1
|
Jittham R, Putdon N, Uyama H, Hsu YI, Theerakulpisut S, Okhawilai M, Srikhao N, Kasemsiri P. Injectable gelatin/modified starch waste hydrogels containing metal-phenolic network derived from phenol-rich spent coffee grounds for self-healing and pH-responsive drug release. Int J Biol Macromol 2025; 307:141774. [PMID: 40054817 DOI: 10.1016/j.ijbiomac.2025.141774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Injectable hydrogels hold promise for drug delivery and biomedical applications but often lack multifunctional properties such as antibacterial activity, self-adhesion, and controlled drug release. This study developed a multifunctional gelatin-based hydrogel using modified cassava starch waste (CSW) and a metal-phenolic complex from spent coffee grounds (ex-SCG). The CSW was used to prepare aldehyde starch (DAS), while ferric ions formed metal-ligand bonds with phenolic compounds extracted from ex-SCG. The injectable hydrogel's properties were evaluated based on metal coordination complex with Fe3+ (ex-SCG-Fe3+) content. The presence of 1 % ex-SCG-Fe3+ in the gelatin/DAS hydrogel exhibited a minimum inhibitory concentration against both gram-positive and gram-negative bacteria. The adhesive strength of the samples increased from 1.44 ± 0.45 kPa to 6.50 ± 0.12 kPa with the addition of ex-SCG-Fe3+ ranging from 0 to 3 %. The gelatin/DAS hydrogel containing ex-SCG-Fe3+ exhibited better pH-responsive control of drug release compared to the neat gelatin/DAS hydrogel. Additionally, it demonstrated self-healing ability. The presence of metronidazole (MTZ) as a model drug in the gelatin/DAS hydrogel containing ex-SCG-Fe3+ enhanced antibacterial activities but slightly decreased mechanical properties. The obtained injectable hydrogel presents a promising approach, utilizing food by-products as a beneficial material for medical applications.
Collapse
Affiliation(s)
- Rawit Jittham
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Noppanan Putdon
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Manunya Okhawilai
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natwat Srikhao
- Department of Chemical Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Pornnapa Kasemsiri
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
2
|
Gao K, Xu K. Advancements and Prospects of pH-Responsive Hydrogels in Biomedicine. Gels 2025; 11:293. [PMID: 40277729 PMCID: PMC12026617 DOI: 10.3390/gels11040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
As an intelligent polymer material, pH-sensitive hydrogels exhibit the capability to dynamically sense alterations in ambient pH levels and subsequently initiate corresponding physical or chemical responses, including swelling, contraction, degradation, or ion exchange. Given the significant pH variations inherent in human pathophysiological microenvironments, particularly in tumor tissues, inflammatory lesions, and the gastrointestinal system, these smart materials demonstrate remarkable application potential across diverse domains such as targeted drug delivery systems, regenerative medicine engineering, biosensing, and disease diagnostics. Recent breakthroughs in nanotechnology and precision medicine have substantially propelled advancements in the design and application of pH-responsive hydrogels. This review systematically elaborates on the current research progress and future challenges regarding pH-responsive hydrogels in biomedical applications, with particular emphasis on their stimulus-response mechanisms, fabrication methodologies, multifunctional integration strategies, and application scenarios.
Collapse
Affiliation(s)
- Ke Gao
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Ke Xu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Liao Y, Li B, Chen H, Ma Y, Wang F, Huang L, Shen B, Song H, Yue P. Stimuli-responsive mesoporous silica nanoplatforms for smart antibacterial therapies: From single to combination strategies. J Control Release 2025; 378:60-91. [PMID: 39615754 DOI: 10.1016/j.jconrel.2024.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
The demand for new antibacterial therapies is urgent and crucial in the clinical setting because of the growing degree of antibiotic resistance and the limits of conventional antibacterial therapies. Stimuli- responsive nanoplatforms, are sensitive to endogenous or exogenous stimulus (pH, temperature, light, and magnetic fields, etc.) which activate cargo release locally and on-demand, hold great potential in developing next generation personalized precision medicine. For instance, pH-sensitive nanoplatforms can selectively release antibacterial agents in the acidic environment of infection sites. To achieve the stimuli-responsive delivery, mesoporous silica nanoplatforms (MSNs) have demonstrated as prospective candidates for efficient cargo loading and controlled release through strategies such as tunable pore engineering, versatile surface modification/coating, and tailored framework composition. Furthermore, aiming for more precise delivery of MSNs, current research interests are increasingly shifting from single-stimuli antibacterial strategy to integrated strategy that combine multiple-stimulus. In this review, we briefly discuss the microenvironment of bacterial infections and provide a comprehensive summary of current stimuli-responsive strategies, and associated materials design principles of stimuli-responsive mesoporous silica-based smart nanoplatforms (SRMSNs). Additionally, integrative antibacterial strategies with synergistic effects, combining chemodynamic, photodynamic, photothermal, sonodynamic and gas therapies, have also been elaborated. Present research advances and limitations of SRMSNs-based antibacterial therapies, such as limited biodegradability and potential cytotoxicity, have been overviewed with future outlooks presented. This review aims to inspire and guide future research in developing novel antibacterial strategies with integrative solutions.
Collapse
Affiliation(s)
- Yan Liao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hongxin Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yueqin Ma
- Department of Pharmaceutics, 908th Hospital of Joint Logistics Support Force of PLA, Nanchang 330000, China
| | - Fengxia Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Lizhen Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 20139, USA.
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
4
|
Ao F, Yin C, Luo X, Shen W, Ge X, Zheng Y. Controlled dual drug delivery system based on gelatin electrospinning membranes for wound healing promotion. Int J Biol Macromol 2025; 289:138720. [PMID: 39694389 DOI: 10.1016/j.ijbiomac.2024.138720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Skin wound repair is a complex dynamic process. Current dual-drug delivery systems struggle to adapt to the process of wound healing. Therefore, the construction of a dual-drug delivery system with intelligent responsiveness, controllable release, and understanding the repair mechanisms, is a current research challenge. This study described the design of a new gelatin-based dual-drug delivery system (PGDMD) using electric field stimulation to achieve a controlled drug release. In vitro drug release experiments demonstrated PGDMD completed the transition from a fiber membrane state to a gel state during the release process. Quercetin released with a rapid release within the first 60 min and amikacin released over 24 h. The amount of drug released in the same release time was increased mainly through electrostatic action under the effect of the electric field and accelerated the movement of drug molecules. The non-targeted metabolomics analysis revealed that PGDMD mainly reduced inflammation and oxidative stress responses by upregulating the expression of antioxidant-related metabolites, thereby improving the therapeutic effect of rat traumatic skin. In conclusion, the dual-drug delivery system might be potentially applied to high-performance medical devices, pharmaceuticals and other industry products, and provides research ideas and reference for exploring the interaction between biomaterials and the organism.
Collapse
Affiliation(s)
- Fen Ao
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, PR China.
| | - Changyu Yin
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, PR China
| | - Xiaomin Luo
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, PR China.
| | - Wen Shen
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Yan Zheng
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
5
|
Tian L, You X, Liu J, Li Y, Li S, Jin X, Li S, Pan F, Yu Z, Zhang T, Du Z. Schiff Base Mediated Food-Derived Peptide Supramolecular Self-Assembly as Curcumin Carriers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2471-2482. [PMID: 39644243 DOI: 10.1021/acs.jafc.4c08256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The fusion assembly strategy of supramolecular chemistry combined with dynamic covalent chemistry has provided novel insights into the design of precision nutrition and intelligent drug delivery carriers. This work involved the development of a supramolecular self-assembly originating from entropy- and enthalpy-driven dynamic covalent bonding on Schiff bases between egg white-derived peptide Gln-Ile-Gly-Leu-Phe (QIGLF) and glutaraldehyde (GA), denoted QIGLF-GA. The assembly exhibited outstanding assembly characteristics and multiwavelength autofluorescence properties. Benefiting from the potent facilitation of the dynamic covalent interaction of Schiff base on the noncovalent assembly force network, QIGLF-GA was afforded an encapsulation capacity of curcumin (Cur) of more than 22% (≫ 10%) and rationally inhibited P-glycoprotein-mediated cellular efflux and markedly elevated the efficacy of Cur in overcoming the intestinal epithelial absorption barrier to the circulation with the help of endocytosis. Furthermore, QIGLF-GA-Cur features responsive release under weakly acidic conditions, which dramatically contributes to the intracellular bioavailability of Cur.
Collapse
Affiliation(s)
- Longjiang Tian
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xinran You
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuemin Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Cheng Y, Liu X, Fan F, Zhang Y, Cao M, Bai L, Ming H, Chen H, Liu Y, Yu Y, Wang Y. An effective drug-free hydrogel for accelerating the whole healing process of bacteria-infected wounds. Biomater Sci 2025; 13:758-776. [PMID: 39717924 DOI: 10.1039/d4bm01467g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Wound healing is a dynamic and complex process involving hemostasis, inflammation, fibroblast proliferation, and tissue remodeling. This process is highly susceptible to bacterial infection, which often leads to impaired and delayed wound repair. While antibiotic therapy remains the primary clinical approach for treating bacteria-infected wounds, its widespread use poses a significant risk of developing bacterial resistance. Here, a novel drug-free hydrogel was fabricated using polysaccharides and humic acid (HU) to facilitate the healing of bacteria-infected wounds. Specifically, hyaluronic acid (HA) was modified via oxidation with sodium periodate, introducing aldehyde groups along its main chains. Pectin (PT) was grafted with amino groups on its side chains through an amidation reaction with ethylenediamine. HU, a natural organic compound with hemostatic, antioxidant, antibacterial, anti-inflammatory, and photothermal properties, was reduced using sodium borohydride to generate an increased number of phenolic hydroxyl and catechol groups. The resulting hydrogel, called HA-PT/HUOH, was prepared by integrating these three chemically modified biomaterials through dynamic Schiff base cross-linking and hydrogen bonding. The HA-PT/HUOH hydrogel showed excellent injectability, strong bioadhesiveness, rapid self-healing capabilities, and potent photothermal performance. Both in vitro and in vivo studies demonstrated that HA-PT/HUOH significantly accelerated the healing of bacteria-infected wounds by modulating the entire wound-healing process. This included enhancing hemostasis, bacteriostasis, antioxidation, anti-inflammatory responses, fibroblast proliferation, and tissue remodeling. In summary, this multifunctional drug-free hydrogel presents a highly promising solution as a wound dressing for clinical application.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| | - Xingkun Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Furong Fan
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Yinchao Zhang
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Mingxin Cao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Liya Bai
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Hong Ming
- School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Hongqi District, Xinxiang, 453003, China
| | - Hongli Chen
- School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Hongqi District, Xinxiang, 453003, China
| | - Yang Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Hepatobiliary and Pancreatic Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300308, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| | - Yinsong Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
7
|
Zhang B, Hu C, Wang M, Wei H, Li S, Yu H, Wu Y, Wang G, Guo T, Chen H. Facile fabrication of a thermal/pH responsive IPN hydrogel drug carrier based on cellulose and chitosan through simultaneous dual-click strategy. J Colloid Interface Sci 2025; 678:827-841. [PMID: 39217698 DOI: 10.1016/j.jcis.2024.08.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Herein, an interpenetrating network hydrogel (IPN-Gel) based on cellulose and chitosan was synthesized via simultaneous amino-anhydride and azide-alkyne click reaction in water in one pot. The samples were characterized by various analytical methods including FTIR, SEM, XRD, XPS, 1H NMR and so forth. The fabrication conditions were optimized by single factor experiments with water uptake (WU) and gel mass fraction (GMF) as two indexes. The WU and GMF of the IPN-Gel prepared under optimized conditions were 1192.37 % and 74.00 %, respectively. Its WU descended with the ascension in temperature, and first descended and then gradually ascended with the ascension in pH, confirming that the IPN-Gel had thermal/pH dual responsiveness. Using 5-Fu as a model drug, the release behavior of 5-Fu in IPN-Gel was explored. Its release behavior could be regulated by changing temperature and pH values, and it followed the Korsmeyer Peppas model. The viability of 4 T1 cells and HUVEC cells exceeded 80 % after 48 h of incubation at a high concentration of 200 μg/mL IPN-Gel, and hemolytic percentage was below the allowed limit of 5 %. The study provides a new strategy for the preparation of the IPN-Gel with biocompatibility, swelling reversibility and controllable drug release.
Collapse
Affiliation(s)
- Bing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Chunwang Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Mengyuan Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China
| | - Hongliang Wei
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China.
| | - Songmao Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hui Yu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Yuxuan Wu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| |
Collapse
|
8
|
Wang P, Zhang Q, Wang S, Wang D, Yip RCS, Xie W, Chen H. Injectable Salecan/hyaluronic acid-based hydrogels with antibacterial, rapid self-healing, pH-responsive and controllable drug release capability for infected wound repair. Carbohydr Polym 2025; 347:122750. [PMID: 39486979 DOI: 10.1016/j.carbpol.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024]
Abstract
Designing materials for wound dressings with superior therapeutic benefits, self-healing and injectable characteristics is important in clinical practice. Herein, a new self-healing injectable hydrogel was prepared via thermal treatment and dynamic Schiff base reaction by mixing oxidized hyaluronic acid (OHA) and hydrazided Salecan (Sal-ADH). The versatility of the wound dressing was confirmed by studying the inherent rheological properties, high swelling rate, sustained-release behavior of the drug, pH/hyaluronidase-dependent biodegradation, in vitro antimicrobial as well as in vivo wound healing performance. The presence of the antimicrobial drug polyhexamethylene biguanide (PHMB) conferred good antimicrobial properties to the Sal-ADH/OHA/PHMB (SOP) hydrogel, which could effectively prevent wound infection (the width of the inhibition circle of SOP-0.20 hydrogel was 4.97 mm, 5.93 mm for Staphylococcus aureus and Escherichia coli, respectively). The findings suggested that SOP hydrogel exhibited remarkable self-healing and injectability properties, as well as excellent hemostasis and biocompatibility. In vivo experiments indicated that the application of SOP hydrogels would obviously accelerate wound healing and attenuate the inflammatory response while increasing collagen deposition and angiogenesis. Altogether, antibacterial SOP hydrogels with moderate mechanical properties, pH-responsive release, excellent injectability, exceptional self-healing ability and anti-inflammatory effects could expand potential applications of injectable hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Pu Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Qinling Zhang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China
| | - Shuxin Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Donghui Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.
| | - Weidong Xie
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Hao Chen
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University; Weihai Key Laboratory of Medical Conditioning Functional Food Processing Technology, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agro-Products Processing and Storage, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, P. R. China.
| |
Collapse
|
9
|
Zhang W, Hu X, Jiang F, Li Y, Chen W, Zhou T. Preparation of bacterial cellulose/acrylic acid-based pH-responsive smart dressings by graft copolymerization method. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2767-2789. [PMID: 39163367 DOI: 10.1080/09205063.2024.2389689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Conventional wound dressings used in trauma treatment have a single function and insufficient adaptability to the wound environment, making it difficult to meet the complex demands of the healing process. Stimuli-responsive hydrogels can respond specifically to the particular environment of the wound area and realize on-demand responsive release by loading active substances, which can effectively promote wound healing. In this paper, BC/PAA-pH responsive hydrogels (BPPRHs) were prepared by graft copolymerization of acrylic acid (AA) to the end of the molecular chain of bacterial cellulose (BC) network structure. Antibacterial pH-responsive 'smart' dressings were prepared by loading curcumin (Cur) onto the hydrogels. Surface morphology, chemical groups, crystallinity, rheological, and mechanical properties of BPPRHs were analyzed by different characterization methods. The drug release behavior under different physiological conditions and bacteriostatic properties of BPPRH-Cur dressings were also investigated. The results of structural characterization and performance studies show that the hydrogel has a three-dimensional mesh structure and can respond to wound pH in a 'smart' drug release capacity. The drug release behavior of the BPPRH-Cur dressings under different environmental conditions conformed to the logistic and Weibull kinetic models. BPPRH-Cur displayed good antimicrobial activity against common pathogens of wound infections such as E. coli, S. aureus, and P. aeruginosa by destroying the cell membrane and lysing the bacterial cells. This study lays the foundation for the development of new pharmaceutical dressings with positive health, economic and social benefits.
Collapse
Affiliation(s)
- Wen Zhang
- School of Food and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xinyue Hu
- School of Food and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Fei Jiang
- Zhejiang Jiuzhou Pharmaceutical Co, Taizhou, China
| | - Yirui Li
- School of Food and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenhao Chen
- Sichuan Provincial Key Laboratory of Solid State Fermentation Resource Utilization, Yibin University, Sichuan, China
| | - Ting Zhou
- China Certification & Inspection Group Shaanxi Co, LTD, Xi'an, China
| |
Collapse
|
10
|
Pappalardo R, Boffito M, Cassino C, Caccamo V, Chiono V, Ciardelli G. Schiff-Base Cross-Linked Hydrogels Based on Properly Synthesized Poly(ether urethane)s as Potential Drug Delivery Vehicles in the Biomedical Field: Design and Characterization. ACS OMEGA 2024; 9:45774-45788. [PMID: 39583672 PMCID: PMC11579714 DOI: 10.1021/acsomega.4c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 11/26/2024]
Abstract
In situ-forming hydrogels based on the Schiff-base chemistry are promising for drug delivery applications, thanks to their stability under physiological conditions, injectability, self-healing properties, and pH-responsiveness. In this work, two water-soluble poly(ethylene glycol)-based poly(ether urethane)s (PEUs) were engineered. A high-molecular-weight PEU (SHE3350, M̅ n 24 kDa, D 1.7), bearing primary amino groups along each polymeric chain, was synthesized using N-Boc serinol and subjected to an acidic treatment to expose primary amines (ca. 1020 units/gSHE3350). In parallel, a low-molecular-weight PEU (AHE1500, M̅ n 4 kDa, D 1.5) with aldehyde end groups was synthesized by end-capping an isocyanate-terminated prepolymer with 4-hydroxybenzaldehyde, and the aldehyde groups were quantified to be around 1020 units/gAHE1500. Hydrogels were prepared by simply mixing SHE3350 and AHE1500 aqueous solutions and characterized to assess their physico-chemical and rheological properties. Schiff-base bond formation was proved through carbon-13 and proton solid-state NMR spectroscopies. Rheological characterization confirmed the formation of gels with high resistance to applied strain (ca. 1000%). Hydrogels exhibited high absorption ability (ca. 270% increase in wet weight) in physiological-like conditions (i.e., 37 °C and pH 7.4) up to 27 days. In contact with buffer at pH 5, enhanced fluid absorption was observed until dissolution occurred starting from 13 days due to Schiff-base hydrolysis in acidic conditions. Conversely, gels showed a reduced absorption ability at pH 9 due to shrinkage phenomena. Furthermore, they exhibited high permeability and controlled, sustained, and pH-triggered release of a model molecule (i.e., fluorescein isothiocyanate dextran) for up to 17 days. Lastly, the hydrogels showed easy injectability and self-healing ability.
Collapse
Affiliation(s)
- Roberta Pappalardo
- Department
of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Department
of Surgical Sciences, Università
degli Studi di Torino, 10126 Turin, Italy
| | - Monica Boffito
- Department
of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Claudio Cassino
- Department
of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy
| | - Valeria Caccamo
- Department
of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Valeria Chiono
- Department
of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Gianluca Ciardelli
- Department
of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Department
of Life Sciences, Università di Modena
e Reggio Emilia, Via
Campi 287, 41125 Modena, Italy
| |
Collapse
|
11
|
Lv D, Xu Z, Yang H, Rong Y, Zhao Z, Hu Z, Yin R, Guo R, Cao X, Tang B. Hollow Bismuth Nanoparticle-Loaded Gelatin Hydrogel Regulates M2 Polarization of Macrophages to Promote Infected Wound Healing. Biomater Res 2024; 28:0105. [PMID: 39529659 PMCID: PMC11551490 DOI: 10.34133/bmr.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Open wounds face severe bacterial infection, which affects the quality of healing. Photothermal antimicrobial therapy has received increasing attention as a broad-spectrum antimicrobial treatment that can avoid drug resistance. A variety of metallic materials have been used in the development of photothermal agents. However, there are few studies on bismuth as a photothermal agent and its use in tissue repair, so there is still a lack of clear understanding of its biomedical function. Here, a hollow bismuth nanosphere prepared from bismuth metal was developed for drug loading and photothermal antibacterial effect. The photothermal conversion efficiency of the hollow bismuth spheres reached 16.1%, and the bismuth-loaded gelatin-oxidized dextran (ODex)-based hydrogel achieves good antibacterial effects both in vivo and in vitro. The bismuth-loaded hydrogel can also promote the angiogenesis of human umbilical vein endothelial cells (HUVECs) and improve the proliferation of human keratinocytes cells (HaCaT) and the quality of wound healing. This discovery provides a new idea for the application of metal bismuth in the field of tissue repair and regeneration.
Collapse
Affiliation(s)
- Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhongye Xu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hao Yang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yanchao Rong
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zirui Zhao
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhicheng Hu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Rong Yin
- Department of Dermatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering,
Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaoling Cao
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Bing Tang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
12
|
Das IJ, Bal T. pH factors in chronic wound and pH-responsive polysaccharide-based hydrogel dressings. Int J Biol Macromol 2024; 279:135118. [PMID: 39208902 DOI: 10.1016/j.ijbiomac.2024.135118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Chronic wounds present a significant healthcare challenge marked by complexities such as persistent bleeding, inhibited cell proliferation, dysregulated inflammation, vulnerability to infection, and compromised tissue remodeling. Conventional wound dressings often prove inadequate in addressing the intricate requirements of chronic wound healing, leading to slow healing and heightened susceptibility to infections in patients with prolonged medical conditions. Bacterial biofilms in chronic wounds pose an additional challenge due to drug resistance. Advanced wound dressings have emerged as promising tools in expediting the healing process. Among these, pH-responsive polysaccharide-based hydrogels exhibit immense prospect by adapting their functions to dynamic wound conditions. Despite their potential, the current literature lacks a thorough review of these wound dressings. This review bridges this gap by meticulously examining factors related to chronic wounds, current strategies for healing, and the mechanisms and potential applications of pH-responsive hydrogel wound dressings as an emerging therapeutic solution. Special focus is given to their remarkable antibacterial properties and significant self-healing abilities. It further explores the pH-monitoring functions of these dressings, elucidating the associated pH indicators. This synthesis of knowledge aims to guide future research and development in the field of pH-responsive wound dressings, providing valuable insights into their potential applications in wound care.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
13
|
Fu Z, Zou J, Zhong J, Zhan J, Zhang L, Xie X, Zhang L, Li W, He R. Curcumin-Loaded Nanocomposite Hydrogel Dressings for Promoting Infected Wound Healing and Tissue Regeneration. Int J Nanomedicine 2024; 19:10479-10496. [PMID: 39439502 PMCID: PMC11495204 DOI: 10.2147/ijn.s479330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Background The skin regulates body processes. When damaged, it is prone to breeding bacteria, causing inflammation and impeding wound healing. There is an urgent need for new dressings that can combat bacteria to aid in infectious wound repair. Methods In this study, a curcumin-loaded nanocomposite hydrogel dressing (GelMA/AHA-Gel@Cur) with antibacterial properties and strong toughness was synthesized, designed to combine the modified gelatin-based hydrogel (GelMA/AHA) with curcumin-coated gelatin (Gel@Cur) nanoparticles to promote the healing of bacterial infection wounds. Under UV irradiation, methylacrylylated gelatin (GelMA) and aldehyaluronic acid (AHA) formed a composite network hydrogel through radical polymerization and Schiff base reaction. Meanwhile, the residual aldehyde group on the molecular chain of AHA securely locked Gel@Cur nanoparticles in the hydrogel network through Schiff base reaction. Results The addition of Gel@Cur nanoparticles not only enhanced the hydrogel's mechanical strength but also facilitated a sustained, gradual release of curcumin, endowing the composite hydrogel with robust antimicrobial capabilities. In an animal model of infected wounds, the composite hydrogel significantly improved wound closure, healing, and vascularization compared to the control group. Hemocompatibility tests confirmed the hydrogel's safety, with a hemolysis ratio of just 0.45%. Histological evaluation following treatment with the composite hydrogel showed improved tissue architecture, increased collagen deposition, and regeneration of dermal gland structures. Conclusion The GelMA/AHA-Gel@Cur composite hydrogel exhibits excellent mechanical properties, potent antimicrobial activity, and controlled drug release, along with superior cell and hemocompatibility. These characteristics make it a promising material for infected wound repair and a potential candidate for clinical skin regeneration applications.
Collapse
Affiliation(s)
- Zhengzheng Fu
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Jingwen Zou
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Jing Zhong
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Jipang Zhan
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Lian Zhang
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Xiaoru Xie
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Lai Zhang
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
- Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, 510006, People’s Republic of China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, Guangdong Province, 510500, People’s Republic of China
| | - Renliang He
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| |
Collapse
|
14
|
Dacrory S, D'Amora U, Longo A, Hasanin MS, Soriente A, Fasolino I, Kamel S, Al-Shemy MT, Ambrosio L, Scialla S. Chitosan/cellulose nanocrystals/graphene oxide scaffolds as a potential pH-responsive wound dressing: Tuning physico-chemical, pro-regenerative and antimicrobial properties. Int J Biol Macromol 2024; 278:134643. [PMID: 39128733 DOI: 10.1016/j.ijbiomac.2024.134643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Chronic wounds (CWs) treatment still represents a demanding medical challenge. Several intrinsic physiological signals (i.e., pH) help to stimulate and support wound healing. CWs, in fact, are characterized by a predominantly alkaline pH of the exudate, which acidifies as the wound heals. Therefore, pH-responsive wound dressings hold great potential owing to their capability of tuning their functions according to the wound conditions. Herein, porous chitosan (CS)-based scaffolds loaded with cellulose nanocrystals (CNCs) and graphene oxide (GO) were successfully fabricated using a freeze-drying method. CNCs were extracted from bagasse pulps fibers through acid hydrolysis. GO was synthesised by Hummer's method. The scaffolds were then ionically cross-linked using the amino acid L-Arginine (Arg), as a bioactive agent, and tested as potential pH-responsive wound dressing. Notably, the effect of CNCs and GO singly and simultaneously loaded within the CS-Arg scaffolds was investigated. The modulation of CNCs and GO content within CS-Arg scaffolds facilitated the development of scaffolds with an optimal pH-dependent swelling ratio capability and extended degradation time. Furthermore, CS/CNC/GO-Arg scaffolds exhibited tuned biological features, in terms of antimicrobial activity, cellular proliferation/migration ability, and the expression of extracellular matrix specific markers (i.e., elastin and collagen I) related to wound healing in human dermal fibroblasts.
Collapse
Affiliation(s)
- Sawsan Dacrory
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Angela Longo
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt
| | - Mona T Al-Shemy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy.
| |
Collapse
|
15
|
Zhang B, Yan J, Jin Y, Yang Y, Zhao X. Curcumin-shellac nanoparticle-loaded GelMA/SilMA hydrogel for colorectal cancer therapy. Eur J Pharm Biopharm 2024; 202:114409. [PMID: 38996942 DOI: 10.1016/j.ejpb.2024.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
In this study, a novel approach was employed to develop a therapeutic system for colorectal cancer treatment. Specifically, a GelMA/SilMA hydrogel loaded with curcumin-shellac nanoparticles (Cur@Lac NPs) was created. A microfluidic swirl mixer was utilized to formulate stable Cur@Lac NPs, ensuring their consistent and effective encapsulation. The pH-specific release of curcumin from the NPs demonstrated their potential for colon cancer treatment. By carefully regulating the ratio of GelMA (gelatin methacrylate) and SilMA (silk fibroin methacrylate), a GelMA/SilMA dual network hydrogel was generated, offering controlled release and degradation capabilities. The incorporation of SilMA notably enhanced the mechanical properties of the dual network matrix, improving compression resistance and mitigating deformation. This mechanical improvement is crucial for maintaining the structural integrity of the hydrogel during in vivo applications. In comparison to the direct incubation of curcumin, the strategy of encapsulating curcumin into NPs and embedding them within the GelMA/SilMA hydrogel resulted in more controlled release mechanisms. This controlled release was achieved through the disintegration of the NPs and the swelling and degradation of the hydrogel matrix. The encapsulating strategy also demonstrated enhanced cellular uptake of curcumin, leveraging the advantages of both NPs and in-situ hydrogel injection. This combination ensures a more efficient and sustained delivery of the therapeutic agent directly to the tumor site. Overall, this approach holds significant promise as a smart drug delivery system, potentially improving the efficacy of colorectal cancer treatments by providing targeted, controlled, and sustained drug release with enhanced mechanical stability and biocompatibility.
Collapse
Affiliation(s)
- Bo Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jiaxuan Yan
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yi Jin
- Department of Pharmacy, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213000, China; The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Yushun Yang
- Jinhua Advanced Research Institute, Jinhua 321019, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
16
|
Valente K, Boice GN, Polglase C, Belli RG, Bourque E, Suleman A, Brolo A. Synthesis of Gelatin Methacryloyl Analogs and Their Use in the Fabrication of pH-Responsive Microspheres. Pharmaceutics 2024; 16:1016. [PMID: 39204361 PMCID: PMC11360800 DOI: 10.3390/pharmaceutics16081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
pH-responsive hydrogels have numerous applications in tissue engineering, drug delivery systems, and diagnostics. Gelatin methacryloyl (GelMA) is a biocompatible, semi-synthetic polymer prepared from gelatin. When combined with aqueous solvents, GelMA forms hydrogels that have extensive applications in biomedical engineering. GelMA can be produced with different degrees of methacryloyl substitution; however, the synthesis of this polymer has not been tuned towards producing selectively modified materials for single-component pH-responsive hydrogels. In this work, we have explored two different synthetic routes targeting different gelatin functional groups (amine, hydroxyl, and/or carboxyl) to produce two GelMA analogs: gelatin A methacryloyl glycerylester (polymer A) and gelatin B methacrylamide (polymer B). Polymers A and B were used to fabricate pH-responsive hydrogel microspheres in a flow-focusing microfluidic device. At neutral pH, polymer A and B microspheres displayed an average diameter of ~40 µm. At pH 6, microspheres from polymer A showed a swelling ratio of 159.1 ± 11.5%, while at pH 10, a 288.6 ± 11.6% swelling ratio was recorded for polymer B particles.
Collapse
Affiliation(s)
- Karolina Valente
- VoxCell BioInnovation Inc., Victoria, BC V8T 5L2, Canada; (K.V.); (G.N.B.); (C.P.)
| | - Geneviève N. Boice
- VoxCell BioInnovation Inc., Victoria, BC V8T 5L2, Canada; (K.V.); (G.N.B.); (C.P.)
| | - Cameron Polglase
- VoxCell BioInnovation Inc., Victoria, BC V8T 5L2, Canada; (K.V.); (G.N.B.); (C.P.)
| | - Roman G. Belli
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada; (R.G.B.); (E.B.)
| | - Elaina Bourque
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada; (R.G.B.); (E.B.)
| | - Afzal Suleman
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Alexandre Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada; (R.G.B.); (E.B.)
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
17
|
Yang J, Wang Z, Ma C, Tang H, Hao H, Li M, Luo X, Yang M, Gao L, Li J. Advances in Hydrogels of Drug Delivery Systems for the Local Treatment of Brain Tumors. Gels 2024; 10:404. [PMID: 38920950 PMCID: PMC11202553 DOI: 10.3390/gels10060404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
The management of brain tumors presents numerous challenges, despite the employment of multimodal therapies including surgical intervention, radiotherapy, chemotherapy, and immunotherapy. Owing to the distinct location of brain tumors and the presence of the blood-brain barrier (BBB), these tumors exhibit considerable heterogeneity and invasiveness at the histological level. Recent advancements in hydrogel research for the local treatment of brain tumors have sought to overcome the primary challenge of delivering therapeutics past the BBB, thereby ensuring efficient accumulation within brain tumor tissues. This article elaborates on various hydrogel-based delivery vectors, examining their efficacy in the local treatment of brain tumors. Additionally, it reviews the fundamental principles involved in designing intelligent hydrogels that can circumvent the BBB and penetrate larger tumor areas, thereby facilitating precise, controlled drug release. Hydrogel-based drug delivery systems (DDSs) are posited to offer a groundbreaking approach to addressing the challenges and limitations inherent in traditional oncological therapies, which are significantly impeded by the unique structural and pathological characteristics of brain tumors.
Collapse
Affiliation(s)
- Jingru Yang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China;
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Zhijie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Chenyan Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Hongyu Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Haoyang Hao
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Mengyao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Xianwei Luo
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Mingxin Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China;
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| |
Collapse
|
18
|
Pramanik S, Alhomrani M, Alamri AS, Alsanie WF, Nainwal P, Kimothi V, Deepak A, Sargsyan AS. Unveiling the versatility of gelatin methacryloyl hydrogels: a comprehensive journey into biomedical applications. Biomed Mater 2024; 19:042008. [PMID: 38768611 DOI: 10.1088/1748-605x/ad4df7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Gelatin methacryloyl (GelMA) hydrogels have gained significant recognition as versatile biomaterials in the biomedical domain. GelMA hydrogels emulate vital characteristics of the innate extracellular matrix by integrating cell-adhering and matrix metalloproteinase-responsive peptide motifs. These features enable cellular proliferation and spreading within GelMA-based hydrogel scaffolds. Moreover, GelMA displays flexibility in processing, as it experiences crosslinking when exposed to light irradiation, supporting the development of hydrogels with adjustable mechanical characteristics. The drug delivery landscape has been reshaped by GelMA hydrogels, offering a favorable platform for the controlled and sustained release of therapeutic actives. The tunable physicochemical characteristics of GelMA enable precise modulation of the kinetics of drug release, ensuring optimal therapeutic effectiveness. In tissue engineering, GelMA hydrogels perform an essential role in the design of the scaffold, providing a biomimetic environment conducive to cell adhesion, proliferation, and differentiation. Incorporating GelMA in three-dimensional printing further improves its applicability in drug delivery and developing complicated tissue constructs with spatial precision. Wound healing applications showcase GelMA hydrogels as bioactive dressings, fostering a conducive microenvironment for tissue regeneration. The inherent biocompatibility and tunable mechanical characteristics of GelMA provide its efficiency in the closure of wounds and tissue repair. GelMA hydrogels stand at the forefront of biomedical innovation, offering a versatile platform for addressing diverse challenges in drug delivery, tissue engineering, and wound healing. This review provides a comprehensive overview, fostering an in-depth understanding of GelMA hydrogel's potential impact on progressing biomedical sciences.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun 248001, India
| | - Vishwadeepak Kimothi
- Himalayan Institute of Pharmacy and Research, Rajawala, Dehradun, Uttrakhand, India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Armen S Sargsyan
- Scientific and Production Center 'Armbiotechnology' NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
| |
Collapse
|
19
|
Hameed H, Faheem S, Paiva-Santos AC, Sarwar HS, Jamshaid M. A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications. AAPS PharmSciTech 2024; 25:64. [PMID: 38514495 DOI: 10.1208/s12249-024-02786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
As adaptable biomaterials, hydrogels have shown great promise in several industries, which include the delivery of drugs, engineering of tissues, biosensing, and regenerative medicine. These hydrophilic polymer three-dimensional networks have special qualities like increased content of water, soft, flexible nature, as well as biocompatibility, which makes it excellent candidates for simulating the extracellular matrix and promoting cell development and tissue regeneration. With an emphasis on their design concepts, synthesis processes, and characterization procedures, this review paper offers a thorough overview of hydrogels. It covers the various hydrogel material types, such as natural polymers, synthetic polymers, and hybrid hydrogels, as well as their unique characteristics and uses. The improvements in hydrogel-based platforms for controlled drug delivery are examined. It also looks at recent advances in bioprinting methods that use hydrogels to create intricate tissue constructions with exquisite spatial control. The performance of hydrogels is explored through several variables, including mechanical properties, degradation behaviour, and biological interactions, with a focus on the significance of customizing hydrogel qualities for particular applications. This review paper also offers insights into future directions in hydrogel research, including those that promise to advance the discipline, such as stimuli-responsive hydrogels, self-healing hydrogels, and bioactive hydrogels. Generally, the objective of this review paper is to provide readers with a detailed grasp of hydrogels and all of their potential uses, making it an invaluable tool for scientists and researchers studying biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
20
|
Chen X, Cui H, Li H, Wang J, Fu P, Yin J, Tang S, Ke Y. Functionalization of graphene oxide with amphiphilic block copolymer to enhance antibacterial activity. Colloids Surf B Biointerfaces 2024; 234:113690. [PMID: 38086276 DOI: 10.1016/j.colsurfb.2023.113690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Functionalization of GO with an amphiphilic block copolymer is designed with an aim to enhance its biocompatibility, however, long copolymer chains can screen the blade effect of GO to sacrifice its antimicrobial activities. To solve this problem, low molecular weight of poly(ethylene glycol) (PEG), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and their block copolymer were respectively introduced onto GO via an isophorone diisocyanate modified GO as a intermediate, followed by a solvent evaporation of an oil-in-water emulsion treatment (SE treatment) to induce block copolymer into polymer micelle via phase separation to refresh the sharp edges of GO. Block copolymer modified GO possessed similar dispersibility and stability to PEG modified GO, and even higher loading capacity of the hydrophobic drug than PHBV modified GO, illustrating its superior properties to homopolymer. PEG, PHBV and their block copolymer modified GO were nontoxic towards ATDC5 cells while cultured for 3 days and compatible with erythrocytes within 8 h. SE treatment enhanced greatly the loading capacity of the hydrophobic drug and the accumulative release reached 91.3% within 24 h. The inhibition zone of the block copolymer modified GO was 14.1 mm and 14.8 mm against E. coli and S. aureus, comparable to that of PEG modified GO. The bacterial reduction rate of the copolymer micelle modified GO was 87.1% and 82.7% towards E. coli and S. aureus, much greater than that of PEG, PHBV and their block copolymer modified GO at a concentration of 1 mg/mL. The antibiofilm capacity of the copolymer micelle modified GO were equal to that of PEG modified, demonstrating its great promise in tissue engineering application for repair of infected tissue defects.
Collapse
Affiliation(s)
- Xi Chen
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hao Cui
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiayin Wang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pengcheng Fu
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jun Yin
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - ShunQing Tang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yu Ke
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Li Y, Han Y, Li H, Niu X, Zhang D, Wang K. Antimicrobial Hydrogels: Potential Materials for Medical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304047. [PMID: 37752779 DOI: 10.1002/smll.202304047] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Microbial infections based on drug-resistant pathogenic organisms following surgery or trauma and uncontrolled bleeding are the main causes of increased mortality from trauma worldwide. The prevalence of drug-resistant pathogens has led to a significant increase in medical costs and poses a great threat to the normal life of people. This is an important issue in the field of biomedicine, and the emergence of new antimicrobial materials hydrogels holds great promise for solving this problem. Hydrogel is an important material with good biocompatibility, water absorption, oxygen permeability, adhesion, degradation, self-healing, corrosion resistance, and controlled release of drugs as well as structural diversity. Bacteria-disturbing hydrogels have important applications in the direction of surgical treatment, wound dressing, medical device coating, and tissue engineering. This paper reviews the classification of antimicrobial hydrogels, the current status of research, and the potential of antimicrobial hydrogels for one application in biomedicine, and analyzes the current research of hydrogels in biomedical applications from five aspects: metal-loaded hydrogels, drug-loaded hydrogels, carbon-material-loaded hydrogels, hydrogels with fixed antimicrobial activity and biological antimicrobial hydrogels, and provides an outlook on the high antimicrobial activity, biodegradability, biocompatibility, injectability, clinical applicability and future development prospects of hydrogels in this field.
Collapse
Affiliation(s)
- Yanni Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Yujia Han
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Deyi Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
22
|
Nita LE, Nacu I, Ghilan A, Rusu AG, Şerban AM, Bercea M, Verestiuc L, Chiriac AP. Evaluation of hyaluronic acid-polymacrolactone hydrogels with 3D printing capacity. Int J Biol Macromol 2024; 256:128279. [PMID: 37992923 DOI: 10.1016/j.ijbiomac.2023.128279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The implementation of personalized patches, tailored to individual genetic profiles and containing specific amounts of bioactive substances, has the potential to produce a transformative impact within the medical sector. There are several methods of designing scaffolds in the context of personalized medicine, with three-dimensional (3D) printing emerging as a pivotal technique. This innovative approach can be used to construct a wide variety of pharmaceutical dosage forms, characterized by variations in shape, release profile, and drug combinations, allowing precise dose individualization and the incorporation of multiple therapeutic agents. To expand the potential and applicability of personalized medicine, particularly with regards to indomethacin (IND), a drug necessitating individualized dosing, this study proposes the development of new transdermal delivery systems for IND based on hyaluronic acid and a polylactone synthesized within our research group, namely poly(ethylene brasilate-co-squaric acid) (PEBSA). The obtained systems were characterized in terms of their swelling capacity, rheological behavior, and morphological characteristics that highlighted the formation of stable three-dimensional networks. To impart specific shape and geometry to the structures, multi-component systems based on PEBSA, HA, and methacrylate gelatin were obtained. The scaffolds were loaded with IND and subsequently 3D printed. The release capacity of IND and its dependence on the relative ratios of the components comprising the scaffold composition were highlighted. The cytocompatibility studies revealed the successful development of biocompatible and noncytotoxic systems.
Collapse
Affiliation(s)
- Loredana E Nita
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| | - Isabella Nacu
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alina Ghilan
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alina G Rusu
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandru M Şerban
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Aurica P Chiriac
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
23
|
Ruan H, Bek M, Pandit S, Aulova A, Zhang J, Bjellheim P, Lovmar M, Mijakovic I, Kádár R. Biomimetic Antibacterial Gelatin Hydrogels with Multifunctional Properties for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54249-54265. [PMID: 37975260 PMCID: PMC10694820 DOI: 10.1021/acsami.3c10477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
A facile novel approach of introducing dopamine and [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide via dopamine-triggered in situ synthesis into gelatin hydrogels in the presence of ZnSO4 is presented in this study. Remarkably, the resulting hydrogels showed 99.99 and 100% antibacterial efficiency against Gram-positive and Gram-negative bacteria, respectively, making them the highest performing surfaces in their class. Furthermore, the hydrogels showed adhesive properties, self-healing ability, antifreeze properties, electrical conductivity, fatigue resistance, and mechanical stability from -100 to 80 °C. The added multifunctional performance overcomes several disadvantages of gelatin-based hydrogels such as poor mechanical properties and limited thermostability. Overall, the newly developed hydrogels show significant potential for numerous biomedical applications, such as wearable monitoring sensors and antibacterial coatings.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Marko Bek
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Jian Zhang
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | | | - Martin Lovmar
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
- Welspect
AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Roland Kádár
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
24
|
Zhang J, Liu C, Li X, Liu Z, Zhang Z. Application of photo-crosslinkable gelatin methacryloyl in wound healing. Front Bioeng Biotechnol 2023; 11:1303709. [PMID: 38076425 PMCID: PMC10702353 DOI: 10.3389/fbioe.2023.1303709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/10/2023] [Indexed: 02/13/2025] Open
Abstract
Wound healing is a complex and coordinated biological process easily influenced by various internal and external factors. Hydrogels have immense practical importance in wound nursing because of their environmental moisturising, pain-relieving, and cooling effects. As photo-crosslinkable biomaterials, gelatine methacryloyl (GelMA) hydrogels exhibit substantial potential for tissue repair and reconstruction because of their tunable and beneficial properties. GelMA hydrogels have been extensively investigated as scaffolds for cell growth and drug release in various biomedical applications. They also hold great significance in wound healing because of their similarity to the components of the extracellular matrix of the skin and their favourable physicochemical properties. These hydrogels can promote wound healing and tissue remodelling by reducing inflammation, facilitating vascularisation, and supporting cell growth. In this study, we reviewed the applications of GelMA hydrogels in wound healing, including skin tissue engineering, wound dressing, and transdermal drug delivery. We aim to inspire further exploration of their potential for wound healing.
Collapse
Affiliation(s)
- Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, China
| | - Changling Liu
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, China
| | - Xiaojian Li
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, China
| | - Zhi Zhang
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, China
| |
Collapse
|
25
|
Sungkhaphan P, Thavornyutikarn B, Muangsanit P, Kaewkong P, Kitpakornsanti S, Pornsuwan S, Singhatanadgit W, Janvikul W. Dual-Functional Drug Delivery System for Bisphosphonate-Related Osteonecrosis Prevention and Its Bioinspired Releasing Model and In Vitro Assessment. ACS OMEGA 2023; 8:26561-26576. [PMID: 37521598 PMCID: PMC10373185 DOI: 10.1021/acsomega.3c03440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Clindamycin (CDM)/geranylgeraniol (GGOH)-loaded plasma-treated mesoporous silica nanoparticles/carboxymethyl chitosan composite hydrogels (CHG60 and CHG120) were developed for the prevention of medication-related osteonecrosis of the jaw associated with bisphosphonates (MRONJ-B). The pore structure and performances of CHGs, e.g., drug release profiles and kinetics, antibacterial activity, zoledronic acid (ZA)-induced cytotoxicity reversal activity, and acute cytotoxicity, were evaluated. The bioinspired platform mimicking in vivo fibrin matrices was also proposed for the in vitro/in vivo correlation. CHG120 was further encapsulated in the human-derived fibrin, generating FCHG120. The SEM and μCT images revealed the interconnected porous structures of CHG120 in both pure and fibrin-surrounding hydrogels with %porosity of 75 and 36%, respectively, indicating the presence of fibrin inside the hydrogel pores, besides its peripheral region, which was evidenced by confocal microscopy. The co-presence of GGOH moderately decelerated the overall releases of CDM from CHGs in the studied releasing fluids, i.e., phosphate buffer saline-based fluid (PBB) and simulated interstitial fluid (SIF). The whole-lifetime release patterns of CDM, fitted by the Ritger-Peppas equation, appeared nondifferentiable, divided into two releasing stages, i.e., rapid and steady releasing stages, whereas the biphasic drug release patterns of GGOH were observed with Phase I and II releases fitted by the Higuchi and Ritger-Peppas equations, respectively. Notably, the burst releases of both drugs were subsided with lengthier durations (up to 10-12 days) in SIF, compared with those in PBB, enabling CHGs to elicit satisfactory antibacterial and ZA cytotoxicity reversal activities for MRONJ-B prevention. The fibrin network in FCHG120 further reduced and sustained the drug releases for at least 14 days, lengthening bactericidal and ZA cytotoxicity reversal activities of FCHG and decreasing in vitro and in ovo acute drug toxicity. This highlighted the significance of fibrin matrices as appropriate in vivo-like platforms to evaluate the performance of an implant.
Collapse
Affiliation(s)
- Piyarat Sungkhaphan
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Boonlom Thavornyutikarn
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Papon Muangsanit
- National
Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Pakkanun Kaewkong
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Setthawut Kitpakornsanti
- Faculty
of Dentistry and Research Unit in Mineralized Tissue Reconstruction, Thammasat University (Rangsit Campus), Khlong Luang 12120, Thailand
| | | | - Weerachai Singhatanadgit
- Faculty
of Dentistry and Research Unit in Mineralized Tissue Reconstruction, Thammasat University (Rangsit Campus), Khlong Luang 12120, Thailand
| | - Wanida Janvikul
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Khlong Luang 12120, Thailand
| |
Collapse
|
26
|
Han Z, Yuan M, Liu L, Zhang K, Zhao B, He B, Liang Y, Li F. pH-Responsive wound dressings: advances and prospects. NANOSCALE HORIZONS 2023; 8:422-440. [PMID: 36852666 DOI: 10.1039/d2nh00574c] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wound healing is a complex and dynamic process, in which the pH value plays an important role in reflecting the wound status. Wound dressings are materials that are able to accelerate the healing process. Among the multifunctional advanced wound dressings developed in recent years, pH-responsive wound dressings, especially hydrogels, show great potential owing to their unique properties of adjusting their functions according to the wound conditions, thereby allowing the wound to heal in a regulated manner. However, a comprehensive review of pH-responsive wound dressings is lacking. This review summarizes the design strategies and advanced functions of pH-responsive hydrogel wound dressings, including their excellent antibacterial properties and significant pro-healing abilities. Other advanced pH-responsive materials, such as nanofibers, composite films, nanoparticle clusters, and microneedles, are also classified and discussed. Next, the pH-monitoring functions of pH-responsive wound dressings and the related pH indicators are summarized in detail. Finally, the achievements, challenges, and future development trends of pH-responsive wound dressings are discussed.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Lubin Liu
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Kaiyue Zhang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266000, China.
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| |
Collapse
|