1
|
Kim J. Smart Nanocarriers in Cosmeceuticals Through Advanced Delivery Systems. Biomimetics (Basel) 2025; 10:217. [PMID: 40277615 DOI: 10.3390/biomimetics10040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Nanomaterials have revolutionized various biological applications, including cosmeceuticals, enabling the development of smart nanocarriers for enhanced skin delivery. This review focuses on the role of nanotechnologies in skincare and treatments, providing a concise overview of smart nanocarriers, including thermo-, pH-, and multi-stimuli-sensitive systems, focusing on their design, fabrication, and applications in cosmeceuticals. These nanocarriers offer controlled release of active ingredients, addressing challenges like poor skin penetration and ingredient instability. This work discusses the unique properties and advantages of various nanocarrier types, highlighting their potential in addressing diverse skin concerns. Furthermore, we address the critical aspect of biocompatibility, examining potential health risks associated with nanomaterials. Finally, this review highlights current challenges, including the precise control of drug release, scalability, and the transition from in vitro to in vivo applications. We also discuss future perspectives such as the integration of digital technologies and artificial intelligence for personalized skincare to further advance the technology of smart nanocarriers in cosmeceuticals.
Collapse
Affiliation(s)
- Jinku Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
2
|
Parveen S, Bhattacharya A, Silakari O, Sapra B. First report on QSAR modelling for chemical penetration enhancement ratio (ER) of different FDA-approved drugs in Poloxamer 407: A next step towards better skin permeability of drugs. Int J Pharm 2025; 669:125083. [PMID: 39694159 DOI: 10.1016/j.ijpharm.2024.125083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Poloxamer 407 is a versatile excipient that enhances drug solubilization and prolongs drug release. Poloxamers are non-ionic tri-block copolymers composed of a central hydrophobic chain of polyoxypropylene flanked by two hydrophilic chains of polyoxyethylene. Various researchers have utilized Poloxamer 407 in topical and transdermal drug delivery systems, and it has also been reported to enhance skin permeability. The present investigation was conducted to predict the structural features of drugs that contribute to increased skin permeation in the presence of Poloxamer 407 as a polymer or carrier system. This was achieved using a multiple linear regression-based quantitative structure-activity relationship (QSAR) model developed with six molecular descriptors. The statistical outcomes (r2 = 0.872, Q2F1 = 0.805, Q2F2 = 0.804, and Q2F3 = 0.821) demonstrated the model's strong internal and external predictive capability. The model was further validated using various criteria to ensure its reliability. Additionally, an ex vivo study was performed on selected drugs (Voriconazole, Terbinafine, Ketoconazole, Pantoprazole, Sumatriptan, Sitagliptin, and Rabeprazole) to evaluate the predictive power of the developed 2D-QSAR model. The results of this study (experimental enhancement ratio, ER) were found to be highly correlated with the predicted ER values from the model. This QSAR-based prediction study highlights the potential for forecasting the skin penetration abilities of various drug classes in the presence of Poloxamer 407. It also provides a foundation for designing pharmaceutical dosage forms with improved skin permeability, which could aid in the treatment of skin-related conditions and other diseases.
Collapse
Affiliation(s)
- Shama Parveen
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Arijit Bhattacharya
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Om Silakari
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
| | - Bharti Sapra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
| |
Collapse
|
3
|
Elkhateeb O, Badawy MEI, Tohamy HG, Abou-Ahmed H, El-Kammar M, Elkhenany H. Curcumin-infused nanostructured lipid carriers: a promising strategy for enhancing skin regeneration and combating microbial infection. BMC Vet Res 2023; 19:206. [PMID: 37845727 PMCID: PMC10577905 DOI: 10.1186/s12917-023-03774-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Curcumin is a biomolecule that can be extracted from the Curcuma longa that has been shown to have the potential to aid skin wound healing. It has been studied for its anti-inflammatory and antioxidant properties, which may help to reduce swelling and promote tissue repair. However, curcumin has low solubility in water, which can limit its absorption and bioavailability. Encapsulating it in lipid nanoparticles may help to increase its absorption, leading to improved bioavailability. METHODS Curcumin-loaded nanostructure lipid nanocarriers (CURC-NLCs) were prepared and characterized. Also, the phenolic, flavonoid contents, antioxidant and antimicrobial efficacy against gram-positive and gram-negative bacteria were investigated. Furthermore, in vivo rabbit animal model was used to test its regenerative capacity and wound-healing efficiency. RESULTS The CURC-NLCs significantly increased the content of phenolic and flavonoid compounds compared to curcumin, resulting in a dramatic increase in antioxidant activity. CURC-NLCs also showed a potent inhibitory effect on Gram-positive, Gram-negative, and fungi, two times higher than curcumin. CURC-NLCs showed a higher potential to fasten the wound healing of full-thickness skin injuries as it resulted in 1.15- and 1.9-fold higher wound closure at the first week of injury compared to curcumin and control, respectively (p < 0.0001). CONCLUSION These results suggest that CURC-NLCs have an excellent potential to promote skin regeneration, which could be attributed to its antioxidant and broad-spectrum antimicrobial effect.
Collapse
Affiliation(s)
- Ola Elkhateeb
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545, Egypt
| | - Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Howaida Abou-Ahmed
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Mahmoud El-Kammar
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt.
| |
Collapse
|
4
|
Safarpour F, Kharaziha M, Mokhtari H, Emadi R, Bakhsheshi-Rad HR, Ramakrishna S. Kappa-carrageenan based hybrid hydrogel for soft tissue engineering applications. Biomed Mater 2023; 18:055005. [PMID: 37348489 DOI: 10.1088/1748-605x/ace0ec] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
Biological materials such as cell-derived membrane vesicles have emerged as alternative sources for molecular delivery systems, owing to multicomponent features, the inherent functionalities and signaling networks, and easy-to-carry therapeutic agents with various properties. Herein, red blood cell membrane (RBCM) vesicle-laden methacrylate kappa-carrageenan (KaMA) composite hydrogel is introduced for soft tissue engineering. Results revealed that the characteristics of hybrid hydrogels were significantly modulated by changing the RBCM vesicle content. For instance, the incorporation of 20% (v/v) RBCM significantly enhanced compressive strength from 103 ± 26 kPa to 257 ± 18 kPa and improved toughness under the cyclic loading from 1.0 ± 0.4 kJ m-3to 4.0 ± 0.5 kJ m-3after the 5thcycle. RBCM vesicles were also used for the encapsulation of curcumin (CUR) as a hydrophobic drug molecule. Results showed a controlled release of CUR over three days of immersion in PBS solution. The RBCM vesicles laden KaMA hydrogels also supportedin vitrofibroblast cell growth and proliferation. In summary, this research sheds light on KaMA/RBCM hydrogels, that could reveal fine-tuned properties and hydrophobic drug release in a controlled manner.
Collapse
Affiliation(s)
- F Safarpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - M Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - H Mokhtari
- Division of Polymer Chemistry, Department of Chemistry-Ångstrom Laboratory, Uppsala University, Uppsala 75121, Sweden
| | - R Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - H R Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative, National University of Singapore, 9 Engineering Drive 1, Singapore 1157, Singapore
| |
Collapse
|
5
|
Omidian H, Wilson RL, Chowdhury SD. Enhancing Therapeutic Efficacy of Curcumin: Advances in Delivery Systems and Clinical Applications. Gels 2023; 9:596. [PMID: 37623051 PMCID: PMC10453486 DOI: 10.3390/gels9080596] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Curcumin, a potent active compound found in turmeric and Curcuma xanthorrhiza oil, possesses a wide range of therapeutic properties, including antibacterial, anti-inflammatory, antioxidant, and wound healing activities. However, its clinical effectiveness is hindered by its low bioavailability and rapid elimination from the body. To overcome these limitations, researchers have explored innovative delivery systems for curcumin. Some promising approaches include solid lipid nanoparticles, nanomicelle gels, and transdermal formulations for topical drug delivery. In the field of dentistry, curcumin gels have shown effectiveness against oral disorders and periodontal diseases. Moreover, Pickering emulsions and floating in situ gelling systems have been developed to target gastrointestinal health. Furthermore, curcumin-based systems have demonstrated potential in wound healing and ocular medicine. In addition to its therapeutic applications, curcumin also finds use as a food dye, contraception aid, corrosion-resistant coating, and environmentally friendly stain. This paper primarily focuses on the development of gel compositions of curcumin to address the challenges associated with its clinical use.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (S.D.C.)
| | | | | |
Collapse
|
6
|
Ghazwani M, Hani U, Alqarni MH, Alam A. Beta Caryophyllene-Loaded Nanostructured Lipid Carriers for Topical Management of Skin Disorders: Statistical Optimization, In Vitro and Dermatokinetic Evaluation. Gels 2023; 9:550. [PMID: 37504429 PMCID: PMC10378941 DOI: 10.3390/gels9070550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
This work aimed to overcome the disadvantages of the oral administration of beta-caryophyllene and boost efficiency by developing a nanostructured lipid carrier for topical administration of the drug in skin disorders. The heat emulsification method was utilized to produce beta-caryophyllene-loaded nanostructured lipid carriers. The newly created formulation was examined for its particle size, entrapment efficiency, and zeta potential after being improved using the Box-Behnken Design. The chosen formulation underwent tests to determine its ex vivo skin retention, dermatokinetic, in vitro release, antioxidant, and confocal laser scanning microscopy study. The findings of the characterization of the nanostructured lipid carriers demonstrated that the particles had a spherical form and a size of 210.86 nm (0.263 polydispersity index). The entrapment efficiency was determined to be 86.74%, and the zeta potential was measured to be -26.97 mV. The in vitro release investigation showed that nanostructure lipid carriers were capable of releasing regulated amounts of beta-caryophyllene for up to 24 hrs. In comparison to the traditional gel formulation, the ex vivo investigation demonstrated a 1.94-fold increase in the skin's capacity to retain the substance. According to the findings of the study, nanostructure lipid carriers loaded with beta-caryophyllene have the potential to be investigated for use as a topical administration method in skin disorders with enhanced skin retention and effectiveness.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|
7
|
Albasri OWA, Kumar PV, Rajagopal MS. Development of Computational In Silico Model for Nano Lipid Carrier Formulation of Curcumin. Molecules 2023; 28:1833. [PMID: 36838817 PMCID: PMC9965590 DOI: 10.3390/molecules28041833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
The oral delivery system is very important and plays a significant role in increasing the solubility of drugs, which eventually will increase their absorption by the digestive system and enhance the drug bioactivity. This study was conducted to synthesize a novel curcumin nano lipid carrier (NLC) and use it as a drug carrier with the help of computational molecular docking to investigate its solubility in different solid and liquid lipids to choose the optimum lipids candidate for the NLCs formulation and avoid the ordinary methods that consume more time, materials, cost, and efforts during laboratory experiments. The antiviral activity of the formed curcumin-NLC against SARS-CoV-2 (COVID-19) was assessed through a molecular docking study of curcumin's affinity towards the host cell receptors. The novel curcumin drug carrier was synthesized as NLC using a hot and high-pressure homogenization method. Twenty different compositions of the drug carrier (curcumin nano lipid) were synthesized and characterized using different physicochemical techniques such as UV-Vis, FTIR, DSC, XRD, particle size, the zeta potential, and AFM. The in vitro and ex vivo studies were also conducted to test the solubility and the permeability of the 20 curcumin-NLC formulations. The NLC as a drug carrier shows an enormous enhancement in the solubility and permeability of the drug.
Collapse
Affiliation(s)
| | - Palanirajan Vijayaraj Kumar
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Technology, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | | |
Collapse
|
8
|
Elkhateeb OM, Badawy MEI, Noreldin AE, Abou-Ahmed HM, El-Kammar MH, Elkhenany HA. Comparative evaluation of propolis nanostructured lipid carriers and its crude extract for antioxidants, antimicrobial activity, and skin regeneration potential. BMC Complement Med Ther 2022; 22:256. [PMID: 36192714 PMCID: PMC9528112 DOI: 10.1186/s12906-022-03737-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Propolis extracted from beehives has been conferred with natural antimicrobial and antioxidant properties. Hence, it has been recommended as a wound healing therapy. This study investigated the additive value of nanotechnology to the herbal extract, (propolis rebuts), after which we examined its efficacy in wound healing. Methods Propolis nanostructured lipid carriers (NLCs) were first prepared using the emulsion-evaporation-solidification method at three concentrations. Then, we compared their flavonoid and phenolic contents and phenolic contents. Their antioxidant, antibacterial, and antifungal effects were also investigated after which, the skin regenerative capacity of propolis-NLCs was assessed using full-thickness skin wounds in rabbits. Results This study showed that propolis-NLCs had increased the phenolic and flavonoid contents compared to the raw propolis extract (EXTR) (9-fold and 2-fold, respectively). This increase was reflected in their antioxidant activities, which dramatically increased by 25-fold higher than the propolis-EXTR. Also, propolis-NLCs exhibited a 2-fold higher potent inhibitory effect than propolis-EXTR on Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), Gram-negative bacterium (Salmonella spp.), and fungus (Candida albicans) microbes (p < 0.0001). Investigations also revealed that treatment of full-thickness skin injuries with propolis-NLCs resulted in significantly higher wound closure compared to propolis-EXTR and the control after two weeks (p < 0.0001). Conclusion With a prominent broad-spectrum antibacterial effect propolis-NLCs exhibited higher skin regenerative potency than propolis-EXTR. We also highlighted the additive impact of nanotechnology on herbal extract, which accounted for the increased flavonoid content and hence a better antioxidant and antimicrobial effect and propose it as a potential therapy for wound healing. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03737-4.
Collapse
Affiliation(s)
- Ola M. Elkhateeb
- grid.7155.60000 0001 2260 6941Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785 Egypt
| | - Mohamed E. I. Badawy
- grid.7155.60000 0001 2260 6941Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545 Egypt
| | - Ahmed E. Noreldin
- grid.449014.c0000 0004 0583 5330Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, the Scientific Campus, Damanhour, 22511 Egypt
| | - Howaida M. Abou-Ahmed
- grid.7155.60000 0001 2260 6941Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785 Egypt
| | - Mahmoud H. El-Kammar
- grid.7155.60000 0001 2260 6941Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785 Egypt
| | - Hoda A. Elkhenany
- grid.7155.60000 0001 2260 6941Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785 Egypt
| |
Collapse
|
9
|
Santos FH, Panda SK, Ferreira DCM, Dey G, Molina G, Pelissari FM. Targeting infections and inflammation through micro and nano-nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Calderon-Jacinto R, Matricardi P, Gueguen V, Pavon-Djavid G, Pauthe E, Rodriguez-Ruiz V. Dual Nanostructured Lipid Carriers/Hydrogel System for Delivery of Curcumin for Topical Skin Applications. Biomolecules 2022; 12:biom12060780. [PMID: 35740905 PMCID: PMC9221280 DOI: 10.3390/biom12060780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
This work focuses on the development and evaluation of a dual nanostructured lipid carrier (NLC)/Carbopol®-based hydrogel system as a potential transporter for the topical delivery of curcumin to the skin. Two populations of different sized negatively charged NLCs (P1, 70–90 nm and P2, 300–350 nm) were prepared and characterized by means of dynamic light scattering. NLCs presented an ovoid platelet shape confirmed by transmission electron microscopy techniques. Curcumin NLC entrapment efficiency and release profiles were assessed by HPLC (high pressure liquid chromatography) and spectrophotometric methods. Preservation and enhancement of curcumin (CUR) antioxidant activity in NLCs (up to 7-fold) was established and cell viability assays on fibroblasts and keratinocytes indicated that CUR-NLCs are non-cytotoxic for concentrations up to 10 μM and exhibited a moderate anti-migration/proliferation effect (20% gap reduction). CUR-NLCs were then embedded in a Carbopol®-based hydrogel without disturbing the mechanical properties of the gel. Penetration studies on Franz diffusion cells over 24 h in CUR-NLCs and CUR-NLCs/gels demonstrated an accumulation of CUR in Strat-M® membranes of 22% and 5%, respectively. All presented data support the use of this new dual CUR-NLC/hydrogel system as a promising candidate for adjuvant treatment in topical dermal applications.
Collapse
Affiliation(s)
- Rosa Calderon-Jacinto
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (G.P.-D.)
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (G.P.-D.)
| | - Emmanuel Pauthe
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
| | - Violeta Rodriguez-Ruiz
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
- Correspondence: ; Tel.: +33-01-3425-2830
| |
Collapse
|
11
|
Valdivia V, Gimeno-Ferrero R, Pernia Leal M, Paggiaro C, Fernández-Romero AM, González-Rodríguez ML, Fernández I. Biologically Relevant Micellar Nanocarrier Systems for Drug Encapsulation and Functionalization of Metallic Nanoparticles. NANOMATERIALS 2022; 12:nano12101753. [PMID: 35630975 PMCID: PMC9145561 DOI: 10.3390/nano12101753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
The preparation of new and functional nanostructures has received more attention in the scientific community in the past decade due to their wide application versatility. Among these nanostructures, micelles appear to be one of the most interesting supramolecular organizations for biomedical applications because of their ease of synthesis and reproducibility and their biocompatibility since they present an organization similar to the cell membrane. In this work, we developed micellar nanocarrier systems from surfactant molecules derived from oleic acid and tetraethylene glycol that were able to encapsulate and in vitro release the drug dexamethasone. In addition, the designed micelle precursors were able to functionalize metallic NPs, such as gold NPs and iron oxide NPs, resulting in monodispersed hybrid nanomaterials with high stability in aqueous media. Therefore, a new triazole-derived micelle precursor was developed as a versatile encapsulation system, opening the way for the preparation of new micellar nanocarrier platforms for drug delivery, magnetic resonance imaging, or computed tomography contrast agents for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Victoria Valdivia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
- Correspondence: (V.V.); (M.P.L.); (I.F.)
| | - Raúl Gimeno-Ferrero
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
- Correspondence: (V.V.); (M.P.L.); (I.F.)
| | - Chiara Paggiaro
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
| | - Ana María Fernández-Romero
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (A.M.F.-R.); (M.L.G.-R.)
| | - María Luisa González-Rodríguez
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (A.M.F.-R.); (M.L.G.-R.)
| | - Inmaculada Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
- Correspondence: (V.V.); (M.P.L.); (I.F.)
| |
Collapse
|
12
|
Thermoresponsive in situ gel of curcumin loaded solid lipid nanoparticle: Design, optimization and in vitro characterization. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Cunha S, Swedrowska M, Bellahnid Y, Xu Z, Sousa Lobo J, Forbes B, Silva A. Thermosensitive in situ hydrogels of rivastigmine-loaded lipid-based nanosystems for nose-to-brain delivery: characterisation, biocompatibility, and drug deposition studies. Int J Pharm 2022; 620:121720. [DOI: 10.1016/j.ijpharm.2022.121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/10/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
|
14
|
Jin N, He J, Wu C, Chen Z, Li Y, Chen J, Lin J. Glycyrrhizic acid assists anti-psoriatic efficacy of a self-deformable curcumin loaded transdermal gel. Pharm Dev Technol 2022; 27:282-289. [DOI: 10.1080/10837450.2022.2039943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nan Jin
- College of Pharmacy and Medical Technology, Putian University, Putian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian, China
| | - Jingwen He
- Department of Pharmacy, Fujian Sanbo Funeng Brain Hospital, Fuzhou, China
| | - Chenyuan Wu
- College of Pharmacy and Medical Technology, Putian University, Putian, China
| | - Zejun Chen
- College of Pharmacy and Medical Technology, Putian University, Putian, China
| | - Yuling Li
- College of Pharmacy and Medical Technology, Putian University, Putian, China
| | - Jianmin Chen
- College of Pharmacy and Medical Technology, Putian University, Putian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian, China
| | - Jianhu Lin
- Dean’s Office, Putian University, Putian, China
| |
Collapse
|
15
|
Fernández-Romero AM, Maestrelli F, García-Gil S, Talero E, Mura P, Rabasco AM, González-Rodríguez ML. Preparation, Characterization and Evaluation of the Anti-Inflammatory Activity of Epichlorohydrin-β-Cyclodextrin/Curcumin Binary Systems Embedded in a Pluronic ®/Hyaluronate Hydrogel. Int J Mol Sci 2021; 22:13566. [PMID: 34948364 PMCID: PMC8709285 DOI: 10.3390/ijms222413566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Curcumin (Cur) is an anti-inflammatory polyphenol that can be complexed with polymeric cyclodextrin (CD) to improve solubility and bioavailability. The aim of the present work was to prepare a CurCD hydrogel to treat inflammatory skin conditions. Epichlorohydrin-β-CD (EpiβCD) was used as polymeric CD. To characterize the binary system, solid-state and in-solution studies were performed. Afterwards, an experimental design was performed to optimize the hydrogel system. Finally, the CurEpiβCD hydrogel system was tested for anti-inflammatory activity using a HaCat psoriasis cell model. Co-grinded Cur/EpiβCD binary system showed a strong interaction and Curcumin solubility was much improved. Its combination with Pluronic® F-127/hyaluronate hydrogel demonstrated an improvement in release rate and Curcumin permeation. After testing its anti-inflammatory activity, the system showed a significant reduction in IL-6 levels. Hydrogel-containing CurEpiβCD complex is a great alternative to treat topical inflammatory diseases.
Collapse
Affiliation(s)
- Ana-María Fernández-Romero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (A.-M.F.-R.); (A.M.R.)
| | - Francesca Maestrelli
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (P.M.)
| | - Sara García-Gil
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (S.G.-G.); (E.T.)
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (S.G.-G.); (E.T.)
| | - Paola Mura
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (P.M.)
| | - Antonio M. Rabasco
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (A.-M.F.-R.); (A.M.R.)
| | - María Luisa González-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (A.-M.F.-R.); (A.M.R.)
| |
Collapse
|
16
|
Okur NÜ, Yağcılar AP, Siafaka PI. Promising Polymeric Drug Carriers for Local Delivery: The Case of in situ Gels. Curr Drug Deliv 2021; 17:675-693. [PMID: 32510291 DOI: 10.2174/1567201817666200608145748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/28/2020] [Accepted: 04/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND At present, the controlled local drug delivery is a very promising approach compared to systemic administration, since it mostly targets the affected tissue. In fact, various drug carriers for local delivery have been prepared with improved therapeutic efficacy. OBJECTIVE in situ polymer gels are drug delivery systems that not only present liquid characteristics before their administration in body, but once they are administered, form gels due to gelation. Their gelation mechanism is due to factors such as pH alteration, temperature change, ion activation or ultraviolet irradiation. in situ gels offer various advantages compared to conventional formulations due to their ability to release drugs in a sustainable and controllable manner. Most importantly, in situ gels can be used in local drug delivery applications for various diseases. METHODS This review includes the basic knowledge and theory of in situ gels as well as their various applications according to their administration route. RESULTS Various natural, semisynthetic, and synthetic polymers can produce in situ polymeric gels. For example, natural polysaccharides such as alginic acid, chitosan, gellan gum, carrageenan etc. have been utilized as in situ gels for topical delivery. Besides the polysaccharides, poloxamers, poly(Nisopropylacrylamide), poly(ethyleneoxide)/ (lactic-co-glycolic acid), and thermosensitive liposome systems can be applied as in situ gels. In most cases, in situ polymeric gels could be applied via various administration routes such as oral, vaginal, ocular, intranasal and injectable. CONCLUSION To conclude, it can be revealed that in situ gels could be a promising alternative carrier for both chronic and immediate diseases.
Collapse
Affiliation(s)
- Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Ayşe Pınar Yağcılar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
17
|
Witika BA, Makoni PA, Matafwali SK, Mweetwa LL, Shandele GC, Walker RB. Enhancement of Biological and Pharmacological Properties of an Encapsulated Polyphenol: Curcumin. Molecules 2021; 26:4244. [PMID: 34299519 PMCID: PMC8303961 DOI: 10.3390/molecules26144244] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- ApotheCom|A MEDiSTRAVA Company (Medical Division of Huntsworth), London WC2A 1AN, UK;
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa;
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, LSHTM, London WC1E 7HT, UK;
| | - Larry Lawrence Mweetwa
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3FX, UK;
| | - Ginnethon Chaamba Shandele
- Department of Biochemistry, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, P.O. Box 33991, Lusaka 10101, Zambia;
| | - Roderick Bryan Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
18
|
Rapalli VK, Sharma S, Roy A, Singhvi G. Design and dermatokinetic evaluation of Apremilast loaded nanostructured lipid carriers embedded gel for topical delivery: A potential approach for improved permeation and prolong skin deposition. Colloids Surf B Biointerfaces 2021; 206:111945. [PMID: 34216849 DOI: 10.1016/j.colsurfb.2021.111945] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/22/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
The present study aimed to develop Apremilast loaded nanostructured lipid carriers (NLCs) for topical delivery to overcome the limitations of oral therapy and increase the efficacy. Apremilast loaded NLCs were prepared by hot emulsification technique. The developed formulation was optimized by Box Behnken design and characterized for size, entrapment efficiency, and zeta potential. The selected formulation was investigated for in-vitro release, ex-vivo skin retention, dermatokinetic, psoriasis efficacy, in-vivo skin retention and skin irritation study. The NLCs characterization results showed its spherical shape with the particle size of 157.91 ± 1.267 nm (0.165 ± 0.017 PDI). The entrapment efficiency and zeta potential were found to be 69.144 ± 0.278% and -16.75 ± 1.40 mV, respectively. The in-vitro release study revealed a controlled release of Apremilast from NLCs up to 24 h. The ex-vivo study showed 3-fold enhanced skin retention compared to conventional gel preparation. The formulation depicted improved psoriasis efficacy indicating reduced TNF-α mRNA expression. The cytotoxicity and skin irritation study revealed the prepared formulation has no toxicity or irritation. The study depicts the NLCs loaded Apremilast can be explored for the topical delivery for treatment of psoriasis with improved skin retention and efficacy.
Collapse
Affiliation(s)
- Vamshi Krishna Rapalli
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Swati Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
19
|
Khezri K, Saeedi M, Mohammadamini H, Zakaryaei AS. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res 2021; 35:5527-5563. [PMID: 34131980 DOI: 10.1002/ptr.7190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Today, due to the prevalence of various diseases such as the novel coronavirus (SARS-CoV-2), diabetes, central nervous system diseases, cancer, cardiovascular disorders, and so on, extensive studies have been conducted on therapeutic properties of natural and synthetic agents. A literature review on herbal medicine and commercial products in the global market showed that curcumin (Cur) has many therapeutic benefits compared to other natural ingredients. Despite the unique properties of Cur, its use in clinical trials is very limited. The poor biopharmaceutical properties of Cur such as short half-life in plasma, low bioavailability, poor absorption, rapid metabolism, very low solubility (at acidic and physiological pH), and the chemical instability in body fluids are major concerns associated with the clinical applications of Cur. Recently, nanoformulations are emerging as approaches to develop and improve the therapeutic efficacy of various drugs. Many studies have shown that Cur nanoformulations have tremendous therapeutic potential against various diseases such as SARS-CoV-2, cancer, inflammatory, osteoporosis, and so on. These nanoformulations can inhibit many diseases through several cellular and molecular mechanisms. However, successful long-term clinical results are required to confirm their safety and clinical efficacy. The present review aims to update and explain the therapeutic potential of Cur nanoformulations.
Collapse
Affiliation(s)
- Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | |
Collapse
|
20
|
Van Gheluwe L, Chourpa I, Gaigne C, Munnier E. Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness. Polymers (Basel) 2021; 13:1285. [PMID: 33920816 PMCID: PMC8071137 DOI: 10.3390/polym13081285] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Progress in recent years in the field of stimuli-responsive polymers, whose properties change depending on the intensity of a signal, permitted an increase in smart drug delivery systems (SDDS). SDDS have attracted the attention of the scientific community because they can help meet two current challenges of the pharmaceutical industry: targeted drug delivery and personalized medicine. Controlled release of the active ingredient can be achieved through various stimuli, among which are temperature, pH, redox potential or even enzymes. SDDS, hitherto explored mainly in oncology, are now developed in the fields of dermatology and cosmetics. They are mostly hydrogels or nanosystems, and the most-used stimuli are pH and temperature. This review offers an overview of polymer-based SDDS developed to trigger the release of active ingredients intended to treat skin conditions or pathologies. The methods used to attest to stimuli-responsiveness in vitro, ex vivo and in vivo are discussed.
Collapse
Affiliation(s)
| | | | | | - Emilie Munnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.V.G.); (I.C.); (C.G.)
| |
Collapse
|
21
|
Development of a Nanostructured Lipid Carrier (NLC) by a Low-Energy Method, Comparison of Release Kinetics and Molecular Dynamics Simulation. Pharmaceutics 2021; 13:pharmaceutics13040531. [PMID: 33920242 PMCID: PMC8070589 DOI: 10.3390/pharmaceutics13040531] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022] Open
Abstract
Lipid nanocarriers have a great potential for improving the physicochemical characteristics and behavior of poorly water-soluble drugs, such as aqueous dispersibility and oral bioavailability. This investigation presents a novel nanostructured lipid carrier (NLC) based on a mixture of solid lipid glycerides, fatty acid esters of PEG 1500 (Gelucire® 44/14), and an oil mix composed of capric and caprylic triglycerides (Miglyol® 812). These NLCs were developed by a simple low-energy method based on melt emulsification to yield highly encapsulating and narrowly distributed nanoparticles (~100 nm, PdI = 0.1, and zeta potential = ~−10 mV). Rhodamine 123 was selected as a poorly water-soluble drug model and owing to its spectroscopic properties. The novel NLCs were characterized by dynamic light scattering (DLS), zeta potential, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and colloidal stability. The drug release was determined through a dialysis bag and vertical Franzs’ cells to provide insights about the methods’ suitability, revealing similar performance regardless of their different fluid dynamics. Rhodamine 123 followed a characteristic biphasic release profile owing to the swelling of the hydrophilic polymer coating and diffusion process from the lipid core as revealed by the Korsmeyers–Peppas kinetic modeling. Moreover, to elucidate the formation and incorporation of Rhodamine 123 into the NLC core, several molecular dynamics simulations were conducted. The temperature was shown to be an important condition to improve the formation of the nanoparticles. In addition, the liquid lipid incorporation to the formulation forms nanoparticles with imperfect centers, in contrast to nanoparticles without it. Moreover, Miglyol® 812 improves hydrophobic molecule solubility. These results suggest the potential of novel NLC as a drug delivery system for poorly water-soluble drugs.
Collapse
|
22
|
The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Li L, Zhang X, Pi C, Yang H, Zheng X, Zhao L, Wei Y. Review of Curcumin Physicochemical Targeting Delivery System. Int J Nanomedicine 2020; 15:9799-9821. [PMID: 33324053 PMCID: PMC7732757 DOI: 10.2147/ijn.s276201] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Curcumin (CUR), as a traditional Chinese medicine monomer extracted from the rhizomes of some plants in Ginkgo and Araceae, has shown a wide range of therapeutic and pharmacological activities such as anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, anti-liver fibrosis, anti-atherosclerosis, and anti-Alzheimer’s disease. However, some issues significantly affect its biological activity, such as low aqueous solubility, physico-chemical instability, poor bioavailability, and low targeting efficacy. In order to further improve its curative effect, numerous efficient drug delivery systems have been carried out. Among them, physicochemical targeting preparations could improve the properties, targeting ability, and biological activity of CUR. Therefore, in this review, CUR carrier systems are discussed that are driven by physicochemical characteristics of the microenvironment (eg, pH variation of tumorous tissues), affected by external influences like magnetic fields and vehicles formulated with thermo-sensitive materials.
Collapse
Affiliation(s)
- Lanmei Li
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan 637000, People's Republic of China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese MateriaMedica, Chongqing 400065, People's Republic of China
| | - Chao Pi
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Hongru Yang
- Department of Oncology of Luzhou People's Hospital, Luzhou, Sichuan 646000, People's Republic of China
| | - Xiaoli Zheng
- Basic Medical College of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ling Zhao
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yumeng Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
24
|
Nanostructured lipid carriers loaded with curcuminoids: Physicochemical characterization, in vitro release, ex vivo skin penetration, stability and antioxidant activity. Eur J Pharm Sci 2020; 155:105533. [DOI: 10.1016/j.ejps.2020.105533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/31/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
|
25
|
Gugleva V, Titeva S, Ermenlieva N, Tsibranska S, Tcholakova S, Rangelov S, Momekova D. Development and evaluation of doxycycline niosomal thermoresponsive in situ gel for ophthalmic delivery. Int J Pharm 2020; 591:120010. [DOI: 10.1016/j.ijpharm.2020.120010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/11/2023]
|
26
|
Waghule T, Gorantla S, Rapalli VK, Shah P, Dubey SK, Saha RN, Singhvi G. Emerging Trends in Topical Delivery of Curcumin Through Lipid Nanocarriers: Effectiveness in Skin Disorders. AAPS PharmSciTech 2020; 21:284. [PMID: 33058071 DOI: 10.1208/s12249-020-01831-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Curcumin is a unique molecule naturally obtained from rhizomes of Curcuma longa. Curcumin has been reported to act on diverse molecular targets like receptors, enzymes, and co-factors; regulate different cellular signaling pathways; and modulate gene expression. It suppresses expression of main inflammatory mediators like interleukins, tumor necrosis factor, and nuclear factor κB which are involved in the regulation of genes causing inflammation in most skin disorders. The topical delivery of curcumin seems to be more advantageous in providing a localized effect in skin diseases. However, its low aqueous solubility, poor skin permeation, and degradation hinder its application for commercial use despite its enormous potential. Lipid-based nanocarrier systems including liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, lyotropic liquid crystal nanoparticles, lipospheres, and lipid nanocapsules have found potential as carriers to overcome the issues associated with conventional topical dosage forms. Nano-size, lipophilic nature, viscoelastic properties, and occlusive effect of lipid nanocarriers provide high drug loading, hydration of skin, stability, enhanced permeation through the stratum corneum, and slow release of curcumin in the targeted skin layers. This review particularly focuses on the application of lipid nanocarriers for the topical delivery of curcumin in the treatment of various skin diseases. Furthermore, preclinical studies and patents have also indicated the emerging commercialization potential of curcumin-loaded lipid nanocarriers for effective drug delivery in skin disorders. Graphical Abstract.
Collapse
|
27
|
Rapalli VK, Kaul V, Waghule T, Gorantla S, Sharma S, Roy A, Dubey SK, Singhvi G. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. Eur J Pharm Sci 2020; 152:105438. [DOI: 10.1016/j.ejps.2020.105438] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
|
28
|
de Souza ML, Dos Santos WM, de Sousa ALMD, de Albuquerque Wanderley Sales V, Nóbrega FP, de Oliveira MVG, Rolim-Neto PJ. Lipid Nanoparticles as a Skin Wound Healing Drug Delivery System: Discoveries and Advances. Curr Pharm Des 2020; 26:4536-4550. [PMID: 32303163 DOI: 10.2174/1381612826666200417144530] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
Chronic wounds are a remarkable cause of morbidity, requiring long-time treatments with a significant impact on the quality of life and high costs for public health. Although there are a variety of topical skin preparations commercially available, they have several limitations that frequently impair wound healing, such as drug instability, toxicity, limited time of action and ineffective skin permeation. In recent years, researchers have focused on the development of new effective treatments for wound healing and shown frequent interest in nanometric drug delivery systems to overcome such obstacles. In dermatology, lipid nanoparticles (LNPs) have received great attention from researchers due to their great functionalities, greater adhesion to the skin and film formation, enabling the hydration and maintenance of skin integrity, as well as present a more effective penetration through the skin barrier. This review provides an update on topical formulations based on Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) as wound healing treatments. Both SLNs and NLCs are able to increase solubility and stability of active pharmaceutical ingredients and increase skin penetration compared to the free drugs. Additionally, SLNs and NLCs can increase pharmacological activity, increase the release profile of the drugs, promote synergistic effects and improve the sensory properties of the final formulation. Topical dosage forms containing nanoparticles have been extensively evaluated for wound healing activity, mainly the dressings, films and scaffolds. Therefore, lipid nanoparticles have contributed in improving wound healing therapies when incorporated into other dosage forms with better efficacy and lesser adverse effects than conventional formulations.
Collapse
Affiliation(s)
- Myla Lôbo de Souza
- Laboratory of Drug Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Widson Michael Dos Santos
- Laboratory of Drug Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Fernanda Pontes Nóbrega
- Laboratory of Drug Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Pedro José Rolim-Neto
- Laboratory of Drug Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
29
|
Singhvi G, Patil S, Girdhar V, Dubey SK. Nanocarriers for Topical Drug Delivery: Approaches and Advancements. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2210681208666180320122534] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background:Delivery of drugs through the skin has been an attractive as well as a challenging area for research. Topical drug delivery has provided enormous advantages over the systemic route for various drugs and one of the important amongst them is reduced toxicity due to a minimum or zero exposure to non-target organs.Methods:Various nanocarrier loaded topical preparations including organogels, emulgels, niosomal gel, lyotropic liquid crystal based gels, etc have been investigated for their topical application. Nanocarriers loaded topical preparation have been proven for improved permeation through the cutaneous barrier and delivering the drug at the target site. The objective of this review is to study the recent updates regarding newer topical gel formulations and highlighting their current potential and future scope of the same.Results:The present work has summarized different studies related to nanotechnology derived topical gel formulations and also enlisted few drugs which have been successfully formulated as novel topical gels. Advancement in nanocarriers loaded topical preparations have also been reviewed with their permeation and efficacy compared to conventional formulations.Conclusion:The present review will provide an overview of nanotechnology based topical preparation to the readers and will create curiosity for further development.
Collapse
Affiliation(s)
- Gautam Singhvi
- Department of Pharmacy, Industrial Research Laboratory, Birla Institute of Technology and Science, Pilani, Rajasthan, Pin: 333 031, India
| | - Shalini Patil
- Department of Pharmacy, Industrial Research Laboratory, Birla Institute of Technology and Science, Pilani, Rajasthan, Pin: 333 031, India
| | - Vishal Girdhar
- Department of Pharmacy, Industrial Research Laboratory, Birla Institute of Technology and Science, Pilani, Rajasthan, Pin: 333 031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Industrial Research Laboratory, Birla Institute of Technology and Science, Pilani, Rajasthan, Pin: 333 031, India
| |
Collapse
|
30
|
Lacatusu I, Badea N, Badea G, Mihaila M, Ott C, Stan R, Meghea A. Advanced bioactive lipid nanocarriers loaded with natural and synthetic anti-inflammatory actives. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.01.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Sadeghi Ghadi Z, Ebrahimnejad P. Curcumin entrapped hyaluronan containing niosomes: preparation, characterisation and in vitro/in vivo evaluation. J Microencapsul 2019; 36:169-179. [PMID: 31104531 DOI: 10.1080/02652048.2019.1617360] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Curcumin, a natural polyphenolic compound, has numerous pharmacological activities; while it faces several bioavailability problems, due to its poor solubility and stability. So, many nanostructures have been designed to overcome these drawbacks. The aim of this study was to prepare a polymeric niosomal structure by incorporating hyaluronan to improve curcumin efficiencies. Hyaluronan containing niosomes were prepared by thin film hydration medium with slight modifications. In the formulation of hyaluronan containing niosomes size and zeta potential studies, Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), in-vitro release test, DPPH antioxidant assay and in-vivo anti-inflammatory test were investigated. The results showed that hyaluronan containing niosomes were 249.83 ± 6.38 nm and the entrapment of curcumin was 98.28 ± 0.278% (w/w). In addition, the shape of the hyaluronan containing niosomes was spherical. 500 µl of the prepared formulation with 4.002 × 10-7 moles of curcumin showed 100% antioxidant effect. Moreover, the anti-inflammatory effect of the hyaluronan containing niosomes was higher than the anti-inflammatory effect of the simple suspension of curcumin.
Collapse
Affiliation(s)
- Zaynab Sadeghi Ghadi
- a Department of Pharmaceutics, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran.,b Student Research Committee, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Pedram Ebrahimnejad
- a Department of Pharmaceutics, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran.,c Pharmaceutical Science Research Center , Hemoglobinopathy Institute, Mazandaran University of Medical Sciences , Sari , Iran
| |
Collapse
|
32
|
Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opin Drug Deliv 2018; 15:1085-1104. [DOI: 10.1080/17425247.2018.1529756] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Andrew M. Bodratti
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| |
Collapse
|
33
|
Rafiee Z, Nejatian M, Daeihamed M, Jafari SM. Application of different nanocarriers for encapsulation of curcumin. Crit Rev Food Sci Nutr 2018; 59:3468-3497. [DOI: 10.1080/10408398.2018.1495174] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Zahra Rafiee
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mohammad Nejatian
- Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Marjan Daeihamed
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
34
|
Priyam A, Shivhare K, Yadav S, Sharma AK, Kumar P. Enhanced solubility and self-assembly of amphiphilic sulfasalazine-PEG-OMe (S-PEG) conjugate into core-shell nanostructures useful for colonic drug delivery. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1316-1326. [DOI: 10.1016/j.msec.2017.03.226] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
|
36
|
Mohanty C, Sahoo SK. Curcumin and its topical formulations for wound healing applications. Drug Discov Today 2017; 22:1582-1592. [PMID: 28711364 DOI: 10.1016/j.drudis.2017.07.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 01/03/2023]
Abstract
Oxidative damage and inflammation have been identified, through clinical and preclinical studies, as the main causes of nonhealing chronic wounds. Reduction of persistent chronic inflammation by application of antioxidant and anti-inflammatory agents such as curcumin has been well studied. However, low aqueous solubility, poor tissue absorption, rapid metabolism and short plasma half-life have made curcumin unsuitable for systemic administration for better wound healing. Recently, various topical formulations of curcumin such as films, fibers, emulsion, hydrogels and different nanoformulations have been developed for targeted delivery of curcumin at wounded sites. In this review, we summarize and discuss different topical formulations of curcumin with emphasis on their wound-healing properties in animal models.
Collapse
Affiliation(s)
- Chandana Mohanty
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Orissa 751023, India
| | - Sanjeeb K Sahoo
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Orissa 751023, India.
| |
Collapse
|
37
|
Hussain Z, Thu HE, Ng SF, Khan S, Katas H. Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: A review of new trends and state-of-the-art. Colloids Surf B Biointerfaces 2016; 150:223-241. [PMID: 27918967 DOI: 10.1016/j.colsurfb.2016.11.036] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/21/2016] [Accepted: 11/26/2016] [Indexed: 12/13/2022]
Abstract
Wound healing is a multifarious and vibrant process of replacing devitalized and damaged cellular structures, leading to restoration of the skin's barrier function, re-establishment of tissue integrity, and maintenance of the internal homeostasis. Curcumin (CUR) and its analogs have gained widespread recognition due to their remarkable anti-inflammatory, anti-infective, anticancer, immunomodulatory, antioxidant, and wound healing activities. However, their pharmaceutical significance is limited due to inherent hydrophobic nature, poor water solubility, low bioavailability, chemical instability, rapid metabolism and short half-life. Owing to their pharmaceutical limitations, newer strategies have been attempted in recent years aiming to mitigate problems related to the effective delivery of curcumanoids and to improve their wound healing potential. These advanced strategies include nanovesicles, polymeric micelles, conventional liposomes and hyalurosomes, nanocomposite hydrogels, electrospun nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, nanodispersion, and polymeric nanoparticles (NPs). The superior wound healing activities achieved after nanoencapsulation of the CUR are attributed to its target-specific delivery, longer retention at the target site, avoiding premature degradation of the encapsulated cargo and the therapeutic superiority of the advanced delivery systems over the conventional delivery. We have critically reviewed the literature and summarize the convincing evidence which explore the pharmaceutical significance and therapeutic feasibility of the advanced delivery systems in improving wound healing activities of the CUR and its analogs.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia.
| | - Hnin Ei Thu
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz 50300, Kuala Lumpur, Malaysia
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KPK, Pakistan
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz 50300, Kuala Lumpur, Malaysia
| |
Collapse
|