1
|
Paronetto GS, Svartz G, Olivelli MS, Marco-Brown JL, Candal R. Ecotoxicological efficiency of Cr(VI) removal treatment with reductive biogenic iron-based material determined by amphibian larval bioassays. CHEMOSPHERE 2025; 374:144215. [PMID: 39970763 DOI: 10.1016/j.chemosphere.2025.144215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/13/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Due to the toxic effects of chromium, its high environmental persistence, and potential for bioaccumulation, it is imperative to develop sustainable strategies for managing its contamination. In the present study, the synthesis time of supported biogenic iron-based microparticles (BioFe-MMT) and their performance in the Cr(VI) removal process were analyzed. Its lethal and sublethal ecotoxicological effects were subsequently evaluated through standardized bioassays using amphibian Rhinella arenarum larvae exposed to BioFe-MMT and Cr(VI) before and after the removal treatment. Results demonstrated that BioFe-MMT biosynthesized for 3 weeks had smaller particle size and better Cr(VI) and total Cr removal efficiency (>99% and >91%, respectively) compared to longer synthesis times. Ecotoxicological bioassays showed that Cr(VI) caused a significant increment of lethal toxicity to larvae with 50% Lethal Concentration (LC 50) at 96 and 504 h of 25.1 and 0.04 mg L-1, respectively. Several sublethal effects were observed such as reduced body size, wavy and underdeveloped tail, and behavioral disorders. This toxicity could be explained by the Bioconcentration Factor (BCF) at 96 h, which was 12.26 L kg-1. On the other hand, BioFe-MMT and the supernatant obtained after the treatment had negligible toxic effects. Larvae exposed to the sludge obtained after Cr(VI) removal treatment (Cr-BioFe-MMT) presented significant mortality from 216 h, which was explained by Cr(VI) desorption from the Cr-BioFe-MMT sludge. These results highlight the BioFe-MMT potential use in Cr(VI) removal due to its efficiency and the reduced toxicity of the treated solution.
Collapse
Affiliation(s)
- Gabriela S Paronetto
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| | - Gabriela Svartz
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina.
| | - Melisa S Olivelli
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| | - Jose L Marco-Brown
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina.
| | - Roberto Candal
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| |
Collapse
|
2
|
Cui X, Zhang H, Qu J, Chao M, Ma S, Hu Q, Yu X. Synthesis of waterborne polyurethane-carboxymethyl chitosan cross-linked biodegradable bio-based porous materials for the adsorption of methylene blue. Int J Biol Macromol 2025; 301:140420. [PMID: 39884597 DOI: 10.1016/j.ijbiomac.2025.140420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
The development of green and cost-effective biomass adsorbents is necessary for removing large amounts of dyes from wastewater. In this study, polyurethane prepolymers were synthesized using polycaprolactone diol (OH-PCL-OH), isophorone diisocyanate, and 2,2-dihydroxymethylpropionic acid, which were subsequently dispersed in aqueous carboxymethyl chitosan (CMCS) solution to produce waterborne polyurethane (WPU)-CMCS porous materials. The adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR), thermogravimetric (TGA) and mercury intrusion porosimetry (MIP). The effects of pH, temperature, initial concentration and contact time on the adsorption properties of the adsorbents were investigated. The adsorption kinetics and isotherms were used to fit the adsorption data, and the reusability and biodegradability of the adsorbent were investigated. The results showed that the maximum adsorption capacity of WPU-CMCS10 was 222.65 mg·g-1 and the adsorption process followed the Langmuir model. After four adsorption-resolution cycles, the removal of dyes remained at 70.36 %, whereas in the biodegradability test, the mass loss of WPU-CMCS10 reached 43.04 % after 25 weeks, indicating that the adsorbent had good reusability and biodegradability.
Collapse
Affiliation(s)
- Xiubin Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haitao Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Jianbo Qu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Mingzhen Chao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Shanghong Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qingfei Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
3
|
Hassan SSM, El-Shalakany HH, Fathy MA, Kamel AH. A magnetic macroporous α-Fe 2O 3/Mn 2O 3 nanocomposite as an efficient adsorbent for simple and rapid removal of Pb(II) from wastewater and electronic waste leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65648-65660. [PMID: 39586976 DOI: 10.1007/s11356-024-35452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
A magnetic nanocomposite adsorbent, comprised of macroporous iron oxide/manganese oxide (α-Fe2O3/Mn2O3), is prepared, characterized, and used for lead(II) removal from both industrial wastewater and leachate of electronic waste. The synergistic interaction between iron oxide and manganese oxide significantly enhances the adsorption performance. The surface characteristics and structural composition of the nanocomposite are examined using high-resolution transmission microscopy, X-ray spectroscopy, and Brunauer-Emmett-Teller methods. Under optimized conditions, the present method offers a significantly high adsorption capacity (377.5 ± 8.9 mg.g-1), short contact time (10 min), and an excellent removal efficiency (98.0 ± 0.9%) compared with most of the previously suggested methods. The adsorption kinetics of Pb(II) on the nanocomposite surface follows pseudo-second-order kinetics and exhibits a good fit with the Dubinin-Radushkevich (D-R) model. These findings highlight the applicability of the α-Fe2O3/Mn2O3 magnetic nanocomposite as a promising efficient adsorbent for the rapid removal of lead(II) from hazardous wastewater. Moreover, the proposed nanocomposite adsorbent exhibits remarkable stability and can be easily isolated from the test sample solution for subsequent reuse. The efficacy of the developed adsorptive removal procedure is confirmed by achieving a complete lead(II) ion removal from some industrial wastewater discharged from lead battery factories and from the leachate of electronic waste.
Collapse
Affiliation(s)
- Saad S M Hassan
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| | - Hadeel H El-Shalakany
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| | - Mahmoud Abdelwahab Fathy
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo, 11566, Egypt.
- Department of Chemistry, College of Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Ayman H Kamel
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo, 11566, Egypt
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, 32038, Bahrain
| |
Collapse
|
4
|
Wang J, Yao R, Hao Y, Yang H, Wang Y, Lin T, Sai H. Kinetic and isotherm studies on the adsorption of ionic liquids from aqueous solutions by carboxymethyl cellulose modified with sodium methacrylate sulfonate. Int J Biol Macromol 2024; 283:137828. [PMID: 39566801 DOI: 10.1016/j.ijbiomac.2024.137828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
A novel carboxymethyl cellulose (CMC) graft copolymer (CMC-g-PSMAS) was successfully synthesized by grafting sodium methacrylate sulfonate (SMAS) onto CMC. The resulting CMC-g-PSMAS was used to absorb 1-allyl-3-methylimidazole chloride ([Amim]Cl) ionic liquid. The effects of different experimental factors such as monomer dosage, temperature and time on the grafting yield were systematically studied. Adsorption studies demonstrated that the adsorption equilibrium could be achieved within 60 min. The theoretical maximum adsorption capacity of CMC-g-PSMAS for [Amim]Cl reached 69.2 mg·g-1. Compared to several kinetic and isothermal models, the adsorption process of [Amim]Cl onto CMC-g-PSMAS could be well-described by the pseudo-second-order model (R2 = 0.991) and the Langmuir model (R2 = 0.999), which was a typical chemical adsorption process. Adsorption thermodynamics analyses at 25 °C revealed that the adsorption process was spontaneous (ΔG = -33.37 KJ·mol-1) and exothermic (ΔH = -56.52 KJ·mol-1). The adsorption capacity of CMC-g-PSMAS was 35.3 mg·g-1 after eight cycles, indicating its good stability and recyclability. As a consequence, CMC-g-PSMAS was efficient in the adsorption of [Amim]Cl, which could be a potential candidate for removing ionic liquids in aqueous environments.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Rui Yao
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Yan Hao
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China.
| | - Hui Yang
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Yicheng Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Tingrui Lin
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Fujian Key Laboratory of Architectural Coating, Skshu Paint Co., Ltd., Putian, Fujian 351100, PR China
| | - Huazheng Sai
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| |
Collapse
|
5
|
Mchich Z, Stefan DS, Mamouni R, Saffaj N, Bosomoiu M. Eco-Friendly Hydrogel Beads from Seashell Waste for Efficient Removal of Heavy Metals from Water. Polymers (Basel) 2024; 16:3257. [PMID: 39684002 DOI: 10.3390/polym16233257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The objective of this study is to develop a calcium carbonate-based adsorbent derived from Cellana Tramoscrica seashells, incorporated into a sodium alginate matrix (Na-Alg@CTs) to form hydrogel beads, for the efficient removal of Cu (II) and Zn (II) heavy metals from aqueous solutions. XRD, SEM/EDS, and FTIR analysis confirm the successful synthesis and characterization of the fabricated adsorbent. The adsorption study of Cu (II) and Zn (II) onto Na-Alg@CTs hydrogel beads revealed that the Langmuir model was the most suitable for characterizing the adsorption isotherms, suggesting monolayer coverage. Na-Alg@CTs exhibited a maximum Langmuir adsorption capacity of 368.58 mg/g and 1075.67 mg/g for Cu (II) and Zn (II), respectively. Additionally, the kinetics followed the pseudo-second-order model, indicating that the adsorption process is primarily governed by chemisorption. The thermodynamic study suggests that the uptake of metal ions on Na-Alg@CTs hydrogel beads is spontaneous and endothermic. The exceptional adsorption capacity, eco-friendly nature, and low-cost characteristics of Na-Alg@CTs hydrogel beads make them an ideal adsorbent for the removal of Cu (II) and Zn (II) from wastewater.
Collapse
Affiliation(s)
- Zaineb Mchich
- Team of Biotechnology, Materials, and Environment, Faculty of Sciences, Ibn Zohr University, Agadir BP 8106, Morocco
| | - Daniela Simina Stefan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Rachid Mamouni
- Team of Biotechnology, Materials, and Environment, Faculty of Sciences, Ibn Zohr University, Agadir BP 8106, Morocco
| | - Nabil Saffaj
- Team of Biotechnology, Materials, and Environment, Faculty of Sciences, Ibn Zohr University, Agadir BP 8106, Morocco
| | - Magdalena Bosomoiu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
6
|
Mbuyazi TB, Ajibade PA. Magnetic iron oxides nanocomposites: synthetic techniques and environmental applications for wastewater treatment. DISCOVER NANO 2024; 19:158. [PMID: 39342049 PMCID: PMC11438764 DOI: 10.1186/s11671-024-04102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Nanomaterials are an emerging class of compounds with potential to advance technology for wastewater treatment. There are many toxic substances in industrial wastewater that are dangerous to the aquatic ecosystem and public health. These pollutants require the development of novel techniques to remove them from the environment. Iron oxide nanoparticles are being studied and develop as new technology to address the problem of environmental pollution due to their unique properties and effectiveness against different kind of pollutants. A variety of modified iron oxide nanoparticles have been developed through extensive research that mitigates the shortcomings of aggregation or oxidation and enhances their efficiency as novel remediator against environmental pollutants. In this review, we present synthetic approaches used for the preparation of iron oxide nanoparticles and their corresponding nanocomposites, along with the processes in which the materials are used as adsorbent/photocatalysts for environmental remediation. Applications explored includes adsorption of dyes, photocatalytic degradation of dyes, and adsorption of heavy metal ions. The use of iron oxides nanocomposite in real wastewater samples and recyclability of adsorbents and photocatalysts were also explored.
Collapse
Affiliation(s)
- Thandi B Mbuyazi
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa
| | - Peter A Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
7
|
Li P, Hou S, Zhang Y, Zhang K, Deng X, Song H, Qin G, Zheng Y, Liu W, Ji S. Three-birds-with-one-stone: An eco-friendly and renewable humic acid-derived material application strategy for macrolide antibiotic detection and multifunctional composite film preparation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135100. [PMID: 38972200 DOI: 10.1016/j.jhazmat.2024.135100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
This research proposes a simple and novel strategy for the green detection of antibiotics along with the reduction of microplastic and humic acid (HA) hazards. The entire process is based on a single-step solvent-sieving method to separate HA into insoluble (IHA) and soluble (SHA) components, subsequently recombining and designing the application according to the original characteristics of selected fractions in accordance with the zero-waste principle. IHA was applied as a dispersive solid phase extraction (DSPE) sorbent without chemical modification for the enrichment of trace MACs in complex biological matrices. The recovery of MACs was 74.06-100.84 % in the range of 2.5-1000 μg∙kg-1. Furthermore, SHA could be combined with biodegradable polyvinyl alcohol (PVA) to prepare multifunctional composite films. SHA endows the PVA film with favorable mechanical properties, excellent UV shielding as well as oxidation resistance performance. Compared with pure PVA, the tensile strength, toughness, antioxidant and UV-protection properties were increased to 157.3 Mpa, 258.6 MJ·m-3, 78.6 % and 60 % respectively. This study achieved a green and economically valuable utilization of all components of waste HA, introduced a novel approach for monitoring and controlling harmful substances and reducing white pollution. This has significant implications for promoting sustainable development and recovering valuable resources.
Collapse
Affiliation(s)
- Peiqi Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Siyu Hou
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Yuqi Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Kaidi Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Xiqian Deng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Huilin Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Guowen Qin
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Yang Zheng
- Nanjing Caremo Biomedical Co., Ltd. Building C6, No. 9, Weidi Road, Qixia District, Nanjing, China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China.
| | - Shunli Ji
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
8
|
Chen J, Duan Q, Ji C, Liu J, Wang Z, Song J, Li W, Zhang C. Modified coconut shell biochars (MCSBCs): Fabrication and their adsorptions for Pb(II). Heliyon 2024; 10:e32422. [PMID: 38933981 PMCID: PMC11200355 DOI: 10.1016/j.heliyon.2024.e32422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The modified coconut shell biochars (MCSBCs) were fabricated and their adsorptions for Pb(II) were evaluated, in which waste coconut shell was used as the raw material, both ZnCl2 and KMnO4 were applied as the inorganic modifiers. FT-IR spectra, TGA, SEM and BET techniques were utilized to characterize their properties. It was spotted that the thermal stability of UCSBC could arrive at 500 °C. The BET specific surface areas of both Zn- and Mn-modified MCSBCs (485.137, 476.734 m2/g) were highly decreased as compared with that of UCSBC (3528.78 m2/g). In contrast, the average pore diameters of both Zn- and Mn-modified MCSBCs (3.295, 3.803 nm) were smaller than that of UCSBC (3.814 nm). These findings reveal that the modification of CSBC didn't change its pore size. Their adsorptions for Pb(II) were performed and some controlling factors involving pH, contact time, starting concentration and temperature were explored. Moreover, the experiment data were fitted via linear and non-linear techniques. It was found that the Langmuir maximal adsorption amounts of un-modified coconut shell biochar (UCSBC), Zn-modified and Mn-modified MCSBCs for Pb(II) could reach 31.653, 86.547 and 93.666 mg/g, respectively. Two-parameter kinetic models exposed that Pb(II) adsorption on UCSBC, Zn-modified and Mn-modified MCSBCs obeyed both the Lagergren first-order (non-linear R2 = 0.990, 0.954, 0.953, respectively) and Avrami fractional-order (non-linear R2 = 0.989, 0.946, 0.945, respectively) kinetic models. Two-parameter and three-parameter isotherm models verified that Pb(II) adsorption on UCSBC, Zn-modified and Mn-modified MCSBCs followed the Langmuir (non-linear R2 = 0.992, 0.997, 0.993, respectively) as well as Sips (non-linear R2 = 0.992, 0.997, 0.992, respectively) isotherm models. The computation of thermodynamic parameters evidenced that the modification of UCSBC via KMnO4 and ZnCl2 can effectively rise its adsorption for Pb(II), exhibiting promising applications in the handling of metal-bearing water.
Collapse
Affiliation(s)
- Jingyi Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Qianqian Duan
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| | - Chunyu Ji
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| | - Junsheng Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| | - Ziyao Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| | - Jiahui Song
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| | - Wei Li
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| | - Chaojian Zhang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| |
Collapse
|
9
|
Gol-Soltani M, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Zeinali S, Haderlein SB. Efficient Immobilization of heavy metals using newly synthesized magnetic nanoparticles and some bacteria in a multi-metal contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39602-39624. [PMID: 38822962 DOI: 10.1007/s11356-024-33808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Simultaneous application of modified Fe3O4 with biological treatments in remediating multi-metal polluted soils, has rarely been investigated. Thus, a pioneering approach towards sustainable environmental remediation strategies is crucial. In this study, we aimed to improve the efficiency of Fe3O4 as adsorbents for heavy metals (HMs) by applying protective coatings. We synthesized core-shell magnetite nanoparticles coated with modified nanocellulose, nanohydrochar, and nanobiochar, and investigated their effectiveness in conjunction with bacteria (Pseudomonas putida and Bacillus megaterium) for remediating a multi-metal contamination soil. The results showed that the coatings significantly enhanced the immobilization of heavy metals in the soil, even at low doses (0.5%). The coating of nanocellulose had the highest efficiency in stabilizing metals due to the greater variety of surface functional groups and higher specific surface area (63.86 m2 g-1) than the other two coatings. Interestingly, uncoated Fe3O4 had lower performance (113.6 m2 g-1) due to their susceptibility to deformation and oxidation. The use of bacteria as a biological treatment led to an increase in the stabilization of metals in soil. In fact, Pseudomonas putida and Bacillus megaterium increased immobilization of HMs in soil successfully because of extracellular polymeric substances and intensive negative charges. Analysis of metal concentrations in plants revealed that Ni and Zn accumulated in the roots, while Pb and Cd were transferred from the roots to the shoots. Treatment Fe3O4 coated with modified nanocellulose at rates of 0.5 and 1% along with Pseudomonas putida showed the highest effect in stabilizing metals. Application of coated Fe3O4 for in-situ immobilization of HMs in contamination soils is recommendable due to their high metal stabilization efficiency and suitability to apply in large quantities.
Collapse
Affiliation(s)
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering, Shiraz University, Shiraz, Iran
| | - Stefan B Haderlein
- Department of Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Hashemzadeh F, Khoshmardan ME, Sanaei D, Ghalhari MR, Sharifan H, Inglezakis VJ, Arcibar-Orozco JA, Shaikh WA, Khan E, Biswas JK. Adsorptive removal of anthracene from water by biochar derived amphiphilic carbon dots decorated with chitosan. CHEMOSPHERE 2024; 352:141248. [PMID: 38280643 DOI: 10.1016/j.chemosphere.2024.141248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/23/2023] [Accepted: 01/16/2024] [Indexed: 01/29/2024]
Abstract
Anthracene belongs to the polycyclic aromatic hydrocarbon (PAH) consisting of benzene rings, unusually highly stable through more π-electrons and localized π-bond in entire rings. Aqueous-phase anthracene adsorption using carbon-based materials such as biochar is ineffective. In this paper, carbon dots (CDs) derived from the acid treatment of coconut shell biochar (CDs/MCSB) decorated with chitosan (CS) are successfully synthesized and applied for anthracene removal from aqueous solutions. The h-CDs/MCSB exhibited fast adsorption of anthracene with significant sorption capacity (Qmax = 49.26 mg g-1) with 95 % removal efficiency at 60 min. The study suggested chemisorption dominated monolayer anthracene adsorption onto h-CDs/MCSB, where a significant role was played by ion-exchange. Density Functional Theory (DFT) suggested the anthracene adsorption was dominated by the electrostatic interactions and delocalized electron, induced by higher polarizability of functional groups on the surface of hybrid CDs/MCSB assisted by chitosan (h-CDs/MCSB). In addition, the aromatic structure of CDs/MCSB and high polarizability of functional groups provided the strong interactions between benzene rings of anthracene and hybrid adsorbent-assisted multiple π-bond through delocalized π-bond and polarization-induced H-bond interactions. The presence of carboxylic and sulfonic groups on the CDs/MCSB surface also contributed to the effective adsorption of anthracene was confirmed by the fluorescence spectra. The results showed that the hybrid adsorbent was an effective material for removing PAHs, usually difficult to remove from water owing to the presence of benzene rings in their structures. Further, consistency in the DFT results suggested the outstanding binding capacity with the anthracene molecules with h-CDs/MCSB.
Collapse
Affiliation(s)
- Farzad Hashemzadeh
- Water and Wastewater Research Center, Water Research Institute, Tehran, Iran
| | - Maede Esmaeili Khoshmardan
- Department of Environmental Health Engineering, Faculty of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Daryoush Sanaei
- Department of Environmental Health Engineering, Faculty of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | | | - Hamidreza Sharifan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, Texas, USA
| | | | - Javier A Arcibar-Orozco
- Research Department, CIATEC A.C. Centro de Innovación Aplicada en Tecnologías Competitivas, León, Mexico
| | - Wasim Akram Shaikh
- Department of Basic Sciences, School of Science and Technology, The Neotia University, Sarisha, South 24 Parganas, West Bengal, India, 743368
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, Las Vegas, NV 89154-4015, USA
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), International Centre for Ecological Engineering, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal - 741235, India.
| |
Collapse
|
11
|
Marineau A, Karpukhina U, Agyemang R, Stewart KME. Effect of Ionic Strength and pH on the Sorption of Heavy Metals onto Polyaniline Copolymers in Aqueous Solutions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10623-10632. [PMID: 38356331 DOI: 10.1021/acsami.3c16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Polyaniline (PANI) and two copolymers, poly(aniline-co-o-toluidine) (PoTOL-50) and poly(aniline-co-o-anisidine) (PoANI-50) were synthesized with equal input ratios (1:1) to enhance PANI as sensing material for the sensing of various heavy metal analytes in aqueous solutions. The polymers were evaluated for both their sensitivity and selectivity toward four heavy metals (Ba2+, Cd2+, Cu2+, and Ni2+) and two common matrix interferents (Ca2+ and Mg2+) at 10 and 40 ppm. The effect of pH and ionic strength of the aqueous solutions on the sensitivity and selectivity was also evaluated. All three polymers showed high sensitivity and selectivity to Ba2+. Varying the pH and ionic strength of solutions did not show significant differences in either the selectivity or the sensitivity of the polymers.
Collapse
Affiliation(s)
- Angela Marineau
- Department of Chemistry, Trent University, 1600 W. Bank Dr, Peterborough, Ontario K9L0G2, Canada
| | - Uliana Karpukhina
- Department of Chemistry, Trent University, 1600 W. Bank Dr, Peterborough, Ontario K9L0G2, Canada
| | - Ruth Agyemang
- Department of Chemistry, Trent University, 1600 W. Bank Dr, Peterborough, Ontario K9L0G2, Canada
| | - Katherine M E Stewart
- Department of Chemistry, Trent University, 1600 W. Bank Dr, Peterborough, Ontario K9L0G2, Canada
| |
Collapse
|
12
|
Li D, Li Y, He S, Hu T, Li H, Wang J, Zhang Z, Zhang Y. Resourcization of Argillaceous Limestone with Mn 3O 4 Modification for Efficient Adsorption of Lead, Copper, and Nickel. TOXICS 2024; 12:72. [PMID: 38251027 PMCID: PMC10820775 DOI: 10.3390/toxics12010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Argillaceous limestone (AL) is comprised of carbonate minerals and clay minerals and is widely distributed throughout the Earth's crust. However, owing to its low surface area and poorly active sites, AL has been largely neglected. Herein, manganic manganous oxide (Mn3O4) was used to modify AL by an in-situ deposition strategy through manganese chloride and alkali stepwise treatment to improve the surface area of AL and enable its utilization as an efficient adsorbent for heavy metals removal. The surface area and cation exchange capacity (CEC) were enhanced from 3.49 to 24.5 m2/g and 5.87 to 31.5 cmoL(+)/kg with modification, respectively. The maximum adsorption capacities of lead (Pb2+), copper (Cu2+), and nickel (Ni2+) ions on Mn3O4-modified argillaceous limestone (Mn3O4-AL) in mono-metal systems were 148.73, 41.30, and 60.87 mg/g, respectively. In addition, the adsorption selectivity in multi-metal systems was Pb2+ > Cu2+ > Ni2+ in order. The adsorption process conforms to the pseudo-second-order model. In the multi-metal system, the adsorption reaches equilibrium at about 360 min. The adsorption mechanisms may involve ion exchange, precipitation, electrostatic interaction, and complexation by hydroxyl groups. These results demonstrate that Mn3O4 modification realized argillaceous limestone resourcization as an ideal adsorbent. Mn3O4-modified argillaceous limestone was promising for heavy metal-polluted water and soil treatment.
Collapse
Affiliation(s)
- Deyun Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Shuran He
- College of Resource and Environment, Yunnan Agricultural University, Kunming 650201, China;
| | - Tian Hu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Hanhao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Jinjin Wang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| |
Collapse
|
13
|
Asghar N, Hussain A, Nguyen DA, Ali S, Hussain I, Junejo A, Ali A. Advancement in nanomaterials for environmental pollutants remediation: a systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. J Nanobiotechnology 2024; 22:26. [PMID: 38200605 PMCID: PMC10777661 DOI: 10.1186/s12951-023-02151-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 01/12/2024] Open
Abstract
Environmental pollution is a major issue that requires effective solutions. Nanomaterials (NMs) have emerged as promising candidates for pollution remediation due to their unique properties. This review paper provides a systematic analysis of the potential of NMs for environmental pollution remediation compared to conventional techniques. It elaborates on several aspects, including conventional and advanced techniques for removing pollutants, classification of NMs (organic, inorganic, and composite base). The efficiency of NMs in remediation of pollutants depends on their dispersion and retention, with each type of NM having different advantages and disadvantages. Various synthesis pathways for NMs, including traditional synthesis (chemical and physical) and biological synthesis pathways, mechanisms of reaction for pollutants removal using NMs, such as adsorption, filtration, disinfection, photocatalysis, and oxidation, also are evaluated. Additionally, this review presents suggestions for future investigation strategies to improve the efficacy of NMs in environmental remediation. The research so far provides strong evidence that NMs could effectively remove contaminants and may be valuable assets for various industrial purposes. However, further research and development are necessary to fully realize this potential, such as exploring new synthesis pathways and improving the dispersion and retention of NMs in the environment. Furthermore, there is a need to compare the efficacy of different types of NMs for remediating specific pollutants. Overall, this review highlights the immense potential of NMs for mitigating environmental pollutants and calls for more research in this direction.
Collapse
Affiliation(s)
- Nosheen Asghar
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Alamdar Hussain
- Department of Botany, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
| | - Duc Anh Nguyen
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Salar Ali
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
| | - Ishtiaque Hussain
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
- Department of Environmental Science, Quaid-i-Azam University of Islamabad, Islamabad, 15320, Pakistan
| | - Aurangzeb Junejo
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Attarad Ali
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan.
- Directorate of Quality Enhancement Cell, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan.
| |
Collapse
|
14
|
Mahanty S, Sarkar A, Chaudhuri P, Krishna Darbha G. Mycosynthesized magnetic iron-oxide nanoparticles for the remediation of heavy metals – An insight into the mechanism of adsorption, process optimization using algorithmic approach and its application for the treatment of groundwater. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2023; 20:100854. [DOI: 10.1016/j.enmm.2023.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Mostafa AG, Gaith EA, Akl MA. Aminothiol supported dialdehyde cellulose for efficient and selective removal of Hg(II) from aquatic solutions. Sci Rep 2023; 13:19507. [PMID: 37945624 PMCID: PMC10636137 DOI: 10.1038/s41598-023-46082-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The increasingly serious problem of mercury pollution has caused wide concern, and exploring adsorbent materials with high adsorption capacity is a simple and effective approach to address this concern. In the recent study, dialdehyde cellulose (DAC), cyanoacetohydrazide (CAH), and carbon disulfide (CS2) are used as raw materials for the (DAC@CAH@SK2) preparation material through the three-steps method. By utilizing the following characterization techniques; thermogravimetric analysis (TGA), N2 adsorption-desorption isotherm (BET), elemental analysis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD), 1HNMR and Energy Dispersive X-ray Spectroscopy (EDS) of DAC@CAH@SK2 composite. The point of zero charge (pHPZC) for the prepared DAC@CAH@SK2 also was examined. From the batch experiments, the optimum conditions were found to be pH (5-8), an Hg2+ concentration of 150 mg/L, a DAC@CAH@SK2 dose of 0.01 g, and a contact time of 180 min with a maximum adsorption quantity of 139.6 mg/g. The process of Hg2+ adsorption on the DAC@CAH@SK2 material was spontaneous exothermic, monolayer chemisorption, and well-fitted to Langmuir and pseudo-2nd-order models. The DAC@CAH@SK2 selectivity towards the Hg2+ was examined by investigating the interfering metal ions effect. The DAC@CAH@SK2 was successfully applied for the Hg2+ removal from synthetic effluents and real wastewater samples with a recovery % exceeding 95%. The prepared DAC@CAH@SK2 was regenerated using a mixture of EDTA and thiourea. Also, FT-IR analysis indicates that the synergistic complexation of N and S atoms on DAC@CAH@SK2 with Hg(II) is an essential factor leading to the high adsorption capacity.
Collapse
Affiliation(s)
- Aya G Mostafa
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Eslam A Gaith
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Magda A Akl
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
16
|
Xue S, Miao Z, Gao M, Wan K. Structural analysis of lignite-derived humic acid and its microscopic interactions with heavy metal ions in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165385. [PMID: 37423290 DOI: 10.1016/j.scitotenv.2023.165385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Understanding heavy metal environmental behavior with humic acid (HA) is critical. There is currently a lack of information on the control of its structure organization on its reactivity to metals. The difference in HA structures under non-homogeneous conditions is critical for revealing its micro-interaction with heavy metals. The heterogeneity of HA was reduced using the fractionation method in this study, the chemical properties of HA fractions were analyzed using py-GC/MS, and the structural units of HA were proposed. Pb2+ was used as a probe to investigate the difference in the adsorption capacity of HA fractions. The microscopic interaction of structures with heavy metal was investigated and validated by structural units. The results show that as molecular weight increased, the oxygen content and the number of aliphatic chains decreased, but the opposite was true for aromatic and heterocyclic rings. The adsorption capacity for Pb2+ was as follows: HA-1 > HA-2 > HA-3. According to the linear analysis of the influencing factors of maximum adsorption capacity and possibility factors, the adsorption capacity was positively correlated with the contents of acid groups, carboxyl groups, phenolic hydroxyl groups, and the number of aliphatic chains. The phenolic hydroxyl group and the aliphatic-chain structure have the greatest impact. Therefore, structural differences and the number of active sites play an important role in adsorption. The binding energy of HA structural units to Pb2+ was calculated. It was found that the chain structure is easier to bind to heavy metals than aromatic rings, and the affinity of-COOH to Pb2+ is greater than that of -OH. These findings can help improve the adsorbent design.
Collapse
Affiliation(s)
- Shuwen Xue
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Zhenyong Miao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Mingqiang Gao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Keji Wan
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
17
|
Subsanguan T, Jungcharoen P, Khondee N, Buachan P, Abeyrathne BP, Nuengchamnong N, Pranudta A, Wannapaiboon S, Luepromchai E. Copper and chromium removal from industrial sludge by a biosurfactant-based washing agent and subsequent recovery by iron oxide nanoparticles. Sci Rep 2023; 13:18603. [PMID: 37903874 PMCID: PMC10616064 DOI: 10.1038/s41598-023-45729-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Industrial wastewater treatment generates sludge with high concentrations of metals and coagulants, which can cause environmental problems. This study developed a sequential sludge washing and metal recovery process for industrial sludge containing > 4500 mg/kg Cu and > 5000 mg/kg Cr. The washing agent was formulated by mixing glycolipid, lipopeptide, and phospholipid biosurfactants from Weissella cibaria PN3 and Brevibacterium casei NK8 with a chelating agent, ethylenediaminetetraacetic acid (EDTA). These biosurfactants contained various functional groups for capturing metals. The optimized formulation by the central composite design had low surface tension and contained relatively small micelles. Comparable Cu and Cr removal efficiencies of 37.8% and 38.4%, respectively, were obtained after washing the sludge by shaking with a sonication process at a 1:4 solid-to-liquid ratio. The zeta potential analysis indicated the bonding of metal ions on the surface of biosurfactant micelles. When 100 g/L iron oxide nanoparticles were applied to the washing agent without pH adjustment, 83% Cu and 100% Cr were recovered. In addition, X-ray diffraction and X-ray absorption spectroscopy of the nanoparticles showed the oxidation of nanoparticles, the reduction of Cr(V) to the less toxic Cr(III), and the absorption of Cu. The recovered metals could be further recycled, which will be beneficial for the circular economy.
Collapse
Affiliation(s)
- Tipsuda Subsanguan
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Nichakorn Khondee
- Department of Natural Resources and Environment, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
| | - Pantita Buachan
- International Program in Hazardous Substance and Environmental Management (IP-HSM), Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Buddhika Prabath Abeyrathne
- International Program in Hazardous Substance and Environmental Management (IP-HSM), Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nitra Nuengchamnong
- Science Laboratory Centre, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Antika Pranudta
- Synchrotron Light Research Institute, Nakhon Ratchasima, Thailand
| | | | - Ekawan Luepromchai
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
18
|
Wu D, Ma Z, Liu L, Zhao B, Hou H, Wang X, Yu S. Influence of humic acid on U(VI) elimination by ZIF-8: Synergistic chemical effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122279. [PMID: 37517640 DOI: 10.1016/j.envpol.2023.122279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
ZIF-8, a sort of zeolitic imidazolate frameworks (ZIFs), had showed superior adsorptive property of typical radionuclide U(VI), but it reminded uncertain how the performance of ZIF-8 would be affected by adding humic acid (HA). HA could significantly change the surface charge of ZIFs and the transport of U(VI) in natural settings, which affected the eradication of U(VI) in aquatic ecology. Thus the impact of HA for the U(VI) removal by ZIF-8 as well as its mechanism had been analyzed by batch experiments and spectral analyses. It was demonstrated that the addition of HA increased the maximum removal capacity towards U(VI) from 781.2 mg g-1 to 1398.5 mg g-1. Moreover, removal property in acidic solution was improved, and the influence of background ions on ZIF-8 was reduced. The detailed mechanism was further explored by microscopic spectral analysis. The zeta potential showed that HA enhanced the electronegativity of ZIF-8 thus enhancing the electrostatic interaction with positive ions. Moreover, FT-IR and XPS further indicated that HA enhanced the removal capacity by affecting the surface complexation phenomena and strong chemical interactions between U(VI) and ZIF-8. Also, investigations indicated that the incorporation of HA improved the removal efficiency for U(VI), which had far-reaching significance for the application of ZIF-8 in practical environment.
Collapse
Affiliation(s)
- Dedong Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Zixuan Ma
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Lijie Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Bing Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Hairui Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
19
|
Rafie N, Khodadadi M, Zamani M, Zarepour A, Zarrabi A. Magnetic silica nanoparticles adorned with a metal-organic framework; a novel nanosorbent for elimination of aqueous Pb ions contaminant. ENVIRONMENTAL RESEARCH 2023; 226:115694. [PMID: 36933638 DOI: 10.1016/j.envres.2023.115694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The annual growth of water pollution resulting from the uncontrolled entry of heavy metals, like Pb2+ ions, is one of the most critical global concerns due to its direct and indirect effects on human life. The absorption of this component by the body could affect the nervous system via oxidative stress production or disturbing cellular biological mechanism. So, it is important to find an effective method for purifying the existing waters. This study aims to fabricate and compare the effect of two new nano-adsorbents (Fe3O4@ZIF-8 and Fe3O4@SiO2@ZIF-8) on removing Pb2+ ions from the aqueous solution. Accordingly, iron oxide nanoparticles were synthesized via co-precipitation method at first and then coated with a silica shell through the sol-gel method. Both nanoparticles were coated with a layer of metal-organic framework (MOF), ZIF-8, and analyzed with different physicochemical tests. In the following parts, the Pb2+ ion removal capability of the nano-adsorbents was evaluated in the presence of different parameters, including nanosorbent concentrations, contact time, pH, and pollutant concentrations. Results confirmed preparation of nanoparticles with a mean size of about 110 ± 10 nm and 80 ± 10 nm for Fe3O4@ZIF-8 and Fe3O4@SiO2@ZIF-8, respectively. Both nanoparticles showed the highest amount of pollutants removal (near 90% for both nanoparticles) at pH = 6 within 15 min of contact in the presence of 100 ppm Pb2+ ions. Besides, in the case of real samples, with a concentration of about 150 ppm of Pb2+ ions, they showed maximum adsorption of about 93.61% and 99.2% for Fe3O4@ZIF-8 and Fe3O4@SiO2@ZIF-8, respectively. The presence of iron oxide nanoparticles in the structure of this adsorbent makes it easy to separate them in a user-friendly method. A brief comparison between these nanosorbents indicates that Fe3O4@SiO2@ZIF-8 nanoparticles have better performance due to their higher porosity and surface area ratio and so it could be used as a cost-effective ideal nanosorbent candidate for easy removal of heavy metals from water.
Collapse
Affiliation(s)
- Niloofar Rafie
- Department of Biotechnology, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Mohammad Khodadadi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | | | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, 34396, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, 34396, Istanbul, Turkey.
| |
Collapse
|
20
|
Hassen Y, Gedda G, Assen AH, Kabtamu DM, Girma WM. Dodonaea angustifolia Extract-Assisted Green Synthesis of the Cu 2O/Al 2O 3 Nanocomposite for Adsorption of Cd(II) from Water. ACS OMEGA 2023; 8:17209-17219. [PMID: 37214697 PMCID: PMC10193548 DOI: 10.1021/acsomega.3c01609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
The enhanced worldwide concern for the protection and safety of the environment has made the scientific community focus their devotion on novel and highly effective approaches to heavy metals such as cadmium (Cd) pollutant removal. In this research, Dodonaea angustifolia plant extract-mediated Al2O3 and Cu2O nanoparticle (NP) syntheses were accomplished using the coprecipitation method, and the Cu2O/Al2O3 nanocomposite was prepared by simple mixing of Cu2O and Al2O3 NPs for the removal of Cd(II) ions from aqueous solution. Therefore, an efficient green, economical, facile, and eco-friendly synthesis method was employed, which improved the aggregation of individual metal oxide NPs. The chemical and physical properties of the nanocomposite were examined by different characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) surface area analysis. Furthermore, the performances of the nanoadsorbents for the adsorptive eradication of Cd2+ ions from water were investigated. The influence of pH, contact time, initial Cd quantity, and nanocomposite amount on adsorption effectiveness was carefully studied. The adsorption rates of the Cu2O/Al2O3 nanocomposite were rapid, and adsorption equilibrium was attained within 60 min for 97.36% removal of Cd(II) from water. The adsorption isotherm data were best fitted by the pseudo-second-order kinetic and Langmuir isotherm models with the highest adsorption ability of 4.48 mg/g. Therefore, the synthesized Cu2O/Al2O3 nanocomposite could be a potential candidate for a highly efficient adsorbent for heavy metal ion removal from aqueous solutions.
Collapse
Affiliation(s)
- Yeshi
Endris Hassen
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie 1000, Ethiopia
| | - Gangaraju Gedda
- Department
of Chemistry, School of Engineering, Presidency
University, Bangalore 560064, Karnataka, India
| | - Ayalew H. Assen
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie 1000, Ethiopia
| | - Daniel Manaye Kabtamu
- Department
of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan 7260, Ethiopia
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wubshet Mekonnen Girma
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie 1000, Ethiopia
| |
Collapse
|
21
|
Sun Y, Pan Y, Zhang Z, Chen Z, Wang J, Wang B, Cheng Z, Ma W. Study on the role of AlOOH in fluorescence correction and depth purification of Cyclops water. CHEMOSPHERE 2023; 322:138190. [PMID: 36812996 DOI: 10.1016/j.chemosphere.2023.138190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Protein-like substances produced by biochemical reactions after disinfection of Zooplankton like Cyclops and humic substances in natural water are the main components of NOM (Natural organic matter). To eliminate early warning interference in the fluorescence detection of organic matter in natural water, a clustered flower-like AlOOH (aluminum oxide hydroxide) sorbent was prepared. HA (humic acid) and amino acids were selected as mimics of humic substances and protein-like substances in natural water. The results demonstrate that the adsorbent can selectively adsorb HA from the simulated mixed solution and restore the fluorescence properties of tryptophan and tyrosine. Based on these results, a stepwise fluorescence detection strategy was developed and used in natural water rich in zooplanktonic Cyclops. The results show that the established stepwise fluorescence strategy can well overcome the interference caused by fluorescence quenching. The sorbent was also used for water quality control to enhance coagulation treatment. Finally, trial runs of the water plant demonstrated its effectiveness and suggested a potential control method for early warning and monitoring of water quality.
Collapse
Affiliation(s)
- Yawen Sun
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuzhen Pan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhe Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhen Chen
- School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang, 110159, China
| | - Jiali Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Baodong Wang
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, China
| | - Zihong Cheng
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, China
| | - Wei Ma
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
22
|
Chandra D, Molla MTH, Bashar MA, Islam MS, Ahsan MS. Chitosan-based nano-sorbents: synthesis, surface modification, characterisation and application in Cd (II), Co (II), Cu (II) and Pb (II) ions removal from wastewater. Sci Rep 2023; 13:6050. [PMID: 37055426 PMCID: PMC10101992 DOI: 10.1038/s41598-023-32847-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
In contemplation of treating hazardous industrial wastewater, sodium tripolyphosphate (TPP) and vanillin (V)-modified chitosan-based magnetic nano-sorbents (TPP-CMN and V-CMN) were prepared, and the physical and surface properties of both nano-sorbents were characterised. The results of FE-SEM and XRD showed an average size of between 6.50 and 17.61 nm for Fe3O4 magnetic nanoparticles. The Physical Property Measurement System (PPMS) was carried out, and the saturation magnetisations for chitosan, Fe3O4 nanoparticles, TPP-CMN, and V-CMN were 0.153, 67.844, 7.211, and 7.772 emu.g-1, respectively. By using multi-point analysis, the BET surface areas of the synthesised TPP-CMN and V-CMN nano-sorbents were found to be 8.75 and 6.96 m2/g, respectively. The synthesised TPP-CMN and V-CMN were investigated as effective nano-sorbents to uptake Cd (II), Co (II), Cu (II), and Pb (II) ions, and the results were investigated by AAS. The adsorption process of heavy metals was investigated by the batch equilibrium technique, and the sorption capacity values of Cd (II), Co (II), Cu (II), and Pb (II) ions by TPP-CMN were 91.75, 93.00, 87.25, and 99.96 mg/g. By V-CMN, the values were 92.5, 94.00, 88.75, and 99.89 mg/g, respectively. The equilibrium times for adsorption were found to be 15 minutes for TPP-CMN and 30 minutes for V-CMN nano-sorbents. The adsorption isotherms, kinetics, and thermodynamics were studied to understand the adsorption mechanism. Furthermore, the adsorption of two synthetic dyes and two real wastewater samples was studied and obtained significant results. These nano-sorbents' simple synthesis, high sorption capability, excellent stability, and recyclability may provide highly efficient and cost-effective nano-sorbents for wastewater treatment.
Collapse
Affiliation(s)
- Dipesh Chandra
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Tamzid Hossain Molla
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abul Bashar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Suman Islam
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Shameem Ahsan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
23
|
Abdel Maksoud MIA, Murad GA, Zaher WF, Hassan HS. Adsorption and separation of Cs(I) and Ba(II) from aqueous solution using zinc ferrite-humic acid nanocomposite. Sci Rep 2023; 13:5856. [PMID: 37041256 PMCID: PMC10090073 DOI: 10.1038/s41598-023-32996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Reclaimable adsorbents have an essential role in removing radionuclides from waste streams. Herein, zinc ferrite-humic acid ZFO/HA nanocomposite was synthesized for effective cesium and barium adsorption. The prepared ZFO/HA nanocomposite was analyzed using analytical techniques including XRD, FTIR, EDX, and SEM. From kinetic studies, the mechanism adsorption process follows the second model. The isotherm studies clarified that the Langmuir model fit the adsorption of both ions onto the prepared sample, and the monolayer capacities are equal to 63.33 mg/g and 42.55 mg/g for Ba(II) and Cs(I), respectively. The temperature parameter was also studied, and the adsorption reaction was spontaneous and endothermic. The maximum separation between two ions was achieved at pH 5 (αCs/Ba = 3.3).
Collapse
Affiliation(s)
- M I A Abdel Maksoud
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - G A Murad
- Hot Laboratory Center, Egyptian Atomic Energy Authority (EAEA), P.O.13759, Cairo, Inshas, Egypt
| | - W F Zaher
- Hot Laboratory Center, Egyptian Atomic Energy Authority (EAEA), P.O.13759, Cairo, Inshas, Egypt
| | - H S Hassan
- Hot Laboratory Center, Egyptian Atomic Energy Authority (EAEA), P.O.13759, Cairo, Inshas, Egypt
| |
Collapse
|
24
|
Rafie SF, Abdollahi H, Sayahi H, Ardejani FD, Aghapoor K, Karimi Darvanjooghi MH, Kaur Brar S, Magdouli S. Genetic algorithm-assisted artificial neural network modelling for remediation and recovery of Pb (II) and Cr(VI) by manganese and cobalt spinel ferrite super nanoadsorbent. CHEMOSPHERE 2023; 321:138162. [PMID: 36804494 DOI: 10.1016/j.chemosphere.2023.138162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
MnFe2O4 and CoFe2O4 nanoparticles were hydrothermally synthesized to examine their capability in adsorption of Pb (II) and Cr (VI). The adsorbents exhibited a high rate of adsorption, reaching 90% of their adsorption capacity in less than 30 min. Furthermore, the adsorption capability of the Magnetic Nanoparticles (MNPs) was noticeably greater at initial pollutant concentrations smaller than 40 mg/L. Maximum adsorption capacity on MnFe2O4 and CoFe2O4 nanoparticles were 40 and 25.38 mg/g for Cr (VI) and 523.32 and 476.19 mg/g for Pb (II), respectively. A data-driven model of Artificial Neural Network was used for prediction of adsorption capacity at both equilibrium and non-equilibrium condition. The model parameters including the numbers of neuron (n = 7) and data portioning for training (49.5%), validation (40.5%), and testing (10%) were obtained using Genetic Algorithm. The results indicated that the model could predict the data with high accuracy (R2 = 0.998). The input parameters were initial concentration, time, pH, temperature, adsorbent dosage, and other parameters that is dependent to the physico-chemical properties of ions and adsorbents' surface (ε, α1, α2). The mechanism involved in Cr(VI) and Pb(II) adsorption are electrostatic physisorption and a combination of ion exchange chemisorption and electrostatic physisorption, respectively. Desorption capability and adsorbent reuse capability were also examined.
Collapse
Affiliation(s)
- Seyed Faridedin Rafie
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran
| | - Hadi Abdollahi
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran
| | - Hani Sayahi
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, 1496813151, Iran
| | - Faramarz Doulati Ardejani
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran
| | - Kioumars Aghapoor
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, 1496813151, Iran
| | | | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada.
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
25
|
Wan K, Wang G, Bo W, Xue S, Miao Z. A Sandwich Structure of Fulvic Acid and PMIDA-Modified LDHs for the Simultaneous Removal of Cu 2+ and Aniline in Multicomponent Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2537-2547. [PMID: 36758167 DOI: 10.1021/acs.langmuir.2c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The coexistence of organic and inorganic pollutants in industrial wastewater has emerged as a concerning environmental issue worldwide due to the critical levels of biological toxicity of these pollutants. In this context, the present study proposes a sandwich structure of fulvic acid and PMIDA-modified LDHs (FA/PMIDA-LDHs) for the simultaneous removal of Cu2+ and aniline from wastewater. The specific structure was synthesized using a combination of coprecipitation and impregnation methods. Abundant benzene rings and oxygen-containing functional groups greatly increased the number of sites for the adsorption of both Cu2+ and aniline. The maximum adsorption capacity of Cu2+ and aniline in solution with initial pH 5.0 at 25 °C could reach 221.24 and 132.28 mg/g, respectively. Cu2+ could be chelated by the functional groups in the FA/PMIDA-LDHs structure, and a coupled reduction-complexation mechanism was proposed for this process. The uptake of aniline on FA/PMIDA-LDHs was demonstrated to be a result of the combination of coordination forces, hydrophobic effects, π-π interactions, and hydrogen bonds. In a multicomponent solution, FA/PMIDA-LDHs exhibited excellent salt tolerance of up to 1000 mg/L of Na+ or Ca2+. The effects of Fe3+, Ni2+, Cl-, Cr2O72-, SO42-, and H2PO4- on the uptakes of Cu2+ and aniline were also investigated.
Collapse
Affiliation(s)
- Keji Wan
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Guoqiang Wang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Wenting Bo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Shuwen Xue
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Zhenyong Miao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
26
|
Feng Z, Zheng Y, Wang H, Feng C, Chen N, Wang S. Sodium humate based double network hydrogel for Cu and Pb removal. CHEMOSPHERE 2023; 313:137558. [PMID: 36526144 DOI: 10.1016/j.chemosphere.2022.137558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Sodium humate (SH) is one of the derivatives humic substances, which can be utilized for heavy metal removal from water due to its containing plenty of functional groups. In this study, a double network hydrogel SH/polyacrylamide (SH/PAM) was synthesized by a simple free-radical polymerization and used for Cu2+ and Pb2+ removal from water. The adsorption process can be well described by Langmuir-Freundlich model, indicating that both physical and chemical adsorption were involved. X-ray photoelectron spectroscopy (XPS) characterization demonstrated that complexation was the main mechanism for the adsorption. Two-dimensional correlation analysis of FTIR (2D-FTIR-COS) results showed that the variation order of functional groups during Cu2+ and Pb2+ adsorption in the following order: COOH ≈ -CO > -OH > C-O and -COOH ≈ C-O > -CO > -OH, respectively. According to the density functional theory (DFT) calculation results, the O atom of SH in the COO- was the main adsorption site. Meanwhile, the adsorption energy of Pb2+ was more negative than that of Cu2+ and the orbital hybridization between O atom of SH and Pb2+ was denser than that of Cu2+, which suggested that SH/PAM had a stronger combining capacity for Pb2+ than Cu2+. Therefore, the adsorption capacity for Pb2+ was larger than Cu2+. Moreover, the removal efficiencies are 30.2% for Al, 98.79% for Cu, 99.0% for Fe, 17.2% for Mn, 93.4% for Pb, and 62.4% for Zn in actual acid mine drainage using 6 g L-1 adsorbent. Collectively, this study not only provided a new adsorbent for heavy metal removal but also explicated the mechanism of heavy metal removal by SH from molecule and electron perspective, which is helpful for the application of SH in the environmental field.
Collapse
Affiliation(s)
- Zhengyuan Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Yuhan Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100084, PR China
| | - Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Shizhong Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| |
Collapse
|
27
|
Kicheeva AG, Sushko ES, Bondarenko LS, Kydralieva KA, Pankratov DA, Tropskaya NS, Dzeranov AA, Dzhardimalieva GI, Zarrelli M, Kudryasheva NS. Functionalized Magnetite Nanoparticles: Characterization, Bioeffects, and Role of Reactive Oxygen Species in Unicellular and Enzymatic Systems. Int J Mol Sci 2023; 24:ijms24021133. [PMID: 36674650 PMCID: PMC9861541 DOI: 10.3390/ijms24021133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
The current study evaluates the role of reactive oxygen species (ROS) in bioeffects of magnetite nanoparticles (MNPs), such as bare (Fe3O4), humic acids (Fe3O4-HA), and 3-aminopropyltriethoxysilane (Fe3O4-APTES) modified MNPs. Mössbauer spectroscopy was used to identify the local surrounding for Fe atom/ions and the depth of modification for MNPs. It was found that the Fe3O4-HA MNPs contain the smallest, whereas the Fe3O4-APTES MNPs contain the largest amount of Fe2+ ions. Bioluminescent cellular and enzymatic assays were applied to monitor the toxicity and anti-(pro-)oxidant activity of MNPs. The contents of ROS were determined by a chemiluminescence luminol assay evaluating the correlations with toxicity/anti-(pro-)oxidant coefficients. Toxic effects of modified MNPs were found at higher concentrations (>10−2 g/L); they were related to ROS storage in bacterial suspensions. MNPs stimulated ROS production by the bacteria in a wide concentration range (10−15−1 g/L). Under the conditions of model oxidative stress and higher concentrations of MNPs (>10−4 g/L), the bacterial bioassay revealed prooxidant activity of all three MNP types, with corresponding decay of ROS content. Bioluminescence enzymatic assay did not show any sensitivity to MNPs, with negligible change in ROS content. The results clearly indicate that cell-membrane processes are responsible for the bioeffects and bacterial ROS generation, confirming the ferroptosis phenomenon based on iron-initiated cell-membrane lipid peroxidation.
Collapse
Affiliation(s)
- Arina G. Kicheeva
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| | - Ekaterina S. Sushko
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
- Institute of Physics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| | - Lyubov S. Bondarenko
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Kamila A. Kydralieva
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Denis A. Pankratov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nataliya S. Tropskaya
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
- Sklifosovsky Research Institute for Emergency Medicine, 129010 Moscow, Russia
| | - Artur A. Dzeranov
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
- Sklifosovsky Research Institute for Emergency Medicine, 129010 Moscow, Russia
| | - Gulzhian I. Dzhardimalieva
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Mauro Zarrelli
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le Fermi, 1, 80055 Portici, Italy
| | - Nadezhda S. Kudryasheva
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Correspondence: ; Tel.: +7-3912-494-242
| |
Collapse
|
28
|
Mohanapriya V, Sakthivel R, Pham NDK, Cheng CK, Le HS, Dong TMH. Nanotechnology- A ray of hope for heavy metals removal. CHEMOSPHERE 2023; 311:136989. [PMID: 36309058 DOI: 10.1016/j.chemosphere.2022.136989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Environmental effects of heavy metal pollution are considered as a widespread problem throughout the world, as it jeopardizes human health and also reduces the sustainability of a cleaner environment. Removal of such noxious pollutants from wastewater is pivotal because it provides a propitious solution for a cleaner environment and water scarcity. Adsorption treatment plays a significant role in water remediation due to its potent treatment and low cost of adsorbents. In the last two decades, researchers have been highly focused on the modification of adsorption treatment by functionalized and surface-modified nanomaterials which has spurred intense research. The characteristics of nano adsorbents attract global scientists as it is also economically viable. This review shines its light on the functionalized nanomaterials application for heavy metals removal from wastewater and also highlights the importance of regeneration of nanomaterials in the view of visualizing the economic aspects along with a cleaner environment. The review also focused on the proper disposal of nanomaterials with crucial issues that persist in the adsorption process and also emphasize future research modification at a large-scale application in industries.
Collapse
Affiliation(s)
- V Mohanapriya
- Research scholar, Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India.
| | - R Sakthivel
- Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Nguyen Dang Khoa Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Minh Hao Dong
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
29
|
Organic-inorganic interface chemistry for sustainable materials. Z KRIST-CRYST MATER 2022. [DOI: 10.1515/zkri-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
This mini-review focuses on up-to-date advances of hybrid materials consisting of organic and inorganic components and their applications in different chemical processes. The purpose of forming such hybrids is mainly to functionalize and stabilize inorganic supports by attaching an organic linker to enhance their performance towards a target application. The interface chemistry is present with the emphasis on the sustainability of their components, chemical changes in substrates during synthesis, improvements of their physical and chemical properties, and, finally, their implementation. The latter is the main sectioning feature of this review, while we present the most prosperous applications ranging from catalysis, through water purification and energy storage. Emphasis was given to materials that can be classified as green to the best in our consideration. As the summary, the current situation on developing hybrid materials as well as directions towards sustainable future using organic-inorganic hybrids are presented.
Collapse
|
30
|
Sasidharan R, Kumar A. Response surface methodology for optimization of heavy metal removal by magnetic biosorbent made from anaerobic sludge. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Modification of the crosslinked hyperbranched polyamide-amines by thiourea and its selective adsorption for Cu (II). Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04433-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Shan X, Zhang L, Ye H, Shao J, Shi Y, Tan S, Su K, Zhang L, Cao C. Magnetic solid phase extraction of lead ion from water samples with humic acid modified magnetic nanoparticles prior to its fame atomic absorption spectrometric detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Foroutan R, Peighambardoust SJ, Mohammadi R, Peighambardoust SH, Ramavandi B. Cadmium ion removal from aqueous media using banana peel biochar/Fe 3O 4/ZIF-67. ENVIRONMENTAL RESEARCH 2022; 211:113020. [PMID: 35248568 DOI: 10.1016/j.envres.2022.113020] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
In the present study, banana peel waste was used as a suitable source for biochar production. The banana peel biochar (BPB) was modified using Fe3O4 magnetic and ZIF-67 nanoparticles. The modification of the BPB surface (4.70 m2/g) with Fe3O4 and Fe3O4/ZIF-67 significantly increased the specific surface of the nanocomposites (BPB/Fe3O4: 78.83 m2/g, and BPB/Fe3O4/ZIF-67: 1212.40 m2/g). The effect of pH, temperature, contact time, adsorbent dose, and concentration of Cd2+ on the efficiency of the Cd2+ adsorption was explored. Maximum adsorption efficiencies for BPB (97.76%), BPB/Fe3O4 (97.52%), and BPB/Fe3O4/ZIF-67 (99.14%) were obtained at pH 6, Cd2+ concentration of 10 mg/L, times of 80 min, 50 min, and 40 min, and adsorbent doses of 2 g/L, 1.5 g/L, and 1 g/L, respectively. Thermodynamic measurements indicated that the process is spontaneous and exothermic. The maximum capacity of Cd2+ adsorption using BPB, BPB/Fe3O4, and BPB/Fe3O4/ZIF-67 were obtained 20.63 mg/g, 30.33 mg/g, and 50.78 mg/g, respectively. The Cd2+ adsorption using magnetic nanocomposites followed the pseudo-first-order kinetic model. The results showed that studied adsorbents especially BPB/Fe3O4/ZIF-67 have a good ability to adsorb-desorb Cd2+ and clean an effluent containing pollutants.
Collapse
Affiliation(s)
- Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | | | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
34
|
Foroutan R, Jamaleddin Peighambardoust S, Amarzadeh M, Kiani Korri A, Sadat Peighambardoust N, Ahmad A, Ramavandi B. Nickel ions abatement from aqueous solutions and shipbuilding industry wastewater using ZIF-8-chicken beak hydroxyapatite. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Ghosh N, Das S, Biswas G, Haldar PK. Review on some metal oxide nanoparticles as effective adsorbent in wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:3370-3395. [PMID: 35771052 DOI: 10.2166/wst.2022.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water contamination has turned into one of the most serious issues in the world. Nanomaterials are proficient to carry away heavy metals, organic and inorganic dyes, pesticides, and small molecules from polluted water. In this regard, nanoparticles have gained much attention due to their extraordinary properties compared to bulk materials. Metal oxide nanoparticles and nanocomposites have several advantages such as elevated surface area, low concentration, easily separable after treatment and so on. Among many feasible techniques, the adsorption process is one of the most useful techniques for removing heavy ions and dyes from wastewater and has gained much attention from researchers. Several studies on metal oxide nanoparticles and their use in wastewater treatment have been published in the literature. This chapter gives an outline about five metal oxide based nanomaterials and nanocomposites as well as their applications in water pollution removal where the efficiency, limits and favourable circumstances are compared and explored. This article surely helps to gather information about some metal oxide nanoparticles and nanocomposites in wastewater treatment by the adsorption technique. In this review article, we primarily focused on five metal oxide nanoparticles and some of their recent applications published in the last two years.
Collapse
Affiliation(s)
- Nikita Ghosh
- Department of Physics, Cooch Behar Panchanan Barma University, Vivekananda Street, CoochBehar, WestBengal 736101, India E-mail:
| | - Susmita Das
- Department of Physics, Cooch Behar Panchanan Barma University, Vivekananda Street, CoochBehar, WestBengal 736101, India E-mail:
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Vivekananda Street, Cooch Behar, West Bengal 736101, India
| | - Prabir Kumar Haldar
- Department of Physics, Cooch Behar Panchanan Barma University, Vivekananda Street, CoochBehar, WestBengal 736101, India E-mail:
| |
Collapse
|
36
|
Moghazy MA. High‐Efficiency Adsorptive Removal of Phenol from Aqueous Solution Using Natural Red Clay and ZnO Nanoparticles. ChemistrySelect 2022. [DOI: 10.1002/slct.202104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marwa A. Moghazy
- Environmental Applications of Nanomaterials Lab. Department of Chemistry Faculty of Science Aswan University 81528 Assuan Egypt
| |
Collapse
|
37
|
Preparation and performance study of recyclable microsphere soil conditioner based on magnetic metal organic framework structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
39
|
Sasidharan R, Kumar A. Magnetic adsorbent developed with alkali-thermal pretreated biogas slurry solids for the removal of heavy metals: optimization, kinetic, and equilibrium study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30217-30232. [PMID: 35000179 DOI: 10.1007/s11356-021-18485-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Discharge of effluents containing heavy metal without adequate treatment causes contamination of water resources and creates environmental and health issues. Adsorption could be applied to remediate heavy metals from wastewater effectively. In this study, a low-cost adsorbent was prepared by magnetic modification of pretreated biogas slurry solids (BSS) to remove heavy metals such as Cu2+, Cd2+, and Pb2+. The temperature (423 K) and time (1.5 h) of pretreatment, the BSS to KOH ratio (1:10 w/v), and the ratio of magnetic iron nanoparticle (MIN) to pretreated BSS (PSS) (1:2 w/w) were optimized for the preparation of adsorbent. The magnetically modified pretreated biogas slurry solid (MMPSS) adsorbent was characterized by BET isotherm, FTIR, XRD, FESEM, VSM, and EDX analysis. MMPSS attained equilibrium at 60 min and showed an adsorption capacity of 26.84 mg/g, 24.79 mg/g, and 23.86 mg/g with removal percentages 89.46%, 82.63%, and 79.54% for Cu2+, Cd2+, and Pb2+, respectively, at 310 K and pH 6 with an initial concentration of 150 mg/L. The adsorption process followed a pseudo second-order model with an R2 value above 0.9 for all metals with a well-approaching equilibrium pattern. The good fit of experimental data by the Langmuir isotherm model implied monolayer adsorption. The metal ions adsorbed onto MMPSS were able to desorb effectively in the presence of HCl and retained 83.01%, 84.66%, and 81.83% of the initial adsorption capacity for Cu2+, Cd2+, and Pb2+ respectively after 5 consecutive cycles.
Collapse
Affiliation(s)
- Roshini Sasidharan
- Environmental Pollution Abatement Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela, India, 769008.
| | - Arvind Kumar
- Environmental Pollution Abatement Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela, India, 769008
| |
Collapse
|
40
|
New efficient poly(acrylic acid)-based bifunctional Cu2+ ions adsorbents. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Song H, Kumar A, Zhang Y. A novel approach for the removal of Pb 2+ and Cd 2+ from wastewater by sulfur-ferromagnetic nanoparticles (SFMNs). CHEMOSPHERE 2022; 287:132156. [PMID: 34826898 DOI: 10.1016/j.chemosphere.2021.132156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
In the recent decades, due to rapid increase in industrialization, urbanization, anthropogenic activity in the catchments, removal of heavy metals contaminants in wastewater has become global challenges. Numerous advance technologies have been introduced to deal with these problems but failed in reducing adequate pollution load in the contaminated water and/or wastewater. In this study, sulfur-ferromagnetic nanoparticles (SFMNs) were synthesized by modification of nano-Fe3O4, which can be rapidly separated from the environment by an external magnetic field after in situ repair. Its structure and physical properties were characterized by conventional techniques included Transmission electron microscope (TEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The ability of the SFMNs to remove Pb2+ and Cd2+ was studied at different temperatures and initial metal ions concentrations. The adsorption kinetics showed that the adsorption equilibrium time of Pb2+ and Cd2+ was 300 min consequently adsorption process of SFMNs fit well (R2 > 0.99) with pseudo-second-order model. The adsorption thermodynamics showed that the adsorption of Pb2+ and Cd2+ on SFMNs is spontaneous (negative value of ΔG0) endothermic process (positive value of ΔH0) and fit well (R2 > 0.98) with the Langmuir isothermal model. Density functional theory (DFT) calculations show that SFMNs can transfer electrons to Pb2+ and Cd2+, and the metal ions form stable chelates on the ligand surface. This study implies that newly synthesized sulfur-ferromagnetic nanoparticles could play an instrumental role in metal ions removal from water and wastewater.
Collapse
Affiliation(s)
- Hewei Song
- College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China
| | - Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yuling Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
42
|
Adsorption behaviors of Au(Ⅲ) onto humic acid extracted from gold ore: Adsorptive kinetics, isotherm and mechanism. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Zhang Y, Xia M, Wang F, Ma J. Experimental and theoretical study on the adsorption mechanism of Amino trimethylphosphate (ATMP) functionalized hydroxyapatite on Pb (II) and Cd (II). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Xue S, Fan J, Wan K, Wang G, Xiao Y, Bo W, Gao M, Miao Z. Calcium-Modified Fe 3O 4 Nanoparticles Encapsulated in Humic Acid for the Efficient Removal of Heavy Metals from Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10994-11007. [PMID: 34499835 DOI: 10.1021/acs.langmuir.1c01491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ca-modified Fe3O4 nanoparticles encapsulated in humic acid (HA-Ca/Fe3O4) were produced using a co-precipitation method. Furthermore, the adsorption performance of HA-Ca/Fe3O4 as well as the effect of coexisting ions and mechanisms were evaluated. A good description of the adsorption process was given using pseudo-second-order kinetic and Langmuir models. The adsorption capacities of HA-Ca/Fe3O4 for Pb2+, Cu2+, and Cd2+ were 208.33, 98.33, and 99.01 mg g-1, respectively. The 0.02-0.1 times concentrations in alkali and alkaline-earth metals promoted Pb2+ and Cd2+ adsorption; however, any concentration of alkali and alkaline-earth metals inhibited Cu2+-ion adsorption, probably owing to the differences in ionic radii between the interfering and heavy-metal ions. Pb2+, Cu2+, and Cd2+ removal using HA-Ca/Fe3O4 occurred via ion exchange, complexation of O-containing functional groups, mineral precipitation, and π-electron coordination. A method was proposed to calculate the contribution of these mechanisms to the adsorption process. In practice, HA-Ca/Fe3O4 can remove 99% Pb2+ and 91% Cu2+ and Cd2+ from real wastewater samples. Following five adsorption-desorption cycles, HA-Ca/Fe3O4 adsorption capacity did not change significantly. The aforementioned results indicated that HA-Ca/Fe3O4 presented a good potential in removing heavy metals in wastewater.
Collapse
Affiliation(s)
- Shuwen Xue
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Jinjin Fan
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Keji Wan
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Guoqiang Wang
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Yawen Xiao
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Wenting Bo
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Mingqiang Gao
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Zhenyong Miao
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
45
|
Ramos-Guivar JA, Flores-Cano DA, Caetano Passamani E. Differentiating Nanomaghemite and Nanomagnetite and Discussing Their Importance in Arsenic and Lead Removal from Contaminated Effluents: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2310. [PMID: 34578626 PMCID: PMC8471304 DOI: 10.3390/nano11092310] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Arsenic and lead heavy metals are polluting agents still present in water bodies, including surface (lake, river) and underground waters; consequently, the development of new adsorbents is necessary to uptake these metals with high efficiency, quick and clean removal procedures. Magnetic nanoparticles, prepared with iron-oxides, are excellent candidates to achieve this goal due to their ecofriendly features, high catalytic response, specific surface area, and pulling magnetic response that favors an easy removal. In particular, nanomagnetite and maghemite are often found as the core and primary materials regarding magnetic nanoadsorbents. However, these phases show interesting distinct physical properties (especially in their surface magnetic properties) but are not often studied regarding correlations between the surface properties and adsorption applications, for instance. Thus, in this review, we summarize the main characteristics of the co-precipitation and thermal decomposition methods used to prepare the nano-iron-oxides, being the co-precipitation method most promising for scaling up processes. We specifically highlight the main differences between both nano-oxide species based on conventional techniques, such as X-ray diffraction, zero and in-field Mössbauer spectroscopy, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism, the latter two techniques performed with synchrotron light. Therefore, we classify the most recent magnetic nanoadsorbents found in the literature for arsenic and lead removal, discussing in detail their advantages and limitations based on various physicochemical parameters, such as temperature, competitive and coexisting ion effects, i.e., considering the simultaneous adsorption removal (heavy metal-heavy metal competition and heavy metal-organic removal), initial concentration, magnetic adsorbent dose, adsorption mechanism based on pH and zeta potential, and real water adsorption experiments. We also discuss the regeneration/recycling properties, after-adsorption physicochemical properties, and the cost evaluation of these magnetic nanoadsorbents, which are important issues, but less discussed in the literature.
Collapse
Affiliation(s)
- Juan A. Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Perú;
| | - Diego A. Flores-Cano
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Perú;
| | | |
Collapse
|
46
|
In situ chemical synthesis and characterization of PAN/clay nanocomposite for potential removal of Pb+2 ions from aqueous media. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02674-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Khan S, Idrees M, Bilal M. Revealing and elucidating chemical speciation mechanisms for lead and nickel adsorption on zeolite in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126711] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Abstract
A novel method of improving the SO2 absorption performance of sodium citrate (Ci-Na) using sodium humate (HA–Na) as an additive was put forward. The influence of different Ci-Na concentration, inlet SO2 concentration and gas flow rate on desulfurization performance were studied. The synergistic mechanism of SO2 absorption by HA–Na and Ci-Na was also analyzed. The consequence shows that the efficiency of SO2 absorption by Ci-Na is above 90% and the desulfurization time added with the Ci-Na concentration rising from 0.01 to 0.1 mol/L. Both the desulfurization efficiency and time may increase with the adding of HA–Na quality in Ci-Na solution. Due to adding HA–Na, the desulfurization efficiency of Ci-Na increased from 90% to 99% and the desulfurization time increased from 40 to 55 min. Under the optimum conditions, the desulfurization time of Ci-Na can exceed 70 min because of adding HA–Na, which is nearly doubled. The growth of inlet SO2 concentration has little effect on the desulfurization efficiency. The SO2 adsorption efficiency decreases with the increase of inlet flow gas. The presence of O2 improves the SO2 removal efficiency and prolongs the desulfurization time. Therefore, HA–Na plays a key role during SO2 absorption and can dramatically enhance the SO2 adsorption performance of Ci-Na solution.
Collapse
|