1
|
Sharma U, Singh T, Agrawal V. Phytochemical Analysis, Isolation, and Characterization of Gentiopicroside from Gentiana kurroo and Cytotoxicity of Biosynthesized Silver Nanoparticles Against HeLa Cells. Appl Biochem Biotechnol 2025; 197:1831-1864. [PMID: 39621225 DOI: 10.1007/s12010-024-05114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 01/06/2025]
Abstract
Gentiana kurroo Royle, a critically endangered Himalayan herb, is valued in treating leucoderma, syphilis, bronchial asthma, hepatitis, etc. The current investigation performed quantitative and qualitative phytochemical analysis of G. kurroo root extracts prepared in chloroform, methanol, and ethyl acetate. The phenolic and flavonoid contents were the highest in methanol and chloroform extract, respectively. Several pharmacologically important compounds were identified through gas chromatography-mass spectrometry. Antioxidant analysis revealed methanolic extract to be the most efficient scavenger of 2,2-diphenyl-1-picrylhydrazyl (IC50 = 114 µg mL-1), hydrogen peroxide (IC50 = 109.9 µg mL-1), and superoxide (IC50 = 74.63 µg mL-1) radicals. Gentiopicroside was isolated from the methanolic root extract through silica-gel column-chromatography, and the characterization of concentrated fractions was achieved employing various analytical techniques. Pertaining to silver nanoparticle (GkAgNPs) synthesis, different physicochemical parameters were optimized and it was observed that root extract treated with silver-nitrate (0.5 mM) at 60 °C and incubated in dark for at least 120 min after initial color change, yielded GkAgNPs optimally. GkAgNPs were anisotropic and polydisperse and exhibited characteristic surface plasmon resonance (424 nm), crystalline face-centered cubic geometry, size (50-300 nm), and zeta-potential (- 16.3 mV). FT-IR spectra indicated the involvement of phenols and flavonoids in AgNPs synthesis. GkAgNPs were evidenced as strongly cytotoxic (IC50 = 1.964 µg mL-1) against HeLa cells and also showed deformed cellular morphology, a significant reduction in viable cell counts and colony-forming efficiency (4.08%). The findings suggest potential applications in drug development for treating serious human diseases. To the best of our knowledge, this study represents the first report on the isolation of gentiopicroside, the bio-fabrication of GkAgNPs using G.kurroo root extract, and their strong bioefficacy against HeLa cells.
Collapse
Affiliation(s)
| | - Tikkam Singh
- Department of Botany, University of Delhi, Delhi, India
| | - Veena Agrawal
- Department of Botany, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Shahzadi S, Fatima S, Ul Ain Q, Shafiq Z, Janjua MRSA. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: a multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Adv 2025; 15:3858-3903. [PMID: 39917042 PMCID: PMC11800103 DOI: 10.1039/d4ra07519f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
A sustainable and viable alternative for conventional chemical and physical approaches is the green production of silver nanoparticles (SNPs) using plant extracts. This review centers on the diverse applications of plant-mediated SNPs in biomedicine, environmental remediation, and photocatalysis. Ocimum sanctum (tulsi), Curcuma longa (turmeric), and Azadirachta indica (neem) and many others are plant extracts that have been used as stabilizing and reducing agents because of their extensive phytochemical profiles. The resulting SNPs have outstanding qualities, such as better photocatalytic degradation of organic dyes like methylene blue, antibacterial efficacy towards multidrug-resistant pathogens, biocompatibility for possible therapeutic applications, and regulated magnitude (10-50 nm), enhanced rigidity, and tunable surface plasmon resonance. Significant effects of plant extract type, amount, and synthesis parameters on the physical and functional characteristics of SNPs are revealed by key findings. Along with highlighting important issues and potential paths forward, this review also underlines the necessity of scalable production, thorough toxicity evaluations, and investigating the incorporation of SNPs into commercial applications. This work highlights how plant-based SNPs can be used to address global environmental and biological concerns by straddling the division between sustainable chemistry and nanotechnology.
Collapse
Affiliation(s)
- Sehar Shahzadi
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Sehrish Fatima
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Qurat Ul Ain
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Zunaira Shafiq
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | | |
Collapse
|
3
|
Lu Y, Qin L, Mao Y, Lnong X, Wei Q, Su J, Chen S, Wei Z, Wang L, Liao X, Zhao L. Antibacterial activity of a polysaccharide isolated from litchi (Litchi chinensis Sonn.) pericarp against Staphylococcus aureus and the mechanism investigation. Int J Biol Macromol 2024; 279:134788. [PMID: 39173786 DOI: 10.1016/j.ijbiomac.2024.134788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The long-term use of antibiotics can cause drug resistance. Natural polysaccharides are a novel means of treating bacterial infections, and the development and utilization of litchi pericarp polysaccharide (LPPs) as a bacteriostatic active substance offer a new research direction for the high-value utilization of litchi by-products. This study revealed that LPPs inhibited Staphylococcus aureus more than Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium, with the minimum inhibitory concentrations of 145, 205, 325, and 445 μg/mL, respectively. The inhibitory activity of LPPs was insignificant for Bacillus subtilis at 505 μg/mL. The assessment of antibacterial mechanisms revealed that LPPs influenced the growth, conductivity, protein, and nucleic acid, reducing sugar, respiratory chain dehydrogenase activity, bacterial lipid peroxidation, intracellular adenosine triphosphate, and extracellular alkaline phosphatase levels of S. aureus. Of note, LPPs could modify the cell wall integrity and cell membrane permeability of S. aureus, resulting in the leakage of intracellular large and small molecules, inhibition of cellular respiratory metabolism, and oxidative losses. These processes exhibited an inhibitory effect and made the bacterium nonfunctional, thereby affecting its growth and metabolism or causing cell death. These findings provide support and insights into the potential application of LPPs as a natural antimicrobial agent.
Collapse
Affiliation(s)
- Yucui Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China
| | - Linyin Qin
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yuanhui Mao
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xianmei Lnong
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qianni Wei
- Beihai Vocational College, Beihai 536000, China
| | - Junwen Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shuwen Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhongshi Wei
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lijing Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiayun Liao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| | - Lichun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| |
Collapse
|
4
|
Bidan AK, Al-Ali ZSA. Evaluation of cytotoxic potential of silver nanoparticles biosynthesized using essential oils of Jasminum sambac against breast cancer and bacterial cells. 3 Biotech 2024; 14:227. [PMID: 39268412 PMCID: PMC11387583 DOI: 10.1007/s13205-024-04058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
Essential oils (EOs) which cover about 91% whole biomolecules formulated from Jasminum sambac leaves based on Gas chromatography-mass spectrometry were employed to identify structures. EOs were observed as good agents in the preparation of Silver nanoparticles (AgNPs) through the proposed mechanism that was attempted to interpret the pathway of the bio-preparation process. The characterization of EOs-AgNPs carried via ultraviolet-visible to reveal surface plasmon resonance at 420 nm, Fourier transform infrared to observe functional groups EOs compared to EOs-AgNPs. X-ray diffraction (XRD) revealed a broad chart owing to the small size of AgNPs in average size less than 10 nm calculated relying on image J software, spherical AgNPs with a small dispersive size observed by transmission electron microscopy. Quasi near spherical surface morphology of EOs-AgNPs had detected by field emission scanning electron microscope. EOs-AgNPs were assessed for their antibacterial potential against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria as suppressing bacterial agents. EOs-AgNPs had their anti-breast cancer MCF-7 cell line ability investigated by DNA fragmentation; cycle flow cytometry (apoptosis) at half maximal inhibitory concentration (IC50) was determined at 260 µg/mL which has been stated by cytotoxicity (MTT) assay. EOs-AgNPs have antibacterial and anticancer therapeutic potential, and it is safe, inexpensive, and scalable in the nanoscale range.
Collapse
Affiliation(s)
- Ali Kadhum Bidan
- Department of Chemistry, Collage of Science, University of Basrah, Basrah, 61001 Iraq
| | | |
Collapse
|
5
|
Duman H, Eker F, Akdaşçi E, Witkowska AM, Bechelany M, Karav S. Silver Nanoparticles: A Comprehensive Review of Synthesis Methods and Chemical and Physical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1527. [PMID: 39330683 PMCID: PMC11434896 DOI: 10.3390/nano14181527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Recently, silver nanoparticles (NPs) have attracted significant attention for being highly desirable nanomaterials in scientific studies as a result of their extraordinary characteristics. They are widely known as effective antibacterial agents that are capable of targeting a wide range of pathogens. Their distinct optical characteristics, such as their localized surface plasmon resonance, enlarge their utilization, particularly in the fields of biosensing and imaging. Also, the capacity to control their surface charge and modify them using biocompatible substances offers improved durability and specific interactions with biological systems. Due to their exceptional stability and minimal chemical reactivity, silver NPs are highly suitable for a diverse array of biological applications. These NPs are produced through chemical, biological, and physical processes, each of which has distinct advantages and disadvantages. Chemical and physical techniques often encounter issues with complicated purification, reactive substances, and excessive energy usage. However, eco-friendly biological approaches exist, even though they require longer processing times. A key factor affecting the stability, size distribution, and purity of the NPs is the synthesis process selected. This review focuses on how essential it is to choose the appropriate synthesis method in order to optimize the characteristics and use of silver NPs.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University of Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (F.E.); (E.A.)
| |
Collapse
|
6
|
Shayo GM, Elimbinzi E, Shao GN. Preparation methods, applications, toxicity and mechanisms of silver nanoparticles as bactericidal agent and superiority of green synthesis method. Heliyon 2024; 10:e36539. [PMID: 39263137 PMCID: PMC11385776 DOI: 10.1016/j.heliyon.2024.e36539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Silver nanoparticles (SNPs) are a type of nanomaterial with wide applications in water treatment, medicine, food packaging, and industrial processes. Their unique optical, electrical, thermal conductivity, and biological properties distinguish them from other metal ions and liken them to noble metals like gold and copper. The present review explores the diverse applications, preparation techniques, mechanism of action of SNPs, and properties of SNPs focusing on their bactericidal activities and potential impacts on human health. Different preparation methods, encompassing chemical, physical, and biological techniques, were reviewed and analyzed to comprehend their effect on the properties and applications of SNPs. Studies revealed that the SNPs exhibit excellent antibactericidal properties. Mechanisms underlying their antimicrobial effects were explored, primarily focusing on pathogen-scavenging activities. Despite the promising benefits of SNPs, their potential toxicity to human health must be carefully managed. Regulatory standards, such as those set by WHO and USEPA; establish a maximum tolerable limit of 0.1 mg/L to mitigate health risks associated with SNP exposure. It is recommended to continue research into safer applications and alternative formulations of SNPs to minimize potential health risks while maximizing their beneficial applications across different industries.
Collapse
Affiliation(s)
- Godfrey Michael Shayo
- University of Dar es Salaam, Mkwawa College, Department of Chemistry, P.O. Box 2513, Iringa, Tanzania
| | - Elianaso Elimbinzi
- University of Dar es Salaam, Mkwawa College, Department of Chemistry, P.O. Box 2513, Iringa, Tanzania
| | - Godlisten N Shao
- University of Dar es Salaam, Mkwawa College, Department of Chemistry, P.O. Box 2513, Iringa, Tanzania
| |
Collapse
|
7
|
Deng J, Yuan S, Pan W, Li Q, Chen Z. Nanotherapy to Reshape the Tumor Microenvironment: A New Strategy for Prostate Cancer Treatment. ACS OMEGA 2024; 9:26878-26899. [PMID: 38947792 PMCID: PMC11209918 DOI: 10.1021/acsomega.4c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer in males worldwide. Androgen deprivation therapy (ADT) is the primary treatment method used for PCa. Although more effective androgen synthesis and antiandrogen inhibitors have been developed for clinical practice, hormone resistance increases the incidence of ADT-insensitive prostate cancer and poor prognoses. The tumor microenvironment (TME) has become a research hotspot with efforts to identify treatment targets based on the characteristics of the TME to improve prognosis. Herein, we introduce the basic characteristics of the PCa TME and the side effects of traditional prostate cancer treatments. We further highlight the emergence of novel nanotherapy strategies, their therapeutic mechanisms, and their effects on the PCa microenvironment. With further research, clinical applications of nanotherapy for PCa are expected in the near future. Collectively, this Review provides a valuable resource regarding the various nanotherapy types, demonstrating their broad clinical prospects to improve the quality of life in patients with PCa.
Collapse
Affiliation(s)
- Juan Deng
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
- The
First Clinical College of Guangdong Medical University, Zhanjiang, 524023, China
| | - Shaofei Yuan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Wenjie Pan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Qimeng Li
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Zhonglin Chen
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| |
Collapse
|
8
|
Vaid P, Saini AK, Gupta RK, Sinha ES, Sharma D, Alsanie WF, Thakur VK, Saini RV. Sustainable Nanoparticles from Stephania glabra and Analysis of Their Anticancer Potential on 2D and 3D Models of Prostate Cancer. Appl Biochem Biotechnol 2024; 196:3511-3533. [PMID: 37682510 DOI: 10.1007/s12010-023-04700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
In pursuit of a novel effective treatment for prostate cancer, methanolic extract of Stephania glabra tubers (Sg-ME) was utilized to fabricate silver (Sg-AgNP), copper oxide (Sg-CuONP), and silver-copper bimetallic nanoparticles (Sg-BNP). The characterization of the nanoparticles confirmed spherical shape with average diameters of 30.72, 32.19, and 25.59 nm of Sg-AgNP, Sg-CuONP, and Sg-BNP, respectively. Interestingly, these nanoparticles exhibited significant cytotoxicity toward the prostate cancer (PC3) cell line while being non-toxic toward normal cells. The nanoparticles were capable of inducing apoptosis in PC3 cells by enhancing reactive oxygen species (ROS) generation and mitochondrial depolarization. Furthermore, the shrinkage of 3D prostate tumor spheroids was observed after 4 days of treatment with these green nanoparticles. The 3D model system was less susceptible to nanoparticles as compared to the 2D model system. Sg-BNP showed the highest anticancer potential on 2D and 3D prostate cancer models.
Collapse
Affiliation(s)
- Prachi Vaid
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, 173229, H, Solan, .P, India
| | - Adesh K Saini
- Central Research Laboratory and Department of Bio-sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, U, Kanpur, .P, India
| | - Eshu Singhal Sinha
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Deepak Sharma
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Reena V Saini
- Central Research Laboratory and Department of Bio-sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| |
Collapse
|
9
|
Elmetwalli A, Abdel-Monem MO, El-Far AH, Ghaith GS, Albalawi NAN, Hassan J, Ismail NF, El-Sewedy T, Alnamshan MM, ALaqeel NK, Al-Dhuayan IS, Hassan MG. Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment. Med Oncol 2024; 41:106. [PMID: 38575697 PMCID: PMC10995097 DOI: 10.1007/s12032-024-02330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/08/2024] [Indexed: 04/06/2024]
Abstract
Recent advances in nanotechnology have offered novel ways to combat cancer. By utilizing the reducing capabilities of Lactobacillus acidophilus, silver nanoparticles (AgNPs) are synthesized. The anti-cancer properties of AgNPs have been demonstrated in previous studies against several cancer cell lines; it has been hypothesized that these compounds might inhibit AMPK/mTOR signalling and BCL-2 expression. Consequently, the current research used both in vitro and in silico approaches to study whether Lactobacillus acidophilus AgNPs could inhibit cell proliferation autophagy and promote apoptosis in HepG2 cells. The isolated strain was identified as Lactobacillus acidophilus strain RBIM based on 16 s rRNA gene analysis. Based on our research findings, it has been observed that this particular strain can generate increased quantities of AgNPs when subjected to optimal growing conditions. The presence of silanols, carboxylates, phosphonates, and siloxanes on the surface of AgNPs was confirmed using FTIR analysis. AgNPs were configured using UV-visible spectroscopy at 425 nm. In contrast, it was observed that apoptotic cells exhibited orange-coloured bodies due to cellular shrinkage and blebbing initiated by AgNP treatment, compared to non-apoptotic cells. It is worth mentioning that AgNPs exhibited remarkable selectivity in inducing cell death, specifically in HepG2 cells, unlike normal WI-38 cells. The half-maximum inhibitory concentration (IC50) values for HepG2 and WI-38 cells were 4.217 µg/ml and 154.1 µg/ml, respectively. AgNPs induce an upregulation in the synthesis of inflammation-associated cytokines, including (TNF-α and IL-33), within HepG2 cells. AgNPs co-treatment led to higher glutathione levels and activating pro-autophagic genes such as AMPK.Additionally, it resulted in the suppression of mTOR, MMP-9, BCL-2, and α-SMA gene expression. The docking experiments suggest that the binding of AgNPs to the active site of the AMPK enzyme leads to inhibiting its activity. The inhibition of AMPK ultimately results in the suppression of the mechanistic mTOR and triggers apoptosis in HepG2 cells. In conclusion, the results of our study indicate that the utilization of AgNPs may represent a viable strategy for the eradication of liver cancerous cells through the activation of apoptosis and the enhancement of immune system reactions.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Mohamed O Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Gehad S Ghaith
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | | | - Jihan Hassan
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nadia F Ismail
- Health Information Management Program, Biochemistry, Faculty of Health Science Technology, Borg El Arab Technological University, Alexandria, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mashael Mashal Alnamshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Nouf K ALaqeel
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Ibtesam S Al-Dhuayan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Mervat G Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
10
|
Joseph S, Jadav M, Solanki R, Patel S, Pooja D, Kulhari H. Synthesis, characterization, and application of honey stabilized inulin nanoparticles as colon targeting drug delivery carrier. Int J Biol Macromol 2024; 263:130274. [PMID: 38373569 DOI: 10.1016/j.ijbiomac.2024.130274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Inulin (INU) is a versatile natural polysaccharide primarily derived from chicory roots. INU possesses the unique quality of evading digestion or fermentation in the early stages of the human digestive tract, instead reaching the lower colon directly. Exploiting on this distinctive attribute, INU finds application in the creation of targeted carrier systems for delivering drugs tailored to colon-related diseases. This study presents a novel method for synthesizing highly stable and non-aggregatory inulin nanoparticles (INU NPs) by ionotropic gelation method, using calcium chloride as crosslinker and natural honey as a stabilizing agent. Different formulation and process parameters were optimized for the synthesis of monodispersed INU NPs. These INU NPs efficiently encapsulated a hydrophilic drug irinotecan hydrochloride trihydrate (IHT) and drug loaded formulation (IINPs) demonstrated excellent colloidal and storage stabilities. Notably, these IINPs exhibited pH-dependent drug release, suggesting potential for colon-specific drug delivery. Anticancer activity of the NPs was found significantly higher in comparison to IHT through cytotoxicity and apoptosis studies against human colorectal carcinoma cells. Overall, this study revealed that the INU NPs synthesized by ionotropic gelation will be an efficient nanocarrier system for colon-targeted drug delivery due to their exceptional biocompatibility and stability in stomach and upper intestinal conditions.
Collapse
Affiliation(s)
- Subin Joseph
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Deep Pooja
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat 382007, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India.
| |
Collapse
|
11
|
Makauki E, Mtavangu SG, Basu OD, Rwiza M, Machunda R. Facile biosynthesis of Ag-ZnO nanocomposites using Launaea cornuta leaf extract and their antimicrobial activity. DISCOVER NANO 2023; 18:142. [PMID: 37975945 PMCID: PMC10656379 DOI: 10.1186/s11671-023-03925-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The quest to synthesize safe, non-hazardous Ag-ZnO nanoomposites (NCs) with improved physical and chemical properties has necessitated green synthesis approaches. In this research, Launaea cornuta leaf extract was proposed for the green synthesis of Ag-ZnO NCs, wherein the leaf extract was used as a reducing and capping agent. The antibacterial activity of the prepared nanoomposites was investigated against Escherichia coli and Staphylococcus aureus through the disc diffusion method. The influence of the synthesis temperature, pH, and precursor concentration on the synthesis of the Ag-ZnO NCs and antimicrobial efficacy were investigated. The nanoparticles were characterized by ATR-FTIR, XRD, UV-Vis, FESEM, and TEM. The FTIR results indicated the presence of secondary metabolites in Launaea cornuta which assisted the green synthesis of the nanoparticles. The XRD results confirmed the successful synthesis of crystalline Ag-ZnO NCs with an average particle size of 21.51 nm. The SEM and TEM images indicated the synthesized nanoparticles to be spherical in shape. The optimum synthesis conditions for Ag-ZnO NCs were at 70 °C, pH of 7, and 8% silver. Antibacterial activity results show Ag-ZnO NCs to have higher microbial inhibition on E. coli than on S. aureus with the zones of inhibition of 21 ± 1.08 and 19.67 ± 0.47 mm, respectively. Therefore, the results suggest that Launaea cornuta leaf extract can be used for the synthesis of Ag-ZnO NCs.
Collapse
Affiliation(s)
- Elizabeth Makauki
- School of Materials Energy Water and Environmental Sciences, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
| | - Stanslaus George Mtavangu
- Department of Chemical Engineering, Faculty of Engineering Sciences, KU Leuven, Leuven, Belgium
- Department of Chemistry, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Onita D Basu
- Department of Civil and Environmental Engineering, Faculty of Engineering and Design, Carleton University, Ottawa, Canada
| | - Mwemezi Rwiza
- School of Materials Energy Water and Environmental Sciences, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Revocatus Machunda
- School of Materials Energy Water and Environmental Sciences, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
12
|
Golchin A, Maleki M, Alemi F, Malakoti F, Yousefi B. Autophagy-targeted nanoparticles in breast carcinoma: A systematic review. Cell Biol Int 2023; 47:1767-1781. [PMID: 37671447 DOI: 10.1002/cbin.12081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023]
Abstract
Breast cancer is a commonly known cancer type and the leading cause of cancer death among females. One of the unresolved problems in cancer treatment is the increased resistance of the tumor to existing treatments, which is a direct result of apoptotic defects. Calculating an alternative to cell death (autophagy) may be the ultimate solution to maximizing cancer cell death. Our aim in this study was to investigate the potential of free nanoparticles (un-drug-loaded) in the induction or inhibition of autophagy and consider this effect on the therapy process. When the studies met the inclusion criteria, the full texts of all relevant articles were carefully examined and classified. Of the 25 articles included in the analysis, carried out on MCF-7, MDA-MB-231, MDA-MB-231-TXSA, MDA-MB-468, SUM1315, and 4T1 cell lines. Twenty in vitro studies and five in vivo/in vitro studies applied five different autophagy tests: Acridine orange, western blot, Cyto-ID Autophagy Detection Kit, confocal microscope, and quantitative polymerase chain reaction. Nanoparticles (NPs) in the basic format, including Ag, Au, Y2 O3 , Se, ZnO, CuO, Al, Fe, vanadium pentoxide, and liposomes, were prepared in the included articles. Three behaviors of NPs related to autophagy were seen: induction, inhibition, and no action. Screened and presented data suggest that most of the involved free NPs (metallic NPs) in this systematic review had reactive oxygen species-mediated pathways with autophagy induction (36%). Also, PI3K/Akt/mTOR and MAPK/ERK signaling pathways were mentioned in just four studies (16%). An impressive percentage of studies (31%) did not examine the NP-related autophagy pathway.
Collapse
Affiliation(s)
- Asal Golchin
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoumeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Kaushal A, Khurana I, Yadav P, Allawadhi P, Banothu AK, Neeradi D, Thalugula S, Barani PJ, Naik RR, Navik U, Bharani KK, Khurana A. Advances in therapeutic applications of silver nanoparticles. Chem Biol Interact 2023; 382:110590. [PMID: 37268200 DOI: 10.1016/j.cbi.2023.110590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Nanotechnology is one of the most appealing area for developing new applications in biotechnology and medicine. For decades, nanoparticles have been extensively studied for a variety of biomedical applications. Silver has evolved into a potent antibacterial agent that can be used in a variety of nanostructured materials of various shapes and sizes. Silver nanoparticles (AgNP) based antimicrobial compounds are employed in a wide range of applications, including medicinal uses, surface treatment and coatings, the chemical and food industries, and agricultural productivity. When designing formulations for specific applications, the size, shape, and surface area of AgNPs are all crucial structural aspects to consider. Different methods for producing AgNPs with varying sizes and forms that are less harmful have been devised. The anticancer, anti-inflammatory, antibacterial, antiviral, and anti-angiogenic properties of AgNPs have been addressed in this review, as well as their generation and processes. Herein, we have reviewed the advances in therapeutic applications of AgNPs, as well as their limitations and barriers for future applications.
Collapse
Affiliation(s)
- Ashutosh Kaushal
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Dinesh Neeradi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Sunitha Thalugula
- Department of Pharmacology, University College of Pharmaceutical Sciences (UCPS), Kakatiya University, Warangal, 506009, Telangana, India
| | - Percy Jasmine Barani
- Department of Chemistry, Wesley Degree College for Women, Osmania University, Secunderabad, 500025, Telangana, India
| | | | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India.
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany.
| |
Collapse
|
14
|
Villalobos Gutiérrez PT, Muñoz Carrillo JL, Sandoval Salazar C, Viveros Paredes JM, Gutiérrez Coronado O. Functionalized Metal Nanoparticles in Cancer Therapy. Pharmaceutics 2023; 15:1932. [PMID: 37514119 PMCID: PMC10383728 DOI: 10.3390/pharmaceutics15071932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, there are many studies on the application of nanotechnology in therapy. Metallic nanoparticles are promising nanomaterials in cancer therapy; however, functionalization of these nanoparticles with biomolecules has become relevant as their effect on cancer cells is considerably increased by photothermal and photodynamic therapies, drug nanocarriers, and specificity by antibodies, resulting in new therapies that are more specific against different types of cancer. This review describes studies on the effect of functionalized palladium, gold, silver and platinum nanoparticles in the treatment of cancer, these nanoparticles themselves show an anticancer effect. This effect is further enhanced when the NPs are functionalized with either antibodies, DNA, RNA, peptides, proteins, or folic acid and other molecules. These NPs can penetrate the cell and accumulate in the tumor tissue, resulting in a cytotoxic effect through the generation of ROS, the induction of apoptosis, cell cycle arrest, DNA fragmentation, and a photothermal effect. NP-based therapy is a new strategy that can be used synergistically with chemotherapy and radiotherapy to achieve more effective therapies and reduce side effects.
Collapse
Affiliation(s)
| | | | - Cuauhtémoc Sandoval Salazar
- División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico
| | - Juan Manuel Viveros Paredes
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
15
|
Sharifi F, Mohamadi N, Tavakoli Oliaee R, Sharifi I, Doostmohammadi M, Soltanian S, Sharififar F. The potential effect of silver nanoparticles synthesized with Coffea arabica green seeds on Leishmania major proliferation, cytotoxicity activity, and cytokines expression level. J Parasit Dis 2023; 47:131-139. [PMID: 36910317 PMCID: PMC9998787 DOI: 10.1007/s12639-022-01549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
The goal of this study was to analyze the antileishmanial and antibacterial activity of Coffea arabica green seed biosynthesize silver nanoparticles (C. arabica AgNPs), as well as cytotoxicity and cytokine gene expression. UV-vis spectroscopy, FTIR, and FESEM methods used to examine the C. arabica AgNPs. MTT test was used to assess the antileishmanial and cytotoxicity effects. The gene expression level was assessed in NPs-treated J774 cells by qPCR. The synthesized C. arabica AgNPs were in the size range of 20-70 nm, through FESEM pictures. The IC50 values of the NPs were 65. 4 and 47.70 μg/mL against promastigotes and amastigotes of Leishmania major, but these values were 580.1 and 171.1 μg/mL for Glucantime® as the control drug. C. arabica AgNPs represented a significant increase in IL-12P40, as a Th1 cytokine, in comparison to Glucantime® at high concentrations (P < 0.01), whilst IL-10 expression level showed a significant reduction between NPs-treated and Glucantime®-treated macrophages at 250-1000 μg/mL concentrations (P < 0.001). Moreover, the NPs were cytotoxic on cancer cell lines of Hek293, MCF7, and A172 with the CC50 values of 437.2, 116.8, and 72.9 µg/mL, respectively. It showed a significant effect of these NPs against A172 (P < 0.001). Also, the lowest MIC values of the NPs were obtained for Bacillus subtilis and Staphylococcus aureus (204 µg/mL). According to the antileishmanial, anticancer, and antibacterial activity of these NPs, it can considered a bio-agent drug in the future in endemic countries.
Collapse
Affiliation(s)
- Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Neda Mohamadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Tavakoli Oliaee
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Doostmohammadi
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Soltanian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Kose O, Béal D, Motellier S, Pelissier N, Collin-Faure V, Blosi M, Bengalli R, Costa A, Furxhi I, Mantecca P, Carriere M. Physicochemical Transformations of Silver Nanoparticles in the Oro-Gastrointestinal Tract Mildly Affect Their Toxicity to Intestinal Cells In Vitro: An AOP-Oriented Testing Approach. TOXICS 2023; 11:199. [PMID: 36976964 PMCID: PMC10056345 DOI: 10.3390/toxics11030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The widespread use of silver nanoparticles (Ag NPs) in food and consumer products suggests the relevance of human oral exposure to these nanomaterials (NMs) and raises the possibility of adverse effects in the gastrointestinal tract. The aim of this study was to investigate the toxicity of Ag NPs in a human intestinal cell line, either uncoated or coated with polyvinylpyrrolidone (Ag PVP) or hydroxyethylcellulose (Ag HEC) and digested in simulated gastrointestinal fluids. Physicochemical transformations of Ag NPs during the different stages of in vitro digestion were identified prior to toxicity assessment. The strategy for evaluating toxicity was constructed on the basis of adverse outcome pathways (AOPs) showing Ag NPs as stressors. It consisted of assessing Ag NP cytotoxicity, oxidative stress, genotoxicity, perturbation of the cell cycle and apoptosis. Ag NPs caused a concentration-dependent loss of cell viability and increased the intracellular level of reactive oxygen species as well as DNA damage and perturbation of the cell cycle. In vitro digestion of Ag NPs did not significantly modulate their toxicological impact, except for their genotoxicity. Taken together, these results indicate the potential toxicity of ingested Ag NPs, which varied depending on their coating but did not differ from that of non-digested NPs.
Collapse
Affiliation(s)
- Ozge Kose
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| | - David Béal
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| | - Sylvie Motellier
- Univ. Grenoble-Alpes, Lab Measure Securing & Environm, LITEN, DTNM, STDC, CEA, 17 Av Martyrs, 38000 Grenoble, France
| | - Nathalie Pelissier
- Univ. Grenoble-Alpes, Lab of Advanced Characterization for Energy, LITEN, DTNM, STDC, CEA, 17 Av Martyrs, 38000 Grenoble, France
| | - Véronique Collin-Faure
- Univ. Grenoble-Alpes, CEA, CNRS UMR5249, IRIG DIESE CBM, Chem & Biol Met, 38054 Grenoble, France
| | - Magda Blosi
- CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Rossella Bengalli
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Anna Costa
- CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Irini Furxhi
- Transgero Ltd., Newcastle West, V42 V384 Limerick, Ireland
| | - Paride Mantecca
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Marie Carriere
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| |
Collapse
|
17
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|
18
|
Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010463. [PMID: 36615655 PMCID: PMC9823860 DOI: 10.3390/molecules28010463] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
The unique biological and physicochemical characteristics of biogenic (green-synthesized) nanomaterials (NMs) have attracted significant interest in different fields, with applications in the agrochemical, food, medication delivery, cosmetics, cellular imaging, and biomedical industries. To synthesize biogenic nanomaterials, green synthesis techniques use microorganisms, plant extracts, or proteins as bio-capping and bio-reducing agents and their role as bio-nanofactories for material synthesis at the nanoscale size. Green chemistry is environmentally benign, biocompatible, nontoxic, and economically effective. By taking into account the findings from recent investigations, we shed light on the most recent developments in the green synthesis of nanomaterials using different types of microbes and plants. Additionally, we cover different applications of green-synthesized nanomaterials in the food and textile industries, water treatment, and biomedical applications. Furthermore, we discuss the future perspectives of the green synthesis of nanomaterials to advance their production and applications.
Collapse
|
19
|
de Souza Araújo DM, de Almeida AAF, Pirovani CP, Mora-Ocampo IY, Lima Silva JP, Valle Meléndez RR. Molecular, biochemical and micromorphological responses of cacao seedlings of the Parinari series, carrying the lethal gene Luteus-Pa, in the presence and absence of cotyledons. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:550-569. [PMID: 36525937 DOI: 10.1016/j.plaphy.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Investigations of the compatibility between cacao genotypes of the population of the Parinari series (Pa), resulting from the reciprocal crossing of Pa 30 × Pa 169 and Pa 121 × Pa 169, allowed the verification of the occurrence of the recessive lethal single character called Luteus-Pa. These genotypes have this gene in heterozygosity, which when intercross or self-fertilize, segregate in a 3:1 ratio. Normal (NS) and mutant (MS) seedlings grow normally and, after a period of approximately 30 days of age, MS leaves begin to show a metallic yellow color, followed by necrotic spots, and death of the entire seedling, approximately 40 days after the emergency. The work evaluate the molecular, biochemical and micromorphological responses in NS and MS, with and without cotyledons, resulting from the crossing of the Pa 30 × Pa 169 cacao genotypes, aiming to elucidate the possible lethal mechanisms of the homozygous recessive Luteus-Pa. The presence of the lethal gene Luteus-Pa in the seedlings of the cacao genotypes of the population of the Parinari (Pa), with and without cotyledons, resulting from the crossing of Pa 30 × Pa 169, in addition to regulating the synthesis of proteins related to the photosynthetic and stress defense processes, promoted an increase in the synthesis of proteins involved in the glycolic pathway, induced oxidative stress, altered the mobilization of cotyledonary reserves, the integrity of cell membranes, leaf micromorphology and induced the death of seedlings, soon after depletion of protein and carbohydrate reserves, especially in the absence of cotyledons.
Collapse
Affiliation(s)
- D'avila Maria de Souza Araújo
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil
| | - Alex-Alan Furtado de Almeida
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil.
| | - Carlos Priminho Pirovani
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil
| | - Irma Yuliana Mora-Ocampo
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil
| | - João Paulo Lima Silva
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil
| | - Raúl René Valle Meléndez
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil; Executive Commission for the Cacao farming Plan, km 22 Jorge Amado Highway, 45650-780, Ilhéus, BA, Brazil
| |
Collapse
|
20
|
Low Dose of Green Synthesized Silver Nanoparticles is Sufficient to Cause Strong Cytotoxicity via its Cytotoxic Efficiency and Modulatory Effects on the Expression of PIK3CA and KRAS Oncogenes, in Lung and Cervical Cancer Cells. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Mendes C, Thirupathi A, Corrêa MEAB, Gu Y, Silveira PCL. The Use of Metallic Nanoparticles in Wound Healing: New Perspectives. Int J Mol Sci 2022; 23:15376. [PMID: 36499707 PMCID: PMC9740811 DOI: 10.3390/ijms232315376] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic wounds represent a challenge for the health area, as they directly impact patients' quality of life and represent a threat to public health and the global economy due to their high cost of treatment. Alternative strategies must be developed for cost-effective and targeted treatment. In this scenario, the emerging field of nanobiotechnology may provide an alternative platform to develop new therapeutic agents for the chronic wound healing process. This manuscript aims to demonstrate that the application of metallic nanoparticles (gold, silver, copper, and zinc oxide) opened a new chapter in the treatment of wounds, as they have different properties such as drug delivery, antimicrobial activity, and healing acceleration. Furthermore, metallic nanoparticles (NPs) produced through green synthesis ensure less toxicity in biological tissues, and greater safety of applicability, other than adding the effects of NPs with those of extracts.
Collapse
Affiliation(s)
- Carolini Mendes
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Anand Thirupathi
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Maria E A B Corrêa
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Paulo C L Silveira
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| |
Collapse
|
22
|
Al-Otaibi WA, AlMotwaa SM. Oxaliplatin-loaded nanoemulsion containing Teucrium polium L. essential oil induces apoptosis in Colon cancer cell lines through ROS-mediated pathway. Drug Deliv 2022; 29:2190-2205. [PMID: 35815706 PMCID: PMC9278420 DOI: 10.1080/10717544.2022.2096711] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Oxaliplatin (Oxa)-associated adverse side effects have considerably limited the clinical use of the drug in colon cancer therapy. Mutant p53 has diverse mutational profiles in colon cancer, and it influences the potencies of various chemotherapeutic drugs, including Oxa. Thus, it would be highly beneficial to identify an alternative therapeutic strategy that not only reduces the toxicity of Oxa, but also exerts a synergistic effect against colon cancers, regardless of their p53 profiles. The present study was aimed at preparing and optimizing Teucrium polium L. essential oil nanoemulsion (TPO-NANO) and investigating its effect on the sensitivity of colon cancer cells with differences in p53 status (HCT116 wild-type and HT-29 mutant-type) to Oxa. The viability of treated cells was determined and the combination index (CI) was calculated. Morphological changes were determined under inverted microscopy, while percentage apoptosis was assayed using flow cytometry. Intracellular ROS and the protein levels of p53 and Bax were measured. The colony-forming potential of treated cells was determined using colony assay. The size of TPO-NANO was markedly increased from 12.90 ± 0.04 nm to 14.47 ± 0.53 nm after loading Oxa (p ≤ 0.05). The combination (Oxa + TPO-NANO) produced a synergetic effect in HCT116 and HT-29, with CI of 0.94 and 0.88, respectively. Microscopic examination and flow cytometric analysis revealed that cells treated with Oxa + TPO-NANO had a higher percentage of apoptosis than cells exposed to monotherapy. Cumulatively, Oxa exerted an apoptotic effect on wild or mutant p53 colon cancer cells when combined with TPO-NANO, through a mechanism involving ROS-mediated mitochondrial apoptosis.
Collapse
Affiliation(s)
- Waad A Al-Otaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Sahar M AlMotwaa
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
23
|
Introducing a novel chemotherapeutic supplement prepared by silver nanoparticles green-formulated by Salvia officinalis leaf aqueous extract to treat the human oral squamous cell carcinoma. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
25
|
Green formulation, chemical characterization and anti-acute leukemia effects of vanadium nanoparticles containing Foeniculum vulgare extract. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Naseer F, Ahmed M, Majid A, Kamal W, Phull AR. Green nanoparticles as multifunctional nanomedicines: Insights into anti-inflammatory effects, growth signaling and apoptosis mechanism in cancer. Semin Cancer Biol 2022; 86:310-324. [PMID: 35787941 DOI: 10.1016/j.semcancer.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Recently, green nanotechnology got great attention due to their reliable, sustainable, and eco-friendly synthesis protocols. The green nanoparticles (GNPs) are preferred over chemically synthesized nanoparticles owing to less destructive effects associated with the synthesis procedures as well as therapeutic involvement. In this review, we have discussed the applications of GNPs in inflammation-mediated disorders, with special emphasis on cancer, initiated due to oxidative stress and inflammatory cascade. Real-time mechanism based studies on GNPs have suggested their anticancer effects through inducing apoptosis, inhibiting angiogenesis, tissue invasion metastasis, reduced replicative capabilities in addition to target specific different signaling molecules and cascades involved in the development or progression of cancer. Moreover, the association of GNPs with the inhibition or induction of autophagy for the management of cancer has also been discussed. A large number of studies showed the GNPs have multifunctional biomedical properties of theranostic prominence. Therefore, the development of GNPs with naturally established systems could upsurge their definite applications as biomedicines including target specific destruction of the cancerous cells.
Collapse
Affiliation(s)
- Faiza Naseer
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, NUST, Islamabad, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Abdul Majid
- Department of Biochemistry, Shah Abdul Latif University, Khairpur, Pakistan
| | - Warda Kamal
- Biomediotronics, Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Abdul Rehman Phull
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Gyeong gi-do, Republic of Korea.
| |
Collapse
|
27
|
Ahmed AAA, Aldeen TS, Al-Aqil SA, Alaizeri ZM, Megahed S. Synthesis of Trimetallic (Ni-Cu)@Ag Core@Shell Nanoparticles without Stabilizing Materials for Antibacterial Applications. ACS OMEGA 2022; 7:37340-37350. [PMID: 36312413 PMCID: PMC9607666 DOI: 10.1021/acsomega.2c03943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
We report a simple method to prepare colloidal trimetallic (Ni-Cu)@Ag core@shell nanoparticles (NPs) without stabilizing materials. Experimental evidence was found for the successful synthesis of these NPs using X-ray diffraction (XRD), optical spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The presence of core metals (Ni and Cu) was confirmed by elemental analysis using a total reflection X-ray fluorescence (TXRF) analysis. In addition, the absorption spectra of the prepared samples exhibited broad bands compared to the bands of the monometallic NPs, indicating the formation of a core-shell nanostructure. The antibacterial activity of the trimetallic NPs was evaluated against three Gram-negative (Pseudomonas aeruginosa, Escherichia coli, and Salmonella) and two Gram-positive (Streptococcus and Staphylococcus aureus) bacteria on Mueller-Hinton agar. These NPs showed high inhibition of bacterial growth at the low sample concentrations used in this study compared to other nanomaterials. One of the interesting results of the current study is that the inhibition zone of Pseudomonas aeruginosa as a resistant bacterium was high for most NPs. These results make the prepared samples promising candidates for antibiotic material applications.
Collapse
Affiliation(s)
- Abdullah A. A. Ahmed
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar87246, Yemen
| | - Thana S. Aldeen
- Department
of Physics, Faculty of Science, Sana’a
University, Sanaa12544, Yemen
| | - Samar A. Al-Aqil
- Department
of Physics, Faculty of Education & Sciences, Al-Baydha University, Al-Baydha, Yemen
| | - ZabnAllah M. Alaizeri
- Department
of Physics, Faculty of Education & Sciences, Al-Baydha University, Al-Baydha, Yemen
| | - Saad Megahed
- Department
of Physics, Faculty of Science, Al-Azhar
University, Cairo, Egypt
| |
Collapse
|
28
|
Tabrez S, Khan AU, Hoque M, Suhail M, Khan MI, Zughaibi TA. Investigating the anticancer efficacy of biogenic synthesized MgONPs: An in vitro analysis. Front Chem 2022; 10:970193. [PMID: 36186592 PMCID: PMC9520594 DOI: 10.3389/fchem.2022.970193] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
The biogenic approach of synthesizing metal nanoparticles is an exciting and interesting research area with a wide range of applications. The present study reports a simple, convenient, low-cost method for synthesizing magnesium oxide nanoparticles (MgONPs) from pumpkin seed extracts and their anticancer efficacy against ovarian teratocarcinoma cell line (PA-1). The characteristic features of biogenic MgONPs were assessed by UV–visible spectrophotometry (UV–vis), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The formation of spherical NPs with an average size of 100 nm was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, MgONPs exhibit considerable cytotoxicity with an IC50 dose of 12.5 μg/ml. A dose-dependent rise in the induction of apoptosis, ROS formation, and inhibition in the migration of PA-1 cells was observed up to 15 μg/ml concentration, reflecting their significant anticancer potential against ovarian teratocarcinoma cell line. However, additional work, especially in different in vitro and in vivo models, is recommended to find out their real potential before this environment-friendly and cost-effective nanoformulation could be exploited for the benefit of humankind.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Shams Tabrez, ; Azhar U. Khan,
| | - Azhar U. Khan
- Department of Chemistry, School of Life and Basic Sciences, SIILAS CAMPUS, Jaipur National University, Jaipur, India
- *Correspondence: Shams Tabrez, ; Azhar U. Khan,
| | - Mehboob Hoque
- Applied Bio-Chemistry Lab, Department of Biological Sciences, Aliah University, Kolkata, India
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Naguib M, Mekkawy IA, Mahmoud UM, Sayed AEDH. Genotoxic evaluation of silver nanoparticles in catfish Clarias gariepinus erythrocytes; DNA strand breakage using comet assay. SCIENTIFIC AFRICAN 2022; 16:e01260. [DOI: 10.1016/j.sciaf.2022.e01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
30
|
Zhou X, Jin W, Sun H, Li C, Jia J. Perturbation of autophagy: An intrinsic toxicity mechanism of nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153629. [PMID: 35131247 DOI: 10.1016/j.scitotenv.2022.153629] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have been widely used for various purposes due to their unique physicochemical properties. Such widespread applications greatly increase the possibility of human exposure to NPs in various ways. Once entering the human body, NPs may interfere with cellular homeostasis and thus affect the physiological system. As a result, it is necessary to evaluate the potential disturbance of NPs to multiple cell functions, including autophagy. Autophagy is an important cell function to maintain cellular homeostasis, and minimizing the disturbance caused by NP exposures to autophagy is critical to nanosafety. Herein, we summarized the recent research progress in nanotoxicity with particular focuses on the perturbation of NPs to cell autophagy. The basic processes of autophagy and complex relationships between autophagy and major human diseases were further discussed to emphasize the importance of keeping autophagy under control. Moreover, the most recent advances on perturbation of different types of NPs to autophagy were also reviewed. Last but not least, we also discussed major research challenges and potential coping strategies and proposed a safe-by-design strategy towards safer applications of NPs.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Weitao Jin
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Hainan Sun
- Shandong Vocational College of Light Industry, Zibo 255300, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Ullah A, Lim SI. Plant Extract-Based Synthesis of Metallic Nanomaterials, Their Applications, and Safety Concerns. Biotechnol Bioeng 2022; 119:2273-2304. [PMID: 35635495 DOI: 10.1002/bit.28148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022]
Abstract
Nanotechnology has attracted the attention of researchers from different scientific fields because of the escalated properties of nanomaterials compared with the properties of macromolecules. Nanomaterials can be prepared through different approaches involving physical and chemical methods. The development of nanomaterials through plant-based green chemistry approaches is more advantageous than other methods from the perspectives of environmental safety, animal, and human health. The biomolecules and metabolites of plants act as reducing and capping agents for the synthesis of metallic green nanomaterials. Plant-based synthesis is a preferred approach as it is not only cost-effective, easy, safe, clean, and eco-friendly but also provides pure nanomaterials in high yield. Since nanomaterials have antimicrobial and antioxidant potential, green nanomaterials synthesized from plants can be used for a variety of biomedical and environmental remediation applications. Past studies have focused mainly on the overall biogenic synthesis of individual or combinations of metallic nanomaterials and their oxides from different biological sources, including microorganisms and biomolecules. Moreover, from the viewpoint of biomedical applications, the literature is mainly focusing on synthetic nanomaterials. Herein, we discuss the extraction of green molecules and recent developments in the synthesis of different plant-based metallic nanomaterials, including silver, gold, platinum, palladium, copper, zinc, iron, and carbon. Apart from the biomedical applications of metallic nanomaterials, including antimicrobial, anticancer, diagnostic, drug delivery, tissue engineering, and regenerative medicine applications, their environmental remediation potential is also discussed. Furthermore, safety concerns and safety regulations pertaining to green nanomaterials are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.,Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan, 29050, Khyber Pakhtunkhwa, Pakistan
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
32
|
Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, Islam ABMS, Ong HC. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. ENVIRONMENTAL RESEARCH 2022; 204:111967. [PMID: 34450159 DOI: 10.1016/j.envres.2021.111967] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 05/27/2023]
Abstract
Green synthesis approaches of nanomaterials (NMs) have received considerable attention in recent years as it addresses the sustainability issues posed by conventional synthesis methods. However, recent works of literature do not present the complete picture of biogenic NMs. This paper addresses the previous gaps by providing insights into the stability and toxicity of NMs, critically reviewing the various biological agents and solvents required for synthesis, sheds light on the factors that affect biosynthesis, and outlines the applications of NMs across various sectors. Despite the advantages of green synthesis, current methods face challenges with safe and appropriate solvent selection, process parameters that affect the synthesis process, nanomaterial cytotoxicity, bulk production and NM morphology control, tedious maintenance, and knowledge deficiencies. Consequently, the green synthesis of NMs is largely trapped in the laboratory phase. Nevertheless, the environmental friendliness, biocompatibility, and sensitivities of the resulting NMs have wider applications in biomedical science, environmental remediation, and consumer industries. To the scale-up application of biogenic NMs, future research should be focused on understanding the mechanisms of the synthesis processes, identifying more biological and chemical agents that can be used in synthesis, and developing the practicality of green synthesis at the industrial scale, and optimizing the factors affecting the synthesis process.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - Nazifa Rafa
- Environmental Sciences Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | | | - Sidratun Chowdhury
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh; Bangladesh Center for Advanced Studies (BCAS), Bangladesh
| | - Muntasha Nahrin
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - A B M Saiful Islam
- Department of Civil and Construction Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
33
|
Paskeh MDA, Entezari M, Clark C, Zabolian A, Ranjbar E, Farahani MV, Saleki H, Sharifzadeh SO, Far FB, Ashrafizadeh M, Samarghandian S, Khan H, Ghavami S, Zarrabi A, Łos MJ. Targeted regulation of autophagy using nanoparticles: New insight into cancer therapy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166326. [DOI: 10.1016/j.bbadis.2021.166326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/31/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022]
|
34
|
Reactive Oxygen Species-Mediated Cytotoxicity in Liver Carcinoma Cells Induced by Silver Nanoparticles Biosynthesized Using Schinus molle Extract. NANOMATERIALS 2022; 12:nano12010161. [PMID: 35010111 PMCID: PMC8746381 DOI: 10.3390/nano12010161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is ranked as the third most common cause of cancer-related mortality worldwide. Schinus molle (S. mole) L. is an important medicinal plant that contains many bioactive compounds with pharmacological properties. The role of S. molle leaf extract in the biosynthesis of silver nanoparticles (AgNPs) was determined. The biosynthesized AgNPs were thoroughly characterized by UV-vis spectrophotometry, transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. Furthermore, the cytotoxic effect of the biosynthesized AgNPs using S. molle (SMAgNPs) against HepG2 liver cancer cells was investigated. Reactive oxygen species generation, apoptosis induction, DNA damage, and autophagy activity were analyzed. The results clearly showed that the biosynthesized silver nanoparticles inhibited the proliferation of HepG2 by significantly (p < 0.05) inducing oxidative stress, cytotoxicity, DNA damage, apoptosis, and autophagy in a dose- and time-dependent manner. These findings may encourage integrating the potential of natural products and the efficiency of silver nanoparticles for the fabrication of safe, environmentally friendly, and effective anticancer agents.
Collapse
|
35
|
Yang HY, Chen YX, Luo S, He YL, Feng WJ, Sun Y, Chen JJ, Gao K. Cardiac glycosides from Digitalis lanata and their cytotoxic activities. RSC Adv 2022; 12:23240-23251. [PMID: 36090389 PMCID: PMC9380703 DOI: 10.1039/d2ra04464a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiac glycosides (CGs) are good candidates as drug leads in the treatment of cancer because of their structural diversities and potent biological activities. In this study, fifteen CGs including three new ones (1–3) were isolated from Digitalis lanata Ehrh. Their structures were elucidated by HRESIMS, NMR spectroscopic methods, including homonuclear and heteronuclear coupling constant analysis, and acid-catalyzed hydrolysis and derivatization analysis of the sugar chain. The cytotoxic activities of these CGs were evaluated against three human cancer cell lines (A549, HeLa and MCF-7 cell lines), and all of them showed strong activities at nanomolar scale. The flow cytometric analysis indicated that compound 1 induced cell cycle arrest in the G2/M phase. Transcriptome analysis revealed a panel of possible targets for compound 1. RT-PCR and western blot experiments showed that 1 significantly inhibited the expression of vasohibin-2 (VASH2). Moreover, compound 1 restrained angiogenesis in a concentration-dependent manner in the chick embryo chorioallantoic membrane (CAM) model. Cardiac glycosides (CGs) are good candidates as drug leads in the treatment of cancer because of their structural diversities and potent biological activities.![]()
Collapse
Affiliation(s)
- Hong-Ying Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Ya-Xiong Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Yi-Lin He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
- Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Wei-Jiao Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Yue Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Jian-Jun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| |
Collapse
|
36
|
Alam P, Tyagi R, Farah MA, Rehman MT, Hussain A, AlAjmi MF, Siddiqui NA, Al-Anazi KM, Amin S, Mujeeb M, Mir SR. Cytotoxicity and molecular docking analysis of racemolactone I, a new sesquiterpene lactone isolated from Inula racemosa. PHARMACEUTICAL BIOLOGY 2021; 59:941-952. [PMID: 35294328 PMCID: PMC8274518 DOI: 10.1080/13880209.2021.1946090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Traditionally, Inula racemosa Hook. f. (Asteraceae) has been reported to be effective in cancer treatment which motivated the authors to explore the plant for novel anticancer compounds. OBJECTIVE To isolate and characterize new cytotoxic phytoconstituents from I. racemosa roots. MATERIALS AND METHODS The column chromatography of I. racemosa ethyl acetate extract furnished a novel sesquiterpene lactone whose structure was established by NMR (1D/2D), ES-MS and its cytotoxic properties were assessed on HeLa, MDAMB-231, and A549 cell lines using MTT and LDH (lactate dehydrogenase) assays. Further, morphological changes were analyzed by flow cytometry, mitochondrial membrane potential, AO-EtBr dual staining, and comet assay. Molecular docking and simulation were performed using Glide and Desmond softwares, respectively, to validate the mechanism of action. RESULTS The isolated compound was identified as racemolactone I (compound 1). Amongst the cell lines tested, considerable changes were observed in HeLa cells. Compound 1 (IC50 = 0.9 µg/mL) significantly decreased cell viability (82%) concomitantly with high LDH release (76%) at 15 µg/mL. Diverse morphological alterations along with significant increase (9.23%) in apoptotic cells and decrease in viable cells were observed. AO-EtBr dual staining also confirmed the presence of 20% apoptotic cells. A gradual decrease in mitochondrial membrane potential was observed. HeLa cells showed significantly increased comet tail length (48.4 µm), indicating broken DNA strands. In silico studies exhibited that compound 1 binds to the active site of Polo-like kinase-1 and forms a stable complex. CONCLUSIONS Racemolactone I was identified as potential anticancer agent, which can further be confirmed by in vivo investigations.
Collapse
Affiliation(s)
- Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rama Tyagi
- Phyto-Pharmaceutical Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Fahad AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nasir Ali Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd. Mujeeb
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Showkat R. Mir
- Phyto-Pharmaceutical Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
37
|
Viswanathan S, Palaniyandi T, Shanmugam R, M T, Rajendran BK, Sivaji A. Biomedical potential of silver nanoparticles capped with active ingredients of Hypnea valentiae, red algae species. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1992059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Rajeshkumar Shanmugam
- Department of Pharmacology, Saveetha Dental College and Hospital, SIMATS, Chennai, India
| | - Tharani M
- Department of Pharmacology, Saveetha Dental College and Hospital, SIMATS, Chennai, India
| | | | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| |
Collapse
|
38
|
Bilgic E, Tuncel N, Koca T. Radio-sensitivity on MCF-7 cells of silver nanoparticles synthesized by Silybum marianum. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1987460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Erdi Bilgic
- Vocational School of Health Sciences, Department of Medical Services and Techniques, Istanbul Gelisim University, Istanbul, Turkey
| | - Nina Tuncel
- Faculty of Science, Department of Physics, Akdeniz University, Antalya, Turkey
- Faculty of Medicine, Department of Radiation Oncology, Akdeniz University, Antalya, Turkey
| | - Timur Koca
- Faculty of Medicine, Department of Radiation Oncology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
39
|
Chen M, Fang X, Wang Z, Shangguan L, Liu T, Chen C, Liu Z, Ge M, Zhang C, Zheng T, Fang J. Multi-omics analyses on the response mechanisms of 'Shine Muscat' grapevine to low degree of excess copper stress (Low-ECS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117278. [PMID: 33964687 DOI: 10.1016/j.envpol.2021.117278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Copper stress is one of the most severe heavy metal stresses in plants. Grapevine has a relatively higher copper tolerance than other fruit crops. However, there are no reports regarding the tolerance mechanisms of the 'Shine Muscat' ('SM') grape to a low degree of excess copper stress (Low-ECS). Based on the physiological indicators and multi-omics (transcriptome, proteome, metabolome, and microRNAome) data, 8 h (h) after copper treatment was the most severe stress time point. Nonetheless, copper stress was alleviated 64 h after treatment. Cu ion transportation, photosynthesis pathway, antioxidant system, hormone metabolism, and autophagy were the primary response systems in 'SM' grapevine under Low-ECS. Numerous genes and proteins, such as HMA5, ABC transporters, PMM, GME, DHAR, MDHAR, ARGs, and ARPs, played essential roles in the 'SM' grapevine's response to Low-ECS. This work was carried out to gain insights into the multi-omics responses of 'SM' grapevine to Low-ECS. This study provides genetic and agronomic information that will guide better vinery management and breeding copper-resistant grape cultivars.
Collapse
Affiliation(s)
- Mengxia Chen
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Xiang Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zicheng Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China.
| | - Tianhua Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Chun Chen
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zhongjie Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Mengqing Ge
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Chuan Zhang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Ting Zheng
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| |
Collapse
|
40
|
Rahuman HBH, Dhandapani R, Palanivel V, Thangavelu S, Paramasivam R, Muthupandian S. Bioengineered phytomolecules-capped silver nanoparticles using Carissa carandas leaf extract to embed on to urinary catheter to combat UTI pathogens. PLoS One 2021; 16:e0256748. [PMID: 34473763 PMCID: PMC8412375 DOI: 10.1371/journal.pone.0256748] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/14/2021] [Indexed: 12/04/2022] Open
Abstract
Rising incidents of urinary tract infections (UTIs) among catheterized patients is a noteworthy problem in clinic due to their colonization of uropathogens on abiotic surfaces. Herein, we have examined the surface modification of urinary catheter by embedding with eco-friendly synthesized phytomolecules-capped silver nanoparticles (AgNPs) to prevent the invasion and colonization of uropathogens. The preliminary confirmation of AgNPs production in the reaction mixture was witnessed by the colour change and surface resonance plasmon (SRP) band at 410nm by UV–visible spectroscopy. The morphology, size, crystalline nature, and elemental composition of attained AgNPs were further confirmed by the transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) technique, Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The functional groups of AgNPs with stabilization/capped phytochemicals were detected by Fourier-transform infrared spectroscopy (FTIR). Further, antibiofilm activity of synthesized AgNPs against biofilm producers such as Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were determined by viability assays and micrographically. AgNPs coated and coating-free catheters performed to treat with bacterial pathogen to analyze the mat formation and disruption of biofilm formation. Synergistic effect of AgNPs with antibiotic reveals that it can enhance the activity of antibiotics, AgNPs coated catheter revealed that, it has potential antimicrobial activity and antibiofilm activity. In summary, C. carandas leaf extract mediated synthesized AgNPs will open a new avenue and a promising template to embed on urinary catheter to control clinical pathogens.
Collapse
Affiliation(s)
| | - Ranjithkumar Dhandapani
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Velmurugan Palanivel
- Centre for for Material Engineering and Regenerative Medicine Bharath Institute of Higher Education, Chennai, India
- * E-mail: (SM); (VP)
| | | | - Ragul Paramasivam
- Chimertech Innovations LLP, Tamilnadu Veterinary and Animal Science University, Chennai, India
| | - Saravanan Muthupandian
- Division of Biomedical sciences, College of Health Sciences, School of Medicine, Mekelle, Ethiopia
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
- * E-mail: (SM); (VP)
| |
Collapse
|
41
|
A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment. WATER 2021. [DOI: 10.3390/w13162216] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent developments in nanoscience have appreciably modified how diseases are prevented, diagnosed, and treated. Metal nanoparticles, specifically silver nanoparticles (AgNPs), are widely used in bioscience. From time to time, various synthetic methods for the synthesis of AgNPs are reported, i.e., physical, chemical, and photochemical ones. However, among these, most are expensive and not eco-friendly. The physicochemical parameters such as temperature, use of a dispersing agent, surfactant, and others greatly influence the quality and quantity of the synthesized NPs and ultimately affect the material’s properties. Scientists worldwide are trying to synthesize NPs and are devising methods that are easy to apply, eco-friendly, and economical. Among such strategies is the biogenic method, where plants are used as the source of reducing and capping agents. In this review, we intend to debate different strategies of AgNP synthesis. Although, different preparation strategies are in use to synthesize AgNPs such as electron irradiation, optical device ablation, chemical reduction, organic procedures, and photochemical methods. However, biogenic processes are preferably used, as they are environment-friendly and economical. The review covers a comprehensive discussion on the biological activities of AgNPs, such as antimicrobial, anticancer anti-inflammatory, and anti-angiogenic potentials of AgNPs. The use of AgNPs in water treatment and disinfection has also been discussed in detail.
Collapse
|
42
|
Khan MA, Singh D, Ahmad A, Siddique HR. Revisiting inorganic nanoparticles as promising therapeutic agents: A paradigm shift in oncological theranostics. Eur J Pharm Sci 2021; 164:105892. [PMID: 34052295 DOI: 10.1016/j.ejps.2021.105892] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Cancer remains a global health problem largely due to a lack of effective therapies. Major cancer management strategies include chemotherapy, surgical resection, and radiation. Unfortunately, these strategies have a number of limitations, such as non-specific side effects, uneven delivery of the drugs, and lack of proper monitoring technology. Inorganic nanoparticles (NPs) are considered promising agents in treating and tracing cancer due to their unique physicochemical properties such as the controlled release of drugs, bioavailability, biocompatibility, stability, and large surface area. Also, they enhance the solubility of hydrophobic drugs, prolong their circulation time, prevent undesired off-targeting and subsequent side effects, making them efficient particles in cancer theranostics. Promising inorganic-NPs include gold, selenium, silica, and oxide NPs. Further, several techniques are used to modify the surface of inorganic-NPs, making them more efficient for the effective transport of therapeutic cargos to overcome cellular barriers. Thus, inorganic-NPs function effectively, surmounting the intrinsic drawbacks of traditional organic NPs. This mini-review summarizes the significant inorganic-NPs, their properties, surface modifications, cellular uptake, and bio-distributions, along with their potential use in cancer theranostics. We also discuss the promises and challenges faced during the inorganic-NPs mediated therapeutic approach for cancer and these particles' status in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
43
|
Harrath AH, Jalouli M, Oueslati MH, Farah MA, Feriani A, Aldahmash W, Aldawood N, Al-Anazi K, Falodah F, Swelum A, Alwasel S. The flavonoid, kaempferol-3-O-apiofuranosyl-7-O-rhamnopyranosyl, as a potential therapeutic agent for breast cancer with a promoting effect on ovarian function. Phytother Res 2021; 35:6170-6180. [PMID: 33908658 DOI: 10.1002/ptr.7067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022]
Abstract
It is widely known that breast cancer cells eventually develop resistance to hormonal drugs and chemotherapies, which often compromise fertility. This study aimed to investigate the effect of the flavonoid, kaempferol-3-O-apiofuranosyl-7-O-rhamnopyranosyl (KARP), on 1) the viability of MCF-7 breast cancer cells and 2) ovarian function in rats. A dose-dependent decrease in MCF-7 cell survival was observed, and the IC50 value was found to be 48 μg/ml. Cells in the control group or those exposed to increasing concentrations of KARP experienced a similar generation of reactive oxygen species and induction of apoptosis. For the rats, estradiol levels correlated negatively to KARP dosages, although a recovery was obtained at administration of 30 mg/kg per day. Noteworthily, when compared against the control, this dosage led to significant increases in mRNA levels for CYP19, CYP17a, CCND2, GDF9, and INSL3 among the treatment groups, and ER1 and ER2 mRNA levels decreased in a dose-dependent manner. KARP shows great promise as an ideal therapy for breast cancer patients since it induced apoptosis and autophagy in cancerous cells without harming fertility in our animal model. Future investigations on humans are necessary to substantiate these findings and determine its efficacy as a general line of treatment.
Collapse
Affiliation(s)
- Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maroua Jalouli
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences, University of Gafsa, Tunisia
| | - Waleed Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Aldawood
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Falodah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Hou J, Zhao L, Tang H, He X, Ye G, Shi F, Kang M, Chen H, Li Y. Silver Nanoparticles Induced Oxidative Stress and Mitochondrial Injuries Mediated Autophagy in HC11 Cells Through Akt/AMPK/mTOR Pathway. Biol Trace Elem Res 2021; 199:1062-1073. [PMID: 32666434 DOI: 10.1007/s12011-020-02212-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in industrial products, and they have good antibacterial properties, with potential for prevention and treatment of cow mastitis. However, concerns exist about the cytotoxicity of AgNPs. Thus, we have studied the role of autophagy in AgNP-induced cytotoxicity in mouse HC11 mammary epithelium cells. We found that AgNPs injured HC11 cells, with release of lactate dehydrogenase (LDH). AgNPs also induced autophagy in HC11 cells, which was associated with oxidative stress, as indicated by increased reactive oxygen species (ROS) and increased expression of hemoxygenase-1(HO-1) and Nrf2. Mitochondria were altered by AgNPs: mitochondrial membrane potential (MMP) was decreased and the expression of PINK1 and Parkin was increased. AgNPs also increased the expression of p-AMPK and decreased the expression of p-Akt and p-mTOR. The addition of 3-methyl adenine inhibited autophagy and enhanced the cytotoxicity of AgNPs, indicating that autophagy is protective against AgNP-induced cell death. In summary, AgNPs induced protective autophagy in HC11 cells via the Akt/AMPK/mTOR pathway, associated with cellular oxidative stress and mitochondrial alterations. Our research confirms that AgNPs may damage the breast tissue in clinical applications and should be used with caution. Further research is necessary to clarify whether the damage caused by AgNPs will affect the lactation function of the mammary glands and possible residues in milk.
Collapse
Affiliation(s)
- Jin Hou
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Min Kang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
45
|
Devanesan S, Jayamala M, AlSalhi MS, Umamaheshwari S, Ranjitsingh AJA. Antimicrobial and anticancer properties of Carica papaya leaves derived di-methyl flubendazole mediated silver nanoparticles. J Infect Public Health 2021; 14:577-587. [PMID: 33848887 DOI: 10.1016/j.jiph.2021.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In this study, a biologically active molecule, di-methyl flubendazole isolated from the extract of Carica papaya leaves confirmed by using GC-MS, 1H NMR, and 13C NMR analysis was applied to synthesize silver nanoparticles (AgNPs). The AgNPs with plant sources an alternative therapeutic agent for synthetic compound used in cancer chemotherapy. METHODS The AgNPs were characterized using UV, FT-IR, XRD, FESEM with EDX and TEM. The antibacterial effects of AgNPs were determined with agar well diffusion method. The MTT assay used to evaluate the inhibitory effect cell lines. The acridine orange and ethidium bromide and DAPI have used cell morphological effects. RESULTS The AgNPs were mono-crystalline and their size ranged from 7 to 22 nm. AgNPs showed good antibacterial activity against both Gram-positive and Gram-negative bacteria. Studies on the antiproliferative potential of bioinspired AgNPs in cancer cell lines revealed that the antiproliferative effect was much stronger in HepG2 than in MCF-7 and A549 cell lines. Similarly, AgNPs exerted less cytotoxic activity in Vero cells (normal cells). AgNPs-treated cells showed necrosis, apoptotic morphology evidenced by cell shrinkage, membrane blebbing, cell decay, and necrosis. HepG2 cells treated with biosynthesized AgNPs exhibited a G0/G1 phase (52-53.37%) blockage. Compared to the control, AgNP-treated HepG2 cells showed elevated ®-actin levels; however, Bcl-2 was significantly down regulated in AgNP-treated cells, indicating the involvement of Bcl-2 in apoptosis. CONCLUSION Overall, the fact that di-methyl flubendazole-based silver nanoparticles showed a novel and cost-effective natural antitumor and antibacterial agent.
Collapse
Affiliation(s)
- Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Murugesan Jayamala
- Department of Biotechnology, Manonmaniam Sundaranar University, Tamilnadu, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | | | | |
Collapse
|
46
|
Chandraker SK, Lal M, Dhruve P, Singh RP, Shukla R. Cytotoxic, Antimitotic, DNA Binding, Photocatalytic, H 2O 2 Sensing, and Antioxidant Properties of Biofabricated Silver Nanoparticles Using Leaf Extract of Bryophyllum pinnatum (Lam.) Oken. Front Mol Biosci 2021; 7:593040. [PMID: 33585553 PMCID: PMC7876318 DOI: 10.3389/fmolb.2020.593040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Bryophyllum pinnatum is a perennial herb traditionally used in ethnomedicine. In the present report, silver nanoparticles (AgNPs) were synthesized using B. pinnatum leaf extract. BP-AgNPs were confirmed following UV-Vis spectroscopy with SPR peak at 412 nm and further characterized by FTIR, XRD, SEM-EDX, and TEM. Microscopic images confirmed the spherical shape and ~15 nm average size of nanostructures. BP-AgNPs were evaluated for photocatalytic degradation of hazardous dyes (methylene blue and Rhodamine-B) and showed their complete reduction within 100 and 110 min., respectively. BP-AgNPs have emerged as a unique SPR-based novel sensor for the detection of H2O2, which may deliver exciting prospects in clinical and industrial areas. DPPH and ABTS free radical scavenging activity were studied with respective IC50 values of 89 and 259 μg/mL. A strong intercalating interaction of CT-DNA with BP-AgNPs was investigated. Observed chromosomal abnormalities confirm the antimitotic potential of BP-AgNPs in the meristematic root tip. The cytotoxicity of BP-AgNPs against B16F10 (melanoma cell line) and A431 (squamous cell carcinoma cell line), was assessed with respective IC50 values of 59.5 and 96.61 μg/ml after 24 h of treatment. The presented green synthetic approach provides a novel and new door for environmental, industrial, and biomedical applications.
Collapse
Affiliation(s)
- Sandip Kumar Chandraker
- Laboratory of Bio-Resource Technology, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| | - Mishri Lal
- Laboratory of Bio-Resource Technology, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| | - Preeti Dhruve
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P. Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ravindra Shukla
- Laboratory of Bio-Resource Technology, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
47
|
Yang J, Wang Q, Wang C, Yang R, Ahmed M, Kumaran S, Velu P, Li B. Pseudomonas aeruginosa synthesized silver nanoparticles inhibit cell proliferation and induce ROS mediated apoptosis in thyroid cancer cell line (TPC1). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:800-809. [PMID: 32432484 DOI: 10.1080/21691401.2019.1687495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We used cell-free culture filtrate of Pseudomonas aeruginosa as a reducing mediator of AgNO3 to silvernanoparticles (AgNPs) and possibly used as a potential anticancer agent against thyroid cancer cells (TPC1). The bio-generation of AgNPs was firmly established by taking a UV spectrum at 380-500 nm wavelength. The Fourier transform spectrum analysis reveals the association of alcohol, phenol and aromatic functional groups with P. aeruginosa synthesized AgNPs (Ps-AgNPs). By observing under transmission electron microscopy (TEM), the size and structure of the Ps-AgNPs were characterized as the size was 30-70 nm and spherical in shape. The concentration-dependent cytotoxicity of Ps-AgNPs on TPC1 cells was observed and IC50 value was calculated. The alteration of oxidative and antioxidant biomarkers in Ps-AgNPs treated cells were observed. The induced apoptosis was determined by staining the Ps-AgNPs treated cells with DCFH-DA, Rh-123 dye, Acridine Orange (AO) and ethidium bromide (EtBr). Increased level of intracellular reactive oxygen species (ROS) generation and decreased level of mitochondrial membrane potential was observed in Ps-AgNPs treated TPC1 cells. Moreover, the apoptotic morphological changes were explored, which indicates increased apoptosis by inducing cell membrane damage in Ps-AgNPs treated cells. This biogenic approach will enable an effective and significant improvement in nano-oncotherapy.
Collapse
Affiliation(s)
- Jinmei Yang
- Physical Examination Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiang Wang
- Physical Examination Center, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunxiao Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruiyi Yang
- Physical Examination Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Subramanian Kumaran
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to Be University), Chennai, India
| | - Periyannan Velu
- Scigen Research and Innovation Pvt. Ltd, Periyar Technology Business Incubator, Thanjavur, India
| | - Bo Li
- Department of General Surgery, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
48
|
Du L, Zhang R, Yang H, Tang S, Hou Z, Jing J, Lin B, Zhang S, Lu Z, Xue P. Synthesis, characteristics and medical applications of plant nanomaterials. PLANTA 2020; 252:108. [PMID: 33219487 DOI: 10.1007/s00425-020-03509-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
The recent preparations of metal nanoparticles using plant extracts as reducing agents are summarized here. The synthesis and characterization of plant-metal nanomaterials and the progress in antibacterial and anti-inflammatory medical applications are detailed, providing a new vision for plant-based medical applications. The medical application of plant-metal nanoparticles is becoming a research hotspot. Compared with traditional preparation methods, the synthesis of plant-metal nanoparticles is less toxic and more eco-friendly, increasing application potential. Highly efficient plant-metal nanoparticles are usually smaller than 100 nm. This review describes the synthesis, characterization and bioactivities of gold- and silver-plant nanoparticles as examples and clearly explained their antibacterial and anticancer mechanisms. An analysis of actual cases shows that the synthetic method and type of plant extract affect the activities of the products.
Collapse
Affiliation(s)
- Lidong Du
- School of Clinical Medical, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Ruoyu Zhang
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Hanchao Yang
- Affiliated Hospital of Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Shaojian Tang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Zhaohua Hou
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jinjin Jing
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Bingjie Lin
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Shujie Zhang
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Zhong Lu
- School of Clinical Medical, Weifang Medical University, Weifang, 261053, People's Republic of China.
- Affiliated Hospital of Weifang Medical University, Weifang, 261053, People's Republic of China.
| | - Peng Xue
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
49
|
Muszyńska E, Labudda M. Effects of lead, cadmium and zinc on protein changes in Silene vulgaris shoots cultured in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111086. [PMID: 32781345 DOI: 10.1016/j.ecoenv.2020.111086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In the present research, Silene vulgaris as a representative species growing on both unpolluted and heavy metal (HM) polluted terrains were used to identify ecotype-specific responses to metallic stress. Growth, cell ultrastructure and element accumulations were compared between non-metallicolous (NM), calamine (CAL) and serpentine (SER) specimens untreated with HMs and treated with Pb, Cd and Zn ions under in vitro conditions. Moreover, proteins' modifications related to their level, carbonylation and degradations via vacuolar proteases were verified and linked with potential mechanisms to cope with ions toxicity. Our experiment revealed diversified strategy of HM uptake in NM and both metallicolous ecotypes, in which antagonistic relationship of Zn and Pb/Cd ions provided survival benefits for the whole organism. Despite this similarity, growth rate and metabolic pathways induced in CAL and SER shoots varied significantly. Exposition to HMs in CAL culture led to drop in protein level by approximately 16% compared to the control. This parameter nearly correlated with the enhanced activity of proteases at pH 5.2 as well as possible glutamate changes to proline and reduced glutathione, resulting in intensified growth and first signs of cell senescence. In turn, SER shoots were characterized by growth retardation (to 53% of the control), although protein level and carbonylation were not modified, while a deeper insight into protein network showed its remodeling towards production of polyamines and 2-oxoglutarate delivered to the Krebs cycle. Contrary, an uncontrolled HM influx in NM shoots contributed to morpho-structural disorders accompanied by an increase activity of proteases involved in the degradation of oxidized proteins, what pointed to metal-induced autophagy. Taken together, S. vulgaris ecotypes respond to stress by triggering various mechanisms engaged their survival and/or death under HM treatment.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland.
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland
| |
Collapse
|
50
|
Fanoro OT, Oluwafemi OS. Bactericidal Antibacterial Mechanism of Plant Synthesized Silver, Gold and Bimetallic Nanoparticles. Pharmaceutics 2020; 12:E1044. [PMID: 33143388 PMCID: PMC7693967 DOI: 10.3390/pharmaceutics12111044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
As the field of nanomedicine develops and tackles the recent surge in antibiotic resistance, there is a need to have an in-depth understanding and a synergistic view of research on the effectiveness of a metal nanoparticle (NP) as an antibacterial agent especially their mechanisms of action. The constant development of bacterial resistance has led scientists to develop novel antibiotic agents. Silver, gold and its bimetallic combination are one of the most promising metal NPs because they show strong antibacterial activity. In this review we discuss the mode of synthesis and the proposed mechanism of biocidal antibacterial activity of metal NPs. These mechanisms include DNA degradation, protein oxidation, generation of reactive oxygen species, lipid peroxidation, ATP depletion, damage of biomolecules and membrane interaction.
Collapse
Affiliation(s)
- Olufunto T. Fanoro
- Centre for Nanomaterials Sciences Research, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Oluwatobi S. Oluwafemi
- Centre for Nanomaterials Sciences Research, University of Johannesburg, Johannesburg 2028, South Africa;
- Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|