1
|
El-Tokhy FS, Helal DO, Abdel Mageed SS, Mahmoud AMA, El-Gogary RI, El-Ghany EA, Abdel-Mottaleb MMA. Re-purposing of linagliptin for enhanced wound healing and skin rejuvenation via chitosan- modified PLGA nanoplatforms. Int J Pharm 2025; 677:125664. [PMID: 40324605 DOI: 10.1016/j.ijpharm.2025.125664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Dipeptidyl peptidase IV (DPP IV) is a multifunctional glycoprotein implicated in the exacerbation of various inflammatory skin conditions, including wounds. Therefore, topical delivery of Linagliptin (LNG)-a DPP IV inhibitor- augmented with Lavender Oil (LO) could offer an excellent repurposed tool for the treatment of inflammatory skin diseases. LNG/ LO loaded chitosan (Cs) -modified Poly (Lactide co-Glycolic Acid) (PLGA) nanoparticles (LNG/LO-Cs/PLGA NPs) were prepared by solvent emulsification-evaporation technique. D-optimal design explored the impact of independent factors namely; ratio of LO: PLGA, percentage of surfactant, and type of PLGA on; particle size, zeta potential, and entrapment efficiency of NPs. The optimized formulation displayed positively charged, homogeneous small-sized particles (159.34 nm), with high entrapment efficiency (89.30 %w/w). The in vitro release profile of the optimized NPs showed an initial burst release (16.6 %) after one hour, followed by an extended-release pattern for three days. Transmission electron microscopy showed spherical matrix particles with a slightly denser coat. An ex-vivo skin permeation study revealed notable LNG deposition in rat skin (51 % w/w after 24 h). Confocal laser scanning microscopy confirmed the time-dependent enhanced penetration of nanocarriers into the skin. In-vivo study done on induced-wound model revealed accelerated wound healing in NPs-treated group with 86.49 % wound contraction. Biochemical analysis of the impacted skin showed lower oxidative stress, with a 2.5-fold rise in reduced glutathione, a 3.2-fold boost in total antioxidant capacity, a 3.3-fold drop in malondialdehyde, and a 4.5-fold decrease in TNF-α levels versus the positive control. Therefore,This nanosystem could stand as a novel gateway and repurposed tool for accelerated wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Dina O Helal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicestershire, United Kingdom
| | - Sherif S Abdel Mageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Elsayed A El-Ghany
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Mona M A Abdel-Mottaleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France.
| |
Collapse
|
2
|
Li Y, Li H, Hu Z, Zhang Y, Ding X, Huang X, Hua Y, Sun L, Li Y, Zhao Z, He Y. Phosphatidylserine-decorated delivery platform helps alleviate acute lung injury via potentiating macrophage targeting. J Lipid Res 2025; 66:100799. [PMID: 40216334 DOI: 10.1016/j.jlr.2025.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 05/08/2025] Open
Abstract
Acute lung injury (ALI) is a life-threatening inflammatory disease with high morbidity and mortality. It is urgent to develop more effective therapeutic strategies against ALI. Phosphatidylserine (PtdSer) expressed on the surface of apoptotic cells not only allows for macrophage binding and recognition but also drives anti-inflammatory signaling within the macrophage. In this study, we designed an apoptotic cell-mimicry nanoparticle by decorating synthetic PtdSer on the outer face of nanoparticles. The results indicated that PtdSer-decorated poly(lactic-co-glycolic acid) nanoparticles (PSNPs) showed anti-inflammatory properties and increased macrophage phagocytosis in relative to the nondecorated poly(lactic-co-glycolic acid nanoparticles. Dexamethasone-loaded PSNPs exhibited superior anti-inflammatory activity on macrophages in vitro. In vivo studies also showed that PtdSer decoration increased the accumulation of nanoparticles in lung macrophages after pulmonary administration. Accumulation of dexamethasone-loaded PSNPs in lung macrophages effectively reduced inflammation in inflamed lungs and further alleviated ALI syndromes. In conclusion, PtdSer decoration not only endows the anti-inflammatory function to nanocarriers but also potentiates its macrophage targeting in the inflamed microenvironment, which offers an ideal drug delivery platform for ALI therapy.
Collapse
Affiliation(s)
- Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hu Li
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiwei Hu
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yayue Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuran Ding
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinjie Huang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yabing Hua
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Sun
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ye Li
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziming Zhao
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Yuan He
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
3
|
Sahar NU, Gul M, Choi HI, Ryu JS, Noh HY, Vo DK, Nguyen TH, Ansari MM, Kim W, Maeng HJ, Zeb A, Kim JK. Lipid core-chitosan shell hybrid nanoparticles for enhanced oral bioavailability of sorafenib. Int J Biol Macromol 2025; 299:140030. [PMID: 39848373 DOI: 10.1016/j.ijbiomac.2025.140030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Limited aqueous solubility is a major hurdle resulting in poor and variable oral bioavailability, high doses, side effects, and the suboptimal therapeutic efficacy of sorafenib (SRF). In this study, we developed SRF-loaded solid lipid nanoparticles (SRF-SLNs) and lipid core-chitosan shell hybrid nanoparticles (CS-SRF-SLNs) to improve the oral absorption of SRF. SRF-SLNs were prepared using a stearyl alcohol core stabilized with a surfactant mixture, followed by surface decoration with chitosan to form CS-SRF-SLNs. The developed SRF-SLNs and CS-SRF-SLNs displayed uniform and well-separated spherical particles with small particle size (112.2 and 124.6 nm), low PDI (0.114 and 0.148), adequate zeta potential (-18.6 and +21.2 mV) and high encapsulation efficiency (92.0 and 91 %). Thermal and crystallinity studies (DSC and PXRD) confirmed the successful incorporation of SRF into the lipid matrix and its conversion to the amorphous state. The CS-SRF-SLNs demonstrated sustained SRF release in simulated gastric and intestinal fluids with improved aqueous solubility. Following oral administration to rats, CS-SRF-SLNs significantly improved SRF bioavailability compared with SRF-SLNs and SRF dispersion. Collectively, CS-SRF-SLNs were found to be superior to SRF-SLNs owing to their better sustained-release profile and pharmacokinetic parameters, thereby demonstrating their usefulness for oral delivery by minimizing the solubility-related issues of SRF.
Collapse
Affiliation(s)
- Najam Us Sahar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Maleeha Gul
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Jeong-Su Ryu
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Ha-Yeon Noh
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Thu-Hang Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Muhammad Mohsin Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Wondong Kim
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea.
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea.
| |
Collapse
|
4
|
Mahadev M, Ballal S, Shetty A, Dubey A, Shetty SS, Hebbar S, El-Zahaby SA. Development and evaluation of chitosan-coated virgin coconut oil-asiatic acid-loaded nanoemulgel for enhanced wound management. Int J Biol Macromol 2025; 299:140097. [PMID: 39848368 DOI: 10.1016/j.ijbiomac.2025.140097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/01/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Wound management remains a significant challenge due to complications such as delayed healing and microbial infections, particularly in the conditions like diabetes mellitus, vascular disorders, and immunosuppression. This study aimed to develop a chitosan-coated virgin coconut oil-asiatic acid-loaded nanoemulsion gel (CS-ASA-NEG) to enhance wound healing outcomes. A central composite design (CCD) was employed using Design Expert 11 software to optimize the nanoemulsion formulation, with ternary phase diagrams (TPD) evaluating stable regions for Tween 20: Span 80 (T20:S80) ratios. The optimized 4:1 ratio yielded a nanoemulsion with a globule size of 131.80 ± 0.33 nm and an entrapment efficiency (EE%) of 94.86 ± 0.05 %. Stability studies confirmed the formulation's robustness at 5 °C and 25 °C for 28 days. The nanoemulgel was prepared using 1 % carbopol gel, with a pH of 5.50 ± 0.04 and viscosity of 16,481 ± 0.01 cP, making it suitable for topical use. Skin permeation and irritation studies indicated superior efficacy, with a maximum flux (Jmax) of 159.10 ± 0.08 μg/cm2/h, outperforming marketed gels. The formulation achieved a wound contraction rate of 99.86 ± 0.24 % by day 20, highlighting the synergistic benefits of asiatic acid, virgin coconut oil, and chitosan. CS-ASA-NEG offers a promising approach to improve wound healing.
Collapse
Affiliation(s)
- Manohar Mahadev
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, India
| | - Shruthi Ballal
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, India
| | - Amitha Shetty
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, India.
| | - Shilpa S Shetty
- Nitte (Deemed to be University), KS Hegde Medical Academy, (KSHEMA), Central Research Laboratory, Cellomics, Lipidomics and Molecular Genetics Division, Mangalore, India
| | - Srinivas Hebbar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, Pharm D Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| |
Collapse
|
5
|
Costa MP, Abdu JOC, Machado Resende Guedes MC, Sarcinelli MA, Fabri RL, Pittella F, Macedo GC, Vilela FMP, Rocha HVA, Tavares GD. Dexamethasone-loaded chitosan-decorated PLGA nanoparticles: A step forward in attenuating the COVID-19 cytokine storm? Colloids Surf B Biointerfaces 2025; 246:114359. [PMID: 39522287 DOI: 10.1016/j.colsurfb.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This study aims to develop and characterize poly (lactic-co-glycolic acid) (PLGA) nanoparticles decorated with chitosan (CS) for the encapsulation of dexamethasone (DEX) (NP-DEX-CS), targeting improved efficacy in the treatment of severe acute respiratory syndrome (SARS) associated with COVID-19. The nanoparticles were systematically characterized for size, zeta potential (ZP), morphology, encapsulation efficiency, and in vitro drug release. Incorporation of CS resulted in significant modifications in the nanoparticles' physical properties, notably an increase in size (from 207.3 ± 6.7 nm to 264.4 ± 4.4 nm) and a shift in ZP to positive values (from -11.8 ±1.4 mV to +30.0 ± 1,6 mV). The NP-DEX-CS formulation achieved a high encapsulation efficiency (∼79 %) and a drug loading capacity of 6.53 ± 0.02 %.In addition, the in vitro release rate of DEX from NP-DEX-CS was lower compared to undecorated nanoparticles, with a reduction from approximately 64-37 % within 24 h. Microscopy analyses revealed a smoother surface on the CS-decorated nanoparticles. FTIR and XRD analyses confirmed successful chitosan coating and DEX encapsulation. The CS coating enhanced the tolerability of J774.A1 cells to the nanoparticles, particularly evident at the highest concentration (400ug/mL), resulting in a cell viability ≥70 %. Importantly, the NP-DEX-CS significantly reduced levels of nitric oxide and inflammatory cytokines (IL-1, IL-6, IL-12, and TNF-α). These findings suggest that CS-decorated PLGA nanoparticles hold promise as an effective dexamethasone delivery system for treating SARS related to COVID-19.
Collapse
Affiliation(s)
- Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | | | - Maria Clara Machado Resende Guedes
- Postgraduate Program in Biological Sciences, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | | | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Gilson Costa Macedo
- Postgraduate Program in Biological Sciences, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Fernanda Maria Pinto Vilela
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | | | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Sharma S, Gauba P, Tyagi A, Dang S. Chitosan-modified polymeric nanoparticles for the nose-to-brain drug delivery of paroxetine: an in vitro and in vivo evaluation. NANOSCALE 2025; 17:1687-1702. [PMID: 39641172 DOI: 10.1039/d4nr04250f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This work focuses on the development of PLGA nanoparticles and their surface modification by chitosan to enhance the mucoadhesive properties and colloidal stability for intranasal delivery. Chitosan-coated paroxetine-loaded PLGA nanoparticles (PAR-CS-PLGA-NPs) were developed and characterized along with in vitro and in vivo evaluation. Particle size of 181.8 nm with a zeta potential of 36.3 mV was obtained. Entrapment efficiency % and drug loading % were 87.5% and 13.4%, respectively. TEM, FTIR, and DSC were also performed. In vitro drug release studies were conducted in phosphate buffered saline (pH 7.4) and simulated nasal fluid (pH 5.5), and sustained release was found until 72 h. Cellular assays on mammalian cells depicted the cell viability to be >60% even at the maximum concentration of PAR-CS-PLGA-NPs and showed significantly higher uptake than PLGA-NPs. Histopathological studies on the nasal epithelium showed no damage or inflammation when treated with PAR-CS-PLGA-NPs. In vivo studies were performed using Swiss albino mice to estimate the drug biodistribution after intranasal delivery of PAR-CS-PLGA-NPs. A significantly increased drug concentration was observed in the mouse brains (p < 0.05). Pharmacodynamics studies of the PAR-CS-PLGA-NPs were carried out by forced swimming test and locomotor activity test, demonstrating improved behavioral analysis parameters (p < 0.05). Thus, intranasal delivery of paroxetine-loaded mucoadhesive chitosan-coated PLGA nanoparticles could be potentially used for the treatment of depression.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India.
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India.
| | - Amit Tyagi
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India.
| |
Collapse
|
7
|
Sathiensathaporn S, Solé‐Porta A, Baowan D, Pissuwan D, Wongtrakoongate P, Roig A, Katewongsa KP. Nanoencapsulation of vitamin B 2 using chitosan-modified poly(lactic-co-glycolic acid) nanoparticles: Synthesis, characterization, and in vitro studies on simulated gastrointestinal stability and delivery. J Food Sci 2025; 90:e17631. [PMID: 39731719 PMCID: PMC11734382 DOI: 10.1111/1750-3841.17631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Abstract
Vitamin B2, or riboflavin, is essential for maintaining healthy cellular metabolism and function. However, its light sensitivity, poor water solubility, and gastrointestinal barriers limit its storage, delivery, and absorption. Selecting suitable nanomaterials for encapsulating vitamin B2 is crucial to overcoming these challenges. This study employed chitosan-coated poly(lactic-co-glycolic acid) nanoparticles (CS-PLGA NPs) as a novel delivery system to enhance the bioavailability of vitamin B2 for food fortification and nutraceutical applications. The nanoparticles, with sizes below 200 nm, exhibited greater stability than PLGA NPs after freeze-drying and in simulated body fluids. Encapsulation improved the photostability of vitamin B2 under ultraviolet light and prolonged its release in simulated body fluids compared to non-encapsulated vitamin B2. Furthermore, CS-PLGA NPs demonstrated higher uptake in intestinal epithelial cells (Caco-2), indicating enhanced transport and potential for use in fortified food systems. These findings underscore the promise of CS-PLGA NPs for delivering vitamin B2 in food, nutraceutical, and pharmaceutical applications. PRACTICAL APPLICATION: The use of chitosan-coated PLGA NPs for encapsulating vitamin B2 offers a promising solution to enhance its bioavailability, especially for individuals with gastrointestinal absorption issues. This formulation improves stability, controlled release, and cellular uptake, which can lead to more effective supplementation strategies in nutraceutical and pharmaceutical applications. It could benefit patients with vitamin B2 deficiencies, such as those with malabsorption disorders, by ensuring efficient delivery through the gastrointestinal tract. Additionally, this approach can be applied to other water-soluble vitamins or bioactive compounds, offering a versatile platform for improving the efficacy of oral supplements.
Collapse
Affiliation(s)
| | - Anna Solé‐Porta
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC), Campus UABBellaterraSpain
| | - Duangkamon Baowan
- Department of Mathematics, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Dakrong Pissuwan
- School of Materials Science and Innovation, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
- Center for Neuroscience, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC), Campus UABBellaterraSpain
| | - Kanlaya Prapainop Katewongsa
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
- School of Materials Science and Innovation, Faculty of ScienceMahidol UniversityBangkokThailand
| |
Collapse
|
8
|
Fang G, Hao P, Qiao R, Liu BX, Shi X, Wang Z, Sun P. Stimuli-responsive chitosan based nanoparticles in cancer therapy and diagnosis: A review. Int J Biol Macromol 2024; 283:137709. [PMID: 39549789 DOI: 10.1016/j.ijbiomac.2024.137709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Chitosan, obtained through deacetylation of chitin, has been shown to a promising biopolymer for the development of nano- and micro-particles. In spite of inherent anti-cancer activity of chitosan, the employment of this carbohydrate polymer for the synthesis of nanoparticles opens a new gate in disease therapy. The properties of chitosan including biocompatibility, biodegradability, and modifiability are vital in enhancing these nanoparticles, allowing for improved solubility and interaction with cellular targets. Among the pathological events, cancer has demonstrated an increase in incidence rate and therefore, the chitosan nanoparticles have been significantly utilized in cancer therapy. The present review emphasizes on the role of stimuli-responsive chitosan nanoparticles in the field of cancer therapy. The stimuli-responsive nanoparticles can release the cargo in the tumor site that not only improves the anti-cancer activity of chemotherapy drugs, but also diminishes their systemic toxicity. The stimuli-responsive chitosan nanoparticles can respond to endogenous and exogenous stimuli including pH, redox and light to release cargo. This improves the specificity towards tumor cells and enhances accumulation of drugs and/or drugs. The light-responsive chitosan nanoparticles can cause photothermal and photodynamic therapy in tumor ablation and provide theranostic feature that is cancer diagnosis and therapy simultaneously.
Collapse
Affiliation(s)
- Guotao Fang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Peng Hao
- Department of Joint Surgery, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing 400038, PR China
| | - Ruonan Qiao
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bi-Xia Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiujuan Shi
- School of Medicine, Tongji university, Shanghai 200092, China.
| | - Zhenfei Wang
- The Laboratory for Tumor Molecular Diagnosis, Peking University Cancer Hospital, Inner Mongolia Campus, Afliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010020, China.
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, China.
| |
Collapse
|
9
|
Mahanta AK, Chaulagain B, Trivedi R, Singh J. Mannose-Functionalized Chitosan-Coated PLGA Nanoparticles for Brain-Targeted Codelivery of CBD and BDNF for the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2024; 15:4021-4032. [PMID: 39377785 PMCID: PMC11870748 DOI: 10.1021/acschemneuro.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease causing cognitive and memory decline. AD is characterized by the deposition of amyloid-β and hypophosphorylated forms of tau protein. AD brains are found to be associated with neurodegeneration, oxidative stress, and inflammation. Cannabidiol (CBD) shows neuroprotective, antioxidant, and anti-inflammatory properties and simultaneously reduces amyloid-β production and tau hyperphosphorylation. The brain-derived neurotrophic factor (BDNF) plays a vital role in the development and maintenance of the plasticity of the central nervous system. A decline of BDNF levels in AD patients results in reduced plasticity and neuronal cell death. Current therapeutics against AD are limited to only symptomatic relief, necessitating a therapeutic strategy that reverses cognitive decline. In this scenario, combination therapy of CBD and BDNF could be a fruitful strategy for the treatment of AD. We designed mannose-conjugated chitosan-coated poly(d,l-lactide-co-glycolide (PLGA) (CHTMAN-PLGA) nanoparticles for the codelivery of CBD and BDNF to the brain. Chitosan is modified with mannose to specifically target the glucose transporter-1 (GLUT-1) receptor abundantly present in the blood-brain barrier for selectively delivering therapeutics to the brain. The CBD-encapsulated nanoparticles showed an average hydrodynamic diameter of 306 ± 8.12 nm and a zeta potential of 31.7 ± 1.53 mV. The coated nanoparticles prolonged encapsulated CBD release from the PLGA matrix. The coated nanoparticles exhibited sustained release of CBD for up to 22 days with 91.68 ± 2.91% release of the encapsulated drug. The coated nanoparticles, which had a high positive zeta potential (31.7 ± 1.53 mV), encapsulated the plasmid DNA. The qualitative transfection efficiency was investigated using CHTMAN-PLGA-CBD/pGFP in bEND.3, primary astrocytes, and primary neurons, while the quantitative transfection efficiency of the delivery system was determined using CHTMAN-PLGA-CBD/pBDNF. In vitro, the pBDNF transfection study revealed that the BDNF expression was 4-fold higher for CHTMAN-PLGA-CBD/pBDNF than for naked pBDNF in all of the cell lines. The cytotoxicity and hemocompatibility of the designed nanoparticles were tested in bEND.3 cells and red blood cells, respectively, and the nanoparticles were found to be nontoxic and hemocompatible. Hence, mannose-conjugated chitosan-coated PLGA nanoparticles could be useful as brain-targeting delivery vehicles for the codelivery of CBD and BDNF for possible AD treatment.
Collapse
Affiliation(s)
- Arun Kumar Mahanta
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Bivek Chaulagain
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Riddhi Trivedi
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| |
Collapse
|
10
|
Nijhawan HP, Prabhakar B, Yadav KS. Central composite design augmented quality-by-design-based systematic formulation of erlotinib hydrochloride-loaded chitosan-poly (lactic-co-glycolic acid) nanoparticles. Ther Deliv 2024; 15:427-447. [PMID: 38722230 PMCID: PMC11285313 DOI: 10.1080/20415990.2024.2342771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/21/2024] [Indexed: 06/19/2024] Open
Abstract
Aim: This study aimed to formulate erlotinib hydrochloride (ERT-HCL)-loaded chitosan (CS) and poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) using Quality-by-Design (QbD) to optimize critical quality attributes (CQAs). Materials & methods: Quality target product profile (QTPP) and CQAs were initially established. Based on L8-Taguchi screening and risk assessments, central composite design (CCD) design was used to optimize NPs. Results: ERT-HCL-loaded CS-PLGA NPs had a mean particle diameter, zeta potential and entrapment efficiency of 226.50 ± 1.62 d.nm, 27.66 ± 0.64 mV and 78.93 ± 1.94 %w/w, respectively. The NPs exhibited homogenous spherical morphology and sustained release for 72 h. Conclusion: Using systematic QbD approach, ERT-HCL was encapsulated in CS-PLGA NPs, optimizing CQAs. These findings propel future research for improved NSCLC treatment.
Collapse
Affiliation(s)
- Harsh P Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| |
Collapse
|
11
|
Nafee N, Gaber DM, Abouelfetouh A, Alseqely M, Empting M, Schneider M. Enzyme-Linked Lipid Nanocarriers for Coping Pseudomonal Pulmonary Infection. Would Nanocarriers Complement Biofilm Disruption or Pave Its Road? Int J Nanomedicine 2024; 19:3861-3890. [PMID: 38708178 PMCID: PMC11068056 DOI: 10.2147/ijn.s445955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/28/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.
Collapse
Affiliation(s)
- Noha Nafee
- Department of Pharmaceutics, College of Pharmacy, Kuwait University, Safat, 13110, Kuwait
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Dina M Gaber
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, 1029, Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alamein International University, Alamein, 5060335, Egypt
| | - Mustafa Alseqely
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Antiviral and Antivirulence Drugs (AVID), Saarland University, Saarbrücken, 66123, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|
12
|
Essa D, Kondiah PPD, Kumar P, Choonara YE. Design of Chitosan-Coated, Quercetin-Loaded PLGA Nanoparticles for Enhanced PSMA-Specific Activity on LnCap Prostate Cancer Cells. Biomedicines 2023; 11:biomedicines11041201. [PMID: 37189819 DOI: 10.3390/biomedicines11041201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Nanoparticles are designed to entrap drugs at a high concentration, escape clearance by the immune system, be selectively taken up by cancer cells, and release bioactives in a rate-modulated manner. In this study, quercetin-loaded PLGA nanoparticles were prepared and optimized to determine whether coating with chitosan would increase the cellular uptake of the nanoparticles and if the targeting ability of folic acid as a ligand can provide selective toxicity and enhanced uptake in model LnCap prostate cancer cells, which express high levels of the receptor prostate-specific membrane antigen (PSMA), compared to PC-3 cells, that have relatively low PSMA expression. A design of experiments approach was used to optimize the PLGA nanoparticles to have the maximum quercetin loading, optimal cationic charge, and folic acid coating. We examined the in vitro release of quercetin and comparative cytotoxicity and cellular uptake of the optimized PLGA nanoparticles and revealed that the targeted nano-system provided sustained, pH-dependent quercetin release, and higher cytotoxicity and cellular uptake, compared to the non-targeted nano-system on LnCap cells. There was no significant difference in the cytotoxicity or cellular uptake between the targeted and non-targeted nano-systems on PC-3 cells (featured by low levels of PSMA), pointing to a PSMA-specific mechanism of action of the targeted nano-system. The findings suggest that the nano-system can be used as an efficient nanocarrier for the targeted delivery and release of quercetin (and other similar chemotherapeutics) against prostate cancer cells.
Collapse
Affiliation(s)
- Divesha Essa
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
13
|
Anter HM, Aman RM, Othman DIA, Elamin KM, Hashim IIA, Meshali MM. Apocynin-loaded PLGA nanomedicine tailored with galactosylated chitosan intrigue asialoglycoprotein receptor in hepatic carcinoma: Prospective targeted therapy. Int J Pharm 2023; 631:122536. [PMID: 36572262 DOI: 10.1016/j.ijpharm.2022.122536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Nature serves as a priceless source for phytomedicines to treat different types of cancer, including hepatocellular carcinoma (HCC). Apocynin (APO), an anti-cancer phytomedicine, is a particular nicotinamide adenine dinucleotide phosphate-oxidase (NADPH-oxidase) inhibitor, which has recently dawned for its multilateral pharmacological activities. As far as we are aware, no investigation has been carried out yet to develop a targeted-nanostructured delivery system of APO to HCC. Consequently, chitosan derivative with galactose groups namely; galactosylated chitosan (GC), particularly recognized by the asialoglycoprotein receptor (ASGR), was synthesized and its chemical structure was thoroughly characterized by substantial techniques. Afterwards, GC-coated nanoplatform for hepatocyte attachment "APO-loaded galactosylated chitosan-coated poly(d,l-lactide-co-glycolide) nanoparticles (APO-loaded GC-coated PLGA NPs)" was developed. The prosperous APO-loaded GC-coated PLGA NPs would be comprehensively appraised through extensive investigations. Their solid state characterization using Fourier transform-infrared spectroscopy, powder X-ray diffraction, and differential scanning calorimetry proved APO's encapsulation in the polymeric matrix. Transmission electron microscopy imaging of the investigated NPs highlighted their spherical architecture with a nanosized range and a characteristic halo-like appearance traceable to the GC coating of the NPs' surface. Saliently, the results of in vitro cytotoxicity screening revealed the spectacular anti-cancer efficacy of APO-loaded GC-coated PLGA NPs formula against the HepG2 cell line. Moreover, the fluorescence microscope disclosed the distinguished cellular uptake of such formula via ASGPR mediated endocytosis. Inclusively, a multifunctional nano-phytomedicine delivery system with a promising active hepatocyte-targeting, effective uptake into HepG2 cells, and sustained drug release pattern was successfully developed.
Collapse
Affiliation(s)
- Hend Mohamed Anter
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt.
| | - Reham Mokhtar Aman
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| | - Dina Ibrahim Ali Othman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| | - Khaled M Elamin
- Global Center for Natural Resources Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| |
Collapse
|
14
|
Pavithra ME, Jayaraman R, Azarudeen RS, Thirumarimurugan M. Casting hydrophilic polymers blended polycaprolactone membranes for drug delivery to eradicate the cancer cells and pathogenic microorganisms. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - Raja S. Azarudeen
- Department of Chemical Engineering Coimbatore Institute of Technology Coimbatore India
- Department of Chemistry Coimbatore Institute of Technology Coimbatore India
| | | |
Collapse
|
15
|
Govindarasu M, Abirami P, Alharthi SS, Thiruvengadam M, Rajakumar G, Vaiyapuri M. Synthesis, physicochemical characterization, and in vitro evaluation of biodegradable PLGA nanoparticles entrapped to folic acid for targeted delivery of kaempferitrin. Biotechnol Appl Biochem 2022; 69:2387-2398. [PMID: 35020231 DOI: 10.1002/bab.2290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
Polymeric nanoparticles are widely studied in the treatment of colorectal cancer. Kaempferitrin-loaded nontoxic and biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) developed by the solvent emulsion evaporation method by improving its solubility and bioavailability. In order to improve the delivery of kaempferitrin (KM) to cancerous cells, folic acid (FA) combined kaempfertrin PLGA NPs were prepared. The goal of the study was whether PLGA NPs with surface KM and FA could help to prevent colorectal cancer. The synthesis of KM with FA in a nanomedicine could be crucial in the development of colon cancer chemotherapeutics. The physicochemical characteristics of synthesized KM-entrapped PLGA NPs were investigated by XRD, FTIR, zeta potential, and TEM. The KM + FA + PLGA NPs showed particle size with 132.9 ± 1.4 nm, zeta potential -15.0 ± 1.73 mV, encapsulation efficiency 67.92 ± 4.8, and drug-loading capacity 0.463 ± 0.173. In vitro cytotoxicity study on HT-29 cell lines using the MTT assay, the apoptotic study revealed that KM + FA + PLGA NPs have an enhanced cytotoxic effect compared to the KM + PLGA NPs drug solution. These findings suggested that KM + FA + PLGA NPs could be an effective chemotherapeutic drug delivery system in colon adenocarcinoma HT-29 cells.
Collapse
Affiliation(s)
- Mydhili Govindarasu
- Molecular Oncology Lab, Department of Biochemistry, Periyar University, Salem, 636011, India
| | - Pari Abirami
- Department of Botany, Seethalakshmi Achi College for Women, Pallathur, Sivagangai, 630107, India
| | - Salman S Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 110999, Taif, 21944, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Govindasamy Rajakumar
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Manju Vaiyapuri
- Molecular Oncology Lab, Department of Biochemistry, Periyar University, Salem, 636011, India
| |
Collapse
|
16
|
Elkomy MH, Ali AA, Eid HM. Chitosan on the surface of nanoparticles for enhanced drug delivery: A comprehensive review. J Control Release 2022; 351:923-940. [DOI: 10.1016/j.jconrel.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/26/2022]
|
17
|
Abesekara MS, Chau Y. Recent advances in surface modification of micro- and nano-scale biomaterials with biological membranes and biomolecules. Front Bioeng Biotechnol 2022; 10:972790. [PMID: 36312538 PMCID: PMC9597319 DOI: 10.3389/fbioe.2022.972790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Surface modification of biomaterial can improve its biocompatibility and add new biofunctions, such as targeting specific tissues, communication with cells, and modulation of intracellular trafficking. Here, we summarize the use of various natural materials, namely, cell membrane, exosomes, proteins, peptides, lipids, fatty acids, and polysaccharides as coating materials on micron- and nano-sized particles and droplets with the functions imparted by coating with different materials. We discuss the applicability, operational parameters, and limitation of different coating techniques, from the more conventional approaches such as extrusion and sonication to the latest innovation seen on the microfluidics platform. Methods commonly used in the field to examine the coating, including its composition, physical dimension, stability, fluidity, permeability, and biological functions, are reviewed.
Collapse
|
18
|
Caprifico AE, Foot PJS, Polycarpou E, Calabrese G. Advances in Chitosan-Based CRISPR/Cas9 Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14091840. [PMID: 36145588 PMCID: PMC9505239 DOI: 10.3390/pharmaceutics14091840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) and the associated Cas endonuclease (Cas9) is a cutting-edge genome-editing technology that specifically targets DNA sequences by using short RNA molecules, helping the endonuclease Cas9 in the repairing of genes responsible for genetic diseases. However, the main issue regarding the application of this technique is the development of an efficient CRISPR/Cas9 delivery system. The consensus relies on the use of non-viral delivery systems represented by nanoparticles (NPs). Chitosan is a safe biopolymer widely used in the generation of NPs for several biomedical applications, especially gene delivery. Indeed, it shows several advantages in the context of gene delivery systems, for instance, the presence of positively charged amino groups on its backbone can establish electrostatic interactions with the negatively charged nucleic acid forming stable nanocomplexes. However, its main limitations include poor solubility in physiological pH and limited buffering ability, which can be overcome by functionalising its chemical structure. This review offers a critical analysis of the different approaches for the generation of chitosan-based CRISPR/Cas9 delivery systems and suggestions for future developments.
Collapse
|
19
|
Chitosan/PLGA shell nanoparticles as Tylotoin delivery platform for advanced wound healing. Int J Biol Macromol 2022; 220:395-405. [DOI: 10.1016/j.ijbiomac.2022.07.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022]
|
20
|
Hybrid PEGylated chitosan/PLGA nanoparticles designed as pH-responsive vehicles to promote intracellular drug delivery and cancer chemotherapy. Int J Biol Macromol 2022; 210:565-578. [PMID: 35513093 DOI: 10.1016/j.ijbiomac.2022.04.209] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022]
Abstract
To achieve effective intracellular anticancer drug release for boosted antitumor efficacy, the acidity-responsive nanovehicles for doxorubicin (DOX) delivery were fabricated by tailor-made co-assembly of amphiphilic PEGylated chitosan20k and hydrophobic poly(lactic-co-glycolic acid) (PLGA) segments at pH 8.5. The attained DOX-loaded PEGylated chitosan20k/PLGA nanoparticles (DOX-PC20kPNs) were characterized to have a spherical shape composed of drug-encapsulated chitosan20k/PLGA-constituted solid core surrounded by hydrophilic PEG shells. Compared to non-pH-sensitive DOX-loaded PLGA nanoparticles (DOX-PNs), the DOX-PC20kPNs displayed outstanding colloidal stability under serum-containing condition and tended to swell in weak acidic milieu upon increased protonation of chitosan20k within hybrid cores, thus accelerating drug release. The in vitro cellular uptake and cytotoxicity studies revealed that the DOX-PC20kPNs after being endocytosed by prostate TRAMP-C1 cancer cells rapidly liberated drug, thus promoting drug accumulation in nuclei to enhance anticancer potency. Moreover, the hydrated PEG shells of DOX-PC20kPNs remarkably reduced their uptake by macrophage-like RAW264.7 cells. Importantly, in vivo animal findings showed that the DOX-PC20kPNs exhibited the capability of inhibiting TRAMP-C1 tumor growth superior to free hydrophobic DOX molecules and DOX-PNs, demonstrating the great potential in cancer chemotherapy.
Collapse
|
21
|
Bioactive Luteolin Entrapped Chitosan-PLGA Nanoparticles: Formulation Optimization to In-Vivo Preclinical Evaluation. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02232-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Alshememry A, Kalam MA, Almoghrabi A, Alzahrani A, Shahid M, Khan AA, Haque A, Ali R, Alkholief M, Binkhathlan Z, Alshamsan A. Chitosan-coated poly (lactic-co-glycolide) nanoparticles for dual delivery of doxorubicin and naringin against MCF-7 cells. J Drug Deliv Sci Technol 2022; 68:103036. [DOI: 10.1016/j.jddst.2021.103036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Durán-Lobato M, Álvarez-Fuentes J, Fernández-Arévalo M, Martín-Banderas L. Receptor-targeted nanoparticles modulate cannabinoid anticancer activity through delayed cell internalization. Sci Rep 2022; 12:1297. [PMID: 35079042 PMCID: PMC8789857 DOI: 10.1038/s41598-022-05301-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Δ9-tetrahydrocannabinol (Δ9-THC) is known for its antitumor activity and palliative effects. However, its unfavorable physicochemical and biopharmaceutical properties, including low bioavailability, psychotropic side effects and resistance mechanisms associated to dosing make mandatory the development of successful drug delivery systems. In this work, transferring (Tf) surface-modified Δ9-THC-loaded poly(lactide-co-glycolic) nanoparticles (Tf-THC-PLGA NPs) were proposed and evaluated as novel THC-based anticancer therapy. Furthermore, in order to assess the interaction of both the nanocarrier and the loaded drug with cancer cells, a double-fluorescent strategy was applied, including the chemical conjugation of a dye to the nanoparticle polymer along with the encapsulation of either a lipophilic or a hydrophilic dye. Tf-THC PLGA NPs exerted a cell viability decreased down to 17% vs. 88% of plain nanoparticles, while their internalization was significantly slower than plain nanoparticles. Uptake studies in the presence of inhibitors indicated that the nanoparticles were internalized through cholesterol-associated and clathrin-mediated mechanisms. Overall, Tf-modification of PLGA NPs showed to be a highly promising approach for Δ9-THC-based antitumor therapies, potentially maximizing the amount of drug released in a sustained manner at the surface of cells bearing cannabinoid receptors.
Collapse
Affiliation(s)
- Matilde Durán-Lobato
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain.
| | - Josefa Álvarez-Fuentes
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| | - Mercedes Fernández-Arévalo
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| | - Lucía Martín-Banderas
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| |
Collapse
|
24
|
El-Hammadi MM, Arias JL. Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:354. [PMID: 35159698 PMCID: PMC8840194 DOI: 10.3390/nano12030354] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Therapeutics are habitually characterized by short plasma half-lives and little affinity for targeted cells. To overcome these challenges, nanoparticulate systems have entered into the disease arena. Poly(d,l-lactide-co-glycolide) (PLGA) is one of the most relevant biocompatible materials to construct drug nanocarriers. Understanding the physical chemistry of this copolymer and current knowledge of its biological fate will help in engineering efficient PLGA-based nanomedicines. Surface modification of the nanoparticle structure has been proposed as a required functionalization to optimize the performance in biological systems and to localize the PLGA colloid into the site of action. In this review, a background is provided on the properties and biodegradation of the copolymer. Methods to formulate PLGA nanoparticles, as well as their in vitro performance and in vivo fate, are briefly discussed. In addition, a special focus is placed on the analysis of current research in the use of surface modification strategies to engineer PLGA nanoparticles, i.e., PEGylation and the use of PEG alternatives, surfactants and lipids to improve in vitro and in vivo stability and to create hydrophilic shells or stealth protection for the nanoparticle. Finally, an update on the use of ligands to decorate the surface of PLGA nanomedicines is included in the review.
Collapse
Affiliation(s)
- Mazen M. El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, 18071 Granada, Spain
| |
Collapse
|
25
|
Almarghalani DA, Boddu SHS, Ali M, Kondaka A, Ta D, Shah RA, Shah ZA. Small interfering RNAs based therapies for intracerebral hemorrhage: challenges and progress in drug delivery systems. Neural Regen Res 2022; 17:1717-1725. [PMID: 35017419 PMCID: PMC8820693 DOI: 10.4103/1673-5374.332129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke associated with higher rates of mortality. Currently, no effective drug treatment is available for ICH. The molecular pathways following ICH are complicated and diverse. Nucleic acid therapeutics such as gene knockdown by small interfering RNAs (siRNAs) have been developed in recent years to modulate ICH’s destructive pathways and mitigate its outcomes. However, siRNAs delivery to the central nervous system is challenging and faces many roadblocks. Existing barriers to systemic delivery of siRNA limit the use of naked siRNA; therefore, siRNA-vectors developed to protect and deliver these therapies into the specific-target areas of the brain, or cell types seem quite promising. Efficient delivery of siRNA via nanoparticles emerged as a viable and effective alternative therapeutic tool for central nervous system-related diseases. This review discusses the obstacles to siRNA delivery, including the advantages and disadvantages of viral and nonviral vectors. Additionally, we provide a comprehensive overview of recent progress in nanotherapeutics areas, primarily focusing on the delivery system of siRNA for ICH treatment.
Collapse
Affiliation(s)
- Daniyah A Almarghalani
- Department of Pharmacology and Experimental Therapeutics; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Mohammad Ali
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Akhila Kondaka
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Devin Ta
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Rayyan A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
26
|
Yang F, Cabe M, Nowak HA, Langert KA. Chitosan/poly(lactic-co-glycolic)acid Nanoparticle Formulations with Finely-Tuned Size Distributions for Enhanced Mucoadhesion. Pharmaceutics 2022; 14:95. [PMID: 35056991 PMCID: PMC8778482 DOI: 10.3390/pharmaceutics14010095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Non-parenteral drug delivery systems using biomaterials have advantages over traditional parenteral strategies. For ocular and intranasal delivery, nanoparticulate systems must bind to and permeate through mucosal epithelium and other biological barriers. The incorporation of mucoadhesive and permeation-enhancing biomaterials such as chitosan facilitate this, but tend to increase the size and polydispersity of the nanoparticles, making practical optimization and implementation of mucoadhesive nanoparticle formulations a challenge. In this study, we adjusted key poly(lactic-co-glycolic) acid (PLGA) nanoparticle formulation parameters including the organic solvent and co-solvent, the concentration of polymer in the organic phase, the composition of the aqueous phase, the sonication amplitude, and the inclusion of chitosan in the aqueous phase. By doing so, we prepared four statistically unique size groups of PLGA NPs and equally-sized chitosan-PLGA NP counterparts. We loaded simvastatin, a candidate for novel ocular and intranasal delivery systems, into the nanoparticles to investigate the effects of size and surface modification on drug loading and release, and we quantified size- and surface-dependent changes in mucoadhesion in vitro. These methods and findings will contribute to the advancement of mucoadhesive nanoformulations for ocular and nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Feipeng Yang
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Maleen Cabe
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Hope A Nowak
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Kelly A Langert
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| |
Collapse
|
27
|
Parodi A, Buzaeva P, Nigovora D, Baldin A, Kostyushev D, Chulanov V, Savvateeva LV, Zamyatnin AA. Nanomedicine for increasing the oral bioavailability of cancer treatments. J Nanobiotechnology 2021; 19:354. [PMID: 34717658 PMCID: PMC8557561 DOI: 10.1186/s12951-021-01100-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/21/2021] [Indexed: 12/28/2022] Open
Abstract
Abstract Oral administration is an appealing route of delivering cancer treatments. However, the gastrointestinal tract is characterized by specific and efficient physical, chemical, and biological barriers that decrease the bioavailability of medications, including chemotherapeutics. In recent decades, the fields of material science and nanomedicine have generated several delivery platforms with high potential for overcoming multiple barriers associated to oral administration. This review describes the properties of several nanodelivery systems that improve the bioavailability of orally administered therapeutics, highlighting their advantages and disadvantages in generating successful anticancer oral nanomedicines. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia. .,Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.
| | - Polina Buzaeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Daria Nigovora
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Alexey Baldin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitry Kostyushev
- Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.,National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994, Moscow, Russia
| | - Vladimir Chulanov
- Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.,National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994, Moscow, Russia.,Department of Infectious Diseases, Sechenov University, 119991, Moscow, Russia
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia. .,Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia. .,Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7X, UK.
| |
Collapse
|
28
|
Pargoo EM, Aghasadeghi MR, Parivar K, Nikbin M, Rahimi P, Ardestani MS. Lamivudine-conjugated and efavirenz-loaded G2 dendrimers: Novel anti-retroviral nano drug delivery systems. IET Nanobiotechnol 2021; 15:627-637. [PMID: 34695297 PMCID: PMC8675833 DOI: 10.1049/nbt2.12060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Infection with human immunodeficiency virus (HIV)‐1 causes immunological disorders and death worldwide which needs to be further assisted by novel anti‐retroviral drug delivery systems. Consequently, finding newer anti‐retroviral pharmaceuticals by using biocompatible, biodegradable nanomaterials comprising a nanoparticle as core and a therapeutic agent is of high global interest. In this experiment, a second generation of a negatively charged nano‐biopolymer linear globular G2 dendrimer was carefully conjugated and loaded with well‐known anti‐HIV drugs lamivudine and efavirenz, respectively. They were characterised by a variety of analytical methods such as Zetasizer, Fourier‐transform infrared spectroscopy, elemental analysis and liquid chromatography‐mass spectroscopy. Additionally, conjugated lamivudine and loaded efazirenz with globular PEGylated G2 dendrimer were tested on an HEK293 T cell infected by single‐cycle replicable HIV‐1 virion and evaluated using XTT test and HIV‐1 P24 protein load. The results showed that lamivudine‐conjugated G2 significantly decreased retroviral activity without any cell toxicity. This effect was more or less observed by efavirenz‐loaded G2. These nano‐constructs are strongly suggested for further in vivo anti‐HIV assays.
Collapse
Affiliation(s)
| | | | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehri Nikbin
- Middle East Liver Diseases (MELD) Center, Tehran, Iran
| | - Pooneh Rahimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
29
|
Dandamudi M, McLoughlin P, Behl G, Rani S, Coffey L, Chauhan A, Kent D, Fitzhenry L. Chitosan-Coated PLGA Nanoparticles Encapsulating Triamcinolone Acetonide as a Potential Candidate for Sustained Ocular Drug Delivery. Pharmaceutics 2021; 13:1590. [PMID: 34683883 PMCID: PMC8541202 DOI: 10.3390/pharmaceutics13101590] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
The current treatment for the acquired retinal vasculopathies involves lifelong repeated intravitreal injections of either anti-vascular endothelial growth factor (VEGF) therapy or modulation of inflammation with steroids. Consequently, any treatment modification that decreases this treatment burden for patients and doctors alike would be a welcome intervention. To that end, this research aims to develop a topically applied nanoparticulate system encapsulating a corticosteroid for extended drug release. Poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) supports the controlled release of the encapsulated drug, while surface modification of these NPs with chitosan might prolong the mucoadhesion ability leading to improved bioavailability of the drug. Triamcinolone acetonide (TA)-loaded chitosan-coated PLGA NPs were fabricated using the oil-in-water emulsion technique. The optimized surface-modified NPs obtained using Box-Behnken response surface statistical design were reproducible with a particle diameter of 334 ± 67.95 to 386 ± 15.14 nm and PDI between 0.09 and 0.15. These NPs encapsulated 55-57% of TA and displayed a controlled release of the drug reaching a plateau in 27 h. Fourier-transform infrared spectroscopic (FTIR) analysis demonstrated characteristic peaks for chitosan (C-H, CONH2 and C-O at 2935, 1631 and 1087 cm-1, respectively) in chitosan-coated PLGA NPs. This result data, coupled with positive zeta potential values (ranged between +26 and +33 mV), suggests the successful coating of chitosan onto PLGA NPs. Upon coating of the NPs, the thermal stability of the drug, polymer, surfactant and PLGA NPs have been enhanced. The characteristics of the surface-modified NPs supports their use as potential candidates for topical ocular drug delivery for acquired retinal vasculopathies.
Collapse
Affiliation(s)
- Madhuri Dandamudi
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (P.M.); (G.B.); (S.R.); (L.C.); (L.F.)
| | - Peter McLoughlin
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (P.M.); (G.B.); (S.R.); (L.C.); (L.F.)
| | - Gautam Behl
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (P.M.); (G.B.); (S.R.); (L.C.); (L.F.)
| | - Sweta Rani
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (P.M.); (G.B.); (S.R.); (L.C.); (L.F.)
| | - Lee Coffey
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (P.M.); (G.B.); (S.R.); (L.C.); (L.F.)
| | - Anuj Chauhan
- Department of Chemical and Biological Engineering, Colorado School of Mines, Colorado, CO 80401, USA;
| | - David Kent
- The Vision Clinic, R95 XC98 Kilkenny, Ireland;
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (P.M.); (G.B.); (S.R.); (L.C.); (L.F.)
| |
Collapse
|
30
|
Azzazy HMES, Fahmy SA, Mahdy NK, Meselhy MR, Bakowsky U. Chitosan-Coated PLGA Nanoparticles Loaded with Peganum harmala Alkaloids with Promising Antibacterial and Wound Healing Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2438. [PMID: 34578755 PMCID: PMC8464825 DOI: 10.3390/nano11092438] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Wound healing is a major healthcare concern, and complicated wounds may lead to severe outcomes such as septicemia and amputations. To date, management choices are limited, which warrants the search for new potent wound healing agents. Natural products loaded in poly (lactic-co-glycolic acid) (PLGA) coated with chitosan (CS) constitute a promising antibacterial wound healing formulation. In this work, harmala alkaloid-rich fraction (HARF) loaded into PLGA nanoparticles coated with chitosan (H/CS/PLGA NPs) were designed using the emulsion-solvent evaporation method. Optimization of the formulation variables (HARF: PLGA and CS: PLGA weight ratios, sonication time) was performed using the 33 Box-Behnken design (BBD). The optimal NPs were characterized using transmission electron microscopy (TEM) and Attenuated Total Reflection Fourier-Transformed Infrared Spectroscopy (ATR-FTIR). The prepared NPs had an average particle size of 202.27 ± 2.44 nm, a PDI of 0.23 ± 0.01, a zeta potential of 9.22 ± 0.94 mV, and an entrapment efficiency of 86.77 ± 4.18%. In vitro drug release experiments showed a biphasic pattern where an initial burst of 82.50 ± 0.20% took place in the first 2 h, which increased to 87.50 ± 0.50% over 72 h. The designed optimal H/CS/PLGA NPs exerted high antibacterial activity against Staphylococcus aureus and Escherichia coli (MIC of 0.125 and 0.06 mg/mL, respectively) compared to unloaded HARF (MIC of 0.50 mg/mL). The prepared nanoparticles were found to be biocompatible when tested on human skin fibroblasts. Moreover, the wound closure percentage after 24 h of applying H/CS/PLGA NPs was found to be 94.4 ± 8.0%, compared to free HARF and blank NPs (68.20 ± 5.10 and 50.50 ± 9.40%, respectively). In conclusion, the three components of the developed nanoformulation (PLGA, chitosan, and HARF) have synergistic antibacterial and wound healing properties for the management of infected wounds.
Collapse
Affiliation(s)
- Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt; (S.A.F.); (N.K.M.)
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt; (S.A.F.); (N.K.M.)
| | - Noha Khalil Mahdy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt; (S.A.F.); (N.K.M.)
| | - Meselhy Ragab Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
31
|
Folle C, Díaz-Garrido N, Sánchez-López E, Marqués AM, Badia J, Baldomà L, Espina M, Calpena AC, García ML. Surface-Modified Multifunctional Thymol-Loaded Biodegradable Nanoparticles for Topical Acne Treatment. Pharmaceutics 2021; 13:pharmaceutics13091501. [PMID: 34575577 PMCID: PMC8471012 DOI: 10.3390/pharmaceutics13091501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022] Open
Abstract
The present work is focused on the development of novel surface-functionalized poly(lactic-co-glycolic acid) nanoparticles loaded with thymol (TH-NPs) for topical administration enhancing thymol anti-inflammatory, antioxidant and wound healing activities against acne. TH-NPs were prepared by solvent evaporation method using different surface functionalization strategies and obtaining suitable physicochemical parameters and a good short-term stability at 4 °C. Moreover, TH-NPs skin penetration and antioxidant activity were assessed in ex vivo pig skin models. Skin penetration of TH-NPs followed the follicular route, independently of the surface charge and they were able to enhance antioxidant capacity. Furthermore, antimicrobial activity against Cutibacterium acnes was evaluated in vitro by the suspension test showing improved antibacterial performance. Using human keratinocyte cells (HaCat), cytotoxicity, cellular uptake, antioxidant, anti-inflammatory and wound healing activities were studied. TH-NPs were non-toxic and efficiently internalized inside the cells. In addition, TH-NPs displayed significant anti-inflammatory, antioxidant and wound healing activities, which were highly influenced by TH-NPs surface modifications. Moreover, a synergic activity between TH-NPs and their surface functionalization was demonstrated. To conclude, surface-modified TH-NPs had proven to be suitable to be used as anti-inflammatory, antioxidant and wound healing agents, constituting a promising therapy for treating acne infection and associated inflammation.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence:
| | - Ana Maria Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
32
|
Oseltamivir phosphate loaded pegylated-Eudragit nanoparticles for lung cancer therapy: Characterization, prolonged release, cytotoxicity profile, apoptosis pathways and in vivo anti-angiogenic effect by using CAM assay. Microvasc Res 2021; 139:104251. [PMID: 34520775 DOI: 10.1016/j.mvr.2021.104251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/12/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
The target of the current investigation was the delivery of oseltamivir phosphate (OSE) into the lung adenocarcinoma tissues by means of designing nanosized, non-toxic and biocompatible pegylated Eudragit based NPs and investigating their anticancer and antiangiogenic activity. The rationale for this strategy is to provide a novel perspective to cancer treatment with OSE loaded pegylated ERS NPs under favor of smaller particle size, biocompatible feature, cationic characteristic, examining their selective effectiveness on lung cell lines (A549 lung cancer cell line and CCD-19Lu normal cell line) and examining antiangiogenic activity by in vivo CAM analysis. For this purpose, OSE encapsulated pegylated ERS based NPs were developed and investigated for zeta potential, particle size, encapsulation efficiency, morphology, DSC, FT-IR, 1H NMR analyses. In vitro release, cytotoxicity, determination apoptotic pathways and in vivo CAM assay were carried out. Considering characterizations, NPs showed smaller particle size, cationic zeta potential, relatively higher EE%, nearly spherical shape, amorphous matrix formation and prolonged release pattern (Peppas-Sahlin and Weibull model with Fickian and non-Fickian release mechanisms). Flow cytometry was used to assess the apoptotic pathways using the Annexin V-FITC/PI staining assay, FITC Active Caspase-3 staining assay, and mitochondrial membrane potential detection tests. Activations on caspase-3 pathways made us think that OSE loaded pegylated ERS NPs triggered to apoptosis using intrinsic pathway. As regards to the in vivo studies, OSE loaded pegylated ERS based NPs demonstrated strong and moderate antiangiogenic activity for ERS-OSE 2 and ERS-OSE 3, respectively. With its cationic character, smaller particle size, relative superior EE%, homogenous amorphous polymeric matrix constitution indicated using solid state tests, prolonged release manner, highly selective to the human lung adenocarcinoma cell lines, could trigger apoptosis intrinsically and effectively, possess good in vivo antiangiogenic activity, ERS-OSE 2 formulation is chosen as a promising candidate and a potent drug delivery system to treat lung cancer.
Collapse
|
33
|
Ziaei E, Emami J, Rezazadeh M, Kazemi M. Pulmonary Delivery of Docetaxel and Celecoxib by PLGA Porous Microparticles for Their Synergistic Effects Against Lung Cancer. Anticancer Agents Med Chem 2021; 22:951-967. [PMID: 34382530 DOI: 10.2174/1871520621666210811111152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND using a combination of chemotherapeutic agents with novel drug delivery platforms to enhance the anticancer efficacy of the drug and minimizing the side effects, is very imperative for lung cancer treatments. OBJECTIVE The aim of the present study was to develop, characterize, and optimize porous poly (D, L-lactic-co-glycolic acid) (PLGA) microparticles for simultaneous delivery of docetaxel (DTX) and celecoxib (CXB) through the pulmonary route for lung cancer. METHODS Drug-loaded porous microparticles were prepared by an emulsion solvent evaporation method. The impact of various processing and formulation variables including PLGA amount, dichloromethane volume, homogenization speed, polyvinyl alcohol volume and concentration were assessed on entrapment efficiency, mean release time, particle size, mass median aerodynamic diameter, fine particle fraction and geometric standard deviation using a two-level factorial design. An optimized formulation was prepared and evaluated in terms of size and morphology using a scanning electron microscope. RESULTS FTIR, DSC, and XRD analysis confirmed drug entrapment and revealed no drug-polymer chemical interaction. Cytotoxicity of DTX along with CXB against A549 cells was significantly enhanced compared to DTX and CXB alone and the combination of DTX and CXB showed the greatest synergistic effect at a 1/500 ratio. CONCLUSION In conclusion, the results of the present study suggest that encapsulation of DTX and CXB in porous PLGA microspheres with desirable features are feasible and their pulmonary co-administration would be a promising strategy for the effective and less toxic treatment of various lung cancers.
Collapse
Affiliation(s)
- Elham Ziaei
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Mahboubeh Rezazadeh
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Moloud Kazemi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz. Iran
| |
Collapse
|
34
|
Fernández-Álvarez F, García-García G, Arias JL. A Tri-Stimuli Responsive (Maghemite/PLGA)/Chitosan Nanostructure with Promising Applications in Lung Cancer. Pharmaceutics 2021; 13:1232. [PMID: 34452193 PMCID: PMC8401782 DOI: 10.3390/pharmaceutics13081232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
A (core/shell)/shell nanostructure (production performance ≈ 50%, mean diameter ≈ 330 nm) was built using maghemite, PLGA, and chitosan. An extensive characterization proved the complete inclusion of the maghemite nuclei into the PLGA matrix (by nanoprecipitation solvent evaporation) and the disposition of the chitosan shell onto the nanocomposite (by coacervation). Short-term stability and the adequate magnetism of the nanocomposites were demonstrated by size and electrokinetic determinations, and by defining the first magnetization curve and the responsiveness of the colloid to a permanent magnet, respectively. Safety of the nanoparticles was postulated when considering the results from blood compatibility studies, and toxicity assays against human colonic CCD-18 fibroblasts and colon carcinoma T-84 cells. Cisplatin incorporation to the PLGA matrix generated appropriate loading values (≈15%), and a dual pH- and heat (hyperthermia)-responsive drug release behaviour (≈4.7-fold faster release at pH 5.0 and 45 °C compared to pH 7.4 and 37 °C). The half maximal inhibitory concentration of the cisplatin-loaded nanoparticles against human lung adenocarcinoma A-549 cells was ≈1.6-fold less than that of the free chemotherapeutic. Such a biocompatible and tri-stimuli responsive (maghemite/PLGA)/chitosan nanostructure may found a promising use for the effective treatment of lung cancer.
Collapse
Affiliation(s)
- Fátima Fernández-Álvarez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Gracia García-García
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, 18071 Granada, Spain
| |
Collapse
|
35
|
Wilson BK, Prud'homme RK. Processing Chitosan for Preparing Chitosan-Functionalized Nanoparticles by Polyelectrolyte Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8517-8524. [PMID: 34236205 DOI: 10.1021/acs.langmuir.1c00990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chitosan-coated nanoparticles are a promising class of drug delivery vehicles that have been studied as tools for improving the gastrointestinal delivery of therapeutics. Here we present an analysis of chitosan-coated nanoparticles with an emphasis on characterizing the chitosan polymer properties. Cationic nanoparticles are produced by adsorbing a layer of chitosan HCl on an anionic (-40 mV ζ-potential) polyacrylic acid (PAA) coated primary nanoparticle. Commercially available chitosan (90% deacetylated) must be processed into a nearly completely deacetylated HCl salt form (99% deacetylation); otherwise, primary nanoparticle aggregation occurs. Deacetylated chitosan HCl produces stable, cationic (+35 mV ζ-potential) nanoparticles within 10% of the original anionic particle hydrodynamic diameter at a 1:2 molar ratio of chitosan glucosamine HCl monomers to PAA acrylic acid monomers.
Collapse
Affiliation(s)
- Brian K Wilson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
36
|
Fernández-Álvarez F, Caro C, García-García G, García-Martín ML, Arias JL. Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential applications for combined MRI and hyperthermia against cancer. J Mater Chem B 2021; 9:4963-4980. [PMID: 34114575 DOI: 10.1039/d1tb00354b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(Maghemite/poly(d,l-lactide-co-glycolide))/chitosan (core/shell)/shell nanoparticles have been prepared reproducibly by nanoprecipitation solvent evaporation plus coacervation (production performance ≈ 45%, average size ≈ 325 nm). Transmission electron microscopy, energy dispersive X-ray spectroscopy, electrophoretic determinations, and X-ray diffraction patterns demonstrated the satisfactory embedment of iron oxide nanocores within the solid polymer matrix and the formation of an external shell of chitosan in the nanostructure. The adequate magnetic responsiveness of the nanocomposites was characterized in vitro by hysteresis cycle determinations and by visualization of the nanosystem under the influence of a 0.4 T permanent magnet. Safety and biocompatibility of the (core/shell)/shell particles were based on in vitro haemocompatibility studies and cytotoxicity tests against HFF-1 human foreskin fibroblasts and on ex vivo toxicity assessments on tissue samples from Balb/c mice. Transversal relaxivities, determined in vitro at a low magnetic field of 1.44 T, demonstrated their capability as T2 contrast agents for magnetic resonance imaging, being comparable to that of some iron oxide-based contrast agents. Heating properties were evaluated in a high frequency alternating electromagnetic gradient: a constant maximum temperature of ≈46 °C was generated within ≈50 min, while antitumour hyperthermia tests on T-84 colonic adenocarcinoma cells proved the relevant decrease in cell viability (to ≈ 39%) when treated with the nanosystem under the influence of that electromagnetic field. Finally, in vivo magnetic resonance imaging studies and ex vivo histology determinations of iron deposits postulated the efficacy of chitosan to provide long-circulating capabilities to the nanocomposites, retarding nanoparticle recognition by the mononuclear phagocyte system. To our knowledge, this is the first study describing such a type of biocompatible and long-circulating nanoplatform with promising theranostic applications (biomedical imaging and hyperthermia) against cancer.
Collapse
Affiliation(s)
- Fátima Fernández-Álvarez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | | | | | | | | |
Collapse
|
37
|
Rodenak-Kladniew B, Noacco N, Pérez de Berti I, Stewart SJ, Cabrera AF, Alvarez VA, García de Bravo M, Durán N, Castro GR, Islan GA. Design of magnetic hybrid nanostructured lipid carriers containing 1,8-cineole as delivery systems for anticancer drugs: Physicochemical and cytotoxic studies. Colloids Surf B Biointerfaces 2021; 202:111710. [PMID: 33765626 DOI: 10.1016/j.colsurfb.2021.111710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/09/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
The development of versatile carriers to deliver chemotherapeutic agents to specific targets with establishing drug release kinetics and minimum undesirable side effects is becoming a promising relevant tool in the medical field. Magnetic hybrid nanostructured lipid carriers (NLC) were prepared by incorporation of 1,8-cineole (CN, a monoterpene with antiproliferative properties) and maghemite nanoparticles (MNPs) into a hybrid matrix composed of myristyl myristate coated with chitosan. Hybrid NLC characterized by DLS and TEM confirmed the presence of positively charged spherical nanoparticles of around 250 nm diameter and +10.2 mV of Z-potential. CN encapsulation into the lipid core was greater than 75 % and effectively released in 24 h. Modification of the crystalline structure of nanoparticles after incorporation of CN and MNPs was observed by XRD, DSC, and TGA analyses. Superparamagnetic NLC behavior was verified by recording the magnetization using a vibrating scanning magnetometer. NLC resulted in more cytotoxic than free CN in HepG2 and A549 cell lines. Particularly, viability inhibition of HepG2 and A549 cells was increased from 35 % to 55 % and from 38 % to 61 %, respectively, when 8 mM CN was incorporated into the lipid NPs at 24 h. Green fluorescent-labeled NLC with DIOC18 showed an enhanced cellular uptake with chitosan-coated NLC. Besides, no cytotoxicity of the formulations in normal WI-38 cells was observed, suggesting that the developed hybrid NLC system is a safe and good potential candidate for the selective delivery and potentiation of anticancer drugs.
Collapse
Affiliation(s)
- B Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - N Noacco
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina
| | - I Pérez de Berti
- CINDECA, CONICET-CICPBA-Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Calle 47 N 257, 1900, La Plata, Argentina
| | - S J Stewart
- IFLP-CONICET, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 67, 1900, La Plata, Argentina
| | - A F Cabrera
- IFLP-CONICET, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 67, 1900, La Plata, Argentina
| | - V A Alvarez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10850, 7600, Mar del Plata, Argentina
| | - M García de Bravo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - N Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil; Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - G R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000, Rosario, Santa Fe, Argentina
| | - G A Islan
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
38
|
Telange DR, Jain SP, Pethe AM, Kharkar PS, Rarokar NR. Use of combined nanocarrier system based on chitosan nanoparticles and phospholipids complex for improved delivery of ferulic acid. Int J Biol Macromol 2021; 171:288-307. [PMID: 33418046 DOI: 10.1016/j.ijbiomac.2020.12.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 02/05/2023]
Abstract
A novel nanocarrier system of phospholipids complex loaded chitosan nanoparticles (FAPLC CNPs) was developed to improve the oral bioavailability and antioxidant potential of FA. FAPLC CNPs were optimized using a Box-Behnken Design (BBD). FAPLC CNPs were characterized using differential scanning calorimetry, Fourier transforms infrared spectroscopy, powder x-ray diffractometry, proton nuclear magnetic resonance, solubility, in vitro dissolution, ex vivo permeation, and in vivo antioxidant activity in carbon tetrachloride (CCl4)-induced albino rat model. The characterization studies indicated a formation of the complex as well as FAPLC CNPs. The FAPLC CNPs exhibited a lower particle size ~123.27 nm, PDI value ~0.31, and positive zeta potential ~32 mV respectively. Functional characterization studies revealed a significant improvement in the aqueous solubility, dissolution, and permeation rate of FAPLC and FAPLC CNPs compared to FA and FA CNPs. The FAPLC CNPs showed significant enhancement of in vivo antioxidant activity of FA by restoring the elevated marker enzymes in the CCl4-intoxicated rat model compared to FA CNPs. Moreover, the pharmacokinetic analysis demonstrated a significant enhancement of oral bioavailability of FA from FAPLC CNPs compared to FA CNPs. These findings show that FAPLC CNPs could be used as an effective nanocarrier for improving the oral delivery of FA.
Collapse
Affiliation(s)
- Darshan R Telange
- Rajarshi Shahu College of Pharmacy, Malvihir, Botha Road, Buldhana 443301, M.S., India.
| | - Shirish P Jain
- Rajarshi Shahu College of Pharmacy, Malvihir, Botha Road, Buldhana 443301, M.S., India
| | - Anil M Pethe
- School of Pharmacy and Technology Management, SVKM's NMIMS (Deemed to be University), Pollepally SEZ, Jadcherla, Mehbubnagar, Hyderabad 509301, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, M.S., India
| | - Nilesh R Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, M.S., India
| |
Collapse
|
39
|
Alfagih IM, Kaneko K, Kunda NK, Alanazi F, Dennison SR, Tawfeek HM, Saleem IY. In Vitro Characterization of Inhalable Cationic Hybrid Nanoparticles as Potential Vaccine Carriers. Pharmaceuticals (Basel) 2021; 14:ph14020164. [PMID: 33670611 PMCID: PMC7922216 DOI: 10.3390/ph14020164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/29/2023] Open
Abstract
In this study, PGA-co-PDL nanoparticles (NPs) encapsulating model antigen, bovine serum albumin (BSA), were prepared via double emulsion solvent evaporation. In addition, chitosan hydrochloride (CHL) was incorporated into the external phase of the emulsion solvent method, which resulted in surface adsorption onto the NPs to form hybrid cationic CHL NPs. The BSA encapsulated CHL NPs were encompassed into nanocomposite microcarriers (NCMPs) composed of l-leucine to produce CHL NPs/NCMPs via spray drying. The CHL NPs/NCMPs were investigated for in vitro aerosolization, release study, cell viability and uptake, and stability of protein structure. Hybrid cationic CHL NPs (CHL: 10 mg/mL) of particle size (480.2 ± 32.2 nm), charge (+14.2 ± 0.72 mV), and BSA loading (7.28 ± 1.3 µg/mg) were produced. The adsorption pattern was determined to follow the Freundlich model. Aerosolization of CHL NPs/NCMPs indicated fine particle fraction (FPF: 46.79 ± 11.21%) and mass median aerodynamic diameter (MMAD: 1.49 ± 0.29 µm). The BSA α-helical structure was maintained, after release from the CHL NPs/NCMPs, as indicated by circular dichroism. Furthermore, dendritic cells (DCs) and A549 cells showed good viability (≥70% at 2.5 mg/mL after 4–24 h exposure, respectively). Confocal microscopy and flow cytometry data showed hybrid cationic CHL NPs were successfully taken up by DCs within 1 h of incubation. The upregulation of CD40, CD86, and MHC-II cell surface markers indicated that the DCs were successfully activated by the hybrid cationic CHL NPs. These results suggest that the CHL NPs/NCMPs technology platform could potentially be used for the delivery of proteins to the lungs for immunostimulatory applications such as vaccines.
Collapse
Affiliation(s)
- Iman M. Alfagih
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (I.M.A.); (K.K.); (N.K.K.)
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kan Kaneko
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (I.M.A.); (K.K.); (N.K.K.)
| | - Nitesh K. Kunda
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (I.M.A.); (K.K.); (N.K.K.)
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY 11439, USA
| | - Fars Alanazi
- Kayali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sarah R. Dennison
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Hesham M. Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Imran Y. Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (I.M.A.); (K.K.); (N.K.K.)
- Correspondence: ; Tel.: +44-0151-231-2265
| |
Collapse
|
40
|
Yurtdaş-Kırımlıoğlu G, Görgülü Ş. Surface modification of PLGA nanoparticles with chitosan or Eudragit® RS 100: Characterization, prolonged release, cytotoxicity, and enhanced antimicrobial activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Intravitreal galactose conjugated polymeric nanoparticles of etoposide for retinoblastoma. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Effect of Chitosan Coating on PLGA Nanoparticles for Oral Delivery of Thymoquinone: In Vitro, Ex Vivo, and Cancer Cell Line Assessments. COATINGS 2020. [DOI: 10.3390/coatings11010006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the present study, thymoquinone (TQ)-encapsulated chitosan- (CS)-coated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were formulated using the emulsion evaporation method. NPs were optimized by using 33-QbD approach for improved efficacy against breast cancer. The optimized thymoquinone loaded chitosan coated Poly (d,l-lactide-co-glycolide) nanoparticles (TQ-CS-PLGA-NPs) were successfully characterized by different in vitro and ex vivo experiments as well as evaluated for cytotoxicity in MDA-MB-231 and MCF-7 cell lines. The surface coating of PLGA-NPs was completed by CS coating and there were no significant changes in particle size and entrapment efficiency (EE) observed. The developed TQ-CS-PLGA-NPs showed particle size, polydispersibility index (PDI), and %EE in the range between 126.03–196.71 nm, 0.118–0.205, and 62.75%–92.17%. The high and prolonged TQ release rate was achieved from TQ-PLGA-NPs and TQ-CS-PLGA-NPs. The optimized TQ-CS-PLGA-NPs showed significantly higher mucoadhesion and intestinal permeation compared to uncoated TQ-PLGA-NPs and TQ suspension. Furthermore, TQ-CS-PLGA-NPs showed statistically enhanced antioxidant potential and cytotoxicity against MDA-MB-231 and MCF-7 cells compared to uncoated TQ-PLGA-NPs and pure TQ. On the basis of the above findings, it may be stated that chitosan-coated TQ-PLGA-NPs represent a great potential for breast cancer management.
Collapse
|
43
|
Design of chitosan-based particle systems: A review of the physicochemical foundations for tailored properties. Carbohydr Polym 2020; 250:116968. [DOI: 10.1016/j.carbpol.2020.116968] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022]
|
44
|
Novel Silibinin Loaded Chitosan-Coated PLGA/PCL Nanoparticles Based Inhalation Formulations with Improved Cytotoxicity and Bioavailability for Lung Cancer. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00797-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Efficiency of Chitosan-Coated PLGA Nanocarriers for Cellular Delivery of siRNA and CRISPR/Cas9 Complex. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09496-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Recent advances in the implant-based drug delivery in otorhinolaryngology. Acta Biomater 2020; 108:46-55. [PMID: 32289495 DOI: 10.1016/j.actbio.2020.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
The surgical implant is an interdisciplinary therapeutic modality that offers unique advantages in the daily practice of otorhinolaryngology. Some well-known examples include cochlear implants, bone-anchored hearing aids, sinus stents, and tracheostomy tubes. Neuroprotective, osteogenic, anti-inflammatory, and antimicrobial effects are among their established or pursued functions. Implant-based drug delivery affords an efficient and potent approach to enhancing these therapeutic functions. Recent innovations have infiltrated all four elements of a drug-eluting implant. The purpose of this pre-clinical, biotechnology-oriented review is to discuss these developments in terms of the implant biomaterial, loaded medication, delivery pattern, and system fabrication. Cell-mediated neurotrophin release, fabrication of a hydroxyapatite-supported system, biodegradable polymer-based implants, and multiclass and multidrug delivery are some representative advancements. The ultimate goal here is to bridge the gap between biotechnology advances and clinical needs. The review is concluded with a perspective regarding the future opportunities and challenges in this popular and rapidly developing subject of research. STATEMENT OF SIGNIFICANCE: Surgical implants and local drug delivery are representative modern modalities of surgical treatment and medical treatment, respectively. Their synergy offers unique therapeutic advantages, such as minimal systemic side effects, proximity-related high efficiency, and potential absorbability. The applications of implant-based drug delivery have infiltrated otorhinolaryngology and head & neck surgery, which is well known for its related tissue diversity and surgical complexity. Examples discussed here include cochlear implants, bone-anchored hearing aids, sinus stents, and airway tubes. This timely review focuses primarily on the four fundamental components of an implant-based drug delivery system, namely implant biomaterial, loaded medication, delivery pattern, and system fabrication. A particular emphasis is placed upon the in vitro cellular and in vivo animal studies that demonstrate pre-clinical potentials.
Collapse
|
47
|
Akhter MH, Kumar S, Nomani S. Sonication tailored enhance cytotoxicity of naringenin nanoparticle in pancreatic cancer: design, optimization, and in vitro studies. Drug Dev Ind Pharm 2020; 46:659-672. [PMID: 32208984 DOI: 10.1080/03639045.2020.1747485] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: In vitro, optimization, characterization, and cytotoxic studies of NAR nanoparticles (NPs) to against pancreatic cancer.Method: The sonication tailored Naringenin (NARG)-loaded poly (lactide-co-glycolic acid) (PLGA) NPs was fabricated for potential cytotoxic effect against pancreatic cancer. NARG NPs were prepared by emulsion-diffusion evaporation technique applying BoxBehnken experimental design based on three-level and three-factors. The effect of independent variables surfactant concentration (X1), polymer concentration (X2), and sonication time (X3) were studied on responses particle size (Y1), and drug release % (Y2). NPs characterized for particles size and size distribution, polydispersity index (PDI), zeta potential, transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), Differential scanning calorimeter (DSC), and X-ray diffraction (XRD) studies. Further, the studies was fitted to various drug release kinetic model and cytotoxicity evaluated in vitro.Results: The nanosized particles were spherical, uniform with an average size of 150.45 ± 12.45 nm, PDI value 0.132 ± 0.026, zeta potential -20.5 ± 2.5 mV, and cumulative percentage release 85.67 ± 6.23%. In vitro release of NARG from nanoparticle evaluated initially burst followed by sustained release behavior. The Higuchi was best fitted model to drug release from NARG NPs. The cytotoxicity study of NARG NPs apparently showed higher cytotoxic effect over free NARG (p < 0.05). The stability study of optimized formulation revealed no significant physico-chemical changes during 3 months.Conclusions: Thus, NARG-loaded NPs gave ameliorated anticancer effect over plain NARG.
Collapse
Affiliation(s)
| | - Sandeep Kumar
- Alwar Pharmacy College Rajasthan University of Health Sciences (RUHS), M.I.A. Alwar-Rajasthan, Alwar, India.,Karnataka Antibiotics and Pharmaceutical Limited, Bengaluru, India
| | | |
Collapse
|
48
|
Ahmed TA. Development of rosuvastatin flexible lipid-based nanoparticles: promising nanocarriers for improving intestinal cells cytotoxicity. BMC Pharmacol Toxicol 2020; 21:14. [PMID: 32085802 PMCID: PMC7035742 DOI: 10.1186/s40360-020-0393-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/12/2020] [Indexed: 01/04/2023] Open
Abstract
Background Rosuvastatin (RSV) is a poorly water-soluble drug that has an absolute oral bioavailability of only 20%. The aim of this work was to prepare a positively charged chitosan coated flexible lipid-based vesicles (chitosomes) and compare their characteristics to the corresponding negatively charged flexible liposomal nanoparticles (NPs) in order to develop new RSV nanocarrier systems. Methods Three formulation factors affecting the development of chitosomes nano-formulation were optimized for their effects on the particles size, entrapment efficiency (EE) and zeta potential. The optimized flexible chitosomes and their corresponding liposomal NPs were characterized for morphology, in vitro release, flexibility and intestinal cell viability. The half maximum inhibitory concentrations (IC50) for both formulations were calculated. Results The drug to lipid molar ratio, edge activator percent and the chitosan concentration were significantly affecting the characteristics of NPs. The optimized chitosomes nano-formulation exhibited larger size, higher EE and greater zeta potential value when compared to the corresponding liposomal NPs. Both formulations showed a spherical shape nanostructure with a marked outer shell for the chitosomes nano-formulation. Chitosomes illustrated an extended drug release profile when compared with the corresponding liposomal NPs and the prepared drug suspension. Flexibility of both vesicles was confirmed with superiority of liposomal NPs over chitosomes. RSV loaded chitosomes nano-formulation exhibited lower IC50 values and higher therapeutic window while liposomal NPs were compatible with the intestinal cells. Conclusions RSV loaded chitosomes nano-formulation could be considered as a promising nanocarrier system with a marked cytotoxic activity while, RSV loaded liposomal NPs are suitable nanocarrier to improve RSV activity in treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
49
|
Öztürk AA, Yenilmez E, Özarda MG. Clarithromycin-Loaded Poly (Lactic- co-glycolic Acid) (PLGA) Nanoparticles for Oral Administration: Effect of Polymer Molecular Weight and Surface Modification with Chitosan on Formulation, Nanoparticle Characterization and Antibacterial Effects. Polymers (Basel) 2019; 11:E1632. [PMID: 31600969 PMCID: PMC6835525 DOI: 10.3390/polym11101632] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 01/26/2023] Open
Abstract
Clarithromycin (CLR) is a member of the macrolide antibiotic group. CLR has low systemic oral bioavailability and is a drug of class II of the Biopharmaceutical Classification System. In many studies, using nanoparticles (NPs) as a drug delivery system has been shown to increase the effectiveness and bioavailability of active drug substances. This study describes the development and evaluation of poly (lactic-co-glycolic acid) (PLGA) NPs and chitosan (CS)-coated PLGA NPs for oral delivery of CLR. NPs were obtained by nanoprecipitation technique and characterized in detail, and the effect of three molecular weights (Mw1: 7.000-17.000, Mw2: 38.000-54.000, Mw3: 50.000-190.000) of PLGA and CS coating on particle size (PS), zeta potential (ZP), entrapment efficiency (EE%), and release properties etc. were elucidated. Gastrointestinal stability and cryoprotectant effect tests were performed on the NPs. The PS of the prepared NPs were in the range of 178 to 578 nm and they were affected by the Mw and CS coating. In surface-modified formulations with CS, the ZP of the NPs increased significantly to positive values. EE% varied from 62% to 85%, depending upon the Mw and CS coating. In vitro release studies of CLR-loaded NPs showed an extended release up to 144 h. Peppas-Sahlin and Weibull kinetic model was found to fit best for CLR release from NPs. By the broth microdilution test method, the antibacterial activity of the formulations was determined on Staphylococcus aureus (ATCC 25923), Listeria monocytogenes (ATCC 1911), and Klebsiella pneumoniae (ATCC 700603). The structures of the formulations were clarified by thermal (DSC), FT-IR, and 1H-NMR analysis. The results showed that PS, ZP, EE%, and dissolution rates of NPs were directly related to the Mw of PLGA and CS coating.
Collapse
Affiliation(s)
- A Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Evrim Yenilmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Mustafa Güçlü Özarda
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| |
Collapse
|
50
|
Abd El Hady WE, Mohamed EA, Soliman OAEA, El-Sabbagh HM. In vitro-in vivo evaluation of chitosan-PLGA nanoparticles for potentiated gastric retention and anti-ulcer activity of diosmin. Int J Nanomedicine 2019; 14:7191-7213. [PMID: 31564873 PMCID: PMC6732519 DOI: 10.2147/ijn.s213836] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background Diosmin showed poor water solubility and low bioavailability. Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles were successfully used to improve the drugs solubility and bioavailability. Coating of PLGA nanoparticles with chitosan can ameliorate their gastric retention and cellular uptake. Methodology PLGA nanoparticles of diosmin were prepared using different drug and polymer amounts. Nanoparticles were selected based on entrapment efficiency% (EE%) and particle size measurements to be coated with chitosan. The selected nanoparticles either uncoated or coated were evaluated regarding morphology, ζ-potential, solid-state characterization, in vitro release, storage stability, and mucoadhesion. The anti-ulcer activity (AA) against ethanol-induced ulcer in rats was assessed through macroscopical evaluation, histopathological examination, immunohistochemical localization of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transmission electron microscopic examination of gastric tissues compared to free diosmin (100 mg/kg) and positive control. Results Based on EE% and particle size measurements, the selected nanoparticles, either uncoated or coated with 0.1% w/v chitosan, were based on 1:15 drug-PLGA weight ratio and 20 mg diosmin employing methylene chloride as an organic phase. Examination by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed nanoscopic spherical particles. Drug encapsulation within the selected nanoparticles was suggested by Fourier transform-infrared, differential scanning calorimetry (DSC) and X-ray diffractometry results. Chitosan-coated nanoparticles were more stable against size enlargement probably due to the higher ζ-potential. Only coated nanoparticles showed gastric retention as revealed by SEM examination of stomach and duodenum. The superior AA of coated nanoparticles was confirmed by significant reduction in average mucosal damage, the majority of histopathological changes and NF-κB expression in gastric tissue when compared to positive control, diosmin and uncoated nanoparticles as well as insignificant difference relative to normal control. Coated nanoparticles preserved the normal ultrastructure of the gastric mucosa as revealed by TEM examination. Conclusion The optimized chitosan-coated PLGA nanoparticles can be represented as a potential oral drug delivery system of diosmin.
Collapse
|