1
|
Kaur H, Bhalla AK, Panigrahi I, Kaur R, Sudhera N. Head circumference percentiles in Indian children with Down syndrome. Front Pediatr 2025; 13:1563501. [PMID: 40356780 PMCID: PMC12066698 DOI: 10.3389/fped.2025.1563501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025] Open
Abstract
This study aimed to construct age- and sex-specific growth percentiles for head circumference (HC) that can be used as a reference for Indian children with Down syndrome (DS). Over 24 years, following a mixed-longitudinal growth research design, 2,327 head circumference measurements were performed on 1,125 (boys: 752, girls: 373) children with DS karyotypically proven as cases of free trisomy 21 who were aged <1 month to 10 years, following a standardized anthropometric technique. A steady increase in the mean head circumference of male and female children with DS was noted. Boys with DS had significantly larger HCs than girls. Our study showed that 12.9% of Down syndrome cases had normal head circumference, 27.2% had small heads, and the majority, 59.9%, had microcephaly. Head circumference percentiles for boys and girls with Down syndrome were constructed for ages <1 month to 10 years. There is a need to monitor the growth of children with Down syndrome using population-specific and specialized growth charts. The age- and sex-specific head circumference growth percentiles presented for Indian children with Down syndrome can be used for growth monitoring and inter-population comparison.
Collapse
Affiliation(s)
- Harvinder Kaur
- Child Growth & Anthropology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Anil Kumar Bhalla
- Child Growth & Anthropology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Inusha Panigrahi
- Genetics & Metabolic Unit, Department of Pediatrics, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Rupinder Kaur
- Child Growth & Anthropology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Neha Sudhera
- Child Growth & Anthropology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| |
Collapse
|
2
|
Meyer‐Gerards C, Bazzi H. Developmental and tissue-specific roles of mammalian centrosomes. FEBS J 2025; 292:709-726. [PMID: 38935637 PMCID: PMC11839934 DOI: 10.1111/febs.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Centrosomes are dominant microtubule organizing centers in animal cells with a pair of centrioles at their core. They template cilia during interphase and help organize the mitotic spindle for a more efficient cell division. Here, we review the roles of centrosomes in the early developing mouse and during organ formation. Mammalian cells respond to centrosome loss-of-function by activating the mitotic surveillance pathway, a timing mechanism that, when a defined mitotic duration is exceeded, leads to p53-dependent cell death in the descendants. Mouse embryos without centrioles are highly susceptible to this pathway and undergo embryonic arrest at mid-gestation. The complete loss of the centriolar core results in earlier and more severe phenotypes than that of other centrosomal proteins. Finally, different developing tissues possess varying thresholds and mount graded responses to the loss of centrioles that go beyond the germ layer of origin.
Collapse
Affiliation(s)
- Charlotte Meyer‐Gerards
- Department of Cell Biology of the Skin, Medical FacultyUniversity of CologneGermany
- Department of Dermatology and Venereology, Medical FacultyUniversity of CologneGermany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging‐associated Diseases (CECAD), Medical FacultyUniversity of CologneGermany
- Graduate School for Biological SciencesUniversity of CologneGermany
- Center for Molecular Medicine Cologne (CMMC), Medical FacultyUniversity of CologneGermany
| | - Hisham Bazzi
- Department of Cell Biology of the Skin, Medical FacultyUniversity of CologneGermany
- Department of Dermatology and Venereology, Medical FacultyUniversity of CologneGermany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging‐associated Diseases (CECAD), Medical FacultyUniversity of CologneGermany
- Center for Molecular Medicine Cologne (CMMC), Medical FacultyUniversity of CologneGermany
- Present address:
Cell & Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
3
|
Rushforth R, Shamseldin HE, Costantino N, Michaels JR, Sawyer SL, Osmond M, Kurdi W, Abdulwahab F, DiStasio A, Boycott KM, Alkuraya FS, Stottmann RW. NUBP2 deficiency disrupts the centrosome-check point in the brain and causes primary microcephaly. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.16.25320041. [PMID: 39867373 PMCID: PMC11759615 DOI: 10.1101/2025.01.16.25320041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Microcephaly affects 1 in 2,500 babies per year. Primary microcephaly results from aberrant neurogenesis leading to a small brain at birth. This is due to altered patterns of proliferation and/or early differentiation of neurons. Premature differentiation of neurons is associated with defects in the centrosome and/or primary cilia. In this study, we report on the first patients identified with NUBP2 -deficiency and utilize a conditional mouse model to ascertain the molecular mechanisms associated with NUBP2 -deficient primary microcephaly. We identified homozygous NUBP2 variants in these patients who displayed profound primary microcephaly in addition to intrauterine growth restriction, cervical kyphosis, severe contractures of joints, and facial dysmorphia. We then generated a mouse model using Emx1-Cre to ablate Nubp2 from the forebrain. The mice presented with severe microcephaly starting at E18.5. Neurospheres generated from the forebrain of Emx1-Cre; Nubp2 flox/flox conditional deletion mice were used to support the pathogenicity of the patient variants. We show that loss of Nubp2 increases both canonical and non-canonical cell death, but that loss of p53 fails to rescue microcephaly in the mouse model. Examination of neurogenesis in Emx1-Cre; Nubp2 flox/flox mice revealed distinct alterations in proliferation and cellular migration accompanied by supernumerary centrosomes and cilia. We therefore propose that NUBP2 is a novel primary microcephaly-related gene and that the role of Nubp2 in centrosome and cilia regulation is crucial for proper neurogenesis.
Collapse
|
4
|
Ferreira A, Calado SM, Jorge X, de Lange J, Carvalhal S. Generation and characterization of two isogenic induced pluripotent stem cell lines from a young female with microcephaly carrying a compound heterozygous mutation in BUB1 gene. Stem Cell Res 2024; 81:103594. [PMID: 39490209 DOI: 10.1016/j.scr.2024.103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024] Open
Abstract
Mutations in the Budding uninhibited by benzimidazoles (BUB1) gene were recently associated with neurodevelopmental disorders (Carvalhal et al., 2022). Here, we describe the generation and characterization of two induced pluripotent stem cells (iPSC) clones from a young female with microcephaly. The patient carried two variants in the BUBfibroblast gene (OMIM # 602452), one (c.[2197dupG]; p.[D732fs*11]) paternally inherited and one (c.[2625+1G>A]; p.[V822_L875del] maternally inherited. The generated clones exhibit a normal karyotype (UALGi003-A) and trisomy 8 (UALGi003-B), express pluripotency markers, and differentiate into trilineage cells in vitro. These cell lines can be used to study neurodevelopment and the processes of chromosome segregation.
Collapse
Affiliation(s)
- Anita Ferreira
- Algarve Biomedical Center, Research Institute (ABC-Ri), University of Algarve Campus Gambelas, Faro 8005-139, Portugal; Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Sofia M Calado
- Algarve Biomedical Center, Research Institute (ABC-Ri), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Xavier Jorge
- Algarve Biomedical Center, Research Institute (ABC-Ri), University of Algarve Campus Gambelas, Faro 8005-139, Portugal; Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Job de Lange
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands (the)
| | - Sara Carvalhal
- Algarve Biomedical Center, Research Institute (ABC-Ri), University of Algarve Campus Gambelas, Faro 8005-139, Portugal; Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal.
| |
Collapse
|
5
|
Bury LAD, Fu S, Wynshaw-Boris A. Neuronal lineage tracing from progenitors in human cortical organoids reveals mechanisms of neuronal production, diversity, and disease. Cell Rep 2024; 43:114862. [PMID: 39395167 DOI: 10.1016/j.celrep.2024.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
The contribution of progenitor subtypes to generating the billions of neurons produced during human cortical neurogenesis is not well understood. We developed the cortical organoid lineage-tracing (COR-LT) system for human cortical organoids. Differential fluorescent reporter activation in distinct progenitor cells leads to permanent reporter expression, enabling the progenitor cell lineage of neurons to be determined. Surprisingly, nearly all excitatory neurons produced in cortical organoids were generated indirectly from intermediate progenitor cells. Additionally, neurons of different progenitor lineages were transcriptionally distinct. Isogenic lines made from an autistic individual with and without a likely pathogenic CTNNB1 variant demonstrated that the variant substantially altered the proportion of neurons derived from specific progenitor cell lineages, as well as the lineage-specific transcriptional profiles of these neurons, suggesting a pathogenic mechanism for this mutation. These results suggest individual progenitor subtypes play roles in generating the diverse neurons of the human cerebral cortex.
Collapse
Affiliation(s)
- Luke A D Bury
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Shuai Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
6
|
Chen H, Ferguson CJ, Mitchell DC, Titus A, Paulo JA, Hwang A, Lin TH, Yano H, Gu W, Song SK, Yuede CM, Gygi SP, Bonni A, Kim AH. The Hao-Fountain syndrome protein USP7 regulates neuronal connectivity in the brain via a novel p53-independent ubiquitin signaling pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563880. [PMID: 37961719 PMCID: PMC10634808 DOI: 10.1101/2023.10.24.563880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Precise control of protein ubiquitination is essential for brain development, and hence, disruption of ubiquitin signaling networks can lead to neurological disorders. Mutations of the deubiquitinase USP7 cause the Hao-Fountain syndrome (HAFOUS), characterized by developmental delay, intellectual disability, autism, and aggressive behavior. Here, we report that conditional deletion of USP7 in excitatory neurons in the mouse forebrain triggers diverse phenotypes including sensorimotor deficits, learning and memory impairment, and aggressive behavior, resembling clinical features of HAFOUS. USP7 deletion induces neuronal apoptosis in a manner dependent of the tumor suppressor p53. However, most behavioral abnormalities in USP7 conditional mice persist despite p53 loss. Strikingly, USP7 deletion in the brain perturbs the synaptic proteome and dendritic spine morphogenesis independently of p53. Integrated proteomics analysis reveals that the neuronal USP7 interactome is enriched for proteins implicated in neurodevelopmental disorders and specifically identifies the RNA splicing factor Ppil4 as a novel neuronal substrate of USP7. Knockdown of Ppil4 in cortical neurons impairs dendritic spine morphogenesis, phenocopying the effect of USP7 loss on dendritic spines. These findings reveal a novel USP7-Ppil4 ubiquitin signaling link that regulates neuronal connectivity in the developing brain, with implications for our understanding of the pathogenesis of HAFOUS and other neurodevelopmental disorders.
Collapse
|
7
|
Kopp J, Koch LA, Lyubenova H, Küchler O, Holtgrewe M, Ivanov A, Dubourg C, Launay E, Brachs S, Mundlos S, Ehmke N, Seelow D, Fradin M, Kornak U, Fischer-Zirnsak B. Loss-of-function variants affecting the STAGA complex component SUPT7L cause a developmental disorder with generalized lipodystrophy. Hum Genet 2024; 143:683-694. [PMID: 38592547 PMCID: PMC11098864 DOI: 10.1007/s00439-024-02669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Generalized lipodystrophy is a feature of various hereditary disorders, often leading to a progeroid appearance. In the present study we identified a missense and a frameshift variant in a compound heterozygous state in SUPT7L in a boy with intrauterine growth retardation, generalized lipodystrophy, and additional progeroid features. SUPT7L encodes a component of the transcriptional coactivator complex STAGA. By transcriptome sequencing, we showed the predicted missense variant to cause aberrant splicing, leading to exon truncation and thereby to a complete absence of SUPT7L in dermal fibroblasts. In addition, we found altered expression of genes encoding DNA repair pathway components. This pathway was further investigated and an increased rate of DNA damage was detected in proband-derived fibroblasts and genome-edited HeLa cells. Finally, we performed transient overexpression of wildtype SUPT7L in both cellular systems, which normalizes the number of DNA damage events. Our findings suggest SUPT7L as a novel disease gene and underline the link between genome instability and progeroid phenotypes.
Collapse
Affiliation(s)
- Johannes Kopp
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, FG Development and Disease, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Leonard A Koch
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
| | - Hristiana Lyubenova
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, FG Development and Disease, Berlin, Germany
| | - Oliver Küchler
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Exploratory Diagnostic Sciences, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Manuel Holtgrewe
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andranik Ivanov
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christele Dubourg
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, F-35033, France
- Univercity Rennes, CNRS, INSERM, IGDR, UMR 6290, ERL U1305, Rennes, F-35000, France
| | - Erika Launay
- Service de Cytogénétique et Biologie cellulaire, Hôpital Pontchaillou - CHU Rennes, 2 rue Henri Le Guilloux - Rennes cedex 9, France, Rennes, F-35033, France
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- German Centre for Cardiovascular Research, partner site Berlin, Berlin, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, FG Development and Disease, Berlin, Germany
| | - Nadja Ehmke
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Seelow
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Exploratory Diagnostic Sciences, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mélanie Fradin
- Service de Génétique Clinique, Centre Référence Déficiences Intellectuelles CRDI, Hôpital Sud - CHU Rennes, 16 boulevard de Bulgarie - BP 90347, Rennes cedex 2, Rennes, F-35203, France
- Service de Génétique, CH Saint Brieuc, St Brieuc, 22000, France
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, FG Development and Disease, Berlin, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Fischer-Zirnsak
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, FG Development and Disease, Berlin, Germany.
| |
Collapse
|
8
|
Chien SC, Chen CP. Genetic Counseling of Fetal Microcephaly. J Med Ultrasound 2024; 32:1-7. [PMID: 38665355 PMCID: PMC11040482 DOI: 10.4103/jmu.jmu_18_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 04/28/2024] Open
Abstract
Fetal microcephaly is a small head with various losses of cerebral cortical volume. The affected cases may suffer from a wide range in severity of impaired cerebral development from slight to severe mental retardation. It can be an isolated finding or with other anomalies depending on the heterogeneous causes including genetic mutations, chromosomal abnormalities, congenital infectious diseases, maternal alcohol consumption, and metabolic disorders during pregnancy. It is often a lifelong and incurable condition. Thus, early detection of fetal microcephaly and identification of the underlying causes are important for clinical staff to provide appropriate genetic counseling to the parents and accurate management.
Collapse
Affiliation(s)
| | - Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
9
|
Cossard A, Stam K, Smets A, Jossin Y. MKL/SRF and Bcl6 mutual transcriptional repression safeguards the fate and positioning of neocortical progenitor cells mediated by RhoA. SCIENCE ADVANCES 2023; 9:eadd0676. [PMID: 37967194 PMCID: PMC10651131 DOI: 10.1126/sciadv.add0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
During embryogenesis, multiple intricate and intertwined cellular signaling pathways coordinate cell behavior. Their slightest alterations can have dramatic consequences for the cells and the organs they form. The transcriptional repressor Bcl6 was recently found as important for brain development. However, its regulation and integration with other signals is unknown. Using in vivo functional approaches combined with molecular mechanistic analysis, we identified a reciprocal regulatory loop between B cell lymphoma 6 (Bcl6) and the RhoA-regulated transcriptional complex megakaryoblastic leukemia/serum response factor (MKL/SRF). We show that Bcl6 physically interacts with MKL/SRF, resulting in a down-regulation of the transcriptional activity of both Bcl6 and MKL/SRF. This molecular cross-talk is essential for the control of proliferation, neurogenesis, and spatial positioning of neural progenitors. Overall, our data highlight a regulatory mechanism that controls neuronal production and neocortical development and reveal an MKL/SRF and Bcl6 interaction that may have broader implications in other physiological functions and in diseases.
Collapse
Affiliation(s)
- Alexia Cossard
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | | | | |
Collapse
|
10
|
Li Y, Zeng PM, Wu J, Luo ZG. Advances and Applications of Brain Organoids. Neurosci Bull 2023; 39:1703-1716. [PMID: 37222855 PMCID: PMC10603019 DOI: 10.1007/s12264-023-01065-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/02/2023] [Indexed: 05/25/2023] Open
Abstract
Understanding the fundamental processes of human brain development and diseases is of great importance for our health. However, existing research models such as non-human primate and mouse models remain limited due to their developmental discrepancies compared with humans. Over the past years, an emerging model, the "brain organoid" integrated from human pluripotent stem cells, has been developed to mimic developmental processes of the human brain and disease-associated phenotypes to some extent, making it possible to better understand the complex structures and functions of the human brain. In this review, we summarize recent advances in brain organoid technologies and their applications in brain development and diseases, including neurodevelopmental, neurodegenerative, psychiatric diseases, and brain tumors. Finally, we also discuss current limitations and the potential of brain organoids.
Collapse
Affiliation(s)
- Yang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
11
|
Wang C, Zhou W, Zhang L, Fu L, Shi W, Qing Y, Lu F, Tang J, Gao X, Zhang A, Jia Z, Zhang Y, Zhao X, Zheng B. Diagnostic yield and novel candidate genes for neurodevelopmental disorders by exome sequencing in an unselected cohort with microcephaly. BMC Genomics 2023; 24:422. [PMID: 37501076 PMCID: PMC10373276 DOI: 10.1186/s12864-023-09505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVES Microcephaly is caused by reduced brain volume and most usually associated with a variety of neurodevelopmental disorders (NDDs). To provide an overview of the diagnostic yield of whole exome sequencing (WES) and promote novel candidates in genetically unsolved families, we studied the clinical and genetic landscape of an unselected Chinese cohort of patients with microcephaly. METHODS We performed WES in an unselected cohort of 103 NDDs patients with microcephaly as one of the features. Full evaluation of potential novel candidate genes was applied in genetically undiagnosed families. Functional validations of selected variants were conducted in cultured cells. To augment the discovery of novel candidates, we queried our genomic sequencing data repository for additional likely disease-causing variants in the identified candidate genes. RESULTS In 65 families (63.1%), causative sequence variants (SVs) and clinically relevant copy number variants (CNVs) with a pathogenic or likely pathogenic (P/LP) level were identified. By incorporating coverage analysis to WES, a pathogenic or likely pathogenic CNV was detected in 15 families (16/103, 15.5%). In another eight families (8/103, 7.8%), we identified variants in newly reported gene (CCND2) and potential novel neurodevelopmental disorders /microcephaly candidate genes, which involved in cell cycle and division (PWP2, CCND2), CDC42/RAC signaling related actin cytoskeletal organization (DOCK9, RHOF), neurogenesis (ELAVL3, PPP1R9B, KCNH3) and transcription regulation (IRF2BP1). By looking into our data repository of 5066 families with NDDs, we identified additional two cases with variants in DOCK9 and PPP1R9B, respectively. CONCLUSION Our results expand the morbid genome of monogenic neurodevelopmental disorders and support the adoption of WES as a first-tier test for individuals with microcephaly.
Collapse
Affiliation(s)
- Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Luyan Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Luhan Fu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Shi
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Qing
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fen Lu
- Department of Rehabilitation Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Tang
- Department of Rehabilitation Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiucheng Gao
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| | - Xiaoke Zhao
- Department of Rehabilitation Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Iegiani G, Ferraro A, Pallavicini G, Di Cunto F. The impact of TP53 activation and apoptosis in primary hereditary microcephaly. Front Neurosci 2023; 17:1220010. [PMID: 37457016 PMCID: PMC10338886 DOI: 10.3389/fnins.2023.1220010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a constellation of disorders that share significant brain size reduction and mild to moderate intellectual disability, which may be accompanied by a large variety of more invalidating clinical signs. Extensive neural progenitor cells (NPC) proliferation and differentiation are essential to determine brain final size. Accordingly, the 30 MCPH loci mapped so far (MCPH1-MCPH30) encode for proteins involved in microtubule and spindle organization, centriole biogenesis, nuclear envelope, DNA replication and repair, underscoring that a wide variety of cellular processes is required for sustaining NPC expansion during development. Current models propose that altered balance between symmetric and asymmetric division, as well as premature differentiation, are the main mechanisms leading to MCPH. Although studies of cellular alterations in microcephaly models have constantly shown the co-existence of high DNA damage and apoptosis levels, these mechanisms are less considered as primary factors. In this review we highlight how the molecular and cellular events produced by mutation of the majority of MCPH genes may converge on apoptotic death of NPCs and neurons, via TP53 activation. We propose that these mechanisms should be more carefully considered in the alterations of the sophisticated equilibrium between proliferation, differentiation and death produced by MCPH gene mutations. In consideration of the potential druggability of cell apoptotic pathways, a better understanding of their role in MCPH may significantly facilitate the development of translational approaches.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Alessia Ferraro
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Gianmarco Pallavicini
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Ferdinando Di Cunto
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| |
Collapse
|
13
|
Liu X, Yang J, Li Z, Liu R, Wu X, Zhang Z, Lai L, Li Z, Song Y. YIPF5 (p.W218R) mutation induced primary microcephaly in rabbits. Neurobiol Dis 2023; 182:106135. [PMID: 37142085 DOI: 10.1016/j.nbd.2023.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Primary microcephaly (PMCPH) is a rare autosomal recessive neurodevelopmental disorder with a global prevalence of PMCPH ranging from 0.0013% to 0.15%. Recently, a homozygous missense mutation in YIPF5 (p.W218R) was identified as a causative mutation of severe microcephaly. In this study, we constructed a rabbit PMCPH model harboring YIPF5 (p.W218R) mutation using SpRY-ABEmax mediated base substitution, which precisely recapitulated the typical symptoms of human PMCPH. Compared with wild-type controls, the mutant rabbits exhibited stunted growth, reduced head circumference, altered motor ability, and decreased survival rates. Further investigation based on model rabbit elucidated that altered YIPF5 function in cortical neurons could lead to endoplasmic reticulum stress and neurodevelopmental disorders, interference of the generation of apical progenitors (APs), the first generation of progenitors in the developing cortex. Furthermore, these YIPF5-mutant rabbits support a correlation between unfolded protein responses (UPR) induced by endoplasmic reticulum stress (ERS), and the development of PMCPH, thus providing a new perspective on the role of YIPF5 in human brain development and a theoretical basis for the differential diagnosis and clinical treatment of PMCPH. To our knowledge, this is the first gene-edited rabbit model of PMCPH. The model better mimics the clinical features of human microcephaly than the traditional mouse models. Hence, it provides great potential for understanding the pathogenesis and developing novel diagnostic and therapeutic approaches for PMCPH.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jie Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhaoyi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Ruonan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Xinyu Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhongtian Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| | - Yuning Song
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| |
Collapse
|
14
|
Hussain S, Nawaz A, Hamid M, Ullah W, Khan IN, Afshan M, Rehman A, Nawaz H, Halswick J, Rehman SU, Ahmad S, Muzammal M, Muhammad N, Jan A, Khan S, Windpassinger C, Khan MA. Mutation screening of multiple Pakistani MCPH families revealed novel and recurrent protein-truncating mutations of ASPM. Biotechnol Appl Biochem 2022; 69:2296-2303. [PMID: 34826358 DOI: 10.1002/bab.2286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022]
Abstract
Autosomal primary microcephaly (MCPH) is a heterogenetic disorder that affects brain's cerebral cortex size and leads to a reduction in the cranial vault. Along with the hallmark feature of reduced head circumference, microcephalic patients also exhibit a variable degree of intellectual disability as well. Genetic studies have reported 28 MCPH genes, most of which produce microtubule-associated proteins and are involved in cell division. Herein this study, 14 patients from seven Pashtun origin Pakistani families of primary microcephaly were analyzed. Mutation analysis was performed through targeted Sanger DNA sequencing on the basis of phenotype-linked genetic makeup. Genetic analysis in one family found a novel pathogenic DNA change in the abnormal spindle microtubule assembly (ASPM) gene (NM_018136.4:c.3871dupGA), while the rest of the families revealed recurrent nonsense mutation c.3978G>A (p.Trp1326*) in the same gene. The novel reported frameshift insertion presumably truncates the protein p.(Lys1291Glyfs*14) and deletes the N-terminus domains. Identification of novel ASPM-truncating mutation expands the mutational spectrum of the ASPM gene, while mapping of recurrent mutation c.3978G>A (p.Trp1326*) will aid in establishing its founder effect in the Khyber Pakhtunkhwa (KPK) inhabitant population of Pakistan and should be suggestively screened for premarital counseling of MCPH susceptible families. Most of the recruited families are related to first-degree consanguinity. Hence, all the family elders were counseled to avoid intrafamilial marriages.
Collapse
Affiliation(s)
- Sadam Hussain
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Nawaz
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Malaika Hamid
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Waseem Ullah
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Iqbal Nawaz Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mehak Afshan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Adil Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Hamid Nawaz
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Julia Halswick
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Shoaib-Ur Rehman
- Department of Biotechnology, University of Science and Technology Bannu, Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Sohail Ahmad
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D. I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Muzammal
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D. I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abid Jan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Christian Windpassinger
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D. I. Khan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
15
|
Bolat H, Sağer SG, Türkyılmaz A, Çebi AH, Akın Y, Onay H, Özkınay F, Ünsel-Bolat G. Autosomal Recessive Primary Microcephaly (MCPH) and Novel Pathogenic Variants in ASPM and WDR62 Genes. Mol Syndromol 2022; 13:363-369. [PMID: 36588751 PMCID: PMC9801316 DOI: 10.1159/000524391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/31/2022] [Indexed: 01/04/2023] Open
Abstract
Introduction Autosomal recessive primary microcephaly (MCPH) is a disorder characterized by congenital microcephaly and intellectual disability without extra-central nervous system malformation. MCPH is a disease with heterogeneity in genotype and phenotype. For this reason, it is important to determine the genetic causes and genotype-phenotype relationship in MCPH, which causes lifelong impairment. In this study, we aimed to evaluate the clinical, genetic, and brain imaging findings of cases diagnosed with MCPH. Methods Electroencephalogram and brain magnetic resonance imaging were performed for all cases. We evaluated genetic results of the 39 families including cases with suspected MCPH diagnosis. Results Genetic diagnosis related to MCPH was provided in 11/39 (28.2%) of these families including 13/41 cases (31.7%). Variants of the WDR62 gene were the most common (61.5%) cause, and variants of the ASPM gene were the second most common cause (38.5%). We have found 6 novel variants and 4 previously reported variants in ASPM and WDR62 genes. Main brain imaging findings in our cases were lissencephaly, polymicrogyria, schizencephaly, pachygyria, and cortical dysplasia. Genetic counseling in 2 families whose genetic diagnosis was determined prevented them from having another child with MCPH. Discussion/Conclusion Detection and reporting of novel variants is an important step in eliminating this disorder by providing families with appropriate genetic counseling.
Collapse
Affiliation(s)
- Hilmi Bolat
- Department of Medical Genetics, Balıkesir University Faculty of Medicine, Balıkesir, Turkey,*Hilmi Bolat,
| | - Safiye G. Sağer
- Clinics of Pediatric Neurology, Kartal Dr. Lütfi Kırdar City Hospital, Istanbul, Turkey
| | - Ayberk Türkyılmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University Trabzon, Trabzon, Turkey
| | - Alper H. Çebi
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University Trabzon, Trabzon, Turkey
| | - Yasemin Akın
- Clinics of Pediatrics, Kartal Dr. Lütfi Kırdar City Hospital, Istanbul, Turkey
| | | | - Ferda Özkınay
- Department of Pediatrics, Division of Pediatric Genetics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Gül Ünsel-Bolat
- Department of Child and Adolescent Psychiatry, Balıkesir University Faculty of Medicine, Balıkesir, Turkey,Department of Neuroscience, Ege University, Izmir, Turkey
| |
Collapse
|
16
|
Advantages of current fetal neuroimaging and genomic technologies in prenatal diagnosis: A clinical case. Eur J Med Genet 2022; 66:104652. [PMID: 36374791 DOI: 10.1016/j.ejmg.2022.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
The diagnosis of prenatal microcephaly, as well as the possibility of underlining a genetic cause, is becoming more frequent thanks to advances in prenatal imaging and parallel massive sequencing. One case of primary microcephaly in three sibs demonstrates how complementary diagnostic exams can help to diagnose and establish the etiology.
Collapse
|
17
|
Abstract
The centrosome, consisting of centrioles and the associated pericentriolar material, is the main microtubule-organizing centre (MTOC) in animal cells. During most of interphase, the two centrosomes of a cell are joined together by centrosome cohesion into one MTOC. The most dominant element of centrosome cohesion is the centrosome linker, an interdigitating, fibrous network formed by the protein C-Nap1 anchoring a number of coiled-coil proteins including rootletin to the proximal end of centrioles. Alternatively, centrosomes can be kept together by the action of the minus end directed kinesin motor protein KIFC3 that works on interdigitating microtubules organized by both centrosomes and probably by the actin network. Although cells connect the two interphase centrosomes by several mechanisms into one MTOC, the general importance of centrosome cohesion, particularly for an organism, is still largely unclear. In this article, we review the functions of the centrosome linker and discuss how centrosome cohesion defects can lead to diseases.
Collapse
Affiliation(s)
- Hairuo Dang
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg 69120, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and
| |
Collapse
|
18
|
Fasano G, Compagnucci C, Dallapiccola B, Tartaglia M, Lauri A. Teleost Fish and Organoids: Alternative Windows Into the Development of Healthy and Diseased Brains. Front Mol Neurosci 2022; 15:855786. [PMID: 36034498 PMCID: PMC9403253 DOI: 10.3389/fnmol.2022.855786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The variety in the display of animals' cognition, emotions, and behaviors, typical of humans, has its roots within the anterior-most part of the brain: the forebrain, giving rise to the neocortex in mammals. Our understanding of cellular and molecular events instructing the development of this domain and its multiple adaptations within the vertebrate lineage has progressed in the last decade. Expanding and detailing the available knowledge on regionalization, progenitors' behavior and functional sophistication of the forebrain derivatives is also key to generating informative models to improve our characterization of heterogeneous and mechanistically unexplored cortical malformations. Classical and emerging mammalian models are irreplaceable to accurately elucidate mechanisms of stem cells expansion and impairments of cortex development. Nevertheless, alternative systems, allowing a considerable reduction of the burden associated with animal experimentation, are gaining popularity to dissect basic strategies of neural stem cells biology and morphogenesis in health and disease and to speed up preclinical drug testing. Teleost vertebrates such as zebrafish, showing conserved core programs of forebrain development, together with patients-derived in vitro 2D and 3D models, recapitulating more accurately human neurogenesis, are now accepted within translational workflows spanning from genetic analysis to functional investigation. Here, we review the current knowledge of common and divergent mechanisms shaping the forebrain in vertebrates, and causing cortical malformations in humans. We next address the utility, benefits and limitations of whole-brain/organism-based fish models or neuronal ensembles in vitro for translational research to unravel key genes and pathological mechanisms involved in neurodevelopmental diseases.
Collapse
Affiliation(s)
| | | | | | | | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
19
|
Jaylet T, Quintens R, Benotmane MA, Luukkonen J, Tanaka IB, Ibanez C, Durand C, Sachana M, Azimzadeh O, Adam-Guillermin C, Tollefsen KE, Laurent O, Audouze K, Armant O. Development of an Adverse Outcome Pathway for radiation-induced microcephaly via expert consultation and machine learning. Int J Radiat Biol 2022; 98:1752-1762. [PMID: 35947014 DOI: 10.1080/09553002.2022.2110312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Brain development during embryogenesis and in early postnatal life is particularly complex and involves the interplay of many cellular processes and molecular mechanisms, making it extremely vulnerable to exogenous insults, including ionizing radiation (IR). Microcephaly is one of the most frequent neurodevelopmental abnormalities that is characterized by small brain size, and is often associated with intellectual deficiency. Decades of research span from epidemiological data on in utero exposure of the A-bomb survivors, to studies on animal and cellular models that allowed deciphering the most prominent molecular mechanisms leading to microcephaly. The Adverse Outcome Pathway (AOP) framework is used to organize, evaluate and portray the scientific knowledge of toxicological effects spanning different biological levels of organizations, from the initial interaction with molecular targets to the occurrence of a disease or adversity. In the present study, the framework was used in an attempt to organize the current scientific knowledge on microcephaly progression in the context of ionizing radiation (IR) exposure. This work was performed by a group of experts formed during a recent workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. Here we report on the development of a putative AOP for congenital microcephaly resulting from IR exposure based on discussions of the working group and we emphasize the use of a novel machine-learning approach to assist in the screening of the available literature to develop AOPs. CONCLUSION The expert consultation led to the identification of crucial biological events for the progression of microcephaly upon exposure to IR, and highlighted current knowledge gaps. The machine learning approach was successfully used to screen the existing knowledge and helped to rapidly screen the body of evidence and in particular the epidemiological data. This systematic review approach also ensured that the analysis was sufficiently comprehensive to identify the most relevant data and facilitate rapid and consistent AOP development. We anticipate that as machine learning approaches become more user-friendly through easy-to-use web interface, this would allow AOP development to become more efficient and less time consuming.
Collapse
Affiliation(s)
- Thomas Jaylet
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK-CEN, Mol, Belgium
| | | | - Jukka Luukkonen
- University of Eastern Finland, Kuopio Campus, Department of Environmental and Biological Sciences, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ignacia Braga Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 lenomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Chrystelle Ibanez
- PSE-SANTE/SESANE/LRTOX Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Christelle Durand
- PSE-SANTE/SESANE/LRTOX Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Environment Health and Safety Division, 75775 CEDEX 16 Paris, France
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (Bfs), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Christelle Adam-Guillermin
- PSE-SANTE/SDOS/LMDN, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579, Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Olivier Laurent
- PSE-SANTE/SESANE/LEPID, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Olivier Armant
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France
| |
Collapse
|
20
|
Kumar A, Kumar D, Jose J, Giri R, Mysorekar IU. Drugs to limit Zika virus infection and implication for maternal-fetal health. FRONTIERS IN VIROLOGY 2022; 2. [PMID: 37064602 PMCID: PMC10104533 DOI: 10.3389/fviro.2022.928599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the placenta has robust defense mechanisms that protect the fetus from a viral infection, some viruses can manipulate or evade these mechanisms and disrupt physiology or cross the placental barrier. It is well established that the Zika virus is capable of vertical transmission from mother to fetus and can cause malformation of the fetal central nervous system (i.e., microcephaly), as well as Guillain-Barre syndrome in adults. This review seeks to gather and assess the contributions of translational research associated with Zika virus infection, including maternal-fetal vertical transmission of the virus. Nearly 200 inhibitors that have been evaluated in vivo and/or in vitro for their therapeutic properties against the Zika virus are summarized in this review. We also review the status of current vaccine candidates. Our main objective is to provide clinically relevant information that can guide future research directions and strategies for optimized treatment and preventive care of infections caused by Zika virus or similar pathogens.
Collapse
Affiliation(s)
- Ankur Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, State College, United States
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- CORRESPONDENCE Indira U. Mysorekar,
| |
Collapse
|
21
|
Pi S, Mao X, Long H, Wang H. A de novo inframe deletion variant in CAPZA2 tentacle domain with global developmental delay and secondary microcephaly. Clin Genet 2022; 102:355-356. [PMID: 35856264 DOI: 10.1111/cge.14186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
Abstract
(A) Sanger sequencing confirmation and family pedigree for the patient. (B) A schematic representation of transcript and translation showing the positions of all CAPZA2 variants identified.
Collapse
Affiliation(s)
- Shanyu Pi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Wang
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| |
Collapse
|
22
|
Zaqout S, Kaindl AM. Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Front Cell Dev Biol 2022; 9:784700. [PMID: 35111754 PMCID: PMC8802810 DOI: 10.3389/fcell.2021.784700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
Microcephaly or reduced head circumference results from a multitude of abnormal developmental processes affecting brain growth and/or leading to brain atrophy. Autosomal recessive primary microcephaly (MCPH) is the prototype of isolated primary (congenital) microcephaly, affecting predominantly the cerebral cortex. For MCPH, an accelerating number of mutated genes emerge annually, and they are involved in crucial steps of neurogenesis. In this review article, we provide a deeper look into the microcephalic MCPH brain. We explore cytoarchitecture focusing on the cerebral cortex and discuss diverse processes occurring at the level of neural progenitors, early generated and mature neurons, and glial cells. We aim to thereby give an overview of current knowledge in MCPH phenotype and normal brain growth.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Angela M. Kaindl
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Ye C, Mei H, Chen H, Dong X, Lu Y, Wu B, Wang H, Hu L, Cheng G, Zhou W, Yang L. Molecular Genetic Analysis of Newborns with Congenital Microcephaly. Neonatology 2022; 119:455-463. [PMID: 35709690 DOI: 10.1159/000525073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Data on the genetic landscape of congenital microcephaly (CM) in China are scarce, and the incidence of CM caused by the most commonly mutated gene ASPM in China remains unknown. METHODS Sixty-one neonates with CM who were hospitalized in the Children's Hospital of Fudan University between August 1, 2016, and August 31, 2020, were enrolled, and the clinical data and clinical exome-sequencing data were analyzed. An additional 18,103 parental data entries from the Chinese Children's Genetic Testing Clinical Collaboration System database were collected to estimate the incidence of ASPM-related congenital microcephaly (ASPM-CM) in East China by analyzing the carrier frequency of ASPM mutations. RESULTS Among the 61 neonates with CM, 35 (57.4%) patients were identified with genetic findings, including 24 patients with single nucleotide variants (SNVs) and 11 patients with copy number variations (CNVs). ASPM was the most common gene with detrimental SNVs detected in 3 patients. Patients with genetic findings showed a significantly higher incidence of developmental delay (91.3%, 21/23) than those without genetic findings (60%, 9/15) (p = 0.04). All the 3 decreased patients had genetic findings. The estimated ASPM-CM incidence in East China was 1/1,295,044. CONCLUSION Comprehensive genetic testing, detecting both SNVs and CNVs, is recommended for newborns with CM. Patients with genetic findings should be aware of the potential for developmental delay. ASPM gene defect was the most common genetic cause of CM in this study. The estimation of the incidence of ASPM-CM in East China might provide a reference for analyzing overall incidence.
Collapse
Affiliation(s)
- Chang Ye
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China,
| | - Hongfang Mei
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Liyuan Hu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Guoqiang Cheng
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China.,Clinical Genetic Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
24
|
Quintans MDS, Bueno AC, Cardoso CAA. Microcephaly caused by or associated with congenital infections in the last 20 years in Brazil: a systematic review. Rev Inst Med Trop Sao Paulo 2022; 64:e7. [PMID: 35137901 PMCID: PMC8815834 DOI: 10.1590/s1678-9946202264007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
This systematic review aimed to identify the pathogens causing or associated with congenital microcephaly in Brazil in the last 20 years due to the lack of official information by the Health Authorities and, as a consequence the uncertainty on the real infectious etiology of congenital microcephaly. A review protocol was prepared according to the PRISMA recommendation, using the PubMed, SciELO and LILACS databases to search for references presenting original data on microcephaly caused by or associated with congenital infectious in Brazil, using the descriptors “MICROCEPHALY AND INFECTION”. The search ended on 30/Jun/2020. All selected titles were read in full and analyzed independently by the three reviewers. After searching the databases, 2,389 articles were selected for title review. Of these, 109 were excluded due to duplicates and 2,236 according to the criteria defined in the review. Only 44 met the eligibility criteria and were therefore read in full. Data extraction was performed on 10 articles, all published after 2015. Seven studies were literature reviews or case series, only two were case-control, and one was a cross-sectional study. As the studies focused on the period of the ZIKV epidemic in Brazil, the cases of congenital microcephaly between 2015 and 2017 were attributed to maternal infection by this virus when it was not possible to prove the presence of other etiological agents. Among the TORCH agents, a predominance of syphilis was observed. The analyzed studies did not add consistent information about the infectious causes or association of microcephaly in Brazil outside the period of ZIKV epidemic, revealing the need for more studies on the subject.
Collapse
|
25
|
Exome Sequencing Reveals Novel Variants and Expands the Genetic Landscape for Congenital Microcephaly. Genes (Basel) 2021; 12:genes12122014. [PMID: 34946966 PMCID: PMC8700965 DOI: 10.3390/genes12122014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Congenital microcephaly causes smaller than average head circumference relative to age, sex and ethnicity and is most usually associated with a variety of neurodevelopmental disorders. The underlying etiology is highly heterogeneous and can be either environmental or genetic. Disruption of any one of multiple biological processes, such as those underlying neurogenesis, cell cycle and division, DNA repair or transcription regulation, can result in microcephaly. This etiological heterogeneity manifests in a clinical variability and presents a major diagnostic and therapeutic challenge, leaving an unacceptably large proportion of over half of microcephaly patients without molecular diagnosis. To elucidate the clinical and genetic landscapes of congenital microcephaly, we sequenced the exomes of 191 clinically diagnosed patients with microcephaly as one of the features. We established a molecular basis for microcephaly in 71 patients (37%), and detected novel variants in five high confidence candidate genes previously unassociated with this condition. We report a large number of patients with mutations in tubulin-related genes in our cohort as well as higher incidence of pathogenic mutations in MCPH genes. Our study expands the phenotypic and genetic landscape of microcephaly, facilitating differential clinical diagnoses for disorders associated with most commonly disrupted genes in our cohort.
Collapse
|
26
|
Abstract
In this review, Phan et al. discuss the different models that have been proposed to explain how centrosome dysfunction impairs cortical development, and review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Last, they also extend their discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.
Collapse
|
27
|
Huang B, Li X, Zhu X. The Role of GM130 in Nervous System Diseases. Front Neurol 2021; 12:743787. [PMID: 34777211 PMCID: PMC8581157 DOI: 10.3389/fneur.2021.743787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
Golgi matrix protein 130 (GM130) is a Golgi-shaping protein located on the cis surface of the Golgi apparatus (GA). It is one of the most studied Golgin proteins so far. Its biological functions are involved in many aspects of life processes, including mitosis, autophagy, apoptosis, cell polarity, and directed migration at the cellular level, as well as intracellular lipid and protein transport, microtubule formation and assembly, lysosome function maintenance, and glycosylation modification. Mutation inactivation or loss of expression of GM130 has been detected in patients with different diseases. GM130 plays an important role in the development of the nervous system, but the studies on it are limited. This article reviewed the current research progress of GM130 in nervous system diseases. It summarized the physiological functions of GM130 in the occurrence and development of Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), microcephaly (MCPH), sepsis associated encephalopathy (SAE), and Ataxia, aiming to provide ideas for the further study of GM130 in nervous system disease detection and treatment.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoshi Zhu
- Pediatric Intensive Care Unit, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
28
|
Khanna L, Kumar P, Bhandari AS, Gourie-Devi M. Association of Infantile Spasms and Hypsarrhythmia with Primary Microcephaly- Three Case Reports. Ann Indian Acad Neurol 2021; 24:609-612. [PMID: 34728968 PMCID: PMC8513969 DOI: 10.4103/aian.aian_909_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/30/2020] [Accepted: 09/11/2020] [Indexed: 11/04/2022] Open
Affiliation(s)
- Laxmi Khanna
- Department of Neurophysiology, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Kumar
- Department of Neurophysiology, Sir Ganga Ram Hospital, New Delhi, India
| | | | - M Gourie-Devi
- Department of Neurophysiology, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
29
|
A Mathematical Model to Predict Human Microcephaly. J Craniofac Surg 2021; 32:2223-2225. [PMID: 34516060 DOI: 10.1097/scs.0000000000007552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Microcephaly (MiC) is defined as head circumference (HC) dimensions smaller than the normal standards. OBJECTIVE To detect MiC with a mathematical formula. MATERIALS AND METHODS The 0 to 5 years head HC percentile data for girls and boys reported by the World Health Organization were used. To assess early childhood, these growth standards are available on its website for international use. Mathematical formulas best estimating the 3rd percentile curves were defined using basic regression analysis methods. RESULTS The mathematical models obtained as a result of logarithmic regression analysis with the highest coefficient of determination values (R2 = 0.991 for girls; R2 = 0.991 for boys) were identified as the best model. The formulas of HC = 34.025 + 3.283 ∗ ln (age as months), and HC = 35.475 + 3.14 ∗ ln (age as months) were determined for girls and boys, respectively. A limitation of these formulas is that they do not provide the HC at birth (ln (0) = undetermined). CONCLUSION Microcephaly can be estimated using the mathematical formulas with a calculator without using percentile scales, mobile applications, software, or the Internet.
Collapse
|
30
|
Lee FT, Seed M, Sun L, Marini D. Fetal brain issues in congenital heart disease. Transl Pediatr 2021; 10:2182-2196. [PMID: 34584890 PMCID: PMC8429876 DOI: 10.21037/tp-20-224] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Following the improvements in the clinical management of patients with congenital heart disease (CHD) and their increased survival, neurodevelopmental outcome has become an emerging priority in pediatric cardiology. Large-scale efforts have been made to protect the brain during the postnatal, surgical, and postoperative period; however, the presence of brain immaturity and injury at birth suggests in utero and peripartum disturbances. Over the past decade, there has been considerable interest and investigations on fetal brain growth in the setting of CHD. Advancements in fetal brain imaging have identified abnormal brain development in fetuses with CHD from the macrostructural (brain volumes and cortical folding) down to the microstructural (biochemistry and water diffusivity) scale, with more severe forms of CHD showing worse disturbances and brain abnormalities starting as early as the first trimester. Anomalies in common genetic developmental pathways and diminished cerebral substrate delivery secondary to altered cardiovascular physiology are the forefront hypotheses, but other factors such as impaired placental function and maternal psychological stress have surfaced as important contributors to fetal brain immaturity in CHD. The characterization and timing of fetal brain disturbances and their associated mechanisms are important steps for determining preventative prenatal interventions, which may provide a stronger foundation for the developing brain during childhood.
Collapse
Affiliation(s)
- Fu-Tsuen Lee
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mike Seed
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada.,Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Davide Marini
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
31
|
Becerra-Solano LE, Mateos-Sánchez L, López-Muñoz E. Microcephaly, an etiopathogenic vision. Pediatr Neonatol 2021; 62:354-360. [PMID: 34112604 DOI: 10.1016/j.pedneo.2021.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022] Open
Abstract
Microcephaly is defined by an occipital-frontal head circumference (OFD) 2 standard deviations (SD) smaller than the average expected for age, gender and population. Its incidence has been reported between 1.3 and 150 cases per 100,000 births. Currently, new clinical characteristics, causes and pathophysiological mechanisms related to microcephaly continue to be identified. Its etiology is varied and heterogeneous, with genetic and non-genetic factors that produce alterations in differentiation, proliferation, migration, repair of damage to deoxyribonucleic acid and neuronal apoptosis. It requires a multidisciplinary diagnostic approach that includes a medical history, detailed prenatal and postnatal clinical evaluation, cerebral magnetic resonance imaging, neuropsychological evaluation, and in some cases complementary tests such as metabolic screening, tests to rule out infectious processes and genetic testing. There is no specific treatment or intervention to increase cerebral growth; however, timely intervention strategies and programs can be established to improve motor and neurocognitive development, as well as to provide genetic counseling. The objective of this work is to review the available information and reinforce the proposal to carry out an etiopathogenic approach for microcephaly diagnosis and management.
Collapse
Affiliation(s)
- Luis Eduardo Becerra-Solano
- Medical Research Unit in Reproductive Medicine, Unidad Médica de Alta Especialidad, Hospital de Gineco Obstetricia No. 4, "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Río Magdalena 289, Level 6, Laboratory K, Colonia Tizapan San Ángel, Alcaldía Álvaro Obregón, C.P. 01090, Mexico City, Mexico
| | - Leovigildo Mateos-Sánchez
- Neonatal Intensive Care Unit, Unidad Médica de Alta Especialidad, Hospital de Gineco Obstetricia No. 4, "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Río Magdalena 289, Mezzanine, Colonia Tizapan San Ángel, Alcaldía Álvaro Obregón, C.P. 01090, Mexico City, Mexico
| | - Eunice López-Muñoz
- Medical Research Unit in Reproductive Medicine, Unidad Médica de Alta Especialidad, Hospital de Gineco Obstetricia No. 4, "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Río Magdalena 289, Level 6, Laboratory K, Colonia Tizapan San Ángel, Alcaldía Álvaro Obregón, C.P. 01090, Mexico City, Mexico.
| |
Collapse
|
32
|
Wang Y, Wei M, Zhan Q, Jiang W, Xiao B. Whether cranial expansion is indicated in selected cases with microcephaly? Clin Neurol Neurosurg 2021; 207:106748. [PMID: 34182237 DOI: 10.1016/j.clineuro.2021.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/17/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Some children with microcephaly experienced severe social emotional deficits during their 1-2 years of age. Cranial expansion is generally not used in these cases. Our aim is to assess whether such operation is effective to improve their social emotional status, and thereby boosting their functional development in selected cases with such condition. METHODS A retrospective cohort review in microcephalic cases who had undergone cranial expansion in Shanghai Children's Hospital since Jun. 2016 to Jun. 2017 with at least 12 months follow-up was conducted. Inclusion and exclusion criteria were set for the selection of the target patients in the current study. Our study focused on the changes of social emotional status (evaluated by The Infant-Toddler Social and Emotional Assessment, ITSEA) and functional development (applying neurodevelopmental questionnaire) pre- and 12 months post-op in these cases. RESULTS A total of 14 cases were included in the current study. On the basis of a 2-cm enlargement during surgery(1 cm advancement of fronto-orbital rim on each side), HC continued to increase at an average of 0.5 cm in one year after the procedure in these cases, making its corresponding standard deviation improve from -4.5 to -3.4. Among those 14 cases, 11 (78.6%) showed improvement in all of these four domains in ITSEA at 12 months post-op. Scores were significantly better at 12 months post-op with p < 0.01 compared with those in domains of internalizing behavior and dysregulation behavior pre-operatively. Improvement was observed with p < 0.05 in domains of externalizing behavior and social-emotional competence as well. With regard to functional development, 8 cases (57.1%) were revealed improvement in all of these three sections of motor, speech and cognitive function in the questionnaire, 5 (35.7%) concluded partially upgraded in 1 or 2 sections. Only one (7.1%) showed no change during the follow-up. No surgery-related complications were recorded in the current study. CONCLUSION When progressive copper-beaten sign is revealed in their serial skull X-rays, microcephalic cases with social emotional deficits in their 1-2 years of age could benefit from cranial expansion surgery with regard to improving their social emotional status and functional development.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Paediatric Neurosurgery, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Luding Rd. 355, Shanghai, China.
| | - Min Wei
- Department of Paediatric Neurosurgery, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Luding Rd. 355, Shanghai, China.
| | - Qijia Zhan
- Department of Paediatric Neurosurgery, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Luding Rd. 355, Shanghai, China.
| | - Wenbin Jiang
- Department of Paediatric Neurosurgery, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Luding Rd. 355, Shanghai, China.
| | - Bo Xiao
- Department of Paediatric Neurosurgery, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Luding Rd. 355, Shanghai, China.
| |
Collapse
|
33
|
Moura LM, Ferreira VLDR, Loureiro RM, de Paiva JPQ, Rosa-Ribeiro R, Amaro E, Soares MBP, Machado BS. The Neurobiology of Zika Virus: New Models, New Challenges. Front Neurosci 2021; 15:654078. [PMID: 33897363 PMCID: PMC8059436 DOI: 10.3389/fnins.2021.654078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The Zika virus (ZIKV) attracted attention due to one striking characteristic: the ability to cross the placental barrier and infect the fetus, possibly causing severe neurodevelopmental disruptions included in the Congenital Zika Syndrome (CZS). Few years after the epidemic, the CZS incidence has begun to decline. However, how ZIKV causes a diversity of outcomes is far from being understood. This is probably driven by a chain of complex events that relies on the interaction between ZIKV and environmental and physiological variables. In this review, we address open questions that might lead to an ill-defined diagnosis of CZS. This inaccuracy underestimates a large spectrum of apparent normocephalic cases that remain underdiagnosed, comprising several subtle brain abnormalities frequently masked by a normal head circumference. Therefore, new models using neuroimaging and artificial intelligence are needed to improve our understanding of the neurobiology of ZIKV and its true impact in neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - Edson Amaro
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ), Bahia, Brazil.,University Center SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Advanced Health Systems (CIMATEC ISI SAS), National Service of Industrial Learning - SENAI, Bahia, Brazil
| | | |
Collapse
|
34
|
Prevalence of congenital microcephaly and its risk factors in an area at risk of Zika outbreaks. BMC Pregnancy Childbirth 2021; 21:214. [PMID: 33731027 PMCID: PMC7972338 DOI: 10.1186/s12884-021-03705-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background Prevalence of neonatal microcephaly in populations without Zika-epidemics is sparse. The study aimed to report baseline prevalence of congenital microcephaly and its relationship with prenatal factors in an area at risk of Zika outbreak. Methods This study included singletons born after 24 gestational weeks in 2017–2018 at four hospitals in Guangzhou, China. Microcephaly was defined as a head circumference at birth >3SD below the mean for sex and gestational age. Prevalence of microcephaly was estimated by binomial exact method. Multivariable logistic regression was used to examine the associations of microcephaly with prenatal factors. The population attributable fraction (PAF) for associated risk factors was calculated. Results Of 46,610 live births included, 154 (3.3, 95% CI 2.8–3.9 per 1000 live births) microcephalies were identified. Maternal hepatitis B virus carriers (HBV, OR 1.80, 95% CI 1.05–3.10) and primipara (OR 2.68, 95% CI 1.89–3.81) had higher risk of having a microcephalic baby. Higher prevalence of microcephaly was observed in women who had premature labor (OR 1.98, 95% CI 1.17–3.34) and had a baby with fetal growth restriction (OR 16.38, 95% CI 11.81–22.71). Four identified factors (HBV, primiparity, preterm labor, and fetal growth restriction) contributed to 66.4% of the risk of microcephaly. Conclusions The prevalence of microcephaly in Guangzhou was higher than expected. This study identified four prenatal risk factors that, together, contributed to two-thirds of the increased risk of microcephaly. This is the first reported association between maternal HBV carrier status and microcephaly.
Collapse
|
35
|
The Participation of the Intrinsically Disordered Regions of the bHLH-PAS Transcription Factors in Disease Development. Int J Mol Sci 2021; 22:ijms22062868. [PMID: 33799876 PMCID: PMC8001110 DOI: 10.3390/ijms22062868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
The basic helix–loop–helix/Per-ARNT-SIM (bHLH-PAS) proteins are a family of transcription factors regulating expression of a wide range of genes involved in different functions, ranging from differentiation and development control by oxygen and toxins sensing to circadian clock setting. In addition to the well-preserved DNA-binding bHLH and PAS domains, bHLH-PAS proteins contain long intrinsically disordered C-terminal regions, responsible for regulation of their activity. Our aim was to analyze the potential connection between disordered regions of the bHLH-PAS transcription factors, post-transcriptional modifications and liquid-liquid phase separation, in the context of disease-associated missense mutations. Highly flexible disordered regions, enriched in short motives which are more ordered, are responsible for a wide spectrum of interactions with transcriptional co-regulators. Based on our in silico analysis and taking into account the fact that the functions of transcription factors can be modulated by posttranslational modifications and spontaneous phase separation, we assume that the locations of missense mutations inducing disease states are clearly related to sequences directly undergoing these processes or to sequences responsible for their regulation.
Collapse
|
36
|
Bardin R, Krispin E, Salman L, Navon I, Shmueli A, Perlman S, Gilboa Y, Hadar E. Association of term isolated microcephaly with mode of delivery and perinatal outcome - a retrospective case-control analysis. BMC Pregnancy Childbirth 2021; 21:115. [PMID: 33563226 PMCID: PMC7871588 DOI: 10.1186/s12884-021-03613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background We aimed to evaluate the association of isolated fetal microcephaly measured by ultrasound prior to delivery at term with mode of delivery and perinatal outcome. Methods A single-center retrospective study was conducted in 2012–2016. Fetal microcephaly was defined as head circumference > 2 standard deviations of the mean for gestational age and sex. We compared the obstetric, delivery, and outcome parameters of women in whom ultrasound performed up to 10 days prior to term delivery showed isolated fetal microcephaly (study group) or normal head circumference (reference group). Exclusion criteria were intrauterine fetal death, birthweight below the 10th percentile, and antepartum cesarean delivery for any indication. Results Of 3677 women included in the study, 26 (0.7%) had a late ultrasound finding of isolated fetal microcephaly. Baseline characteristics were similar in the two groups except for estimated fetal weight based on abdominal circumference and biparietal diameter, which was lower in the microcephaly group (3209.8 ± 557.6 vs. 2685.8 ± 420.8 g, p < .001). There was no significant between-group difference in rate of vaginal operative deliveries (11.7% vs 14.8%, respectively, p = 0.372). The study group had no intrapartum cesarean deliveries compared to 6.3% of the reference group (NS). Compared to controls, neonates in the study group were smaller (3323.2 ± 432.2 vs. 2957.0 ± 330.4 g, p < .001), with lower birthweight percentile (60.5 ± 26.5 vs. 33.6 ± 21.5%, p < .001) and were more often males (48.2 vs. 90.0%, p < .001). No significant differences were noted in perinatal outcomes between the groups, including admission to neonatal intensive care unit, intraventricular hemorrhage, 5-min Apgar score < 7, asphyxia, seizures, and sepsis. Conclusions Isolated microcephaly in term fetuses is not advantageous for a vaginal delivery, nor does it does not pose a greater than normal risk of adverse perinatal outcome.
Collapse
Affiliation(s)
- Ron Bardin
- Helen Schneider Hospital for Women, Rabin Medical Center, Petach Tikva; affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Eyal Krispin
- Helen Schneider Hospital for Women, Rabin Medical Center, Petach Tikva; affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lina Salman
- Hillel Yaffe Medical Center, Hadera; affiliated to Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Inbal Navon
- Helen Schneider Hospital for Women, Rabin Medical Center, Petach Tikva; affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Shmueli
- Helen Schneider Hospital for Women, Rabin Medical Center, Petach Tikva; affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Perlman
- Helen Schneider Hospital for Women, Rabin Medical Center, Petach Tikva; affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yinon Gilboa
- Helen Schneider Hospital for Women, Rabin Medical Center, Petach Tikva; affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Hadar
- Helen Schneider Hospital for Women, Rabin Medical Center, Petach Tikva; affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Abdi Rad I, Vahabi A, Akbariazar E. A novel GTPBP2 splicing mutation in two siblings affected with microcephaly, generalized muscular atrophy, and hypotrichosis. Clin Case Rep 2021; 9:732-736. [PMID: 33598235 PMCID: PMC7869383 DOI: 10.1002/ccr3.3637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/14/2020] [Accepted: 11/23/2020] [Indexed: 11/07/2022] Open
Abstract
A novel splice site mutation in the GTPBP2 gene was identified by whole-exome sequencing in two siblings with microcephaly and progressive generalized muscular atrophy associated with hypotrichosis.
Collapse
Affiliation(s)
- Isa Abdi Rad
- Cellular and Molecular Research CenterUrmia University of Medical SciencesUrmiaIran
- Department of Medical GeneticsUrmia University of Medical SciencesUrmiaIran
| | - Ali Vahabi
- Department of Medical GeneticsUrmia University of Medical SciencesUrmiaIran
| | - Elinaz Akbariazar
- Department of Medical GeneticsUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
38
|
|
39
|
Rodger C, Flex E, Allison RJ, Sanchis-Juan A, Hasenahuer MA, Cecchetti S, French CE, Edgar JR, Carpentieri G, Ciolfi A, Pantaleoni F, Bruselles A, Onesimo R, Zampino G, Marcon F, Siniscalchi E, Lees M, Krishnakumar D, McCann E, Yosifova D, Jarvis J, Kruer MC, Marks W, Campbell J, Allen LE, Gustincich S, Raymond FL, Tartaglia M, Reid E. De Novo VPS4A Mutations Cause Multisystem Disease with Abnormal Neurodevelopment. Am J Hum Genet 2020; 107:1129-1148. [PMID: 33186545 PMCID: PMC7820634 DOI: 10.1016/j.ajhg.2020.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRTs) are essential for multiple membrane modeling and membrane-independent cellular processes. Here we describe six unrelated individuals with de novo missense variants affecting the ATPase domain of VPS4A, a critical enzyme regulating ESCRT function. Probands had structural brain abnormalities, severe neurodevelopmental delay, cataracts, growth impairment, and anemia. In cultured cells, overexpression of VPS4A mutants caused enlarged endosomal vacuoles resembling those induced by expression of known dominant-negative ATPase-defective forms of VPS4A. Proband-derived fibroblasts had enlarged endosomal structures with abnormal accumulation of the ESCRT protein IST1 on the limiting membrane. VPS4A function was also required for normal endosomal morphology and IST1 localization in iPSC-derived human neurons. Mutations affected other ESCRT-dependent cellular processes, including regulation of centrosome number, primary cilium morphology, nuclear membrane morphology, chromosome segregation, mitotic spindle formation, and cell cycle progression. We thus characterize a distinct multisystem disorder caused by mutations affecting VPS4A and demonstrate that its normal function is required for multiple human developmental and cellular processes.
Collapse
Affiliation(s)
- Catherine Rodger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Rachel J Allison
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alba Sanchis-Juan
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge CB2 0XY, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Marcia A Hasenahuer
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK; European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Serena Cecchetti
- Microscopy Area, Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Courtney E French
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Giovanna Carpentieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy; Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Roberta Onesimo
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy
| | - Giuseppe Zampino
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy; Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Francesca Marcon
- Unit of Mechanisms, Biomarkers and Models, Department of Environment and Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Ester Siniscalchi
- Unit of Mechanisms, Biomarkers and Models, Department of Environment and Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Melissa Lees
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Deepa Krishnakumar
- Department of Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Emma McCann
- Department of Clinical Genetics, Liverpool Women's Hospital, Liverpool L8 7SS, UK
| | - Dragana Yosifova
- Department of Medical Genetics, Guys' and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Joanna Jarvis
- Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham B15 2TG, UK
| | | | - Warren Marks
- Cook Children's Medical Centre, Fort Worth, TX 76104, USA
| | - Jonathan Campbell
- Colchester Hospital, East Suffolk and North Essex NHS Foundation Trust, Essex CO4 5JL, UK
| | - Louise E Allen
- Ophthalmology Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy; Area of Neuroscience, SISSA, Trieste 34136, Italy
| | - F Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy.
| | - Evan Reid
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
40
|
Baggiani M, Dell’Anno MT, Pistello M, Conti L, Onorati M. Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders. Cells 2020; 9:E1893. [PMID: 32806773 PMCID: PMC7464299 DOI: 10.3390/cells9081893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022] Open
Abstract
Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Baggiani
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Maria Teresa Dell’Anno
- Cellular Engineering Laboratory, Fondazione Pisana per la Scienza ONLUS, 56017 Pisa, Italy;
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa and Virology Division, Pisa University Hospital, 56100 Pisa, Italy;
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy;
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
41
|
Wang L, Li Z, Sievert D, Smith DEC, Mendes MI, Chen DY, Stanley V, Ghosh S, Wang Y, Kara M, Aslanger AD, Rosti RO, Houlden H, Salomons GS, Gleeson JG. Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly. Nat Commun 2020; 11:4038. [PMID: 32788587 PMCID: PMC7424529 DOI: 10.1038/s41467-020-17454-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
Asparaginyl-tRNA synthetase1 (NARS1) is a member of the ubiquitously expressed cytoplasmic Class IIa family of tRNA synthetases required for protein translation. Here, we identify biallelic missense and frameshift mutations in NARS1 in seven patients from three unrelated families with microcephaly and neurodevelopmental delay. Patient cells show reduced NARS1 protein, impaired NARS1 activity and impaired global protein synthesis. Cortical brain organoid modeling shows reduced proliferation of radial glial cells (RGCs), leading to smaller organoids characteristic of microcephaly. Single-cell analysis reveals altered constituents of both astrocytic and RGC lineages, suggesting a requirement for NARS1 in RGC proliferation. Our findings demonstrate that NARS1 is required to meet protein synthetic needs and to support RGC proliferation in human brain development.
Collapse
Affiliation(s)
- Lu Wang
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Zhen Li
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - David Sievert
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Desirée E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Dillon Y Chen
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Child Neurology, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Valentina Stanley
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Shereen Ghosh
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Majdi Kara
- University of Tripoli, Tripoli Children's Hospital, Tripoli, Libya
| | | | - Rasim O Rosti
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Joseph G Gleeson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA.
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Division of Child Neurology, Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
42
|
Becquart P, Johnston J, Vilariño-Güell C, Quandt JA. Oligodendrocyte ARNT2 expression is altered in models of MS. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:e745. [PMID: 32439712 PMCID: PMC7251514 DOI: 10.1212/nxi.0000000000000745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE We examined expression of aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), a basic-loop-helix transcription factor implicated in neuronal development and axonal health, in oligodendrocyte (OL) cultures and over the course of chronic experimental autoimmune encephalomyelitis (EAE), the murine model of multiple sclerosis (MS). METHODS We assessed OL ARNT2 expression in EAE compared with sham-immunized controls and also in OL primary cultures and over the course of dibutyryl cyclic adenosine monophosphate (dbcAMP)-mediated maturation of the immortalized Oli-neu cell line. We also tested the functional role of ARNT2 in influencing OL characteristics using small interfering RNA (siRNA). RESULTS ARNT2 is localized to Olig2+ cells in healthy spinal cord gray and white matter. Despite a significant expansion of Olig2+ cells in the white matter at peak disease, ARNT2 is reduced by almost half in OLs, along with a reduction in the percentage of ARNT2+/Olig2+ cells. Mature OLs in mixed cortical cultures or OLs matured from embryonic progenitors express negligible ARNT2. Similarly, Oli-neu cells express high levels of ARNT2, which are reduced following dbcAMP maturation. siRNA-mediated knockdown of ARNT2 affected OL viability, which led to an enrichment of myelin-producing OLs. CONCLUSION The analysis of ARNT2 expression in OLs demonstrates that OL ARNT2 expression is altered in EAE and during OL maturation. Findings point to ARNT2 as an important mediator of OL viability and differentiation and warrant further characterization as a target for intervention in demyelinating disorders such as MS.
Collapse
Affiliation(s)
- Pierre Becquart
- From the Department of Pathology and Laboratory Medicine (P.B., J.J., J.A.Q.), University of British Columbia, Vancouver, BC, Canada; and Department of Medical Genetics (C.V.-G.), University of British Columbia, Vancouver, BC, Canada
| | - Jake Johnston
- From the Department of Pathology and Laboratory Medicine (P.B., J.J., J.A.Q.), University of British Columbia, Vancouver, BC, Canada; and Department of Medical Genetics (C.V.-G.), University of British Columbia, Vancouver, BC, Canada
| | - Carles Vilariño-Güell
- From the Department of Pathology and Laboratory Medicine (P.B., J.J., J.A.Q.), University of British Columbia, Vancouver, BC, Canada; and Department of Medical Genetics (C.V.-G.), University of British Columbia, Vancouver, BC, Canada
| | - Jacqueline A Quandt
- From the Department of Pathology and Laboratory Medicine (P.B., J.J., J.A.Q.), University of British Columbia, Vancouver, BC, Canada; and Department of Medical Genetics (C.V.-G.), University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
43
|
MCPH1 Lack of Function Enhances Mitotic Cell Sensitivity Caused by Catalytic Inhibitors of Topo II. Genes (Basel) 2020; 11:genes11040406. [PMID: 32276518 PMCID: PMC7231051 DOI: 10.3390/genes11040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 11/23/2022] Open
Abstract
The capacity of Topoisomerase II (Topo II) to remove DNA catenations that arise after replication is essential to ensure faithful chromosome segregation. Topo II activity is monitored during G2 by a specific checkpoint pathway that delays entry into mitosis until the chromosomes are properly decatenated. Recently, we demonstrated that the mitotic defects that are characteristic of cells depleted of MCPH1 function, a protein mutated in primary microcephaly, are not a consequence of a weakened G2 decatenation checkpoint response. However, the mitotic defects could be accounted for by a minor defect in the activity of Topo II during G2/M. To test this hypothesis, we have tracked at live single cell resolution the dynamics of mitosis in MCPH1 depleted HeLa cells upon catalytic inhibition of Topo II. Our analyses demonstrate that neither chromosome alignment nor segregation are more susceptible to minor perturbation in decatenation in MCPH1 deficient cells, as compared with control cells. Interestingly, MCPH1 depleted cells were more prone to mitotic cell death when decatenation was perturbed. Furthermore, when the G2 arrest that was induced by catalytic inhibition of Topo II was abrogated by Chk1 inhibition, the incidence of mitotic cell death was also increased. Taken together, our data suggest that the MCPH1 lack of function increases mitotic cell hypersensitivity to the catalytic inhibition of Topo II.
Collapse
|
44
|
Ocular Findings in Infants with Microcephaly Caused by Presumed Congenital Infection by Zika Virus in Sergipe. J Ophthalmol 2020; 2020:7092432. [PMID: 32318282 PMCID: PMC7152931 DOI: 10.1155/2020/7092432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/10/2018] [Accepted: 01/28/2019] [Indexed: 11/21/2022] Open
Abstract
This study aims at identifying ocular findings in infants with microcephaly associated with presumed intrauterine infection by ZIKV. A cross-sectional study included 62 outpatient infants with congenital microcephaly, presumably secondary to maternal ZIKV infection. The included infants had head circumference below −2 standard deviations, with negative maternal serology for toxoplasmosis, rubella, cytomegalovirus, syphilis, and HIV. Assessment of ocular alterations was performed through review of their medical records. Forty two (67.7%) of the children analyzed presented some degree of ocular alteration. Findings in the posterior segment occurred in 29 (46.8%) patients, including atrophy of the retinal pigmentary epithelium in 15 (24.2%) patients, chorioretinal scars in 14 (22.6%) patients, retinal coloboma in 6 (9.7%) patients, and punctate retinal hemorrhage in 1 (1.6%) patient. Other ocular alterations were seen in 15 (24.2%) patients, including pathological strabismus in 11 (17.7%) patients, congenital cataracts in 2 (3.2%) patients, and nystagmus in 2 (3.2%) patients. Functional alterations were seen in four (6.5%) children. More than one change occurred in 11 (17.7%) children, eight of whom had head circumferences below −3 standard deviations. Changes in both the eyes occurred in 22 (35.5%) children, while 20 (32.3%) children had unilateral involvement. Among the 42 children with any ocular alteration, 27 (64.3%) children presented with severe microcephaly (head circumference with standard deviation lower than −3). The majority of children with microcephaly, presumably secondary to maternal ZIKV infection, present ocular alterations, with a higher frequency of involvement in the fundus. Severe ocular alterations are related to severe microcephaly.
Collapse
|
45
|
Zika virus infection from a newborn point of view. TORCH or TORZiCH? Interdiscip Toxicol 2019; 11:241-246. [PMID: 31762675 PMCID: PMC6853014 DOI: 10.2478/intox-2018-0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/21/2018] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) belongs to the group of viruses called arboviruses. Congenital Zika syndrome is a new disease with infectious teratogenic aetiology. The clinical symptoms are divided into morphological and functional. Most severe complication is the foetal brain disruption sequence that includes severe microcephaly, anomalies of the eyes and congenital contractions of joints. The aim of this paper was to review available facts about Zika virus infection from a newborn point of view in a form of the summary of all important information. Zika virus infection is a problem of past, present and future. Epidemics may occur because of global climate changes, also in countries where natural conditions for life of mosquitos are not present. This clearly indicates the need to continue developing of vaccines and specific antiviral drugs. Until this happens, we must adhere individual preventive measures. Zika virus has proven to us how it can affect the health of adults and neonates but also thinking of healthy people. Newborns with microcephaly on the front pages of the media caused in 2015 panic and fear around the world – for this reason education of people is necessary. Due to serious congenital disorders associated with ZIKV infection and global impact of virus we suggest modifying old acronym TORCH for new TORZiCH to accent the position of Zika virus.
Collapse
|
46
|
Gilbert‐Jaramillo J, Garcez P, James W, Molnár Z, Clarke K. The potential contribution of impaired brain glucose metabolism to congenital Zika syndrome. J Anat 2019; 235:468-480. [PMID: 30793304 PMCID: PMC6704275 DOI: 10.1111/joa.12959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
The Zika virus (ZIKV) became a major worldwide public concern in 2015 due to the congenital syndrome which presents the highest risk during the first trimester of pregnancy and includes microcephaly and eye malformations. Several cellular, genetic and molecular studies have shown alterations in metabolic pathways, endoplasmic reticulum (ER) stress, immunity and dysregulation of RNA and energy metabolism both in vivo and in vitro. Here we summarise the main metabolic complications, with a particular focus on the possibility that brain energy metabolism is altered following ZIKV infection, contributing to developmental abnormalities. Brain energetic failure has been implicated in neurological conditions such as autism disorder and epilepsy, as well as in metabolic diseases with severe neurodevelopmental complications such as Glut-1 deficiency syndrome. Therefore, these energetic alterations are of wide-ranging interest as they might be directly implicated in congenital ZIKV syndrome. Data showing increased glycolysis during ZIKV infection, presumably required for viral replication, might support the idea that the virus can cause energetic stress in the developing brain cells. Consequences may include neuroinflammation, cell cycle dysregulation and cell death. Ketone bodies are non-glycolytic brain fuels that are produced during neonatal life, starvation or fasting, ingestion of high-fat low-carbohydrate diets, and following supplementation with ketone esters. We propose that dietary ketones might alter the course of the disease and could even provide some degree of prevention of ZIKV-associated abnormalities and potentially related neurological conditions characterised by brain glucose impairment.
Collapse
Affiliation(s)
| | - Patricia Garcez
- Institute of Biomedical SciencesFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - William James
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Kieran Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
47
|
Rocha SGMO, Correia LL, da Cunha AJLA, Rocha HAL, Leite ÁJM, Campos JS, Bandeira TDJPG, do Nascimento LS, e Silva AC. Zika Virus Infection and Microcephaly: A Case-Control Study in Brazil. Ann Glob Health 2019; 85:116. [PMID: 31468955 PMCID: PMC6715938 DOI: 10.5334/aogh.2394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Brazil presented an alarming number of newborns with microcephaly in the years 2015 and 2016. The investigation of the cases raised the suspicion of the association of these cases with maternal infections by the zika virus. Also, in 2015, there was an epidemic of zika virus infection in Brazil, reinforcing this hypothesis. OBJECTIVE The objective of this study was to identify factors associated with the diagnosis of microcephaly in newborns, including zika virus infection. METHODS We conducted a case-control study. The cases were defined as children who received clinical and imaging diagnosis of microcephaly, born after October 2015 in Ceará, Brazil, which recorded the highest number of microcephaly cases in Brazil during the outbreak. The cases were identified in medical records of public and private maternity hospitals and in child development stimulation clinics tracked until June 2017. Epidemiological, clinical, and socioeconomic variables were collected, visiting their homes and confirming data from their medical records. Controls were children without microcephaly identified in the vicinity of the residence of each case. Logistic regression models were used to control confounding. FINDINGS We evaluated 58 cases and 116 controls. The odds of having a baby with microcephaly was 14 times higher among mothers who had zika virus infection (p < 0.001), after multivariate analysis. Arboviruses infections symptoms, as fever (p = 0.220), skin change (p < 0.001), and joint pain (p = 0.002) also demonstrated an association with microcephaly. CONCLUSIONS Maternal infection zika virus was associated with a diagnosis of microcephaly. Our study contributes to the investigation of the epidemiological factors associated with the diagnosis of microcephaly.
Collapse
Affiliation(s)
| | | | | | - Hermano Alexandre Lima Rocha
- Federal University of Ceará, Community Health Department, Fortaleza, Ceará, BR
- Christus University Center (Unichristus), Fortaleza, Ceará, BR
| | | | | | | | | | | |
Collapse
|
48
|
Gharbaran R, Somenarain L. Putative Cellular and Molecular Roles of Zika Virus in Fetal and Pediatric Neuropathologies. Pediatr Dev Pathol 2019; 22:5-21. [PMID: 30149771 DOI: 10.1177/1093526618790742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the World Health Organization declared an end to the recent Zika virus (ZIKV) outbreak and its association with adverse fetal and pediatric outcome, on November 18, 2016, the virus still remains a severe public health threat. Laboratory experiments thus far supported the suspicions that ZIKV is a teratogenic agent. Evidence indicated that ZIKV infection cripples the host cells' innate immune responses, allowing productive replication and potential dissemination of the virus. In addition, studies suggest potential transplacental passage of the virus and subsequent selective targeting of neural progenitor cells (NPCs). Depletion of NPCs by ZIKV is associated with restricted brain growth. And while microcephaly can result from infection at any gestational stages, the risk is greater during the first trimester. Although a number of recent studies revealed some of specific molecular and cellular roles of ZIKV proteins of this mosquito-borne flavivirus, the mechanisms by which it produces it suspected pathophysiological effects are not completely understood. Thus, this review highlights the cellular and molecular evidence that implicate ZIKV in fetal and pediatric neuropathologies.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- 1 Department of Biological Sciences, Bronx Community College, The City University of New York, Bronx, New York
| | - Latchman Somenarain
- 1 Department of Biological Sciences, Bronx Community College, The City University of New York, Bronx, New York
| |
Collapse
|
49
|
|
50
|
Leibovitz Z, Lerman-Sagie T. Diagnostic approach to fetal microcephaly. Eur J Paediatr Neurol 2018; 22:935-943. [PMID: 29970280 DOI: 10.1016/j.ejpn.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/05/2018] [Accepted: 06/08/2018] [Indexed: 12/01/2022]
Abstract
Microcephaly in utero is conventionally defined as a fetal head circumference (HC) 3SD below the mean for gestational age according to Jeanty et al.'s reference range. Prediction of microcephaly at birth (micB) based on conventional prenatal biometry is associated with a high percentage of false positive diagnoses and as a result, in countries in which it is an option, termination of pregnancy may be offered in cases that would have culminated in birth of a normocephalic child. A false negative diagnosis is rarer, but may lead to the birth of a symptomatic microcephalic child. In this review we present the results of our recent studies aimed at improvement of accurate prenatal detection of microcephaly including: (1), application of two new reference ranges for fetal HC in cases with a prenatal diagnosis of microcephaly based on the conventional reference; (2) assessment whether integration of additional parameters (stricter fetal HC cut-offs, small-for-gestational age (SGA), decreased HC/abdominal circumference and HC/femur length ratios, presence of associated malformations and family history) can improve prediction; (3), estimation of the difference between Z-scores of prenatal HC and the corresponding occipitofrontal circumference (OFC) at birth in order to propose an adjustment for better prediction of the actual OFC deviation at birth; (4), assessment whether micB diagnosis can be improved by accurate detection of false positive Fmic cases whose small HC is due to an acrocephalic-like head deformation by applying a new reference range of a vertical measurement of the fetal head: foramen magnum-to-cranium distance (FCD). The conventional and new reference ranges for fetal HC, all result in considerable over-diagnosis of fetal microcephaly (ranging from 43% to 33%). The use of the new references does not significantly improve micB prediction compared with the conventional one, whilst integrating additional parameters results in a better positive predictive value (PPV), but an increase in false negatives. The degree of Fmic severity is significantly over-estimated compared to the corresponding micB. The difference between the postnatal OFC deviation from the mean and the prenatal HC ranges from -0.74 SD to -1.95 SD for various fetal HC references. Application of the reference range for vertical cranial dimensions enables exclusion of fetuses with a small HC associated with a vertical cranial deformity without missing those with actual micB. Combining the fetal HC with the developed FCD criteria raised the PPV of micB to 78%. CONCLUSIONS: Prediction of micB can be improved by integrating additional parameters and by application of the FCD criteria, however the correct diagnosis of Fmic remains challenging. An algorithm for evaluation of fetal microcephaly is provided.
Collapse
Affiliation(s)
- Zvi Leibovitz
- Obstetrics-Gynecology Ultrasound Unit, Bnai-Zion Medical Center and Rappaport Faculty of Medicine, The Technion, Haifa, Israel; Fetal Neurology Clinic, Obstetrics-Gynecology Ultrasound Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Tally Lerman-Sagie
- Fetal Neurology Clinic, Obstetrics-Gynecology Ultrasound Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Pediatric Neurology Unit, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv-Aviv, Israel
| |
Collapse
|