1
|
Niu J, Yuan M, Chen J, Wang L, Qi Y, Bai K, Fan Y, Gao P. L-Cysteine-Modified Transfersomes for Enhanced Epidermal Delivery of Podophyllotoxin. Molecules 2023; 28:5712. [PMID: 37570682 PMCID: PMC10420961 DOI: 10.3390/molecules28155712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this study was to evaluate L-cysteine-modified transfersomes as the topical carrier for enhanced epidermal delivery of podophyllotoxin (POD). L-cysteine-deoxycholic acid (LC-DCA) conjugate was synthesized via an amidation reaction. POD-loaded L-cysteine-modified transfersomes (POD-LCTs) were prepared via a thin membrane dispersion method and characterized for their particle size, zeta potential, morphology, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and in vitro release. Subsequently, in vitro skin permeation and retention, fluorescence distribution in the skin, hematoxylin-eosin staining and in vivo skin irritation were studied. The POD-LCTs formed spherical shapes with a particle size of 172.5 ± 67.2 nm and a zeta potential of -31.3 ± 6.7 mV. Compared with the POD-Ts, the POD-LCTs provided significantly lower drug penetration through the porcine ear skin and significantly increased the skin retention (p < 0.05). Meaningfully, unlike the extensive distribution of the POD-loaded transfersomes (POD-Ts) throughout the skin tissue, the POD-LCTs were mainly located in the epidermis. Moreover, the POD-LCTs did not induce skin irritation. Therefore, the POD-LCTs provided an enhanced epidermal delivery and might be a promising carrier for the topical delivery of POD.
Collapse
Affiliation(s)
| | | | | | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (J.N.); (M.Y.); (J.C.); (K.B.); (Y.F.)
| | | | | | | | | |
Collapse
|
2
|
Xie L, Liu R, Chen X, He M, Zhang Y, Chen S. Micelles Based on Lysine, Histidine, or Arginine: Designing Structures for Enhanced Drug Delivery. Front Bioeng Biotechnol 2021; 9:744657. [PMID: 34646819 PMCID: PMC8503256 DOI: 10.3389/fbioe.2021.744657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Natural amino acids and their derivatives are excellent building blocks of polymers for various biomedical applications owing to the non-toxicity, biocompatibility, and ease of multifunctionalization. In the present review, we summarized the common approaches to designing and constructing functional polymeric micelles based on basic amino acids including lysine, histidine, and arginine and highlighted their applications as drug carriers for cancer therapy. Different polypeptide architectures including linear polypeptides and dendrimers were developed for efficient drug loading and delivery. Besides, polylysine- and polyhistidine-based micelles could enable pH-responsive drug release, and polyarginine can realize enhanced membrane penetration and gas therapy by generating metabolites of nitric oxide (NO). It is worth mentioning that according to the structural or functional characteristics of basic amino acids and their derivatives, key points for designing functional micelles with excellent drug delivery efficiency are importantly elaborated in order to pave the way for exploring micelles based on basic amino acids.
Collapse
Affiliation(s)
- Li Xie
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Rong Liu
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Xin Chen
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Mei He
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Yi Zhang
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Shuyi Chen
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| |
Collapse
|
3
|
Xu Q, Bai Z, Ma J, Yang Y, Huang M. Zein–sodium alginate based microcapsules for essence controlled releasing coating as leather finishes. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Babadi D, Dadashzadeh S, Osouli M, Abbasian Z, Daryabari MS, Sadrai S, Haeri A. Biopharmaceutical and pharmacokinetic aspects of nanocarrier-mediated oral delivery of poorly soluble drugs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
5
|
Niu J, Yuan M, Chen C, Wang L, Tang Z, Fan Y, Liu X, Ma YJ, Gan Y. Berberine-Loaded Thiolated Pluronic F127 Polymeric Micelles for Improving Skin Permeation and Retention. Int J Nanomedicine 2020; 15:9987-10005. [PMID: 33324058 PMCID: PMC7733396 DOI: 10.2147/ijn.s270336] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022] Open
Abstract
Background Challenges associated with local antibacterial and anti-inflammatory drugs include low penetration and retention of drugs at the expected action site. Additionally, improving these challenges allows for the prevention of side effects that are caused by drug absorption into the systemic circulation and helps to safely treat local skin diseases. Methods In the current study, we successfully prepared a thiolated pluronic F127 polymer micelles (BTFM), which binds to keratin through a disulphide bond, to produce skin retention. In addition, the small particle size of polymer micelles promotes the penetration of carriers into the skin. The current study was divided into two experiments: an in vitro experiment; an in vivo experiment that involved the penetration of the micelle-loaded drugs into the skin of rats, the skin irritation test and the anti-inflammatory activity of the drug-loaded micelles on dimethyl benzene-induced ear edema in mice. Results Results from our in vitro transdermal experiment revealed that the amount of drug absorbed through the skin was decreased after the drug was loaded in the BTFM. Further, results from the vivo study, which used fluorescence microscopy to identify the location of the BTFM after penetration, revealed that there was strong fluorescence in the epidermis layer, but there was no strong fluorescence in the deep skin layer. In addition, the BTFM had a very good safety profile with no potentially hazardous skin irritation and transdermal administration of BTFM could significantly suppress ear edema induced by dimethyl benzene. Therefore, these findings indicated that BTFM reduced the amount of drug that entered the systemic circulation. Our results also demonstrated that the BTFM had a certain affinity for keratin. Conclusion Our experimental results suggest that the BTFM may be an effective drug carrier for local skin therapy with good safety profile.
Collapse
Affiliation(s)
- Jiangxiu Niu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Ming Yuan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Chenchen Chen
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Zigui Tang
- Department of Pharmacy, Henan Medical College, Zhengzhou 451191, People's Republic of China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Xianghui Liu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Yu Jiao Ma
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Yu Gan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| |
Collapse
|
6
|
Yang T, Feng J, Zhang Q, Wu W, Mo H, Huang L, Zhang W. l-Carnitine conjugated chitosan-stearic acid polymeric micelles for improving the oral bioavailability of paclitaxel. Drug Deliv 2020; 27:575-584. [PMID: 32306775 PMCID: PMC7191914 DOI: 10.1080/10717544.2020.1748762] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
A delivery system based on l-carnitine (LC) conjugated chitosan (CS)-stearic acid polymeric micelles has been developed for improving the oral bioavailability of paclitaxel (PTX) through targeting intestinal organic cation/carnitine transporter 2 (OCTN2). Stearic acid grafted chitosan (CS-SA), as micelle skeleton material, was synthesized by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated coupling reaction. The PTX-loaded micelles were prepared by solvent evaporation-hydration method, and the ligand LC was conjugated onto the micelle surface by anchoring its derivative stearoyl group to the lipophilic core of micelle. The modified polymeric micelles showed regular spherical shapes with small particle size of 157.1 ± 5.2 nm and high drug loading capacity of 15.96 ± 0.20 wt%, and the micelle stability in water was supported by low critical micelle concentration of 14.31 ± 0.21 μg/ml. The drug-loaded micelles presented a slow and incomplete in vitro release, and the pharmacokinetic studies indicated the micelle carriers increased the relative bioavailability of PTX to 165.8% against the commercial formulation. The enhancement effect on intestinal absorption was also confirmed by the intracellular uptake of Caco-2 cells. The proposed micelle carrier system manifested a prospective tool for oral drug delivery.
Collapse
Affiliation(s)
- Tan Yang
- Department of Pharmacy, Guilin Medical University, Guilin, PR China
| | - Jianfang Feng
- Department of Pharmacy, Guilin Medical University, Guilin, PR China
- Department of Pharmacy, Guangxi University of Chinese Medicine, Nanning, PR China
| | - Qian Zhang
- Department of Pharmacy, Guilin Medical University, Guilin, PR China
| | - Wei Wu
- Department of Pharmacy, Guilin Medical University, Guilin, PR China
| | - Hailan Mo
- Department of Pharmacy, Guilin Medical University, Guilin, PR China
| | - Lanzhen Huang
- Department of Pharmacy, Guilin Medical University, Guilin, PR China
| | - Wei Zhang
- Department of Pharmacy, Guilin Medical University, Guilin, PR China
| |
Collapse
|
7
|
Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Chen N, Niu J, Li Q, Li J, chen X, Ren Y, Wu G, Liu Y, Shi Y. Development and evaluation of a new gastroretentive drug delivery system: Nanomicelles-loaded floating mucoadhesive beads. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Yang M, Ding H, Zhu Y, Ge Y, Li L. Co-delivery of paclitaxel and doxorubicin using mixed micelles based on the redox sensitive prodrugs. Colloids Surf B Biointerfaces 2019; 175:126-135. [DOI: 10.1016/j.colsurfb.2018.11.086] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/23/2022]
|
10
|
Wang X, Guo Y, Qiu L, Wang X, Li T, Han L, Ouyang H, Xu W, Chu K. Preparation and evaluation of carboxymethyl chitosan-rhein polymeric micelles with synergistic antitumor effect for oral delivery of paclitaxel. Carbohydr Polym 2018; 206:121-131. [PMID: 30553305 DOI: 10.1016/j.carbpol.2018.10.096] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/10/2018] [Accepted: 10/27/2018] [Indexed: 01/07/2023]
Abstract
An amphiphilic carboxymethyl chitosan-rhein (CR) conjugate was prepared, characterized, and evaluated as a potential carrier material for oral delivery of paclitaxel (PTX). CR conjugate self-assembled in aqueous environment into CR polymeric micelles (CR PMs). The drug loading capacity and entrapment efficiency of PTX-loaded CR PMs were 35.24 ± 1.58% and 86.99 ± 12.26%, respectively. Pharmacokinetic results indicate that PTX-loaded CR PMs could significantly enhance the oral bioavailability of PTX. Confocal imaging of intestinal sections verified many of CR PMs were absorbed as whole through the intestinal membrane. The cytotoxicity assays in Caco-2 cells and in vivo antitumor efficacy showed that PTX-loaded CR PMs had a stronger antitumor efficacy. A synergistic antitumor effect between CR conjugate and PTX was proven in MCF-7 cells and antitumor efficacy studies. The investigation of CR conjugate developed in this study showed that CR PMs are promising for oral delivery of water-insoluble antitumor drugs.
Collapse
Affiliation(s)
- Xiaoying Wang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yangli Guo
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Liangzhen Qiu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaying Wang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Lifeng Han
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huizhi Ouyang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Kedan Chu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
11
|
Du X, Khan AR, Fu M, Ji J, Yu A, Zhai G. Current development in the formulations of non-injection administration of paclitaxel. Int J Pharm 2018; 542:242-252. [PMID: 29555439 DOI: 10.1016/j.ijpharm.2018.03.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/05/2023]
Abstract
Paclitaxel (PTX) belongs to a class of taxane anti-tumor drug used for the clinic treatment of breast cancer, ovarian cancer, non-small-cell lung cancer, and so on. PTX has poor water solubility and oral bioavailability. It is generally administered via intravenous (i.v.) infusion. Traditional PTX injectable preparations contain Cremophor-EL and ethanol to improve its solubility, which would result in adverse reactions like severe hypersensitivity, neutropenia, etc. Adverse reactions can be reduced only by complicated pretreatment with glucocorticoid and antihistamines drugs and followed by PTX slow infusion for three hours, which has brought significant inconvenience to the patients. Though, a new-generation PTX formulation, Abraxane, free of Cremophor-EL and ethanol, is still being administrated by frequent i.v. infusions and extremely expensive. Therefore, non-injection administration of PTX is urgently needed to avoid the side effects as well as reduce inconvenience to the patients. Recently, a variety of non-injection drug delivery systems (DDSs) of PTX have been developed. This review aims to discuss the progress of non-injectable administration systems of PTX, including oral administration systems, vaginal administration systems, implantable DDSs, transdermal DDSs and intranasal administration for the future study and clinical applications.
Collapse
Affiliation(s)
- Xiyou Du
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Manfei Fu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Aihua Yu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China.
| |
Collapse
|
12
|
β-casein nanovehicles for oral delivery of chemotherapeutic Drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells. Oncotarget 2018; 7:23322-34. [PMID: 26989076 PMCID: PMC5029629 DOI: 10.18632/oncotarget.8019] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/21/2016] [Indexed: 02/02/2023] Open
Abstract
Multidrug resistance (MDR) is a primary obstacle to curative cancer therapy. We have previously demonstrated that β-casein (β-CN) micelles (β-CM) can serve as nanovehicles for oral delivery and target-activated release of hydrophobic drugs in the stomach. Herein we introduce a novel nanosystem based on β-CM, to orally deliver a synergistic combination of a chemotherapeutic drug (Paclitaxel) and a P-glycoprotein-specific transport inhibitor (Tariquidar) individually encapsulated within β-CM, for overcoming MDR in gastric cancer. Light microscopy, dynamic light scattering and zeta potential analyses revealed solubilization of these drugs by β-CN, suppressing drug crystallization. Spectrophotometry demonstrated high loading capacity and good encapsulation efficiency, whereas spectrofluorometry revealed high affinity of these drugs to β-CN. In vitro cytotoxicity assays exhibited remarkable synergistic efficacy against human MDR gastric carcinoma cells with P-glycoprotein overexpression. Oral delivery of β-CN - based nanovehicles carrying synergistic drug combinations to the stomach constitutes a novel efficacious therapeutic system that may overcome MDR in gastric cancer.
Collapse
|
13
|
Hou J, Sun E, Zhang ZH, Wang J, Yang L, Cui L, Ke ZC, Tan XB, Jia XB, Lv H. Improved oral absorption and anti-lung cancer activity of paclitaxel-loaded mixed micelles. Drug Deliv 2017; 24:261-269. [PMID: 28165804 PMCID: PMC8241097 DOI: 10.1080/10717544.2016.1245370] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 12/03/2022] Open
Abstract
The aim of this study was to establish a paclitaxel (PTX)-loaded mixed micelle delivery system (PTX-TP-M) with vitamin E-TPGS (TPGS) and Plasdone®S-630 Copovidone (PVPS630) as carriers to improve the solubility, oral absorption, and anti-tumor activity of PTX against lung cancer. In this study, PTX-TP-M was prepared using the ethanol thin-film dispersion method followed by characterization of the binary mixed micelles system. The average size of the PTX-TP-M was 83.5 ± 1.8 nm with a polydispersity index of 0.265 ± 0.007 and the drug loading (DL%) and entrapment efficiency (EE%) were 3.09 ± 0.09% and 95.67 ± 2.84%, respectively, which contributed to a high solubility of PTX about 24947-fold increase in water (4.78 ± 0.14 mg/mL). In addition, TEM analysis showed that the PTX-TP-M appeared spherical in structure and was well dispersed without aggregation and adhesion. In vitro release studies showed that the PTX-TP-M displayed a sustained release compared to free PTX in the dialysis bag. The efflux ratio of PTX reduced from 44.83 to 3.52 when formulated as PTX-TP-M; a 92.15% reduction, studied using the Caco-2 monolayer model. The oral bioavailability of PTX also improved by 4.35-fold, suggesting that PTX-TP-M can markedly promote the absorption in the gastrointestinal tract. Using in vitro MTT assays, it was observed that cytotoxicity was markedly increased, and IC50 values of PTX-TP-M (3.14 ± 0.85 and 8.28 ± 1.02 μg/mL) were lower than those of PTX solution (5.21 ± 0.93 and 14.53 ± 1.96 μg/mL) in A549 and Lewis cell, respectively. In vivo anti-tumor studies showed that PTX-TP-M achieved higher anti-tumor efficacy compared with PTX in Lewis bared C57BL/6 mice. Furthermore, a gastrointestinal safety assay also proved the safety of PTX-TP-M. All results demonstrated that the PTX-TP-M exhibited great potential for delivering PTX with increased solubility, oral bioavailability, and anti-cancer activity and this binary mixed micelles drug delivery system has potential to be used clinically.
Collapse
Affiliation(s)
- Jian Hou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing Jiangsu, China
- College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China, and
| | - E. Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing Jiangsu, China
| | - Zhen-Hai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing Jiangsu, China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing Jiangsu, China
| | - Lei Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing Jiangsu, China
- College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China, and
| | - Li Cui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing Jiangsu, China
| | - Zhong-Cheng Ke
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing Jiangsu, China
| | - Xiao-Bin Tan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing Jiangsu, China
| | - Xiao-Bin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing Jiangsu, China
- College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China, and
| | - Huixia Lv
- College of Pharmacy, China Pharmaceutical University, Nanjing Jiangsu, China
| |
Collapse
|
14
|
Li Y, Chen Z, Cui Y, Zhai G, Li L. The construction and characterization of hybrid paclitaxel-in-micelle-in-liposome systems for enhanced oral drug delivery. Colloids Surf B Biointerfaces 2017; 160:572-580. [PMID: 29028605 DOI: 10.1016/j.colsurfb.2017.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/23/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
In this study, novel paclitaxel (PTX) loaded hybrid liposomes for oral PTX delivery were prepared through incorporating PTX loaded polyion complex micelles comprised of positively charged Pluronic F127-Polyethylenimine (PF127-PEI) copolymer and negatively charged sodium cholate (CA) into liposomes consisted of phospholipid molecules. According to the results, this kind of PTX-loaded hybrid liposomes showed improved PTX encapsulation efficiency, sustained PTX release, and enhanced PTX absorption in intestine. The mechanism for enhancing absorption was demonstrated in connection with inhibition of the efflux mediated by multidrug resistance protein, intestinal P-gp. In pharmacokinetic study, the absolute oral bioavailability of PTX loaded in hybrid liposomes had reached to 37.91%. All of these results demonstrated that the application of this novel PTX loaded hybrid liposomes is a strategy with great potential for highly effective oral PTX delivery.
Collapse
Affiliation(s)
- Yimu Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, 250012, China
| | - Zheng Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, 250012, China
| | - Yanan Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| | - Lingbing Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
15
|
Pooja D, Kulhari H, Kuncha M, Rachamalla SS, Adams DJ, Bansal V, Sistla R. Improving Efficacy, Oral Bioavailability, and Delivery of Paclitaxel Using Protein-Grafted Solid Lipid Nanoparticles. Mol Pharm 2016; 13:3903-3912. [DOI: 10.1021/acs.molpharmaceut.6b00691] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Deep Pooja
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Ian
Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory,
School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Faculty of
Pharmacy, College of Technology, Osmania University, Hyderabad, Telangana 500007, India
| | - Hitesh Kulhari
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Health
Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
- Ian
Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory,
School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Madhusudana Kuncha
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Shyam S. Rachamalla
- Faculty of
Pharmacy, College of Technology, Osmania University, Hyderabad, Telangana 500007, India
| | - David J. Adams
- Health
Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
- Illawarra
Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Vipul Bansal
- Health
Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
- Ian
Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory,
School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Ramakrishna Sistla
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| |
Collapse
|
16
|
Ma Y, Fan X, Li L. pH-sensitive polymeric micelles formed by doxorubicin conjugated prodrugs for co-delivery of doxorubicin and paclitaxel. Carbohydr Polym 2016; 137:19-29. [DOI: 10.1016/j.carbpol.2015.10.050] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 01/23/2023]
|
17
|
Nurunnabi M, Khatun Z, Revuri V, Nafiujjaman M, Cha S, Cho S, Moo Huh K, Lee YK. Design and strategies for bile acid mediated therapy and imaging. RSC Adv 2016. [DOI: 10.1039/c6ra10978k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bioinspired materials have received substantial attention across biomedical, biological, and drug delivery research because of their high biocompatibility and lower toxicity compared with synthetic materials.
Collapse
Affiliation(s)
- Md Nurunnabi
- Department of Polymer Science & Engineering
- Chungnam National University
- Daejeon 305-764
- Republic of Korea
- Department of Chemical & Biological Engineering
| | - Zehedina Khatun
- Department of Polymer Science & Engineering
- Chungnam National University
- Daejeon 305-764
- Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Md Nafiujjaman
- Department of Green Bioengineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Seungbin Cha
- Department of Biomedical Chemistry
- Konkuk University
- Chungju-si
- Republic of Korea
| | - Sungpil Cho
- KB Biomed Inc
- Chungju 380-702
- Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science & Engineering
- Chungnam National University
- Daejeon 305-764
- Republic of Korea
| | - Yong-kyu Lee
- Department of Chemical & Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Green Bioengineering
| |
Collapse
|