1
|
Ji R, Wang H, Zheng X, Shi D, Tian W, Gao P, Li Y, Wen Y, Wang J, Liu Z, Wong CCL, Chen Y. Tetraspanin 4 Mediates Cholesterol-Dependent Exosome Membrane Protection from Cryodamage. NANO LETTERS 2025. [PMID: 40387525 DOI: 10.1021/acs.nanolett.5c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Exosomes, nanosized extracellular vesicles carrying proteins, lipids, and nucleic acids, hold great potential in therapeutic applications. Cryopreservation, a widely used method for their preservation and transport, often causes irreversible damage. Understanding the molecular mechanisms underlying biomembrane resistance to cryodamage is crucial for advancing cryopreservation techniques. In this study, we find that tetraspanin 4 (TSPAN4) and other tetraspanin family proteins play an essential role in protecting exosomes from cryodamage, likely due to their role in cholesterol binding and membrane microdomain formation. Furthermore, we engineered TSPAN4-loaded exosomes, which demonstrated enhanced cryoprotection while maintaining a similar protein composition and uptake efficiency compared to wild-type exosomes. Our novel cryopreservation strategy, which does not rely on external agents, offers a promising approach for advancing the clinical translation of exosomes as therapeutic agents.
Collapse
Affiliation(s)
- Rui Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
- Peking University First Hospital, Beijing 100034, P. R. China
| | - Hongli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
| | - Xia Zheng
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongxue Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
| | - Wenmin Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
| | - Peizhen Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
| | - Yong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
| | - Yiling Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
| | - Jianjun Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhang Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, P. R. China
| | - Yang Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
- Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
2
|
Rawat S, Arora S, Dhondale MR, Khadilkar M, Kumar S, Agrawal AK. Stability Dynamics of Plant-Based Extracellular Vesicles Drug Delivery. J Xenobiot 2025; 15:55. [PMID: 40278160 PMCID: PMC12028407 DOI: 10.3390/jox15020055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Plant-based extracellular vesicles (PBEVs) have been recognized for their wide range of applications in drug delivery however, the extent of their medicinal applicability depends on how well they are preserved and stored. Assessing their physicochemical properties, such as size, particle concentration, shape, and the activity of their cargo, forms the foundation for determining their stability during storage. Moreover, the evaluation of PBEVs is essential to ensure both safety and efficacy, which are critical for advancing their clinical development. Maintaining the biological activity of EVs during storage is a challenging task, similar to the preservation of cells and other cell-derived products like proteins. However, despite limited studies, it is expected that storing drug-loaded EVs may present fewer challenges compared to cell-based therapies, although some limitations are inevitable. This article provides a comprehensive overview of current knowledge on PBEVs preservation and storage methods, particularly focusing on their role as drug carriers. PBEVs hold promise as potential candidates for oral drug administration due to their effective intestinal absorption and ability to withstand both basic and acidic environments. However, maintaining their preservation and stability during storage is critical. Moreover, this review centers on the isolation, characterization, and storage of PBEVs, exploring the potential advantages they offer. Furthermore, it highlights key areas that require further research to overcome existing challenges and enhance the development of effective preservation and storage methods for therapeutic EVs.
Collapse
Affiliation(s)
- Satyavati Rawat
- Department of Botany, Kurukshetra University, Kurukshetra 136119, Haryana, India;
| | - Sanchit Arora
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (S.A.); (M.R.D.); (M.K.)
| | - Madhukiran R. Dhondale
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (S.A.); (M.R.D.); (M.K.)
| | - Mansi Khadilkar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (S.A.); (M.R.D.); (M.K.)
| | - Sanjeev Kumar
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India;
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (S.A.); (M.R.D.); (M.K.)
| |
Collapse
|
3
|
José Sánchez M, Leivar P, Borrós S, Fornaguera C, Lecina M. Enhanced quantification and cell tracking of dual fluorescent labeled extracellular vesicles. Int J Pharm 2024; 667:124921. [PMID: 39521157 DOI: 10.1016/j.ijpharm.2024.124921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Extracellular Vesicles (EVs) are nanosized particles with significant role in disease pathogenesis and as therapeutic potential. However, the lack of reliable and efficient methods for the characterization, quantification and tracking of EVs, combined with the limitations of detection techniques in differentiating specific EVs subtypes with beneficial properties, makes these process complex and time-consuming. To address this challenge, EVs were engineered using a tricistronic plasmid that encodes fluorescent proteins fused to tetraspanins (eGFP-CD63 and mCherry-CD9), with both fluorophores localized within the luminal space. Double fluorescently labelled small EVs (sEVs) were then produced in a stably transfected HEK293SF-3F6 cell line. The fluorescently labelled sEVs were characterized using a variety of techniques. Protein expression analysis showed that the fused proteins were efficiently produced and incorporated in sEVs, as evidenced by clear fluorescence signal detected. Comparisons of the size distribution and concentration of modified sEVs with controls indicated that sEVs engineering did not affect their biogenesis and morphology. Fluorescently labelled sEVs were then quantified by flow cytometry, allowing to distinguish sEVs from other EVs subtypes or sample particles. The values were then compared to fluorometry measurements, obtaining a linear correlation what enabled a novel sEVs quantification method. The functionality of engineered sEVs was assessed by monitoring their uptake and trafficking in recipient cells, obtaining an efficient internalisation by target cells. Overall, these results demonstrate that the implementation of dual fluorescent methodology is feasible for sEVs characterization, quantification, for in vitro study of EVs interaction with cells, and intercellular communication, as well as a valuable tool in the in vitro development of targeted therapeutic EVs delivery systems.
Collapse
Affiliation(s)
- Maria José Sánchez
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona 08017, Spain
| | - Pablo Leivar
- Laboratory of Biochemistry, Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona 08017, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona 08017, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona 08017, Spain
| | - Martí Lecina
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona 08017, Spain.
| |
Collapse
|
4
|
Ma Y, Wang X, Huang X, He Y, Su T, Niu X, Gao J, Lu F, Chang Q. Radial Egg White Hydrogel Releasing Extracellular Vesicles for Cell Fate Guidance and Accelerated Diabetic Skin Regeneration. Adv Healthc Mater 2024; 13:e2400016. [PMID: 39285803 DOI: 10.1002/adhm.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/01/2024] [Indexed: 12/18/2024]
Abstract
Topology and bioactive molecules are crucial for stimulating cellular and tissue functions. To regulate the chronic wound microenvironment, mono-assembly technology is employed to fabricate a radial egg white hydrogel loaded with lyophilized adipose tissue-extracellular vesicles (radial EWH@L-EVs). The radial architecture not only significantly modified the gene expression of functional cells, but also achieved directional and controlled release kinetics of L-EVs. Through the synergy of topographical and inherent bioactive cues, radial EWH@L-EVs effectively reduced intracellular oxidative stress and promoted the polarization of macrophages toward an anti-inflammatory phenotype during the inflammatory phase. Afterward, radial EWH@L-EVs facilitated the centripetal migration and proliferation of fibroblasts and endothelial cells as the wound transitioned to the proliferative phase. During the latter remodeling phase, radial EWH@L-EVs accelerated the regeneration of granulation tissue, angiogenesis, and collagen deposition, thereby promoting the reorganization chronic wound. Compared with the gold standard collagen scaffold, radial EWH@L-EVs actively accommodated the microenvironment via various functions throughout all stages of diabetic wound healing. This can be attributed to the orientation of topological structures and bioactive molecules, which should be considered of utmost importance in tissue engineering.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Xiaoqi Huang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Yu He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Ting Su
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Xingtang Niu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
5
|
Ahmadian S, Jafari N, Tamadon A, Ghaffarzadeh A, Rahbarghazi R, Mahdipour M. Different storage and freezing protocols for extracellular vesicles: a systematic review. Stem Cell Res Ther 2024; 15:453. [PMID: 39593194 PMCID: PMC11600612 DOI: 10.1186/s13287-024-04005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) have been considered promising tools in regenerative medicine. However, the nanoscale properties of EVs make them sensitive to environmental conditions. Optimal storage protocols are crucial for maintaining EV structural, molecular, and functional integrity. This systematic review aimed to gather evidence on the effects of various storage protocols on EV characteristics and integrity. STRATEGY A comprehensive search was conducted for original studies investigating the impacts of storage temperature, freezing techniques, freeze-thaw cycles, and stabilizing strategies on EV concentration, size distribution, morphology, cargo content, and bioactivity. Results from 50 included studies were analyzed. RESULTS Data indicated that rapid freezing procedures and constant subzero temperatures (optimally - 80 °C) resulted in appropriate EV quantity and cargo preservation. Subjecting EVs to multiple freeze-thaw cycles decreased particle concentrations, RNA content, impaired bioactivity, and increased EV size and aggregation. Electron microscopy revealed vesicle enlargement, and fusion, along with membrane deformation after being exposed to substandard storage protocols. The addition of stabilizers like trehalose helped EVs to maintain integrity. Of note, storage in native biofluids offered improved stability over purified EVs in buffers. CONCLUSION Data emphasize the critical need for precise storage protocols for EVs to ensure reproducible research outcomes and clinical applications. Further studies using reliable methods are necessary to create specific guidelines for improving the stability of EVs in various applications.
Collapse
Affiliation(s)
- Shahin Ahmadian
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Jafari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Tamadon
- Department of Research and Development, PerciaVista R&D Co, Shiraz, Iran
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Hanafy MS, Sandoval MA, Dao HM, Williams RO, Stachowiak JC, Cui Z. Functional dry powders of connexin-containing extracellular vesicles. Int J Pharm 2024; 663:124576. [PMID: 39134288 DOI: 10.1016/j.ijpharm.2024.124576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Extracellular vesicles (EVs) have emerged as a promising drug delivery system. Connectosomes are a specialized type of EVs that contain connexins in their membranes. Connexin is a surface transmembrane protein that forms connexin hemichannels. When a connexin hemichannel on a connectosome docks with another connexin hemichannel of a target cell, they form a gap junction that allows direct intracellular delivery of therapeutic cargos from within the connectosome to the cytoplasm of the recipient cell. In the present study, we tested the feasibility of converting connectosomes into dry powders by (thin-film) freeze-drying to enable their potential storage in temperatures higher than the recommended -80 °C, while maintaining their activity. Connectosomes were isolated from a genetically engineered HeLa cell line that overexpressing connexin-43 subunit protein tagged with red fluorescence protein. To facilitate the testing of the function of the connectosomes, they were loaded with calcein green dye. Calcein green-loaded connectosomes were thin-film freeze-dried with trehalose alone or trehalose and a polyvinylpyrrolidone polymer as lyoprotectant(s) to produce amorphous powders with high glass transition temperatures (>100 °C). Thin-film freeze-drying did not significantly change the morphology and structure of the connectosomes, nor their particle size distribution. Based on data from confocal microscopy, flow cytometry, and fluorescence spectrometry, the connexin hemichannels in the connectosomes reconstituted from the thin-film freeze-dried powder remained functional, allowing the passage of calcein green through the hemichannels and the release of the calcein green from the connectosomes when the channels were opened by chelating calcium in the reconstituted medium. The function of connectosomes was assessed after one month storage at different temperatures. The connexin hemichannels in connectosomes in liquid lost their function when stored at -19.5 ± 2.2 °C or 6.0 ± 0.5 °C for a month, while those in dry powder form remained functional under the same storage conditions. Finally, using doxorubicin-loaded connectosomes, we showed that the connectosomes reconstituted from thin-film freeze-dried powder remained pharmacologically active. These findings demonstrate that (thin-film) freeze-drying represents a viable method to prepare stable and functional powders of EVs that contain connexins in their membranes.
Collapse
Affiliation(s)
- Mahmoud S Hanafy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, United States
| | - Michael A Sandoval
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, United States
| | - Huy M Dao
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, United States
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, Cockrell College of Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, United States.
| |
Collapse
|
7
|
Di Bella MA, Taverna S. Extracellular Vesicles: Diagnostic and Therapeutic Applications in Cancer. BIOLOGY 2024; 13:716. [PMID: 39336143 PMCID: PMC11446462 DOI: 10.3390/biology13090716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
In recent years, knowledge of cell-released extracellular vesicle (EV) functions has undergone rapid growth. EVs are membrane vesicles loaded with proteins, nucleic acids, lipids, and bioactive molecules. Once released into the extracellular space, EVs are delivered to target cells that may go through modifications in physiological or pathological conditions. EVs are nano shuttles with a crucial role in promoting short- and long-distance cell-cell communication. Comprehension of the mechanism that regulates this process is a benefit for both medicine and basic science. Currently, EVs attract immense interest in precision and nanomedicine for their potential use in diagnosis, prognosis, and therapies. This review reports the latest advances in EV studies, focusing on the nature and features of EVs and on conventional and emerging methodologies used for their separation, characterization, and visualization. By searching an extended portion of the relevant literature, this work aims to give a summary of advances in nanomedical applications of EVs. Moreover, concerns that require further studies before translation to clinical applications are discussed.
Collapse
Affiliation(s)
- Maria Antonietta Di Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
8
|
Gabr MM, El-Halawani SM, Refaie AF, Khater SM, Ismail AM, Karras MS, Magar RW, Sayed SE, Kloc M, Uosef A, Sabek OM, Ghoneim MA. Modulation of naïve mesenchymal stromal cells by extracellular vesicles derived from insulin-producing cells: an in vitro study. Sci Rep 2024; 14:17844. [PMID: 39090166 PMCID: PMC11294623 DOI: 10.1038/s41598-024-68104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
This study was to determine whether extracellular vesicles (EVs) derived from insulin-producing cells (IPCs) can modulate naïve mesenchymal stromal cells (MSCs) to become insulin-secreting. MSCs were isolated from human adipose tissue. The cells were then differentiated to generate IPCs by achemical-based induction protocol. EVs were retrieved from the conditioned media of undifferentiated (naïve) MSCs (uneducated EVs) and from that of MSC-derived IPCs (educated EVs) by sequential ultracentrifugation. The obtained EVs were co-cultured with naïve MSCs.The cocultured cells were evaluated by immunofluorescence, flow cytometry, C-peptide nanogold silver-enhanced immunostaining, relative gene expression and their response to a glucose challenge.Immunostaining for naïve MSCs cocultured with educated EVs was positive for insulin, C-peptide, and GAD65. By flow cytometry, the median percentages of insulin-andC-peptide-positive cells were 16.1% and 14.2% respectively. C-peptide nanogoldimmunostaining providedevidence for the intrinsic synthesis of C-peptide. These cells released increasing amounts of insulin and C-peptide in response to increasing glucose concentrations. Gene expression of relevant pancreatic endocrine genes, except for insulin, was modest. In contrast, the results of naïve MSCs co-cultured with uneducated exosomes were negative for insulin, C-peptide, and GAD65. These findings suggest that this approach may overcome the limitations of cell therapy.
Collapse
Affiliation(s)
- Mahmoud M Gabr
- Biotechnology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Ayman F Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Sherry M Khater
- Pathology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Amani M Ismail
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Mary S Karras
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Raghda W Magar
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Shorouk El Sayed
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Omaima M Sabek
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | | |
Collapse
|
9
|
Santos JF, del Rocío Silva-Calpa L, de Souza FG, Pal K. Central Countries' and Brazil's Contributions to Nanotechnology. CURRENT NANOMATERIALS 2024; 9:109-147. [DOI: 10.2174/2405461508666230525124138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 03/14/2023] [Indexed: 01/05/2025]
Abstract
Abstract:
Nanotechnology is a cornerstone of the scientific advances witnessed over the past few
years. Nanotechnology applications are extensively broad, and an overview of the main trends
worldwide can give an insight into the most researched areas and gaps to be covered. This document
presents an overview of the trend topics of the three leading countries studying in this area, as
well as Brazil for comparison. The data mining was made from the Scopus database and analyzed
using the VOSviewer and Voyant Tools software. More than 44.000 indexed articles published
from 2010 to 2020 revealed that the countries responsible for the highest number of published articles
are The United States, China, and India, while Brazil is in the fifteenth position. Thematic
global networks revealed that the standing-out research topics are health science, energy,
wastewater treatment, and electronics. In a temporal observation, the primary topics of research are:
India (2020), which was devoted to facing SARS-COV 2; Brazil (2019), which is developing promising
strategies to combat cancer; China (2018), whit research on nanomedicine and triboelectric
nanogenerators; the United States (2017) and the Global tendencies (2018) are also related to the
development of triboelectric nanogenerators. The collected data are available on GitHub. This study
demonstrates the innovative use of data-mining technologies to gain a comprehensive understanding
of nanotechnology's contributions and trends and highlights the diverse priorities of nations in
this cutting-edge field.
Collapse
Affiliation(s)
- Jonas Farias Santos
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leydi del Rocío Silva-Calpa
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Gomes de Souza
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Macromoléculas Professora Eloisa Mano, Centro de
Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kaushik Pal
- University Center
for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana - Chandigarh State
Hwy, Mohali, Gharuan, 140413 Punjab, India
| |
Collapse
|
10
|
R AB, K SR, Chandran D, Hegde S, Upadhya R, Se PK, Shenoy S, Devi V, Upadhya D. Cell-specific extracellular vesicle-encapsulated exogenous GABA controls seizures in epilepsy. Stem Cell Res Ther 2024; 15:108. [PMID: 38637847 PMCID: PMC11027552 DOI: 10.1186/s13287-024-03721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Epilepsy affects ∼60 million people worldwide. Most antiseizure medications in the market act on voltage-gated sodium or calcium channels, indirectly modulating neurotransmitter GABA or glutamate levels or multiple targets. Earlier studies made significant efforts to directly deliver GABA into the brain with varied success. Herein, we have hypothesized to directly deliver exogenous GABA to the brain with epilepsy through extracellular vesicles (EVs) from human GABA-producing cells and their progenitors as EVs largely mimic their parent cell composition. METHODS Human neural stem cells (NSCs), medial ganglionic eminence (MGE) cells, and GABAergic interneurons (INs) were generated from induced pluripotent stem cells (iPSCs) and characterized. EVs were isolated from NSCs, MGE cells, and INs and characterized for size and distribution, morphological features, and molecular markers. Exogenous GABA was passively loaded to the isolated EVs as a zwitterion at physiological pH, and the encapsulated dose of GABA was quantified. Epilepsy was developed through status epilepticus induction in Fisher rats by administration of repeated low doses of kainic acid. The extent of the seizures was measured for 10 h/ day for 3-6 months by video recording and its evaluation for stage III, IV and V seizures as per Racine scale. EVs from INs, MGE cells, and NSCs encapsulated with exogenous GABA were sequentially tested in the 4th, 5th, and 6th months by intranasal administration in the rats with epilepsy for detailed seizure, behavioral and synapse analysis. In separate experiments, several controls including exogenic GABA alone and EVs from INs and MGE cells were evaluated for seizure-controlling ability. RESULTS Exogenic GABA could enter the brain through EVs. Treatment with EVs from INs and MGE cells encapsulated with GABA significantly reduced total seizures, stage V seizures, and total time spent in seizure activity. EVs from NSCs encapsulated with GABA demonstrated limited seizure control. Exogenic GABA alone and EVs from INs and MGE cells individually failed to control seizures. Further, exogenic GABA with EVs from MGE cells improved depressive behavior while partially improving memory functions. Co-localization studies confirmed exogenous GABA with presynaptic vesicles in the hippocampus, indicating the interaction of exogenous GABA in the brain with epilepsy. CONCLUSION For the first time, the study demonstrated that exogenous GABA could be delivered to the brain through brain cell-derived EVs, which could regulate seizures in temporal lobe epilepsy. It is identified that the cellular origin of EVs plays a vital role in seizure control with exogenous GABA.
Collapse
Affiliation(s)
- Abhijna Ballal R
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shivakumar Reddy K
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Divya Chandran
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sumukha Hegde
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raghavendra Upadhya
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Praveen Kumar Se
- Department of Pharmacology, Manipal Tata Medical College, Jamshedpur, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
11
|
Ghoneim MA, Gabr MM, El-Halawani SM, Refaie AF. Current status of stem cell therapy for type 1 diabetes: a critique and a prospective consideration. Stem Cell Res Ther 2024; 15:23. [PMID: 38281991 PMCID: PMC10823744 DOI: 10.1186/s13287-024-03636-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Over the past decade, there had been progress in the development of cell therapy for insulin-dependent diabetes. Nevertheless, important hurdles that need to be overcome still remain. Protocols for the differentiation of pluripotent stem cells into pancreatic progenitors or fully differentiated β-cells have been developed. The resulting insulin-producing cells can control chemically induced diabetes in rodents and were the subject of several clinical trials. However, these cells are immunogenic and possibly teratogenic for their transplantation, and an immunoisolation device and/or immunosuppression is needed. A growing number of studies have utilized genetic manipulations to produce immune evasive cells. Evidence must be provided that in addition to the expected benefit, gene manipulations should not lead to any unforeseen complications. Mesenchymal stem/stromal cells (MSCs) can provide a viable alternative. MSCs are widely available from many tissues. They can form insulin-producing cells by directed differentiation. Experimentally, evidence has shown that the transplantation of allogenic insulin-producing cells derived from MSCs is associated with a muted allogeneic response that does not interfere with their functionality. This can be explained by the immunomodulatory functions of the MSC subpopulation that did not differentiate into insulin-producing cells. Recently, exosomes derived from naive MSCs have been used in the experimental domain to treat diabetes in rodents with varying degrees of success. Several mechanisms for their beneficial functions were proposed including a reduction in insulin resistance, the promotion of autophagy, and an increase in the T regulatory population. However, euglycemia was not achieved in any of these experiments. We suggest that exosomes derived from β-cells or insulin-producing cells (educated) can provide a better therapeutic effect than those derived from undifferentiated cells.
Collapse
|
12
|
Di Santo R, Niccolini B, Romanò S, Vaccaro M, Di Giacinto F, De Spirito M, Ciasca G. Advancements in Mid-Infrared spectroscopy of extracellular vesicles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123346. [PMID: 37774583 DOI: 10.1016/j.saa.2023.123346] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Extracellular vesicles (EVs) are lipid vesicles secreted by all cells into the extracellular space and act as nanosized biological messengers among cells. They carry a specific molecular cargo, composed of lipids, proteins, nucleic acids, and carbohydrates, which reflects the state of their parent cells. Due to their remarkable structural and compositional heterogeneity, characterizing EVs, particularly from a biochemical perspective, presents complex challenges. In this context, mid-infrared (IR) spectroscopy is emerging as a valuable tool, providing researchers with a comprehensive and label-free spectral fingerprint of EVs in terms of their specific molecular content. This review aims to provide an up-to-date critical overview of the major advancements in mid-IR spectroscopy of extracellular vesicles, encompassing both fundamental and applied research achievements. We also systematically emphasize the new possibilities offered by the integration of emerging cutting-edge IR technologies, such as tip-enhanced and surface-enhanced spectroscopy approaches, along with the growing use of machine learning for data analysis and spectral interpretation. Additionally, to assist researchers in navigating this intricate subject, our manuscript includes a wide and detailed collection of the spectral peaks that have been assigned to EV molecular constituents up to now in the literature.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Vaccaro
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Flavio Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|
13
|
Giovannelli L, Bari E, Jommi C, Tartara F, Armocida D, Garbossa D, Cofano F, Torre ML, Segale L. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact Mater 2023; 29:16-35. [PMID: 37456581 PMCID: PMC10338239 DOI: 10.1016/j.bioactmat.2023.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Neurodegenerative diseases represent a growing burden on healthcare systems worldwide. Mesenchymal stem cells (MSCs) have shown promise as a potential therapy due to their neuroregenerative, neuroprotective, and immunomodulatory properties, which are, however, linked to the bioactive substances they release, collectively known as secretome. This paper provides an overview of the most recent research on the safety and efficacy of MSC-derived secretome and extracellular vesicles (EVs) in clinical (if available) and preclinical models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, Huntington's disease, acute ischemic stroke, and spinal cord injury. The article explores the biologically active substances within MSC-secretome/EVs, the mechanisms responsible for the observed therapeutic effects, and the strategies that may be used to optimize MSC-secretome/EVs production based on specific therapeutic needs. The review concludes with a critical discussion of current clinical trials and a perspective on potential future directions in translating MSC-secretome and EVs into the clinic, specifically regarding how to address the challenges associated with their pharmaceutical manufacturing, including scalability, batch-to-batch consistency, adherence to Good Manufacturing Practices (GMP) guidelines, formulation, and storage, along with quality controls, access to the market and relative costs, value for money and impact on total expenditure.
Collapse
Affiliation(s)
- Lorella Giovannelli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Claudio Jommi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Daniele Armocida
- A.U.O, Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135, Roma, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- PharmaExceed S.r.l, 27100, Pavia, Italy
| | - Lorena Segale
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| |
Collapse
|
14
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Vasileiadi S, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Papageorgiou EG, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. The Arising Role of Extracellular Vesicles in Cholangiocarcinoma: A Rundown of the Current Knowledge Regarding Diagnostic and Therapeutic Approaches. Int J Mol Sci 2023; 24:15563. [PMID: 37958547 PMCID: PMC10649642 DOI: 10.3390/ijms242115563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cholangiocarcinomas (CCAs) constitute a heterogeneous group of highly malignant epithelial tumors arising from the biliary tree. This cluster of malignant tumors includes three distinct entities, the intrahepatic, perihilar, and distal CCAs, which are characterized by different epidemiological and molecular backgrounds, as well as prognosis and therapeutic approaches. The higher incidence of CCA over the last decades, the late diagnostic time that contributes to a high mortality and poor prognosis, as well as its chemoresistance, intensified the efforts of the scientific community for the development of novel diagnostic tools and therapeutic approaches. Extracellular vesicles (EVs) comprise highly heterogenic, multi-sized, membrane-enclosed nanostructures that are secreted by a large variety of cells via different routes of biogenesis. Their role in intercellular communication via their cargo that potentially contributes to disease development and progression, as well as their prospect as diagnostic biomarkers and therapeutic tools, has become the focus of interest of several current studies for several diseases, including CCA. The aim of this review is to give a rundown of the current knowledge regarding the emerging role of EVs in cholangiocarcinogenesis and their future perspectives as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni-Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 115 27 Athens, Greece;
| | - Sofia Vasileiadi
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|
15
|
Susa F, Limongi T, Borgione F, Peiretti S, Vallino M, Cauda V, Pisano R. Comparative Studies of Different Preservation Methods and Relative Freeze-Drying Formulations for Extracellular Vesicle Pharmaceutical Applications. ACS Biomater Sci Eng 2023; 9:5871-5885. [PMID: 37671648 PMCID: PMC10565719 DOI: 10.1021/acsbiomaterials.3c00678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Extracellular vesicles (EVs) have been studied for years for their role as effectors and mediators of cell-to-cell communication and their potential application to develop new and increasingly performing nanotechnological systems for the diagnosis and/or treatment of many diseases. Given all the EVs applications as just isolated, functionalized, or even engineered cellular-derived pharmaceuticals, the standardization of reliable and reproducible methods for their preservation is urgently needed. In this study, we isolated EVs from a healthy blood cell line, B lymphocytes, and compared the effectiveness of different storage methods and relative freeze-drying formulations to preserve some of the most important EVs' key features, i.e., concentration, mean size, protein content, and surface antigen's expression. To develop a preservation method that minimally affects the EVs' integrity and functionality, we applied the freeze-drying process in combination with different excipients. Since EVs are isolated not only from body fluids but also from culture media conditioned by the cells growing there, we decided to test both the effects of the traditional pharmaceutical excipient and of biological media to develop EVs solidified products with desirable appearance and performance properties. Results showed that some of the tested excipients, i.e., sugars in combination with dextran and glycine, successfully maintained the stability and integrity of EVs upon lyophilization. In addition, to evaluate the preservation of the EVs' biological activity, we assessed the cytotoxicity and internalization ability of the reconstituted EVs in healthy (B lymphocytes) and tumoral (Burkitt's lymphoma) cells. Reconstituted EVs demonstrated toxicity only toward the cancerous cells, opening new therapeutic opportunities for the oncological field. Furthermore, our study showed how some biological or cellular-conditioned fluids, commonly used in the field of cell cultures, can act not only as cryoprotectants but also as active pharmaceutical ingredients, significantly tuning the therapeutic effect of EVs, even increasing their cellular internalization.
Collapse
Affiliation(s)
- Francesca Susa
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Tania Limongi
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Francesca Borgione
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Silvia Peiretti
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marta Vallino
- Consiglio
Nazionale delle Ricerche di Torino, Strada delle Cacce 73, 10129 Turin, Italy
| | - Valentina Cauda
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Roberto Pisano
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|