway like increased cGAMP production, STING phosphorylation, and STING trafficking to perinuclear compartment are not observed in progeria/senescent/aging fibroblasts. Instead, STING localizes at endoplasmic reticulum, nuclear envelope, and chromatin. Despite the non-conventional STING behavior, aging/senescent/progeria cells activate inflammatory programs such as the senescence-associated secretory phenotype (SASP) and the interferon (IFN) response, in a cGAS and STING-dependent manner, revealing a non-canonical pathway in aging. Importantly, progeria/aging/senescent cells are hindered in their ability to activate the canonical cGAS-STING pathway with synthetic DNA, compared to young cells. This deficiency is rescued by activating vitamin D receptor signaling, unveiling new mechanisms regulating the cGAS-STING pathway in aging. Significantly, in HGPS, inhibition of the non-canonical cGAS-STING pathway ameliorates cellular hallmarks of aging, reduces tissue degeneration, and extends the lifespan of progeria mice. Our study reveals that a new feature of aging is the progressively reduced ability to activate the canonical cGAS-STING pathway in response to cytosolic DNA, triggering instead a non-canonical pathway that drives senescence/aging phenotypes. Significance Statement Our study provides novel insights into the mechanisms driving sterile inflammation in aging and progeria. We reveal a previously unrecognized characteristic of aging cells: the progressive loss of ability to activate the canonical response to foreign or self-DNA at the cytoplasm. Instead, aging, senescent, and progeria cells activate inflammatory programs via a non-conventional pathway driven by cGAS and the adaptor protein STING. Importantly, pharmacological inhibition of the non-canonical cGAS-STING pathway ameliorates cellular, tissue and organismal decline in a devastating accelerated aging disease (Hutchinson Gilford Progeria Syndrome), highlighting it as a promising therapeutic target for age-related pathologies.
Collapse
|
3
|
Jahan C, Bonnet-Madin L, Machida S, Sobhian B, Thenin-Houssier S, Benkirane M. Unintegrated HIV-1 DNA recruits cGAS via its histone-binding domain to escape innate immunity. Proc Natl Acad Sci U S A 2025; 122:e2424465122. [PMID: 40067888 PMCID: PMC11929445 DOI: 10.1073/pnas.2424465122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 03/25/2025] Open
Abstract
To ensure optimal replication and spread, viruses have evolved countermeasures to evade type 1 IFN-mediated antiviral activity. During the early viral replication cycle steps until uncoating, the HIV-1 core protects viral pathogen associated molecular patterns (viral RNA and reverse transcription products) from recognition by innate immune sensors, including cGAS. However, after capsid uncoating, unintegrated viral DNA (uvDNA) becomes accessible. Here, we show that HIV-1 uses chromatin-mediated cGAS inactivation as a mechanism to protect its uvDNA from innate immune activation.
Collapse
Affiliation(s)
- Cyprien Jahan
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier-UMR9002, Montpellier34000, France
| | - Lucie Bonnet-Madin
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier-UMR9002, Montpellier34000, France
| | - Shinichi Machida
- Department of Structural Virology, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| | - Bijan Sobhian
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier-UMR9002, Montpellier34000, France
| | - Suzie Thenin-Houssier
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier-UMR9002, Montpellier34000, France
| | - Monsef Benkirane
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier-UMR9002, Montpellier34000, France
| |
Collapse
|
4
|
Sasaki N, Homme M, Murayama T, Osaki T, Tenma T, An T, Takegami Y, Tani T, Gedeon PC, Kobayashi Y, Cañadas I, Barbie DA, Yao R, Kitajima S. RNA sensing induced by chromosome missegregation augments anti-tumor immunity. Mol Cell 2025; 85:770-786.e7. [PMID: 39706184 PMCID: PMC11888943 DOI: 10.1016/j.molcel.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
Viral mimicry driven by endogenous double-stranded RNA (dsRNA) stimulates innate and adaptive immune responses. However, the mechanisms that regulate dsRNA-forming transcripts during cancer therapy remain unclear. Here, we demonstrate that dsRNA is significantly accumulated in cancer cells following pharmacologic induction of micronuclei, stimulating mitochondrial antiviral signaling (MAVS)-mediated dsRNA sensing in conjunction with the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. Activation of cytosolic dsRNA sensing cooperates with double-stranded DNA (dsDNA) sensing to upregulate immune cell migration and antigen-presenting machinery. Tracing of dsRNA-sequences reveals that dsRNA-forming transcripts are predominantly generated from non-exonic regions, particularly in locations proximal to genes exhibiting high chromatin accessibility. Activation of this pathway by pulsed monopolar spindle 1 (MPS1) inhibitor treatment, which potently induces micronuclei formation, upregulates cytoplasmic dsRNA sensing and thus promotes anti-tumor immunity mediated by cytotoxic lymphocyte activation in vivo. Collectively, our findings uncover a mechanism in which dsRNA sensing cooperates with dsDNA sensing to boost immune responses, offering an approach to enhance the efficacy of cancer therapies targeting genomic instability.
Collapse
MESH Headings
- Humans
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/immunology
- RNA, Double-Stranded/metabolism
- Animals
- Nucleotidyltransferases/genetics
- Nucleotidyltransferases/metabolism
- Nucleotidyltransferases/immunology
- Cell Line, Tumor
- Mice
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/immunology
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/pathology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/antagonists & inhibitors
- Mice, Inbred C57BL
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/immunology
- Signal Transduction
- Micronuclei, Chromosome-Defective
- Immunity, Innate
- Lymphocyte Activation
- Genomic Instability
Collapse
Affiliation(s)
- Nobunari Sasaki
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Mizuki Homme
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Takahiko Murayama
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Tatsuya Osaki
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Toshiyuki Tenma
- Respiratory Center, Asahikawa Medical University Hospital, Asahikawa 078-8510, Japan
| | - Tadaichi An
- DNAFORM Precision Gene Technologies, Yokohama, Kanagawa 230-0051, Japan
| | - Yujiro Takegami
- DNAFORM Precision Gene Technologies, Yokohama, Kanagawa 230-0051, Japan
| | - Tetsuo Tani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Patrick C Gedeon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yoshihisa Kobayashi
- Division of Molecular Pathology, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Shunsuke Kitajima
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
5
|
Steadman T, O'Reilly S. Aberrant fumarate metabolism links interferon release in diffuse systemic sclerosis. J Dermatol Sci 2025; 117:30-35. [PMID: 39827047 DOI: 10.1016/j.jdermsci.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Systemic Sclerosis (SSc) is an idiopathic rheumatic inflammatory disease that is characterised by inflammation and skin fibrosis. Type I interferon is significantly elevated in the disease. OBJECTIVE The objective of this study is to determine the role of the TCA cycle metabolite fumarate in SSc. METHODS CD14 + cells were isolated from 12 SSc patients and healthy controls. Fumarate hydratase and Interferon dependant genes were quantified by qPCR. In vitro inhibition of STING using a small molecule STING inhibitor and enforced mitophagy was induced in vitro and IFN-β release was quantified. VDAC1 inhibitor was used to determine the role of mt DNA release in IFN-β induction. In whole skin biopsies fumarate and succinate was quantified. RESULTS Fumarate Hydratase is significantly reduced in SSc monocytes. Type I interferon is also elevated in monocytes from SSc donors compared to controls. The mitochondrial-specific stress marker GDF-15 was significantly elevated in SSc monocytes. Blockade of the cGAS-STING pathway chemically reduced interferon-β release and induced mitophagy also retarded release of the cytokine in response to LPS stimulation. Inhibition of VDAC1 mitigated IFN-β, as did the depletion of mitochondria in cells. Furthermore, the itaconate derivative 4-octyl itaconate reduced IFN-β induction in SSc monocytes, that was downstream of mitochondrial nucleic acid release. Fumarate, but not succinate was elevated in whole skin biopsies. CONCLUSION Fumarate metabolism links interferon release in SSc and may underlie the aberrant expression of interferon in SSc via cytosolic DNA released from mitochondria.
Collapse
Affiliation(s)
- Thomas Steadman
- Biosciences Department, Durham University, Durham, United Kingdom
| | - Steven O'Reilly
- Biosciences Department, Durham University, Durham, United Kingdom.
| |
Collapse
|
6
|
Serradas ML, Ding Y, Martorell PV, Kulińska I, Castro-Gomez S. Therapeutic Targets in Innate Immunity to Tackle Alzheimer's Disease. Cells 2024; 13:1426. [PMID: 39272998 PMCID: PMC11394242 DOI: 10.3390/cells13171426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
There is an urgent need for effective disease-modifying therapeutic interventions for Alzheimer's disease (AD)-the most prevalent cause of dementia with a profound socioeconomic burden. Most clinical trials targeting the classical hallmarks of this disease-β-amyloid plaques and neurofibrillary tangles-failed, showed discrete clinical effects, or were accompanied by concerning side effects. There has been an ongoing search for novel therapeutic targets. Neuroinflammation, now widely recognized as a hallmark of all neurodegenerative diseases, has been proven to be a major contributor to AD pathology. Here, we summarize the role of neuroinflammation in the pathogenesis and progression of AD and discuss potential targets such as microglia, TREM2, the complement system, inflammasomes, and cytosolic DNA sensors. We also present an overview of ongoing studies targeting specific innate immune system components, highlighting the progress in this field of drug research while bringing attention to the delicate nature of innate immune modulations in AD.
Collapse
Affiliation(s)
- Maria L. Serradas
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Yingying Ding
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Paula V. Martorell
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ida Kulińska
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Sergio Castro-Gomez
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Center for Neurology, Department of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
7
|
Blest HTW, Redmond A, Avissar J, Barker J, Bridgeman A, Fowler G, Chauveau L, Hertzog J, Vendrell I, Fischer R, Iversen MB, Jing L, Koelle DM, Paludan SR, Kessler BM, Crump CM, Rehwinkel J. HSV-1 employs UL56 to antagonize expression and function of cGAMP channels. Cell Rep 2024; 43:114122. [PMID: 38652659 DOI: 10.1016/j.celrep.2024.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/21/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.
Collapse
Affiliation(s)
- Henry T W Blest
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Alexander Redmond
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jed Avissar
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jake Barker
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, UK
| | - Anne Bridgeman
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Gerissa Fowler
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Lise Chauveau
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jonny Hertzog
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Aarhus Aarhus C, Denmark
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Benaroya Research Institute, Seattle, WA 98101, USA
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus Aarhus C, Denmark
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Colin M Crump
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, UK
| | - Jan Rehwinkel
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK.
| |
Collapse
|
8
|
Di Bona M, Bakhoum SF. Micronuclei and Cancer. Cancer Discov 2024; 14:214-226. [PMID: 38197599 PMCID: PMC11265298 DOI: 10.1158/2159-8290.cd-23-1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Chromosome-containing micronuclei are a feature of human cancer. Micronuclei arise from chromosome mis-segregation and characterize tumors with elevated rates of chromosomal instability. Although their association with cancer has been long recognized, only recently have we broadened our understanding of the mechanisms that govern micronuclei formation and their role in tumor progression. In this review, we provide a brief historical account of micronuclei, depict the mechanisms underpinning their creation, and illuminate their capacity to propel tumor evolution through genetic, epigenetic, and transcriptional transformations. We also posit the prospect of leveraging micronuclei as biomarkers and therapeutic targets in chromosomally unstable cancers. SIGNIFICANCE Micronuclei in chromosomally unstable cancer cells serve as pivotal catalysts for cancer progression, instigating transformative genomic, epigenetic, and transcriptional alterations. This comprehensive review not only synthesizes our present comprehension but also outlines a framework for translating this knowledge into pioneering biomarkers and therapeutics, thereby illuminating novel paths for personalized cancer management.
Collapse
Affiliation(s)
- Melody Di Bona
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
9
|
El-Mortada F, Landelouci K, Bertrand-Perron S, Aubé FA, Poirier A, Bidias A, Jourdi G, Welman M, Gantier MP, Hamilton JR, Kile B, Lordkipanidzé M, Pépin G. Megakaryocytes possess a STING pathway that is transferred to platelets to potentiate activation. Life Sci Alliance 2024; 7:e202302211. [PMID: 37993259 PMCID: PMC10665521 DOI: 10.26508/lsa.202302211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
Platelets display unexpected roles in immune and coagulation responses. Emerging evidence suggests that STING is implicated in hypercoagulation. STING is an adaptor protein downstream of the DNA sensor cyclic GMP-AMP synthase (cGAS) that is activated by cytosolic microbial and self-DNA during infections, and in the context of loss of cellular integrity, to instigate the production of type-I IFN and pro-inflammatory cytokines. To date, whether the cGAS-STING pathway is present in platelets and contributes to platelet functions is not defined. Using a combination of pharmacological and genetic approaches, we demonstrate here that megakaryocytes and platelets possess a functional cGAS-STING pathway. Our results suggest that in megakaryocytes, STING stimulation activates a type-I IFN response, and during thrombopoiesis, cGAS and STING are transferred to proplatelets. Finally, we show that both murine and human platelets contain cGAS and STING proteins, and the cGAS-STING pathway contributes to potentiation of platelet activation and aggregation. Taken together, these observations establish for the first time a novel role of the cGAS-STING DNA sensing axis in the megakaryocyte and platelet lineage.
Collapse
Affiliation(s)
- Firas El-Mortada
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Karima Landelouci
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Samuel Bertrand-Perron
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Félix-Antoine Aubé
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Amélie Poirier
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Amel Bidias
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Georges Jourdi
- Centre de Recherche, Institut de Cardiologie de Montréal, Montréal, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | - Mélanie Welman
- Centre de Recherche, Institut de Cardiologie de Montréal, Montréal, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- CSL Innovation, Melbourne, Australia
| | - Benjamin Kile
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Marie Lordkipanidzé
- Centre de Recherche, Institut de Cardiologie de Montréal, Montréal, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | - Geneviève Pépin
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| |
Collapse
|
10
|
Jiang H, Shen Z, Zhuang J, Lu C, Qu Y, Xu C, Yang S, Tian X. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front Immunol 2024; 14:1335936. [PMID: 38288116 PMCID: PMC10822972 DOI: 10.3389/fimmu.2023.1335936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
The glomerular filtration barrier, comprising the inner layer of capillary fenestrated endothelial cells, outermost podocytes, and the glomerular basement membrane between them, plays a pivotal role in kidney function. Podocytes, terminally differentiated epithelial cells, are challenging to regenerate once injured. They are essential for maintaining the integrity of the glomerular filtration barrier. Damage to podocytes, resulting from intrinsic or extrinsic factors, leads to proteinuria in the early stages and eventually progresses to chronic kidney disease (CKD). Immune-mediated podocyte injury is a primary pathogenic mechanism in proteinuric glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, and lupus nephritis with podocyte involvement. An extensive body of evidence indicates that podocytes not only contribute significantly to the maintenance of the glomerular filtration barrier and serve as targets of immune responses but also exhibit immune cell-like characteristics, participating in both innate and adaptive immunity. They play a pivotal role in mediating glomerular injury and represent potential therapeutic targets for CKD. This review aims to systematically elucidate the mechanisms of podocyte immune injury in various podocyte lesions and provide an overview of recent advances in podocyte immunotherapy. It offers valuable insights for a deeper understanding of the role of podocytes in proteinuric glomerular diseases, and the identification of new therapeutic targets, and has significant implications for the future clinical diagnosis and treatment of podocyte-related disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhirang Shen
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Division of Nephrology, Department of Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Qu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Lv H, Zong Q, Chen C, Lv G, Xiang W, Xing F, Jiang G, Yan B, Sun X, Ma Y, Wang L, Wu Z, Cui X, Wang H, Yang W. TET2-mediated tumor cGAS triggers endothelial STING activation to regulate vasculature remodeling and anti-tumor immunity in liver cancer. Nat Commun 2024; 15:6. [PMID: 38177099 PMCID: PMC10766952 DOI: 10.1038/s41467-023-43743-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Induction of tumor vascular normalization is a crucial measure to enhance immunotherapy efficacy. cGAS-STING pathway is vital for anti-tumor immunity, but its role in tumor vasculature is unclear. Herein, using preclinical liver cancer models in Cgas/Sting-deficient male mice, we report that the interdependence between tumor cGAS and host STING mediates vascular normalization and anti-tumor immune response. Mechanistically, TET2 mediated IL-2/STAT5A signaling epigenetically upregulates tumor cGAS expression and produces cGAMP. Subsequently, cGAMP is transported via LRRC8C channels to activate STING in endothelial cells, enhancing recruitment and transendothelial migration of lymphocytes. In vivo studies in male mice also reveal that administration of vitamin C, a promising anti-cancer agent, stimulates TET2 activity, induces tumor vascular normalization and enhances the efficacy of anti-PD-L1 therapy alone or in combination with IL-2. Our findings elucidate a crosstalk between tumor and vascular endothelial cells in the tumor immune microenvironment, providing strategies to enhance the efficacy of combinational immunotherapy for liver cancer.
Collapse
Affiliation(s)
- Hongwei Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qianni Zong
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Cian Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Fuxue Xing
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Bing Yan
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Xiaoyan Sun
- Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Yue Ma
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Liang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Zixin Wu
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiuliang Cui
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Wen Yang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| |
Collapse
|
12
|
Xuan C, Hu R. Chemical Biology Perspectives on STING Agonists as Tumor Immunotherapy. ChemMedChem 2023; 18:e202300405. [PMID: 37794702 DOI: 10.1002/cmdc.202300405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Stimulator of interferon genes (STING) is a crucial adaptor protein in the innate immune response. STING activation triggers cytokine secretion, including type I interferon and initiates T cell-mediated adaptive immunity. The activated immune system converts "cold tumors" into "hot tumors" that are highly responsive to T cells by recruiting them to the tumor microenvironment, ultimately leading to potent and long-lasting antitumor effects. Unlike most immune checkpoint inhibitors, STING agonists represent a groundbreaking class of innate immune agonists that hold great potential for effectively targeting various cancer populations and are poised to become a blockbuster in tumor immunotherapy. This review will focus on the correlation between the STING signaling pathway and tumor immunity, as well as explore the impact of STING activation on other biological processes. Ultimately, we will summarize the development and optimization of STING agonists from a medicinal chemistry perspective, evaluate their potential in cancer therapy, and identify possible challenges for future advancement.
Collapse
Affiliation(s)
- Chenyuan Xuan
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| | - Rong Hu
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| |
Collapse
|
13
|
Wang X, Wang Y, Cao A, Luo Q, Chen D, Zhao W, Xu J, Li Q, Bu X, Quan J. Development of cyclopeptide inhibitors of cGAS targeting protein-DNA interaction and phase separation. Nat Commun 2023; 14:6132. [PMID: 37783727 PMCID: PMC10545747 DOI: 10.1038/s41467-023-41892-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is an essential sensor of aberrant cytosolic DNA for initiating innate immunity upon invading pathogens and cellular stress, which is considered as a potential drug target for autoimmune and autoinflammatory diseases. Here, we report the discovery of a class of cyclopeptide inhibitors of cGAS identified by an in vitro screening assay from a focused library of cyclic peptides. These cyclopeptides specifically bind to the DNA binding site of cGAS and block the binding of dsDNA with cGAS, subsequently inhibit dsDNA-induced liquid phase condensation and activation of cGAS. The specificity and potency of one optimal lead XQ2B were characterized in cellular assays. Concordantly, XQ2B inhibited herpes simplex virus-1 (HSV-1)-induced antiviral immune responses and enhanced HSV-1 infection in vitro and in vivo. Furthermore, XQ2B significantly suppressed the elevated levels of type I interferon and proinflammatory cytokines in primary macrophages from Trex1-/- mice and systemic inflammation in Trex1-/- mice. XQ2B represents the specific cGAS inhibitor targeting protein-DNA interaction and phase separation and serves as a scaffold for the development of therapies in the treatment of cGAS-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoquan Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Youqiao Wang
- School of Pharmaceutical Sciences, SunYat-sen University, Guangzhou, 510006, China
| | - Anqi Cao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qinhong Luo
- State Key Laboratory of Chemical Oncogenomics, Guangdong Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Daoyuan Chen
- School of Bioengineering, ZhuHai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Weiqi Zhao
- Genetics and Metabolism Department, The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Jun Xu
- Genetics and Metabolism Department, The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Qinkai Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xianzhang Bu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- School of Pharmaceutical Sciences, SunYat-sen University, Guangzhou, 510006, China.
| | - Junmin Quan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Burke GW, Mitrofanova A, Fontanella A, Ciancio G, Roth D, Ruiz P, Abitbol C, Chandar J, Merscher S, Fornoni A. The podocyte: glomerular sentinel at the crossroads of innate and adaptive immunity. Front Immunol 2023; 14:1201619. [PMID: 37564655 PMCID: PMC10410139 DOI: 10.3389/fimmu.2023.1201619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common glomerular disorder that manifests clinically with the nephrotic syndrome and has a propensity to recur following kidney transplantation. The pathophysiology and therapies available to treat FSGS currently remain elusive. Since the podocyte appears to be the target of apparent circulating factor(s) that lead to recurrence of proteinuria following kidney transplantation, this article is focused on the podocyte. In the context of kidney transplantation, the performance of pre- and post-reperfusion biopsies, and the establishment of in vitro podocyte liquid biopsies/assays allow for the development of clinically relevant studies of podocyte biology. This has given insight into new pathways, involving novel targets in innate and adaptive immunity, such as SMPDL3b, cGAS-STING, and B7-1. Elegant experimental studies suggest that the successful clinical use of rituximab and abatacept, two immunomodulating agents, in our case series, may be due to direct effects on the podocyte, in addition to, or perhaps distinct from their immunosuppressive functions. Thus, tissue biomarker-directed therapy may provide a rational approach to validate the mechanism of disease and allow for the development of new therapeutics for FSGS. This report highlights recent progress in the field and emphasizes the importance of kidney transplantation and recurrent FSGS (rFSGS) as a platform for the study of primary FSGS.
Collapse
Affiliation(s)
- George W. Burke
- Division of Kidney−Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alla Mitrofanova
- Research, Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Antonio Fontanella
- Research, Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gaetano Ciancio
- Division of Kidney−Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - David Roth
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Phil Ruiz
- Transplant Pathology, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carolyn Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jayanthi Chandar
- Division of Pediatric Kidney Transplantation, Department of Pediatrics, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
15
|
Xie W, Patel DJ. Structure-based mechanisms of 2'3'-cGAMP intercellular transport in the cGAS-STING immune pathway. Trends Immunol 2023; 44:450-467. [PMID: 37147228 PMCID: PMC11824902 DOI: 10.1016/j.it.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
Upon activation by double-stranded DNA (dsDNA), the cytosolic dsDNA sensor cyclic GMP-AMP synthase (cGAS) synthesizes the diffusible cyclic dinucleotide 2'3'-cGAMP (cyclic GMP-AMP), which subsequently binds to the adaptor STING, triggering a cascade of events leading to an inflammatory response. Recent studies have highlighted the role of 2'3'-cGAMP as an 'immunotransmitter' between cells, a process facilitated by gap junctions as well as by specialized membrane-spanning importer and exporter channels. This review highlights recent advances from a structural perspective of intercellular trafficking of 2'3'-cGAMP, with particular emphasis on the binding of importer SLC19A1 to 2'3'-cGAMP, as well as the significance of associated folate nutrients and antifolate therapeutics. This provides a path forward for structure-guided understanding of the transport cycle in immunology, as well as for candidate targeting approaches towards therapeutic intervention in inflammation.
Collapse
Affiliation(s)
- Wei Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 311027, China; Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
16
|
Baron L, Hadjerci J, Thoidingjam L, Plays M, Bucci R, Morris N, Müller S, Sindikubwabo F, Solier S, Cañeque T, Colombeau L, Blouin CM, Lamaze C, Puisieux A, Bono Y, Gaillet C, Laraia L, Vauzeilles B, Taran F, Papot S, Karoyan P, Duval R, Mahuteau-Betzer F, Arimondo P, Cariou K, Guichard G, Micouin L, Ethève-Quelquejeu M, Verga D, Versini A, Gasser G, Tang C, Belmont P, Linkermann A, Bonfio C, Gillingham D, Poulsen T, Di Antonio M, Lopez M, Guianvarc'h D, Thomas C, Masson G, Gautier A, Johannes L, Rodriguez R. PSL Chemical Biology Symposia Third Edition: A Branch of Science in its Explosive Phase. Chembiochem 2023; 24:e202300093. [PMID: 36942862 DOI: 10.1002/cbic.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 03/23/2023]
Abstract
This symposium is the third PSL (Paris Sciences & Lettres) Chemical Biology meeting (2016, 2019, 2023) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette (2013, 2014), under the directorship of Professor Max Malacria, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition was postponed twice for the reasons that we know. This has given us the opportunity to invite additional speakers of great standing. This year, Institut Curie hosted around 300 participants, including 220 on site and over 80 online. The pandemic has had, at least, the virtue of promoting online meetings, which we came to realize is not perfect but has its own merits. In particular, it enables those with restricted time and resources to take part in events and meetings, which can now accommodate unlimited participants. We apologize to all those who could not attend in person this time due to space limitation at Institut Curie.
Collapse
Affiliation(s)
- Leeroy Baron
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Justine Hadjerci
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Leishemba Thoidingjam
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Marina Plays
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Romain Bucci
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Nolwenn Morris
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Sebastian Müller
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Fabien Sindikubwabo
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Stéphanie Solier
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Tatiana Cañeque
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Ludovic Colombeau
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Cedric M Blouin
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Christophe Lamaze
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Alain Puisieux
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Yannick Bono
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Christine Gaillet
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Luca Laraia
- Technical University of Denmark, Department of Chemistry, 2800, Kgs. Lyngby, Denmark
| | - Boris Vauzeilles
- Université Paris-Saclay, CNRS UPR 2301, 91198, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, 91191, Gif-sur-Yvette, France
| | - Sébastien Papot
- Université de Poitiers, CNRS UMR 7285, 86073, Poitiers, France
| | - Philippe Karoyan
- PSL Université Paris, Sorbonne Université Ecole Normale Supérieure, CNRS UMR 7203, 75005, Paris, France
| | - Romain Duval
- Faculté de Pharmacie de Paris, Université Paris Cité CNRS UMR 261, 75006, Paris, France
| | | | | | - Kevin Cariou
- PSL Université Paris, Chimie ParisTech, CNRS, Institute of Chemistry and Health Sciences CNRS UMR 8060, 75005, Paris, France
| | - Gilles Guichard
- Université de Bordeaux, CNRS, Bordeaux INP CBMN, UMR 5248, 33600, Pessac, France
| | | | | | - Daniela Verga
- PSL Université Paris, Institut Curie CNRS UMR 9187, INSERM U1196, 91405, Orsay, France
| | - Antoine Versini
- University of Zurich, Department of Chemistry, 8057, Zurich, Switzerland
| | - Gilles Gasser
- PSL Université Paris, Chimie ParisTech, CNRS, Institute of Chemistry and Health Sciences CNRS UMR 8060, 75005, Paris, France
| | - Cong Tang
- Universidade de Lisboa, Instituto de Medicina Molecular João Lobo Antunes, 1649-028, Lisboa, Portugal
| | | | - Andreas Linkermann
- Technische Universität Dresden Department of Internal Medicine 3, 01062, Dresden, Germany
| | - Claudia Bonfio
- Université de Strasbourg, CNRS UMR 7006, 67000, Strasbourg, France
| | | | - Thomas Poulsen
- Aarhus University, Department of Chemistry, 8000, Aarhus C Aarhus, Denmark
| | - Marco Di Antonio
- Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK
| | - Marie Lopez
- Université de Montpellier, CNRS UMR 5247, 34000, Montpellier, France
| | | | - Christophe Thomas
- PSL Université Paris, Chimie ParisTech CNRS UMR 6226, 75005, Paris, France
| | - Géraldine Masson
- Université Paris-Saclay, CNRS UPR 2301, 91198, Gif-sur-Yvette, France
| | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| | - Ludger Johannes
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Raphaël Rodriguez
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| |
Collapse
|
17
|
Patel DJ, Yu Y, Xie W. cGAMP-activated cGAS-STING signaling: its bacterial origins and evolutionary adaptation by metazoans. Nat Struct Mol Biol 2023; 30:245-260. [PMID: 36894694 PMCID: PMC11749898 DOI: 10.1038/s41594-023-00933-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/31/2023] [Indexed: 03/11/2023]
Abstract
The metazoan cGAMP-activated cGAS-STING innate immunity pathway is triggered in response to genomic instability and DNA damage, thereby providing host defense against microbial pathogens. This pathway also impacts on autophagy, cellular senescence and antitumor immunity, while its overactivation triggers autoimmune and inflammatory diseases. Metazoan cGAS generates cGAMP containing distinct combinations of 3'-5' and 2'-5' linkages, which target the adaptor protein STING and activate the innate immune response through a signaling cascade leading to upregulation of cytokine and interferon production. This Review highlights a structure-based mechanistic perspective of recent advances in cGAMP-activated cGAS-STING innate immune signaling by focusing on the cGAS sensor, cGAMP second messenger and STING adaptor components, thereby elucidating the specificity, activation, regulation and signal transduction features of the pathway. In addition, the Review addresses progress towards identification of inhibitors and activators targeting cGAS and STING, as well as strategies developed by pathogens to evade cGAS-STING immunity. Most importantly, it highlights cyclic nucleotide second messengers as ancient signaling molecules that elicit a potent innate immune response that originated in bacteria and evolved through evolutionary adaptation to metazoans.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | - You Yu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Wei Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Zhang L, Wei X, Wang Z, Liu P, Hou Y, Xu Y, Su H, Koci MD, Yin H, Zhang C. NF-κB activation enhances STING signaling by altering microtubule-mediated STING trafficking. Cell Rep 2023; 42:112185. [PMID: 36857187 DOI: 10.1016/j.celrep.2023.112185] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/12/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
It is widely known that stimulator of interferon genes (STING) can trigger nuclear factor κB (NF-κB) signaling. However, whether and how the NF-κB pathway affects STING signaling remains largely unclear. Here, we report that Toll-like receptor (TLR)-, interleukin-1 receptor (IL-1R)-, tumor necrosis factor receptor (TNFR)-, growth factor receptor (GF-R)-, and protein kinase C (PKC)-mediated NF-κB signaling activation dramatically enhances STING-mediated immune responses. Mechanistically, we find that STING interacts with microtubules, which plays a crucial role in STING intracellular trafficking. We further uncover that activation of the canonical NF-κB pathway induces microtubule depolymerization, which inhibits STING trafficking to lysosomes for degradation. This leads to increased levels of activated STING that persist for a longer period of time. The synergy between NF-κB and STING triggers a cascade-amplified interferon response and robust host antiviral defense. In addition, we observe that several gain-of-function mutations of STING abolish the microtubule-STING interaction and cause abnormal STING trafficking and ligand-independent STING autoactivation. Collectively, our data demonstrate that NF-κB activation enhances STING signaling by regulating microtubule-mediated STING trafficking.
Collapse
Affiliation(s)
- Lulu Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xubiao Wei
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Zhimeng Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peiyuan Liu
- School of Life Science, Tianjin University, Tianjin, China
| | - Yanfei Hou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yifang Xu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Huili Su
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Matthew D Koci
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| | - Conggang Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
19
|
The cGAS-STING pathway and cancer. NATURE CANCER 2022; 3:1452-1463. [PMID: 36510011 DOI: 10.1038/s43018-022-00468-w] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has emerged as a critical innate immune pathway that, following engagement by DNA, promotes distinct immune effector responses that can impact virtually all aspects of tumorigenesis, from malignant cell transformation to metastasis. Here we address how natural tumor-associated processes and traditional cancer therapies are shaped by cGAS-STING signaling, and how this contributes to beneficial or detrimental outcomes of cancer. We consider current efforts to target the cGAS-STING axis in tumors and highlight new frontiers in cGAS-STING biology to inspire thinking about their connection to cancer.
Collapse
|
20
|
Shi C, Yang X, Hou Y, Jin X, Guo L, Zhou Y, Zhang C, Yin H. USP15 promotes cGAS activation through deubiquitylation and liquid condensation. Nucleic Acids Res 2022; 50:11093-11108. [PMID: 36243958 PMCID: PMC9638925 DOI: 10.1093/nar/gkac823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Double-stranded DNA (dsDNA) is recognized as a danger signal by cyclic GMP-AMP synthase (cGAS), which triggers innate immune responses. cGAS activity must be properly regulated to maintain immune homeostasis. However, the mechanism by which cGAS activation is controlled remains to be better understood. In this study, we identified USP15 as a cGAS-interacting partner. USP15 promoted DNA-induced cGAS activation and downstream innate immune responses through a positive feedback mechanism. Specifically, USP15 deubiquitylated cGAS and promoted its activation. In the absence of DNA, USP15 drove cGAS dimerization and liquid condensation through the USP15 intrinsic disordered region (IDR), which prepared cGAS for a rapid response to DNA. Upon DNA stimulation, USP15 was induced to express and boost cGAS activation, functioning as an efficient amplifier in innate immune signal transduction. In summary, the positive role played by USP15-mediated cGAS activation may be a novel regulatory mechanism in the fine-tuning of innate immunity.
Collapse
Affiliation(s)
| | | | - Yanfei Hou
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Jin
- Peking University–Tsinghua University–National Institute of Biological Science (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lerui Guo
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100082, China
| | - Yi Zhou
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100082, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hang Yin
- To whom correspondence should be addressed. Tel: +86 1062786005; Fax: +86 1062786005;
| |
Collapse
|
21
|
De Falco F, Cutarelli A, Catoi AF, Uberti BD, Cuccaro B, Roperto S. Bovine delta papillomavirus E5 oncoprotein negatively regulates the cGAS-STING signaling pathway in cattle in a spontaneous model of viral disease. Front Immunol 2022; 13:937736. [PMID: 36311756 PMCID: PMC9597257 DOI: 10.3389/fimmu.2022.937736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Persistent infection and tumorigenesis by papillomaviruses (PVs) require viral manipulation of various cellular processes, including those involved in innate immune responses. The cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway has emerged as an essential innate immune sensing system, that recognizes DNA and trigger potent antiviral effector responses. In this study, we found that bovine PV (BPV) E5 protein, the major oncoprotein of bovine delta PVs, interacts with STING but not with cGAS in a spontaneous BPV infection of neoplastic urothelial cells of cattle. Real-time RT-PCR revealed a significant reduction in both cGAS and STING transcripts in E5-expressing cells. Furthermore, western blot (WB) analysis failed to detect any variation in the expression of interferon-inducible protein 16 (IFI16), an upstream effector of the STING pathway. A ternary complex composed of E5/STING/IFI16 was also observed. Co-immunoprecipitation studies showed that STING interacts with a protein network composed of total and phosphorylated TANK-binding kinase 1 (TBK1), total and phosphorylated interferon regulatory factor 3 (IRF3), IRF7, IKKα, IKKβ, IKKϵ, ELKS, MEKK3, and TAK1. RT-qPCR revealed a significant reduction in TBK1 mRNA levels in BPV-infected cells. WB analysis revealed significantly reduced expression levels of pTBK1, which is essential for the activation and phosphorylation of IRF3, a prerequisite for the latter to enter the nucleus to activate type 1 IFN genes. WB also revealed significantly down-expression of IKKα, IKKβ, IKKϵ, and overexpression of IRF7, ELKS, MEKK3, and TAK1in BPV-positive urothelial cells compared with that in uninfected healthy cells. Phosphorylated p65 (p-p65) was significantly reduced in both the nuclear and cytosolic compartments of BPV-infected cells compared with that in uninfected urothelial cells. Our results suggest that the innate immune signaling pathway mediated by cGAS-STING is impaired in cells infected with BPV. Therefore, effective immune responses are not elicited against these viruses, which facilitates persistent viral infection and subsequent tumorigenesis.
Collapse
Affiliation(s)
- Francesca De Falco
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Anna Cutarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Adriana Florinela Catoi
- Physiopathology Department, Faculty of Medicine “Iuliu Hatieganu”, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Bianca Cuccaro
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Sante Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
- *Correspondence: Sante Roperto,
| |
Collapse
|
22
|
Wang C, Xue M, Liu X, Chen J, Jiang M, Zheng L, Ma R, Ding C, Tao Y, Zhang H, Liu Q, Huo D. Versatile Protein Coronation Approach with Multiple Depleted Serum for Creating Biocompatible, Precision Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202002. [PMID: 35775952 DOI: 10.1002/smll.202202002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The protein corona effect has long been treated as the evil source behind delivery efficacy issues. In this study, this concept is challenged by showcasing that the protein corona can serve as a versatile functionalization approach to improve the delivery efficacy or mitigate nanocytotoxicity. To this end, the depleted serum is introduced to create nanomaterials carrying functionally distinct protein corona, referred to as PCylated nanomaterials. It is confirmed that the passivation with depleted serum helps reduce the toxicity and pro-inflammatory response. Furthermore, the same method can be leveraged to enhance the capacity of nanomaterials to undergo endocytosis as well as their potential as an agonist for the NF-κB pathways. The comparable stability of protein corona created by late and early-stage serum reveals that the chanceless interaction with nanomaterials, rather than an inadequate binding strength, may be behind the failure of enriching certain components. The PCylation strategy is extended to cancer patient-derived fluid, creating a set of T1 and T3-stage cancer-specific nanotherapeutics to retard the metastasis of cancer cells, while leaving normal endothelial negligibly affected. It is hoped the novel PCylation approach validated here can shed light on the future development of precision nanomedicine with improved delivery efficacy.
Collapse
Affiliation(s)
- Chan Wang
- Department of Medicinal Chemistry, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Mengdie Xue
- Department of Medicinal Chemistry, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiao Liu
- Department of Medicinal Chemistry, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Jingjing Chen
- Department of Medicinal Chemistry, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Mengdie Jiang
- Department of Medicinal Chemistry, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Liuting Zheng
- Department of Medicinal Chemistry, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Ruxuan Ma
- Department of Medicinal Chemistry, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Chengjin Ding
- Department of Medicinal Chemistry, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yaping Tao
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, P. R. China
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, P. R. China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, P. R. China
| | - Da Huo
- Department of Medicinal Chemistry, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P. R. China
| |
Collapse
|