1
|
Zhang Y, Cai T, Wan H. Mobile Resistance Elements: Symbionts That Modify Insect Host Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3842-3853. [PMID: 39920901 DOI: 10.1021/acs.jafc.4c10828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Mounting evidence indicates that symbionts play a beneficial role through secondary metabolic compounds and various chemical processes in host adaptation to adversity, particularly in herbivorous insects whose survival is severely threatened by insecticides or secondary metabolite stress. Despite extensive research on insect symbionts, the spread of these beneficial symbionts and the correlation with host phenotypes limit our ability to predict and manage the adaptive capabilities of insect populations in changing environments. In this review, we propose the concept of "Mobile Resistance Elements (MRE)" to describe the dynamic and adaptable nature of resistance-related symbionts that can be transmitted between insect hosts. These elements encompass both the symbionts themselves and the associated traits they confer to their hosts, such as enhanced resilience to environmental stressors, toxins, and pathogens. The mobility of these resistance traits, facilitated through various transmission modes─including vertical and horizontal pathways─allows susceptible insect populations to acquire beneficial symbionts and their associated resistance phenotypes. By weaving together the threads of how symbionts shape host adaptability and survival strategies, this concept underscores the potential for symbionts to act as agents of rapid adaptation, enabling pest populations to thrive in changing environments and presenting both challenges and opportunities for pest management strategies.
Collapse
Affiliation(s)
- Yunhua Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030 Hangzhou, Zhejiang Province, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingwei Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Zhu Y, Zhang Y, Wang X, Yin Y, Du Y. Wolbachia modify host cell metabolite profiles in response to short-term temperature stress. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70013. [PMID: 39313916 PMCID: PMC11420292 DOI: 10.1111/1758-2229.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Wolbachia are common heritable endosymbionts that influence many aspects of ecology and evolution in various insects, yet Wolbachia-mediated intracellular metabolic responses to temperature stress have been largely overlooked. Here, we introduced the Wolbachia strain wLhui from the invasive Liriomyza huidobrensis (Blanchard) into a Drosophila Schneider 2 cell line (S2) and investigated the metabolite profile of wLhui-infected (S2_wLhui) and uninfected cell lines (S2_wu) under short-term exposure to either high (37°C), moderate (27°C), or low (7 and 17°C) temperatures. We find that Wolbachia infection, temperature stress, and their interactions significantly affect cellular metabolic profiles. Most significantly, when comparing the changes in metabolites between S2_wLhui and S2_wu, glycerophospholipids, amino acids, and fatty acids associated with metabolic pathways, microbial metabolism in diverse environments, and other pathways were significantly accumulated at either low or high temperatures. Our findings suggest Wolbachia-induced cellular physiological responses to short-term temperature stress, which may in turn affect the fitness and adaptive ability of its host as an invasive species.
Collapse
Affiliation(s)
- Yu‐Xi Zhu
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Yi‐Yin Zhang
- Department of Entomology, College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsuChina
| | - Xin‐Yu Wang
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Yue Yin
- Institute for the Control of the AgrochemicalsMinistry of Agriculture and Rural AffairsBeijingChina
| | - Yu‐Zhou Du
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
3
|
Zhou M, Ma L, Wang Z, Li S, Cai Y, Li M, Zhang L, Wang C, Wu B, Yan Q, He Z, Shu L. Nano- and microplastics drive the dynamic equilibrium of amoeba-associated bacteria and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134958. [PMID: 38905974 DOI: 10.1016/j.jhazmat.2024.134958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
As emerging pollutants, microplastics have become pervasive on a global scale, inflicting significant harm upon ecosystems. However, the impact of these microplastics on the symbiotic relationship between protists and bacteria remains poorly understood. In this study, we investigated the mechanisms through which nano- and microplastics of varying sizes and concentrations influence the amoeba-bacterial symbiotic system. The findings reveal that nano- and microplastics exert deleterious effects on the adaptability of the amoeba host, with the magnitude of these effects contingent upon particle size and concentration. Furthermore, nano- and microplastics disrupt the initial equilibrium in the symbiotic relationship between amoeba and bacteria, with nano-plastics demonstrating a reduced ability to colonize symbiotic bacteria within the amoeba host when compared to their microplastic counterparts. Moreover, nano- and microplastics enhance the relative abundance of antibiotic resistance genes and heavy metal resistance genes in the bacteria residing within the amoeba host, which undoubtedly increases the potential transmission risk of both human pathogens and resistance genes within the environment. In sum, the results presented herein provide a novel perspective and theoretical foundation for the study of interactions between microplastics and microbial symbiotic systems, along with the establishment of risk assessment systems for ecological environments and human health.
Collapse
Affiliation(s)
- Min Zhou
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Ma
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zihe Wang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Shicheng Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yijun Cai
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Meicheng Li
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Wu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Holt JR, Cavichiolli de Oliveira N, Medina RF, Malacrinò A, Lindsey ARI. Insect-microbe interactions and their influence on organisms and ecosystems. Ecol Evol 2024; 14:e11699. [PMID: 39041011 PMCID: PMC11260886 DOI: 10.1002/ece3.11699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Microorganisms are important associates of insect and arthropod species. Insect-associated microbes, including bacteria, fungi, and viruses, can drastically impact host physiology, ecology, and fitness, while many microbes still have no known role. Over the past decade, we have increased our knowledge of the taxonomic composition and functional roles of insect-associated microbiomes and viromes. There has been a more recent shift toward examining the complexity of microbial communities, including how they vary in response to different factors (e.g., host genome, microbial strain, environment, and time), and the consequences of this variation for the host and the wider ecological community. We provide an overview of insect-microbe interactions, the variety of associated microbial functions, and the evolutionary ecology of these relationships. We explore the influence of the environment and the interactive effects of insects and their microbiomes across trophic levels. Additionally, we discuss the potential for subsequent synergistic and reciprocal impacts on the associated microbiomes, ecological interactions, and communities. Lastly, we discuss some potential avenues for the future of insect-microbe interactions that include the modification of existing microbial symbionts as well as the construction of synthetic microbial communities.
Collapse
Affiliation(s)
| | | | - Raul F. Medina
- Department of EntomologyTexas A&M University, Minnie Bell Heep CenterCollege StationTexasUSA
| | - Antonino Malacrinò
- Department of AgricultureUniversità Degli Studi Mediterranea di Reggio CalabriaReggio CalabriaItaly
| | | |
Collapse
|
5
|
Ferguson LF, Ross PA, van Heerwaarden B. Wolbachia infection negatively impacts Drosophila simulans heat tolerance in a strain- and trait-specific manner. Environ Microbiol 2024; 26:e16609. [PMID: 38558489 DOI: 10.1111/1462-2920.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three Wolbachia strains (wRi, wAu and wNo) on the survival and fertility of Drosophila simulans exposed to heat stress during development or as adults. The effect of Wolbachia infection on heat tolerance was generally small and trait/strain specific. Only the wNo infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the wRi and wAu strains reduced egg-to-adult survival but only the wNo infection reduced male fertility. Wolbachia densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.
Collapse
Affiliation(s)
- Liam F Ferguson
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Perran A Ross
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Belinda van Heerwaarden
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Martins M, César CS, Cogni R. The effects of temperature on prevalence of facultative insect heritable symbionts across spatial and seasonal scales. Front Microbiol 2023; 14:1321341. [PMID: 38143870 PMCID: PMC10741647 DOI: 10.3389/fmicb.2023.1321341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Facultative inheritable endosymbionts are common and diverse in insects and are often found at intermediate frequencies in insect host populations. The literature assessing the relationship between environment and facultative endosymbiont frequency in natural host populations points to temperature as a major component shaping the interaction. However, a synthesis describing its patterns and mechanistic basis is lacking. This mini-review aims to bridge this gap by, following an evolutionary model, hypothesizing that temperature increases endosymbiont frequencies by modulating key phenotypes mediating the interaction. Field studies mainly present positive correlations between temperature and endosymbiont frequency at spatial and seasonal scales; and unexpectedly, temperature is predominantly negatively correlated with the key phenotypes. Higher temperatures generally reduce the efficiency of maternal transmission, reproductive parasitism, endosymbiont influence on host fitness and the ability to protect against natural enemies. From the endosymbiont perspective alone, higher temperatures reduce titer and both high and low temperatures modulate their ability to promote host physiological acclimation and behavior. It is necessary to promote research programs that integrate field and laboratory approaches to pinpoint which processes are responsible for the temperature correlated patterns of endosymbiont prevalence in natural populations.
Collapse
Affiliation(s)
| | | | - Rodrigo Cogni
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Nadolski EM, Moczek AP. Promises and limits of an agency perspective in evolutionary developmental biology. Evol Dev 2023; 25:371-392. [PMID: 37038309 DOI: 10.1111/ede.12432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 04/12/2023]
Abstract
An agent-based perspective in the study of complex systems is well established in diverse disciplines, yet is only beginning to be applied to evolutionary developmental biology. In this essay, we begin by defining agency and associated terminology formally. We then explore the assumptions and predictions of an agency perspective, apply these to select processes and key concept areas relevant to practitioners of evolutionary developmental biology, and consider the potential epistemic roles that an agency perspective might play in evo devo. Throughout, we discuss evidence supportive of agential dynamics in biological systems relevant to evo devo and explore where agency thinking may enrich the explanatory reach of research efforts in evolutionary developmental biology.
Collapse
Affiliation(s)
- Erica M Nadolski
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
8
|
Ren L, Zhang X, Yang F, Jocelin NF, Shang Y, Wang Q, Liu Z, Guo Y. Effects of heat tolerance on the gut microbiota of Sarcophaga peregrina (Diptera: Sarcophagidae) and impacts on the life history traits. Parasit Vectors 2023; 16:364. [PMID: 37848940 PMCID: PMC10580603 DOI: 10.1186/s13071-023-05973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Heat tolerance is a distinct abiotic factor affecting the distribution and abundance of insects. Gut microbiota can contribute to host fitness, thereby increasing resistance to abiotic stress conditions. In this study, Sarcophaga peregrina is closely associated with human life in ecological habits and shows remarkable adaptability to daily and seasonal temperature fluctuations. To date, the role of gut microbiota in S. peregrina response to heat stress and its influence on the host phenotypic variability remain poorly studied. METHODS We exposed S. peregrina to heat stress at 40 °C for 3 h every day throughout the developmental stages from newly hatched larva to adult, after which gut DNA was extracted from third-instar larvae, early pupal stage, late pupal stage, and newly emerged adults, respectively. Then, 16S rRNA microbial community analyses were performed. RESULTS Firstly, we analyzed whether heat stress could have an impact on the life history traits of S. peregrina and showed that the growth rate of larvae was higher and the developmental time was significantly shorter after heat stress. We then proposed the role of the gut microbiota in the heat tolerance of S. peregrina, which indicated that the bacterial abundance and community structure changed significantly after heat tolerance. In particular, the relative abundance of Wohlfahrtiimonas and Ignatzschineria was higher in the third-instar larval larvae; the former increased and the latter decreased significantly after heat stress. To further explore the effect of disturbing the microbial community on thermotolerant phenotype, newly hatched larvae were fed with amikacin under heat stress, which indicated that the larval length and the whole developmental cycle was significantly shorter. CONCLUSION This study indicated that Wohlfahrtiimonas and Ignatzschineria should play an important role in the post-feeding stage under heat stress, but further study is still needed. In general, heat tolerance can affect the gut microbial community structure, which in turn affects the fitness of the host.
Collapse
Affiliation(s)
- Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ngando Fernand Jocelin
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | | | - Zhuoying Liu
- Health Law Research Center, School of Law, Central South University, Changsha, Hunan, China.
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Tougeron K, Iltis C, Rampnoux E, Goerlinger A, Dhondt L, Hance T. Still standing: The heat protection delivered by a facultative symbiont to its aphid host is resilient to repeated thermal stress. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100061. [PMID: 37304568 PMCID: PMC10250925 DOI: 10.1016/j.cris.2023.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/05/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
Insects have evolved diverse strategies to resist extreme high temperatures (EHT). The adaptive value of such strategies has to be evaluated when organisms experience multiple EHT events during their lifetime, as predicted in a changing climate. This is particularly the case for associations with facultative microbial partners involved in insect heat tolerance, the resilience of which to repeated heat stress has never been studied. We compared two artificial lines of the pea aphid (Acyrthosiphon pisum) differing by the absence or presence of the heat-protective facultative bacterium Serratia symbiotica. We exposed insect nymphs to a varying number of EHT events (between 0 and 3), and recorded fitness parameters. Except survival traits, fitness estimates were affected by the interaction between aphid infection status (absence/presence of S. symbiotica) and thermal treatment (number of heat shocks applied). Costs of bacterial infection were detected in the absence of thermal stress: symbiont-hosting aphids incurred longer development, decreased fecundity and body size. However, symbiotic infection turned neutral, and even beneficial for some traits (development and body size), as the number of heat shocks increased, and compared to the aposymbiotic strain. Conversely, symbiotic infection mediated aphid response to heat shock(s): fitness decreased only in the uninfected group. These findings suggest that (i) the facultative symbiont may alternatively act as a pathogen, commensal or mutualist depending on thermal environment, and (ii) the heat protection it delivered to its host persists under frequent EHT. We discuss eco-evolutionary implications and the role of potentially confounding factors (stage-specific effects, genetic polymorphism displayed by the obligate symbiont).
Collapse
Affiliation(s)
- Kévin Tougeron
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
- Institut de Recherche en Biosciences, Université de Mons, Av. du Champ de Mars 6, 7000 Mons, Belgium
| | - Corentin Iltis
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Eliott Rampnoux
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Goerlinger
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Linda Dhondt
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Thierry Hance
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Wei Y, Su Y, Han X, Guo W, Zhu Y, Yao Y. Evaluation of Transgenerational Effects of Sublethal Imidacloprid and Diversity of Symbiotic Bacteria on Acyrthosiphon gossypii. INSECTS 2023; 14:insects14050427. [PMID: 37233055 DOI: 10.3390/insects14050427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Symbiotic bacteria and hormesis in aphids are the driving forces for pesticide resistance. However, the mechanism remains unclear. In this study, the effects of imidacloprid on the population growth parameters and symbiotic bacterial communities of three successive generations of Acyrthosiphon gossypii were investigated. The bioassay results showed that imidacloprid had high toxicity to A. gossypii with an LC50 of 1.46 mg·L-1. The fecundity and longevity of the G0 generation of A. gossypii decreased when exposed to the LC15 of imidacloprid. The net reproductive rate (R0), intrinsic rate of increase (rm), finite rate of increase (λ), and total reproductive rate (GRR) of G1 and G2 offspring were significantly increased, but those of the control and G3 offspring were not. In addition, sequencing data showed that the symbiotic bacteria of A. gossypii mainly belonged to Proteobacteria, with a relative abundance of 98.68%. The dominant genera of the symbiotic bacterial community were Buchnera and Arsenophonus. After treatment with the LC15 of imidacloprid, the diversity and species number of bacterial communities of A. gossypii decreased for G1-G3 and the abundance of Candidatus-Hamiltonella decreased, but Buchnera increased. These results provide insight into the resistance mechanism of insecticides and the stress adaptation between symbiotic bacteria and aphids.
Collapse
Affiliation(s)
- Yindi Wei
- College of Agriculture, Tarim University, Aral 843300, China
| | - Yue Su
- College of Agriculture, Tarim University, Aral 843300, China
| | - Xu Han
- College of Agriculture, Tarim University, Aral 843300, China
| | - Weifeng Guo
- College of Agriculture, Tarim University, Aral 843300, China
| | - Yue Zhu
- College of Agriculture, Tarim University, Aral 843300, China
| | - Yongsheng Yao
- College of Agriculture, Tarim University, Aral 843300, China
| |
Collapse
|
11
|
Zhao D, Ni X, Zhang Z, Niu H, Qiu R, Guo H. Bt protein hasten entomopathogenic fungi-induced death of nontarget pest whitefly by suppressing protective symbionts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158588. [PMID: 36087663 DOI: 10.1016/j.scitotenv.2022.158588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The risk assessment of Bacillus thuringiensis (Bt) crops on nontarget pests has received much attention. Despite the knowledge of various beneficial bacterial symbionts in pests, whether Bt proteins affect these symbionts and subsequently alter the pest's ecology remains largely unknown. The whitefly Bemisia tabaci is one of the most serious nontarget pests in Bt cotton. Here, we explored the Bt Cry1Ac protein-induced changes in whitefly symbiont abundance and the subsequent effects on whitefly response against a naturally prevalent entomopathogenic fungus Cordyceps javanica. The obligate symbiont 'Candidatus Portiera aleyrodidarum' (hereafter P. aleyrodidarum) as well as facultative symbionts 'Candidatus Hamiltonella defensa' (hereafter H. defensa), 'Candidatus Cardinium hertigii' (hereafter C. hertigii) and 'Candidatus Rickettsia bellii' (hereafter R. bellii) dominate the microbial community of whiteflies. The Bt exposure had no effects on H. defensa infected (H) and H. defensa-C. hertigii doubly infected (HC) whiteflies, but decreased the total copy number of symbionts as well as the R. bellii proportion in H. defensa-C. hertigii- R. bellii triply infected whiteflies (HCR). C. javanica caused whitefly adults 100 % mortality within 8 days. Without Bt protein exposure, HCR whiteflies survived significantly longer than H and HC whiteflies sprayed by C. javanica, suggesting that R. bellii confers protection. However, in Bt-exposed groups, C. javanica generated synchronous death of H, HC and HCR whiteflies. Specifically, in H and HC whiteflies, Bt protein-exposure showed no significant difference in progress of death caused by C. javanica. But in HCR whiteflies, Bt exposure hastened death induced by C. javanica, suppressing the R. bellii-conferred protection. This is the first report revealing that Bt protein altered symbiont community conferred adverse effects on nontarget pests, providing a new perspective for Bt risk assessment and biocontrol strategies of nontarget pests.
Collapse
Affiliation(s)
- Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolu Ni
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ruiting Qiu
- College of Arts and Sciences, The Ohio State University, Columbus 43201, United States of America
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
12
|
Harvey JA, Tougeron K, Gols R, Heinen R, Abarca M, Abram PK, Basset Y, Berg M, Boggs C, Brodeur J, Cardoso P, de Boer JG, De Snoo GR, Deacon C, Dell JE, Desneux N, Dillon ME, Duffy GA, Dyer LA, Ellers J, Espíndola A, Fordyce J, Forister ML, Fukushima C, Gage MJG, García‐Robledo C, Gely C, Gobbi M, Hallmann C, Hance T, Harte J, Hochkirch A, Hof C, Hoffmann AA, Kingsolver JG, Lamarre GPA, Laurance WF, Lavandero B, Leather SR, Lehmann P, Le Lann C, López‐Uribe MM, Ma C, Ma G, Moiroux J, Monticelli L, Nice C, Ode PJ, Pincebourde S, Ripple WJ, Rowe M, Samways MJ, Sentis A, Shah AA, Stork N, Terblanche JS, Thakur MP, Thomas MB, Tylianakis JM, Van Baaren J, Van de Pol M, Van der Putten WH, Van Dyck H, Verberk WCEP, Wagner DL, Weisser WW, Wetzel WC, Woods HA, Wyckhuys KAG, Chown SL. Scientists' warning on climate change and insects. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Harvey
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Kévin Tougeron
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
- EDYSAN, UMR 7058, Université de Picardie Jules Verne, CNRS Amiens France
| | - Rieta Gols
- Laboratory of Entomology Wageningen University Wageningen The Netherlands
| | - Robin Heinen
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Mariana Abarca
- Department of Biological Sciences Smith College Northampton Massachusetts USA
| | - Paul K. Abram
- Agriculture and Agri‐Food Canada, Agassiz Research and Development Centre Agassiz British Columbia Canada
| | - Yves Basset
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - Matty Berg
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Groningen Institute of Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Carol Boggs
- School of the Earth, Ocean and Environment and Department of Biological Sciences University of South Carolina Columbia South Carolina USA
- Rocky Mountain Biological Laboratory Gothic Colorado USA
| | - Jacques Brodeur
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal Québec Canada
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | - Jetske G. de Boer
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Geert R. De Snoo
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Charl Deacon
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Jane E. Dell
- Geosciences and Natural Resources Department Western Carolina University Cullowhee North Carolina USA
| | | | - Michael E. Dillon
- Department of Zoology and Physiology and Program in Ecology University of Wyoming Laramie Wyoming USA
| | - Grant A. Duffy
- School of Biological Sciences Monash University Melbourne Victoria Australia
- Department of Marine Science University of Otago Dunedin New Zealand
| | - Lee A. Dyer
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Jacintha Ellers
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Anahí Espíndola
- Department of Entomology University of Maryland College Park Maryland USA
| | - James Fordyce
- Department of Ecology and Evolutionary Biology University of Tennessee, Knoxville Knoxville Tennessee USA
| | - Matthew L. Forister
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Caroline Fukushima
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | | | | | - Claire Gely
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Mauro Gobbi
- MUSE‐Science Museum, Research and Museum Collections Office Climate and Ecology Unit Trento Italy
| | - Caspar Hallmann
- Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands
| | - Thierry Hance
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - John Harte
- Energy and Resources Group University of California Berkeley California USA
| | - Axel Hochkirch
- Department of Biogeography Trier University Trier Germany
- IUCN SSC Invertebrate Conservation Committee
| | - Christian Hof
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Ary A. Hoffmann
- Bio21 Institute, School of BioSciences University of Melbourne Melbourne Victoria Australia
| | - Joel G. Kingsolver
- Department of Biology University of North Carolina Chapel Hill North Carolina USA
| | - Greg P. A. Lamarre
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - William F. Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Blas Lavandero
- Laboratorio de Control Biológico Universidad de Talca Talca Chile
| | - Simon R. Leather
- Center for Integrated Pest Management Harper Adams University Newport UK
| | - Philipp Lehmann
- Department of Zoology Stockholm University Stockholm Sweden
- Zoological Institute and Museum University of Greifswald Greifswald Germany
| | - Cécile Le Lann
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | | | - Chun‐Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | | | | | - Chris Nice
- Department of Biology Texas State University San Marcos Texas USA
| | - Paul J. Ode
- Department of Agricultural Biology Colorado State University Fort Collins Colorado USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS Université de Tours Tours France
| | - William J. Ripple
- Department of Forest Ecosystems and Society Oregon State University Oregon USA
| | - Melissah Rowe
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
| | - Michael J. Samways
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Arnaud Sentis
- INRAE, Aix‐Marseille University, UMR RECOVER Aix‐en‐Provence France
| | - Alisha A. Shah
- W.K. Kellogg Biological Station, Department of Integrative Biology Michigan State University East Lansing Michigan USA
| | - Nigel Stork
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Nathan Queensland Australia
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Madhav P. Thakur
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Matthew B. Thomas
- York Environmental Sustainability Institute and Department of Biology University of York York UK
| | - Jason M. Tylianakis
- Bioprotection Aotearoa, School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Joan Van Baaren
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | - Martijn Van de Pol
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Wim H. Van der Putten
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Hans Van Dyck
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | | | - David L. Wagner
- Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
| | - Wolfgang W. Weisser
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - William C. Wetzel
- Department of Entomology, Department of Integrative Biology, and Ecology, Evolution, and Behavior Program Michigan State University East Lansing Michigan USA
| | - H. Arthur Woods
- Division of Biological Sciences University of Montana Missoula Montana USA
| | - Kris A. G. Wyckhuys
- Chrysalis Consulting Hanoi Vietnam
- China Academy of Agricultural Sciences Beijing China
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
13
|
Combined Elevation of Temperature and CO 2 Impacts the Production and Sugar Composition of Aphid Honeydew. J Chem Ecol 2022; 48:772-781. [PMID: 36171514 DOI: 10.1007/s10886-022-01385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Honeydew is the keystone of many interactions between aphids and their predators, parasitoids, and mutualistic partners. Despite the crucial importance of honeydew in aphid-ant mutualism, very few studies have investigated the potential impacts of climate change on its production and composition. Here, we quantified changes in sugar compounds and the amount of honeydew droplets released by Aphis fabae reared on Vicia faba plants under elevated temperature and/or CO2 conditions. Following the combined elevation of these two abiotic factors, we found a significant increase in the fructose content of A. fabae honeydew, accompanied by nonsignificant trends of increase in total honeydew production and melezitose content. The environmental conditions tested in this study did not significantly impact the other honeydew sugar contents. The observed changes may be related to changes in phloem composition under elevated CO2 conditions as well as to increases in aphid metabolism and sap ingestion under elevated temperatures. Although limited, such changes in aphid honeydew may concurrently reinforce ant attendance and mutualism under elevated temperature and CO2 conditions. Finally, we discuss the enhancing and counteracting effects of climate change on other biological agents (gut microorganisms, predators, and parasitoids) that interact with aphids in a complex multitrophic system.
Collapse
|
14
|
Clavé C, Sugio A, Morlière S, Pincebourde S, Simon J, Foray V. Physiological costs of facultative endosymbionts in aphids assessed from energy metabolism. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Corentin Clavé
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS Université de Tours Tours France
- Department of Agricultural Sciences University of Naples Federico II Portici Italy
| | - Akiko Sugio
- IGEPP, Agrocampus Ouest, INRA Université de Rennes 1 Le Rheu France
| | | | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS Université de Tours Tours France
| | | | - Vincent Foray
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS Université de Tours Tours France
| |
Collapse
|
15
|
Renoz F, Ambroise J, Bearzatto B, Fakhour S, Parisot N, Ribeiro Lopes M, Gala JL, Calevro F, Hance T. The Di-Symbiotic Systems in the Aphids Sipha maydis and Periphyllus lyropictus Provide a Contrasting Picture of Recent Co-Obligate Nutritional Endosymbiosis in Aphids. Microorganisms 2022; 10:microorganisms10071360. [PMID: 35889078 PMCID: PMC9317480 DOI: 10.3390/microorganisms10071360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Dependence on multiple nutritional bacterial symbionts forming a metabolic unit has repeatedly evolved in many insect species that feed on nutritionally unbalanced diets such as plant sap. This is the case for aphids of the subfamilies Lachninae and Chaitophorinae, which have evolved di-symbiotic systems in which the ancient obligate nutritional symbiont Buchnera aphidicola is metabolically complemented by an additional nutritional symbiont acquired more recently. Deciphering how different symbionts integrate both metabolically and anatomically in such systems is crucial to understanding how complex nutritional symbiotic systems function and evolve. In this study, we sequenced and analyzed the genomes of the symbionts B. aphidicola and Serratia symbiotica associated with the Chaitophorinae aphids Sipha maydis and Periphyllus lyropictus. Our results show that, in these two species, B. aphidicola and S. symbiotica complement each other metabolically (and their hosts) for the biosynthesis of essential amino acids and vitamins, but with distinct metabolic reactions supported by each symbiont depending on the host species. Furthermore, the S. symbiotica symbiont associated with S. maydis appears to be strictly compartmentalized into the specialized host cells housing symbionts in aphids, the bacteriocytes, whereas the S. symbiotica symbiont associated with P. lyropictus exhibits a highly invasive phenotype, presumably because it is capable of expressing a larger set of virulence factors, including a complete flagellum for bacterial motility. Such contrasting levels of metabolic and anatomical integration for two S. symbiotica symbionts that were recently acquired as nutritional co-obligate partners reflect distinct coevolutionary processes specific to each association.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
- Correspondence:
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Samir Fakhour
- Department of Plant Protection, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco;
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Mélanie Ribeiro Lopes
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
16
|
Tougeron K, Iltis C. Impact of heat stress on the fitness outcomes of symbiotic infection in aphids: a meta-analysis. Proc Biol Sci 2022; 289:20212660. [PMID: 35350854 PMCID: PMC8965392 DOI: 10.1098/rspb.2021.2660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Beneficial microorganisms shape the evolutionary trajectories of their hosts, facilitating or constraining the colonization of new ecological niches. One convincing example entails the responses of insect-microbe associations to rising temperatures. Indeed, insect resilience to stressful high temperatures depends on the genetic identity of the obligate symbiont and the presence of heat-protective facultative symbionts. As extensively studied organisms, aphids and their endosymbiotic bacteria represent valuable models to address eco-evolutionary questions about the thermal ecology of insect-microbe partnerships, with broad relevance to various biological systems and insect models. This meta-analysis aims to quantify the context-dependent impacts of symbionts on host phenotype in benign or stressful heat conditions, across fitness traits, types of heat stress and symbiont species. We found that warming lowered the benefits (resistance to parasitoids) and costs (development, fecundity) of infection by facultative symbionts, which was overall mostly beneficial to the hosts under short-term heat stress (heat shock) rather than extended warming. Heat-tolerant genotypes of the obligate symbiont Buchnera aphidicola and some facultative symbionts (Rickettsia sp., Serratia symbiotica) improved or maintained aphid fitness under heat stress. We discuss the implications of these findings for the general understanding of the cost-benefit balance of insect-microbe associations across multiple traits and their eco-evolutionary dynamics faced with climate change.
Collapse
Affiliation(s)
- Kévin Tougeron
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Louvain-la-Neuve, Belgium,UMR CNRS 7058-EDYSAN, Université de Picardie Jules Verne, Amiens, France
| | - Corentin Iltis
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
17
|
Iltis C, Tougeron K, Hance T, Louâpre P, Foray V. A perspective on insect-microbe holobionts facing thermal fluctuations in a climate-change context. Environ Microbiol 2021; 24:18-29. [PMID: 34713541 DOI: 10.1111/1462-2920.15826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Temperature influences the ecology and evolution of insects and their symbionts by impacting each partner independently and their interactions, considering the holobiont as a primary unit of selection. There are sound data about the responses of these partnerships to constant temperatures and sporadic thermal stress (mostly heat shock). However, the current understanding of the thermal ecology of insect-microbe holobionts remains patchy because the complex thermal fluctuations (at different spatial and temporal scales) experienced by these organisms in nature have often been overlooked experimentally. This may drastically constrain our ability to predict the fate of mutualistic interactions under climate change, which will alter both mean temperatures and thermal variability. Here, we tackle down these issues by focusing on the effects of temperature fluctuations on the evolutionary ecology of insect-microbe holobionts. We propose potentially worth-investigating research avenues to (i) evaluate the relevance of theoretical concepts used to predict the biological impacts of temperature fluctuations when applied to holobionts; (ii) acknowledge the plastic (behavioural thermoregulation, physiological acclimation) and genetic responses (evolution) expressed by holobionts in fluctuating thermal environments; and (iii) explore the potential impacts of previously unconsidered patterns of temperature fluctuations on the outcomes and the dynamic of these insect-microbe associations.
Collapse
Affiliation(s)
- Corentin Iltis
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium
| | - Kévin Tougeron
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium.,UMR CNRS 7058 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, Amiens, 80039, France
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium
| | - Philippe Louâpre
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, Dijon, 21000, France
| | - Vincent Foray
- UMR CNRS 7261 Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Parc Grandmont, Tours, 37200, France
| |
Collapse
|
18
|
Chrostek E, Martins N, Marialva MS, Teixeira L. Wolbachia-Conferred Antiviral Protection Is Determined by Developmental Temperature. mBio 2021; 12:e0292320. [PMID: 34488458 PMCID: PMC8546536 DOI: 10.1128/mbio.02923-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Wolbachia is a maternally transmitted bacterium that is widespread in arthropods and filarial nematodes and confers strong antiviral protection in Drosophila melanogaster and other arthropods. Wolbachia-transinfected Aedes aegypti mosquitoes are currently being deployed to fight transmission of dengue and Zika viruses. However, the mechanism of antiviral protection and the factors influencing are still not fully understood. Here, we show that temperature modulates Wolbachia-conferred protection in Drosophila melanogaster. Temperature after infection directly impacts Drosophila C virus (DCV) replication and modulates Wolbachia protection. At higher temperatures, viruses proliferate more and are more lethal, while Wolbachia confers lower protection. Strikingly, host developmental temperature is a determinant of Wolbachia-conferred antiviral protection. While there is strong protection when flies develop from egg to adult at 25°C, the protection is highly reduced or abolished when flies develop at 18°C. However, Wolbachia-induced changes during development are not sufficient to limit virus-induced mortality, as Wolbachia is still required to be present in adults at the time of infection. This developmental effect is general, since it was present in different host genotypes, Wolbachia variants, and upon infection with different viruses. Overall, we show that Wolbachia-conferred antiviral protection is temperature dependent, being present or absent depending on the environmental conditions. This interaction likely impacts Wolbachia-host interactions in nature and, as a result, frequencies of host and symbionts in different climates. Dependence of Wolbachia-mediated pathogen blocking on developmental temperature could be used to dissect the mechanistic bases of protection and influence the deployment of Wolbachia to prevent transmission of arboviruses. IMPORTANCE Insects are often infected with beneficial intracellular bacteria. The bacterium Wolbachia is extremely common in insects and can protect them from pathogenic viruses. This effect is being used to prevent transmission of dengue and Zika viruses by Wolbachia-infected mosquitoes. To understand the biology of insects in the wild, we need to discover which factors affect Wolbachia-conferred antiviral protection. Here, we show that the temperature at which insects develop from eggs to adults can determine the presence or absence of antiviral protection. The environment, therefore, strongly influences this insect-bacterium interaction. Our work may help to provide insights into the mechanism of viral blocking by Wolbachia, deepen our understanding of the geographical distribution of host and symbiont, and incentivize further research on the temperature dependence of Wolbachia-conferred protection for control of mosquito-borne disease.
Collapse
Affiliation(s)
- Ewa Chrostek
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Evolution, Ecology and Behaviour, University of Liverpool, United Kingdom
| | - Nelson Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Marta S. Marialva
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department for Biomedical Research, University of Bern, Switzerland
| | - Luís Teixeira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Vidal MC, Anneberg TJ, Curé AE, Althoff DM, Segraves KA. The variable effects of global change on insect mutualisms. CURRENT OPINION IN INSECT SCIENCE 2021; 47:46-52. [PMID: 33771734 DOI: 10.1016/j.cois.2021.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Insect mutualisms are essential for reproduction of many plants, protection of plants and other insects, and provisioning of nutrients for insects. Disruption of these mutualisms by global change can have important implications for ecosystem processes. Here, we assess the general effects of global change on insect mutualisms, including the possible impacts on mutualistic networks. We find that the effects of global change on mutualisms are extremely variable, making broad patterns difficult to detect. We require studies focusing on changes in cost-benefit ratios, effects of partner dependency, and degree of specialization to further understand how global change will influence insect mutualism dynamics. We propose that rapid coevolution is one avenue by which mutualists can ameliorate the effects of global change.
Collapse
Affiliation(s)
- Mayra C Vidal
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA; Biology Department, University of Massachusetts Boston, Boston, MA 02125, USA.
| | - Thomas J Anneberg
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA; Biology Department, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anne E Curé
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - David M Althoff
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Kari A Segraves
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
20
|
Zhu YX, Song ZR, Zhang YY, Hoffmann AA, Hong XY. Spider Mites Singly Infected With Either Wolbachia or Spiroplasma Have Reduced Thermal Tolerance. Front Microbiol 2021; 12:706321. [PMID: 34305877 PMCID: PMC8292952 DOI: 10.3389/fmicb.2021.706321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/14/2021] [Indexed: 02/01/2023] Open
Abstract
Heritable symbionts play an essential role in many aspects of host ecology in a temperature-dependent manner. However, how temperature impacts the host and their interaction with endosymbionts remains largely unknown. Here, we investigated the impact of moderate (20°C) and high (30 and 35°C) temperatures on symbioses between the spider mite Tetranychus truncatus and two maternally inherited endosymbionts (Wolbachia and Spiroplasma). We found that the thermal tolerance of mites (as measured by survival after heat exposure) was lower for mites that were singly infected with either Wolbachia or Spiroplasma than it was for co-infected or uninfected mites. Although a relatively high temperature (30°C) is thought to promote bacterial replication, rearing at high temperature (35°C) resulted in losses of Wolbachia and particularly Spiroplasma. Exposing the mites to 20°C reduced the density and transmission of Spiroplasma but not Wolbachia. The four spider mite strains tested differed in the numbers of heat shock genes (Hsps) induced under moderate or high temperature exposure. In thermal preference (Tp) assays, the two Wolbachia-infected spider mite strains preferred a lower temperature than strains without Wolbachia. Our results show that endosymbiont-mediated spider mite responses to temperature stress are complex, involving a combination of changing endosymbiont infection patterns, altered thermoregulatory behavior, and transcription responses.
Collapse
Affiliation(s)
- Yu-Xi Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China.,Institute of Applied Entomology, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhang-Rong Song
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yi-Yin Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Six DL, Klepzig KD. Context Dependency in Bark Beetle-Fungus Mutualisms Revisited: Assessing Potential Shifts in Interaction Outcomes Against Varied Genetic, Ecological, and Evolutionary Backgrounds. Front Microbiol 2021; 12:682187. [PMID: 34054789 PMCID: PMC8149605 DOI: 10.3389/fmicb.2021.682187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Context dependency occurs when biological interactions shift in sign or magnitude depending upon genetic, abiotic, and biotic context. Most models of mutualism address systems where interaction outcomes slide along a mutualism-antagonism continuum as environmental conditions vary altering cost-benefit relationships. However, these models do not apply to the many mutualisms that involve by-product benefits and others that do not have antagonistic alternate states. The ubiquity of such mutualisms indicates a need for different approaches and models to understand how environmental variability influences their strength, stability, and ecological roles. In this paper, we apply the concept of context dependency to mutualisms among bark beetles and fungi that span a variety of life strategies and exposures to environmental variability. Bark beetles and their mutualist fungi co-construct a niche based on by-product benefits that allows them to exist in a resource that is otherwise intractable or inaccessible. For the closest of these partnerships, this has resulted in some of the most influential agents of forest mortality in conifer forests worldwide. Understanding these symbioses is key to understanding their influence on forest structure and dynamics and responses to change. We found no evidence that bark beetle mutualisms change in sign as conditions vary, only in magnitude, and that the "closest" (and most environmentally influential) of these partnerships have evolved behaviors and mechanisms to reduce context-dependency and stabilize benefit delivery. The bark beetle-fungus symbioses most likely to slide along a mutualism-antagonism continuum are those involving loosely associated facultative symbionts that may provide benefits under some circumstances and that are horizontally transmitted by the beetle host. Additionally, some symbiotic fungi are never mutualists - these "third party" fungi are exploiters and may shift from commensalism to antagonism depending on environmental context. Our assessment indicates that a careful differentiation between bark beetle-fungus partnerships is crucial to understanding how they influence forests and respond to environmental variability.
Collapse
Affiliation(s)
- Diana L Six
- Department of Ecosystem and Conservation Science, The University of Montana, Missoula, MT, United States
| | | |
Collapse
|
22
|
Jaramillo A, Castañeda LE. Gut Microbiota of Drosophila subobscura Contributes to Its Heat Tolerance and Is Sensitive to Transient Thermal Stress. Front Microbiol 2021; 12:654108. [PMID: 34025608 PMCID: PMC8137359 DOI: 10.3389/fmicb.2021.654108] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota can contribute to host physiology leading to an increase of resistance to abiotic stress conditions. For instance, temperature has profound effects on ectotherms, and the role of the gut microbiota on the thermal tolerance of ectotherms is a matter of recent research. However, most of these studies have been focused on single static temperatures instead of evaluating thermal tolerance in a wide range of stressful temperatures. Additionally, there is evidence supporting that the gut microbiota is sensitive to environmental temperature, which induces changes in its composition and diversity. These studies have evaluated the effects of thermal acclimation (>2 weeks) on the gut microbiota, but we know little about the impact of transient thermal stress on the composition and diversity of the gut microbiota. Thus, we investigated the role of the gut microbiota on the heat tolerance of Drosophila subobscura by measuring the heat tolerance of conventional and axenic flies exposed to different heat stressful temperatures (35, 36, 37, and 38°C) and estimating the heat tolerance landscape for both microbiota treatments. Conventional flies exposed to mild heat conditions exhibited higher thermal tolerance than axenic flies, whereas at higher stressful temperatures there were no differences between axenic and conventional flies. We also assessed the impact of transient heat stress on the taxonomical abundance, diversity, and community structure of the gut microbiota, comparing non-stressed flies (exposed to 21°C) and heat-stressed flies (exposed to 34°C) from both sexes. Bacterial diversity indices, bacterial abundances, and community structure changed between non-stressed and heat-stressed flies, and this response was sex-dependent. In general, our findings provide evidence that the gut microbiota influences heat tolerance and that heat stress modifies the gut microbiota at the taxonomical and structural levels. These results demonstrate that the gut microbiota contributes to heat tolerance and is also highly sensitive to transient heat stress, which could have important consequences on host fitness, population risk extinction, and the vulnerability of ectotherms to current and future climatic conditions.
Collapse
Affiliation(s)
- Angélica Jaramillo
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis E Castañeda
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Zhao D, Zhang Z, Niu H, Guo H. Win by Quantity: a Striking Rickettsia-Bias Symbiont Community Revealed by Seasonal Tracking in the Whitefly Bemisia tabaci. MICROBIAL ECOLOGY 2021; 81:523-534. [PMID: 32968841 DOI: 10.1007/s00248-020-01607-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Maintaining an adaptive seasonality is a basic ecological requisite for cold-blooded organism insects which usually harbor various symbionts. However, how coexisting symbionts coordinate in insects during seasonal progress is still unknown. The whitefly Bemisia tabaci in China harbors the obligate symbiont Portiera that infects each individual, as well as various facultative symbionts. In this study, we investigated whitefly populations in cucumber and cotton fields from May to December 2019, aiming to reveal the fluctuations of symbiont infection frequencies, symbiont coordination in multiple infected individuals, and host plants effects on symbiont infections. The results indicated that the facultative symbionts Hamiltonella (H), Rickettsia (R), and Cardinium (C) exist in field whiteflies, with single (H) and double (HC and HR) infections occurring frequently. Infection frequencies of Hamiltonella (always 100%) and Cardinium (29.50-34.38%) remained steady during seasonal progression. Rickettsia infection frequency in the cucumber whitefly population decreased from 64.47% in summer to 35.29% in winter. Significantly lower Rickettsia infection frequency (15.55%) was identified in cotton whitefly populations and was not subject to seasonal fluctuation. Nevertheless, Rickettsia had a significantly quantitative advantage in the symbiont community of whitefly individuals and populations from both cucumber and cotton field all through the seasons. Moreover, higher Portiera and Hamiltonella densities were found in HC and HR whitefly than in H whitefly, suggesting these symbionts may contribute to producing nutrients for their symbiont partners. These results provide ample cues to further explore the interactions between coexisting symbionts, the coevolutionary relationship between symbionts and host symbiont-induced effects on host plant use.
Collapse
Affiliation(s)
- Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China
| | - Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
24
|
Shu L, Qian X, Brock DA, Geist KS, Queller DC, Strassmann JE. Loss and resiliency of social amoeba symbiosis under simulated warming. Ecol Evol 2020; 10:13182-13189. [PMID: 33304528 PMCID: PMC7713973 DOI: 10.1002/ece3.6909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Anthropogenic global change is increasingly raising concerns about collapses of symbiotic interactions worldwide. Therefore, understanding how climate change affects symbioses remains a challenge and demands more study. Here, we look at how simulated warming affects the social ameba Dictyostelium discoideum and its relationship with its facultative bacterial symbionts, Paraburkholderia hayleyella and Paraburkholderia agricolaris. We cured and cross-infected ameba hosts with different symbionts. We found that warming significantly decreased D. discoideum's fitness, and we found no sign of local adaptation in two wild populations. Experimental warming had complex effects on these symbioses with responses determined by both symbiont and host. Neither of these facultative symbionts increases its hosts' thermal tolerance. The nearly obligate symbiont with a reduced genome, P. hayleyella, actually decreases D. discoideum's thermal tolerance and even causes symbiosis breakdown. Our study shows how facultative symbioses may have complex responses to global change.
Collapse
Affiliation(s)
- Longfei Shu
- Environmental Microbiomics Research CenterSchool of Environmental Science and EngineeringSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | - Xinye Qian
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | - Debra A. Brock
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | | | - David C. Queller
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | | |
Collapse
|
25
|
Parker ES, Moczek AP. Don't stand so close to me: Microbiota-facilitated enemy release dynamics in introduced Onthophagus taurus dung beetles. Ecol Evol 2020; 10:13640-13648. [PMID: 33391669 PMCID: PMC7771182 DOI: 10.1002/ece3.6836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023] Open
Abstract
Microbial symbionts can influence their hosts in stunningly diverse ways. Emerging research suggests that an underappreciated facet of these relationships is the influence microbes can have on their host's responses to novel, or stressful, environmental conditions. We sought to address these and related questions in populations resulting from the recent introduction and subsequent rapid range expansion of Onthophagus taurus dung beetles. Specifically, we manipulated both microbial communities and rearing temperature to detect signatures of developmental and life history differentiation in response to the local thermal conditions in two populations derived from the southern most (Florida) and northern most (Michigan) extremes of the exotic Eastern U.S. range of O. taurus. We then sought to determine the contributions, if any, of host-associated microbiota to this differentiation. We found that when reared under common garden conditions individuals from Florida and Michigan populations differed significantly in developmental performance measures and life history traits, consistent with population divergence. At the same time, and contrary to our predictions, we failed to find support for the hypothesis that animals perform better if reared at temperatures that match their location of origin and that performance differences may be mediated by host-associated microbiota. Instead, we found that microbiome swapping across host populations improved developmental performance in both populations, consistent with enemy release dynamics. We discuss the implications of our results for our understanding of the rapid spread of exotic O. taurus through the Eastern United States and the significance of symbiosis in host responses to novel environmental conditions more broadly.
Collapse
|
26
|
Engl T, Schmidt THP, Kanyile SN, Klebsch D. Metabolic Cost of a Nutritional Symbiont Manifests in Delayed Reproduction in a Grain Pest Beetle. INSECTS 2020; 11:insects11100717. [PMID: 33092035 PMCID: PMC7589553 DOI: 10.3390/insects11100717] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 01/24/2023]
Abstract
Simple Summary Animals engage in various symbioses. However, these interactions are not always beneficial for the host; they can also incur costs under certain circumstances. The bacterial symbiont supports, on the one hand, the cuticle formation of the sawtoothed grain beetle Oryzaephilus surinamensis, which is extremely beneficial under dry conditions as a thicker and more melanized cuticle prevents desiccation of the insect. On the other hand, under higher humidity, the benefit is strongly reduced. In this study, we investigated whether harboring a symbiont can also be a disadvantage. Therefore, we first measured the number of symbionts throughout the beetles’ life and found a strong increase during the end of metamorphosis, just before beetles reach adulthood. Afterwards, males lose the symbionts again, whereas females retain a stable number. A comparison of beetles with and without symbionts revealed no differences in many life history traits. Larval development took the same time and there was also no difference in adult mortality or lifespan or the number of offspring of females. However, females with symbionts started to reproduce significantly later by one to two weeks, meaning they have a disadvantage in comparison to females without symbionts. Thus, harboring a symbiont is beneficial or costly in a context-dependent manner. Abstract Animals engage in a plethora of mutualistic interactions with microorganisms that can confer various benefits to their host but can also incur context-dependent costs. The sawtoothed grain beetle Oryzaephilus surinamensis harbors nutritional, intracellular Bacteroidetes bacteria that supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host. Experimental elimination of the symbiont impairs cuticle formation and reduces fitness under desiccation stress but does not disrupt the host’s life cycle. For this study, we first demonstrated that symbiont populations showed the strongest growth at the end of metamorphosis and then declined continuously in males, but not in females. The symbiont loss neither impacted the development time until adulthood nor adult mortality or lifespan. Furthermore, lifetime reproduction was not influenced by the symbiont presence. However, symbiotic females started to reproduce almost two weeks later than aposymbiotic ones. Thus, symbiont presence incurs a metabolic and context-dependent fitness cost to females, probably due to a nutrient allocation trade-off between symbiont growth and sexual maturation. The O. surinamensis symbiosis thereby represents an experimentally amenable system to study eco-evolutionary dynamics under variable selection pressures.
Collapse
Affiliation(s)
- Tobias Engl
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany; (T.H.P.S.); (S.N.K.); (D.K.)
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
- Correspondence:
| | - Thorsten H. P. Schmidt
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany; (T.H.P.S.); (S.N.K.); (D.K.)
| | - Sthandiwe Nomthandazo Kanyile
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany; (T.H.P.S.); (S.N.K.); (D.K.)
| | - Dagmar Klebsch
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany; (T.H.P.S.); (S.N.K.); (D.K.)
| |
Collapse
|
27
|
|
28
|
Lemoine MM, Engl T, Kaltenpoth M. Microbial symbionts expanding or constraining abiotic niche space in insects. CURRENT OPINION IN INSECT SCIENCE 2020; 39:14-20. [PMID: 32086000 DOI: 10.1016/j.cois.2020.01.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 05/06/2023]
Abstract
In addition to their well-studied contributions to their host's nutrition, digestion, and defense, microbial symbionts of insects are increasingly found to affect their host's response toward abiotic stressors. In particular, symbiotic microbes can reduce or enhance tolerance to temperature extremes, improve desiccation resistance by aiding cuticle biosynthesis and sclerotization, and detoxify heavy metals. As such, individual symbionts or microbial communities can expand or constrain the abiotic niche space of their host and determine its adaptability to fluctuating environments. In light of the increasing impact of humans on climate and environment, a better understanding of host-microbe interactions is necessary to predict how different insect species will respond to changes in abiotic conditions.
Collapse
Affiliation(s)
- Marion M Lemoine
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Tobias Engl
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany.
| |
Collapse
|
29
|
Fitness costs of the cultivable symbiont Serratia symbiotica and its phenotypic consequences to aphids in presence of environmental stressors. Evol Ecol 2019. [DOI: 10.1007/s10682-019-10012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Sentis A, Desneux N. Editorial overview: Global change: integrating ecological and evolutionary consequences across time and space. CURRENT OPINION IN INSECT SCIENCE 2019; 35:iii-vi. [PMID: 31629476 DOI: 10.1016/j.cois.2019.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Arnaud Sentis
- National Research Institute of Science and Technology for Environment and Agriculture (IRSTEA), Centre d'Aix-en-Provence, 3275 route Cézanne, 13182 Aix-en-Provence, France.
| | - Nicolas Desneux
- Université Côte d'Azur, INRA, CNRS, UMR ISA, 06000 Nice, France.
| |
Collapse
|