1
|
Aberrant Axo-Axonic Synaptic Reorganization in the Phosphorylated L1-CAM/Calcium Channel Subunit α2δ-1-Containing Central Terminals of Injured c-Fibers in the Spinal Cord of a Neuropathic Pain Model. eNeuro 2021; 8:ENEURO.0499-20.2021. [PMID: 33500315 PMCID: PMC8174056 DOI: 10.1523/eneuro.0499-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/25/2020] [Accepted: 01/08/2021] [Indexed: 12/04/2022] Open
Abstract
In the dorsal horn of the spinal cord, peripheral nerve injury induces structural and neurochemical alterations through which aberrant synaptic signals contribute to the formation of neuropathic pain. However, the role of injured primary afferent terminals in such plastic changes remain unclear. In this study, we investigated the effect of nerve injury on the morphology of cell adhesion molecule L1-CAM [total L1-CAM (tL1-CAM)]-positive primary afferent terminals and on the synaptic contact pattern in the dorsal horn. In the confocal images, the tL1-CAM-positive terminals showed morphologic changes leading to the formation of hypertrophic varicosities in the c-fiber terminal. These hypertrophic varicosities in the dorsal horn were co-labeled with phosphorylated (Ser1181) L1-CAM (pL1-CAM) and shown to store neurotransmitter peptides, but not when co-labeled with the presynaptic marker, synaptophysin. Quantitative analyses based on 3D-reconstructed confocal images revealed that peripheral nerve injury reduced dendritic synaptic contacts but promoted aberrant axo-axonic contacts on the tL1-CAM-positive hypertrophic varicosities. These tL1-CAM-positive varicosities co-expressed the injury-induced α2δ−1 subunit of the calcium channel in the dorsal horn. Administration of the anti-allodynic drug, pregabalin, inhibited accumulation of α2δ−1 and pL1-CAM associated with a reduction in hypertrophic changes of tL1-CAM-positive varicosities, and normalized injury-induced alterations in synaptic contacts in the dorsal horn. Our findings highlight the formation of aberrant spinal circuits that mediate the convergence of local neuronal signals onto injured c-fibers, suggesting that these hypertrophic varicosities may be important contributors to the pathologic mechanisms underlying neuropathic pain.
Collapse
|
2
|
Abstract
ZusammenfassungSchmerz als Hauptsymptom vieler chronisch-entzündlicher Erkrankungen stellt für den Patienten, aber auch für den behandelnden Arzt besonders in seiner chronifizierten Form eine große Herausforderung dar. Es gibt leider keine „Wunderpille“ mit der man Schmerzen für jeden gleich zuverlässig beseitigen kann. Es gibt aber viele Ansätze pharmakologischer als auch nicht-pharmakologischer Art und deren Kombination, um für den einzelnen Patienten wirksame Behandlungsstrategien zu finden. Um diese Strategien für jeden Patienten individuell optimal festzulegen, bedarf es zum einen eines fundamentierten Wissens über das Spektrum zur Verfügung stehender Mittel, zum anderen aber auch Erkenntnis darüber, wie diese sinnvoll nach Art der vorliegenden Schmerzformen einzusetzen sind. In dieser Übersicht wird beides behandelt, mit einem Fokus auf die medikamentöse Therapie von Schmerzen bei entzündlich-rheumatischen Erkrankungen. Dabei wird herausgearbeitet, dass es für die in diesem Zusammenhang relevantesten Formen des Schmerzes, akut-entzündlich nozizeptiv, neuropathisch und durch periphere und zentrale Sensibilisierung chronifizierte Schmerzen, jeweils andere wirksame Konzepte gibt.
Collapse
Affiliation(s)
- Georg Pongratz
- Poliklinik, Funktionsbereich und Hiller Forschungszentrum für Rheumatologie, Universitätsklinikum Düsseldorf, Düsseldorf
| |
Collapse
|
3
|
Martinez RM, Hohmann MS, Longhi-Balbinot DT, Zarpelon AC, Baracat MM, Georgetti SR, Vicentini FTMC, Sassonia RC, Verri WA, Casagrande R. Analgesic activity and mechanism of action of a Beta vulgaris dye enriched in betalains in inflammatory models in mice. Inflammopharmacology 2020; 28:1663-1675. [PMID: 32141011 DOI: 10.1007/s10787-020-00689-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/04/2020] [Indexed: 01/27/2023]
Abstract
Evidence demonstrates the pronounced anti-inflammatory activity of a beetroot (Beta vulgaris) dye enriched in betalains obtained using precipitation with ethanol. Herein, we expand upon our previous observations and demonstrate the analgesic and antioxidant effect of betalains. Betalains [10-1000 mg/kg; intraperitoneal route (i.p.)] diminished acetic acid- and PBQ-induced abdominal contortions, and the overt pain-like behaviour induced by complete Freund`s adjuvant (CFA) and formalin (intraplantar; i.pl.) injection. Moreover, betalains (100 mg/kg) administered by various routes [i.p. or subcutaneous (s.c.)] or as a post-treatment reduced carrageenin- or CFA-induced hyperalgesia. Mechanistically, betalains mitigated carrageenin-induced tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1β, superoxide anion levels, and lipid peroxidation. Betalains also stopped the depletion of reduced glutathione (GSH) levels and ferric reducing ability produced by carrageenin, as well as upregulated Nrf2 and Ho1 transcript expression in the plantar tissue of mice. Furthermore, betalains showed hydroxyl radical, 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) radical (ABTS+), and 2,2-diphenyl-1-picryl-hydrazyl radical (DPPH•) scavenging ability and iron-chelating activity (bathophenantroline assay), and inhibited iron-independent and iron-dependent lipid peroxidation (LPO) in vitro. Finally, betalains-treated bone marrow-derived macrophages exhibited lower levels of cytokines (TNF-α and IL-1β), and superoxide anion levels and nuclear factor kappa B (NF-κB) activation following lipopolysaccharide (LPS) stimulation. Therefore, this betalain-rich dye extracted using a novel precipitation approach presents prominent analgesic effect in varied models of pain by mechanisms targeting cytokines and oxidative stress.
Collapse
Affiliation(s)
- Renata M Martinez
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Miriam S Hohmann
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Daniela T Longhi-Balbinot
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Fabiana T M C Vicentini
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rogério Côrte Sassonia
- Centro de Ciências Integradas, Universidade Federal do Tocantins, Araguaína, Tocantins, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
4
|
Tanshinone IIA contributes to the pathogenesis of endometriosis via renin angiotensin system by regulating the dorsal root ganglion axon sprouting. Life Sci 2020; 240:117085. [DOI: 10.1016/j.lfs.2019.117085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022]
|
5
|
Varrassi G, Alon E, Bagnasco M, Lanata L, Mayoral-Rojals V, Paladini A, Pergolizzi JV, Perrot S, Scarpignato C, Tölle T. Towards an Effective and Safe Treatment of Inflammatory Pain: A Delphi-Guided Expert Consensus. Adv Ther 2019; 36:2618-2637. [PMID: 31485978 PMCID: PMC6822819 DOI: 10.1007/s12325-019-01053-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The clinical management of inflammatory pain requires an optimal balance between effective analgesia and associated safety risks. To date, mechanisms associated with inflammatory pain are not completely understood because of their complex nature and the involvement of both peripheral and central mechanisms. This Expert Consensus document is intended to update clinicians about evolving areas of clinical practice and/or available treatment options for the management of patients with inflammatory pain. METHOD An international group of experts in pain management covering the pharmacology, neurology and rheumatology fields carried out an independent qualitative systematic literature search using MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials. RESULTS Existing guidelines for pain management provide recommendations that do not satisfactorily address the complex nature of pain. To achieve optimal outcomes, drug choices should be individualized to guarantee the best match between the characteristics of the patient and the properties of the medication. NSAIDs represent an important prescribing choice in the management of inflammatory pain, and the recent results on paracetamol question its appropriate use in clinical practice, raising the need for re-evaluation of the recommendations in the clinical practice guidelines. CONCLUSIONS Increasing clinicians' knowledge of the available pharmacologic options to treat different pain mechanisms offers the potential for safe, individualized treatment decisions. We hope that it will help implement the needed changes in the management of inflammatory pain by providing the best strategies and new insights to achieve the ultimate goal of managing the disease and obtaining optimal benefits for patients. FUNDING Dompé Farmaceutici SPA and Paolo Procacci Foundation.
Collapse
Affiliation(s)
- Giustino Varrassi
- Paolo Procacci Foundation, Rome, Italy.
- President of World Institute of Pain (WIP), Winston-Salem, NC, USA.
| | - Eli Alon
- University of Zurich, Zurich, Switzerland
| | - Michela Bagnasco
- Medical Affairs Department, Dompé Farmaceutici SpA, Milan, Italy
| | - Luigi Lanata
- Medical Affairs Department, Dompé Farmaceutici SpA, Milan, Italy
| | | | | | | | - Serge Perrot
- Descartes University and Cochin-Hotel Dieu Hospital, Paris, France
| | | | | |
Collapse
|
6
|
Viventi S, Dottori M. Modelling the dorsal root ganglia using human pluripotent stem cells: A platform to study peripheral neuropathies. Int J Biochem Cell Biol 2018; 100:61-68. [PMID: 29772357 DOI: 10.1016/j.biocel.2018.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/08/2018] [Accepted: 05/13/2018] [Indexed: 12/28/2022]
Abstract
Sensory neurons of the dorsal root ganglia (DRG) are the primary responders to stimuli inducing feelings of touch, pain, temperature, vibration, pressure and muscle tension. They consist of multiple subpopulations based on their morphology, molecular and functional properties. Our understanding of DRG sensory neurons has been predominantly driven by rodent studies and using transformed cell lines, whereas less is known about human sensory DRG neurons simply because of limited availability of human tissue. Although these previous studies have been fundamental for our understanding of the sensory system, it is imperative to profile human DRG subpopulations as it is becoming evident that human sensory neurons do not share the identical molecular and functional properties found in other species. Furthermore, there are wide range of diseases and disorders that directly/indirectly cause sensory neuronal degeneration or dysfunctionality. Having an in vitro source of human DRG sensory neurons is paramount for studying their development, unique neuronal properties and for accelerating regenerative therapies to treat sensory neuropathies. Here we review the major studies describing generation of DRG sensory neurons from human pluripotent stem cells and fibroblasts and the gaps that need to be addressed for using in vitro-generated human DRG neurons to model human DRG tissue.
Collapse
Affiliation(s)
- Serena Viventi
- Department of Biomedical Engineering, University of Melbourne, Australia
| | - Mirella Dottori
- Department of Biomedical Engineering, University of Melbourne, Australia; Illawarra Health and Medical Research Institute, Centre for Molecular and Medical Bioscience, University of Wollongong, Australia.
| |
Collapse
|
7
|
Razavi BM, Hosseinzadeh H. A review of the role of orexin system in pain modulation. Biomed Pharmacother 2017; 90:187-193. [DOI: 10.1016/j.biopha.2017.03.053] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022] Open
|
8
|
Yu F, Zhao ZY, He T, Yu YQ, Li Z, Chen J. Temporal and spatial dynamics of peripheral afferent-evoked activity in the dorsal horn recorded in rat spinal cord slices. Brain Res Bull 2017; 131:183-191. [PMID: 28458040 DOI: 10.1016/j.brainresbull.2017.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/13/2017] [Accepted: 04/21/2017] [Indexed: 01/07/2023]
Abstract
In the present study, multi-electrode array recording was used to examine dorsal horn activity following stimulation of primary afferents in a rat dorsal root attached-spinal cord slice preparation. The multi-electrode array probe was placed under the dorsal horn slice and local field potentials evoked by stimulation on the dorsal root were analyzed. Three kinds of dorsal root-evoked responses were identified. In lamina IIo, local field potentials exhibited P1 (peak latency 1.46±0.08ms), N1 (2.77±0.18ms, n=12), N2 (7.31±0.48ms), N3 (12.12±0.73ms) and P2(18.30±0.80ms) waves. In lamina IIi local field potentials exhibited P (1.99±0.10ms), N1 (3.35±0.17ms) and N2 (8.58±0.44ms) waves. In laminae III-VI, local field potentials exhibited P1 (3.01±0.07ms), P2 (7.02±0.21ms) and N waves (22.57±0.79ms). Sweep spread was calculated by two dimensional current source density (2D-CSD) analysis. Both α-amino-3-hydroxy-5-methylisoxazole-4-propionic a/kainate and N-methyl-d-aspartate-type glutamate receptors participated in this neuronal circuitry. Morphine diminished local field potentials. Gabapentin diminished the negative components in lamina II and P2 component in lamina IIo, but increased the positive components in lamina IIi and laminae III-VI. The present study revealed that functional dorsal horn activity was preserved in the spinal cord slice preparation. Glutamatergic synapses were crucially involved in information processing. Opioid interneurons and gabapentin may play a modulatory role in regulating signal flows in the dorsal horn. Taken together, these results identify a spatio-temporal profile of dorsal horn activity evoked by dorsal root stimulation, and implicate glutamatergic and opioidergic receptors and gabapentin in this activity.
Collapse
Affiliation(s)
- Fang Yu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, PR China; Jinan Military General Hospital, Jinan, Shandong Province, 250031, PR China
| | - Zhen-Yu Zhao
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, PR China; Jinan Military General Hospital, Jinan, Shandong Province, 250031, PR China
| | - Ting He
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, PR China
| | - Yao-Qing Yu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, PR China
| | - Zhen Li
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, PR China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, PR China.
| |
Collapse
|
9
|
A role for prolyl isomerase PIN1 in the phosphorylation-dependent modulation of PRRXL1 function. Biochem J 2017; 474:683-697. [PMID: 28049756 DOI: 10.1042/bcj20160560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/10/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022]
Abstract
Prrxl1 encodes for a paired-like homeodomain transcription factor essential for the correct establishment of the dorsal root ganglion - spinal cord nociceptive circuitry during development. Prrxl1-null mice display gross anatomical disruption of this circuitry, which translates to a markedly diminished sensitivity to noxious stimuli. Here, by the use of an immunoprecipitation and mass spectrometry approach, we identify five highly conserved phosphorylation sites (T110, S119, S231, S233 and S251) in PRRXL1 primary structure. Four are phospho-S/T-P sites, which suggest a role for the prolyl isomerase PIN1 in regulating PRRXL1. Accordingly, PRRXL1 physically interacts with PIN1 and displays diminished transcriptional activity in a Pin1-null cell line. Additionally, these S/T-P sites seem to be important for PRRXL1 conformation, and their point mutation to alanine or aspartate down-regulates PRRXL1 transcriptional activity. Altogether, our findings provide evidence for a putative novel role of PIN1 in the development of the nociceptive system and indicate phosphorylation-mediated conformational changes as a mechanism for regulating the PRRXL1 role in the process.
Collapse
|
10
|
Mandadi S, Leduc-Pessah H, Hong P, Ejdrygiewicz J, Sharples SA, Trang T, Whelan PJ. Modulatory and plastic effects of kinins on spinal cord networks. J Physiol 2016; 594:1017-36. [PMID: 26634895 DOI: 10.1113/jp271152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/24/2015] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Inflammatory kinins are released following spinal cord injury or neurotrauma. The effects of these kinins on ongoing locomotor activity of central pattern generator networks are unknown. In the present study, kinins were shown to have short- and long-term effects on motor networks. The short-term effects included direct depolarization of interneurons and motoneurons in the ventral horn accompanied by modulation of transient receptor potential vanilloid 1-sensitive nociceptors in the dorsal horn. Over the long-term, we observed a bradykinin-mediated effect on promoting plasticity in the spinal cord. In a model of spinal cord injury, we observed an increase in microglia numbers in both the dorsal and ventral horn and, in a microglia cell culture model, we observed bradykinin-induced expression of glial-derived neurotrophic factor. ABSTRACT The expression and function of inflammatory mediators in the developing spinal cord remain poorly characterized. We discovered novel, short and long-term roles for the inflammatory nonapeptide bradykinin (BK) and its receptor bradykinin receptor B2 (B2R) in the neuromodulation of developing sensorimotor networks following a spinal cord injury (SCI), suggesting that BK participates in an excitotoxic cascade. Functional expression of B2R was confirmed by a transient disruptive action of BK on fictive locomotion generated by a combination of NMDA, 5-HT and dopamine. The role of BK in the dorsal horn nociceptive afferents was tested using spinal cord attached to one-hind-limb (HL) preparations. In the HL preparations, BK at a subthreshold concentration induced transient disruption of fictive locomotion only in the presence of: (1) noxious heat applied to the hind paw and (2) the heat sensing ion channel transient receptor potential vanilloid 1 (TRPV1), known to be restricted to nociceptors in the superficial dorsal horn. BK directly depolarized motoneurons and ascending interneurons in the ventrolateral funiculus. We found a key mechanism for BK in promoting long-term plasticity within the spinal cord. Using a model of neonatal SCI and a microglial cell culture model, we examined the role of BK in inducing activation of microglia and expression of glial-derived neurotrophic factor (GDNF). In the neonatal SCI model, we observed an increase in microglia numbers and increased GDNF expression restricted to microglia. In the microglia cell culture model, we observed a BK-induced increased expression of GDNF via B2R, suggesting a novel mechanism for BK spinal-mediated plasticity.
Collapse
Affiliation(s)
- S Mandadi
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - H Leduc-Pessah
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - P Hong
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - J Ejdrygiewicz
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S A Sharples
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - T Trang
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - P J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Vukojevic K, Filipovic N, Tica Sedlar I, Restovic I, Bocina I, Pintaric I, Saraga-Babic M. Neuronal differentiation in the developing human spinal ganglia. Anat Rec (Hoboken) 2016; 299:1060-72. [PMID: 27225905 DOI: 10.1002/ar.23376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/01/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022]
Abstract
The spatiotemporal developmental pattern of the neural crest cells differentiation toward the first appearance of the neuronal subtypes was investigated in developing human spinal ganglia (SG) between the fifth and tenth developmental week using immunohistochemistry and immunofluorescence methods. First neurofilament-200- (NF200, likely myelinated mechanoreceptors) and isolectin-B4-positive neurons (likely unmyelinated nociceptors) appeared already in the 5/6th developmental week and their number subsequently increased during the progression of development. Proportion of NF200-positive cells was higher in the ventral parts of the SG than in the dorsal parts, particularly during the 5/6th and 9/10th developmental weeks (Mann-Whitney, P = 0.040 and P = 0.003). NF200 and IB4 colocalized during the whole investigated period. calcitonin gene-related peptide (CGRP; nociceptive responses), vanilloid receptor-1 (VR1; polymodal nociceptors), and calretinin (calcium signaling) cell immunoreactivity first appeared in the sixth week and eighth week, respectively, especially in the dorsal parts of the SG. VR1 and CGRP colocalized with NF00 during the whole investigated period. Our results indicate the high potential of early differentiated neuronal cells, which slightly decreased with the progression of SG differentiation. On the contrary, the number of neuronal subtypes displayed increasing differentiation at later developmental stage. The great diversity of phenotypic expression found in the SG neurons is the result of a wide variety of influences, occurring at different stages of development in a large potential repertory of these neurons. Understanding the pathway of neural differentiation in the human, SG could be important for the studies dealing with the process of regeneration of damaged spinal nerves or during the repair of pathological changes within the affected ganglia. Anat Rec, 299:1060-1072, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katarina Vukojevic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Natalija Filipovic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Ivana Tica Sedlar
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia.,Department of Oncology, University Hospital Mostar, Bosnia and Herzegovina, Mostar, Bosnia and Herzegovina
| | - Ivana Restovic
- Educational Department, Faculty of Philosophy, University of Split, Split, Croatia
| | - Ivana Bocina
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Irena Pintaric
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Mirna Saraga-Babic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| |
Collapse
|
12
|
Malafoglia V, Bryant B, Raffaeli W, Giordano A, Bellipanni G. The zebrafish as a model for nociception studies. J Cell Physiol 2013; 228:1956-66. [DOI: 10.1002/jcp.24379] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 12/18/2022]
Affiliation(s)
| | - Bruce Bryant
- Monell Chemical Senses Center; Philadelphia, Pennsylvania
| | - William Raffaeli
- Institute for Research on Pain; ISAL-Foundation; Torre Pedrera (RN); Italy
| | | | | |
Collapse
|
13
|
Ji ZG, Ito S, Honjoh T, Ohta H, Ishizuka T, Fukazawa Y, Yawo H. Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells. PLoS One 2012; 7:e32699. [PMID: 22412908 PMCID: PMC3295764 DOI: 10.1371/journal.pone.0032699] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/29/2012] [Indexed: 11/18/2022] Open
Abstract
In vertebrate somatosensory systems, each mode of touch-pressure, temperature or pain is sensed by sensory endings of different dorsal root ganglion (DRG) neurons, which conducted to the specific cortical loci as nerve impulses. Therefore, direct electrical stimulation of the peripheral nerve endings causes an erroneous sensation to be conducted by the nerve. We have recently generated several transgenic lines of rat in which channelrhodopsin-2 (ChR2) transgene is driven by the Thy-1.2 promoter. In one of them, W-TChR2V4, some neurons were endowed with photosensitivity by the introduction of the ChR2 gene, coding an algal photoreceptor molecule. The DRG neurons expressing ChR2 were immunohistochemically identified using specific antibodies to the markers of mechanoreceptive or nociceptive neurons. Their peripheral nerve endings in the plantar skin as well as the central endings in the spinal cord were also examined. We identified that ChR2 is expressed in a certain population of large neurons in the DRG of W-TChR2V4. On the basis of their morphology and molecular markers, these neurons were classified as mechanoreceptive but not nociceptive. ChR2 was also distributed in their peripheral sensory nerve endings, some of which were closely associated with CK20-positive cells to form Merkel cell-neurite complexes or with S-100-positive cells to form structures like Meissner's corpuscles. These nerve endings are thus suggested to be involved in the sensing of touch. Each W-TChR2V4 rat showed a sensory-evoked behavior in response to blue LED flashes on the plantar skin. It is thus suggested that each rat acquired an unusual sensory modality of sensing blue light through the skin as touch-pressure. This light-evoked somatosensory perception should facilitate study of how the complex tactile sense emerges in the brain.
Collapse
Affiliation(s)
- Zhi-Gang Ji
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences and JST, CREST, Sendai, Japan
- Tohoku University Basic and Translational Research Centre for Global Brain Science, Sendai, Japan
| | - Shin Ito
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences and JST, CREST, Sendai, Japan
- Tohoku University Basic and Translational Research Centre for Global Brain Science, Sendai, Japan
| | - Tatsuya Honjoh
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences and JST, CREST, Sendai, Japan
- Tohoku University Basic and Translational Research Centre for Global Brain Science, Sendai, Japan
| | - Hiroyuki Ohta
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences and JST, CREST, Sendai, Japan
- Department of Physiology, National Defense Medical College, Tokorozawa, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences and JST, CREST, Sendai, Japan
| | - Yugo Fukazawa
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences and JST, CREST, Sendai, Japan
- Tohoku University Basic and Translational Research Centre for Global Brain Science, Sendai, Japan
- Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
14
|
Qi J, Zhang H, Guo J, Yang L, Wang W, Chen T, Li H, Wu SX, Li YQ. Synaptic connections of the neurokinin 1 receptor-like immunoreactive neurons in the rat medullary dorsal horn. PLoS One 2011; 6:e23275. [PMID: 21858052 PMCID: PMC3157358 DOI: 10.1371/journal.pone.0023275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/10/2011] [Indexed: 01/17/2023] Open
Abstract
The synaptic connections between neurokinin 1 (NK1) receptor-like immunoreactive (LI) neurons and γ-aminobutyric acid (GABA)-, glycine (Gly)-, serotonin (5-HT)- or dopamine-β-hydroxylase (DBH, a specific marker for norepinephrinergic neuronal structures)-LI axon terminals in the rat medullary dorsal horn (MDH) were examined under electron microscope by using a pre-embedding immunohistochemical double-staining technique. NK1 receptor-LI neurons were observed principally in laminae I and III, only a few of them were found in lamina II of the MDH. GABA-, Gly-, 5-HT-, or DBH-LI axon terminals were densely encountered in laminae I and II, and sparsely in lamina III of the MDH. Some of these GABA-, Gly-, 5-HT-, or DBH-LI axon terminals were observed to make principally symmetric synapses with NK1 receptor-LI neuronal cell bodies and dendritic processes in laminae I, II and III of the MDH. The present results suggest that neurons expressing NK1 receptor within the MDH might be modulated by GABAergic and glycinergic inhibitory intrinsic neurons located in the MDH and 5-HT- or norepinephrine (NE)-containing descending fibers originated from structures in the brainstem.
Collapse
Affiliation(s)
- Jian Qi
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Hua Zhang
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jun Guo
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | - Le Yang
- Undergraduate Student of the 2007 in Pharmacology, The Fourth Military Medical University, Xi'an, China
| | - Wen Wang
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Tao Chen
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Hui Li
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Sheng-Xi Wu
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
- * E-mail:
| |
Collapse
|
15
|
Long I, Suppian R, Ismail Z. Increases in mRNA and DREAM Protein Expression in the Rat Spinal Cord After Formalin Induced Pain. Neurochem Res 2010; 36:533-9. [DOI: 10.1007/s11064-010-0375-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2010] [Indexed: 11/27/2022]
|
16
|
Davidson S, Truong H, Giesler GJ. Quantitative analysis of spinothalamic tract neurons in adult and developing mouse. J Comp Neurol 2010; 518:3193-204. [PMID: 20575056 PMCID: PMC2996724 DOI: 10.1002/cne.22392] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the development of nociceptive circuits is important for the proper treatment of pain and administration of anesthesia to prenatal, newborn, and infant organisms. The spinothalamic tract (STT) is an integral pathway in the transmission of nociceptive information to the brain, yet the stage of development when axons from cells in the spinal cord reach the thalamus is unknown. Therefore, the retrograde tracer Fluoro-Gold was used to characterize the STT at several stages of development in the mouse, a species in which the STT was previously unexamined. One-week-old, 2-day-old and embryonic-day-18 mice did not differ from adults in the number or distribution of retrogradely labeled STT neurons. Approximately 3,500 neurons were retrogradely labeled from one side of the thalamus in each age group. Eighty percent of the labeled cells were located on the side of the spinal cord contralateral to the injection site. Sixty-three percent of all labeled cells were located within the cervical cord, 18% in thoracic cord, and 19% in the lumbosacral spinal cord. Retrogradely labeled cells significantly increased in diameter over the first postnatal week. Arborizations and boutons within the ventrobasal complex of the thalamus were observed after the anterograde tracer biotinylated dextran amine was injected into the neonatal spinal cord. These data indicate that, whereas neurons of the STT continue to increase in size during the postnatal period, their axons reach the thalamus before birth and possess some of the morphological features required for functionality.
Collapse
Affiliation(s)
- Steve Davidson
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
17
|
Joseph DJ, Choudhury P, MacDermott AB. An in vitro assay system for studying synapse formation between nociceptive dorsal root ganglion and dorsal horn neurons. J Neurosci Methods 2010; 189:197-204. [PMID: 20385165 PMCID: PMC2880384 DOI: 10.1016/j.jneumeth.2010.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/25/2010] [Accepted: 04/05/2010] [Indexed: 01/23/2023]
Abstract
Synapses between nociceptive dorsal root ganglion (DRG) neurons and spinal cord dorsal horn neurons represent the first loci for transmission of painful stimuli. Our knowledge of the molecular organization and development of these synapses is sparse due, partly, to a lack of a reliable model system that reconstitutes synaptogenesis between these two neuronal populations. To address this issue, we have established an in vitro assay system consisting of separately purified DRG neurons and dorsal horn neurons on astrocyte microislands. Using immunocytochemistry, we have found that 97%, 93%, 98%, 96%, and 94% of DRG neurons on these microislands express markers often associated with nociceptive neurons including Substance P, TRPV1, calcitonin-gene related peptide (CGRP), TrKA, and peripherin, respectively. Triple labeling with these nociceptive-like markers, synaptic vesicle marker Vglut2 and using MAP2 as a dendritic marker revealed the presence of nociceptive-like markers at synaptic terminals. Using this immunocytochemical approach, we counted contact points as overlapping MAP2/Vglut2 puncta and showed that they increased with time in culture. Single and dual patch-clamp recordings showed that overlapping Vglut2/MAP2 puncta observed after a few days in culture are likely to be functional synapses between DRG and dorsal horn neurons in our in vitro assay system. Taken together, these data suggest our co-culture microisland model system consists of mostly nociceptive-like DRG neurons that express presynaptic markers and form functional synapses with their dorsal horn partners. Thus, this model system may have direct application for studies on factors regulating development of nociceptive DRG/dorsal horn synapses.
Collapse
Affiliation(s)
- Donald J. Joseph
- Program in Neurobiology and Behavior-Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Papiya Choudhury
- Department of Physiology and Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Amy B. MacDermott
- Program in Neurobiology and Behavior-Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Physiology and Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
18
|
Ozcan M, Ayar A, Alcin E, Ozcan S, Kutlu S. Effects of levobupivacaine and bupivacaine on intracellular calcium signaling in cultured rat dorsal root ganglion neurons. J Recept Signal Transduct Res 2010; 30:115-20. [DOI: 10.3109/10799891003630614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Dykes IM, Lanier J, Eng SR, Turner EE. Brn3a regulates neuronal subtype specification in the trigeminal ganglion by promoting Runx expression during sensory differentiation. Neural Dev 2010; 5:3. [PMID: 20096094 PMCID: PMC2829025 DOI: 10.1186/1749-8104-5-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 01/22/2010] [Indexed: 01/03/2023] Open
Abstract
The transcription factor Brn3a, product of the pou4f1 gene, is expressed in most sensory neurons throughout embryogenesis. Prior work has demonstrated a role for Brn3a in the repression of early neurogenic genes; here we describe a second major role for Brn3a in the specification of sensory subtypes in the trigeminal ganglion (TG). Sensory neurons initially co-express multiple Trk-family neurotrophin receptors, but are later marked by the unique expression of TrkA, TrkB or TrkC. Maturation of these sensory subtypes is known to depend on the expression of Runx transcription factors. Newborn Brn3a knockout mice fail to express TrkC, which is associated in the TG with mechanoreceptors, plus a set of functional genes associated with nociceptor subtypes. In embryonic Brn3a-/- ganglia, the normal expression of Runx3 is never initiated in TrkC+ neurons, and Runx1 expression is greatly attenuated in TrkA+ nociceptors. These changes are accompanied by expanded expression of TrkB in neurons that abnormally express multiple Trks, followed by the loss of TrkC and TrkA expression. In transgenic embryos expressing a Brn3a-VP16 dominant transactivator, Runx3 mRNA expression is increased, suggesting that it is a direct regulatory target of Brn3a. Chromatin immunoprecipitation confirms that Brn3a binds in vivo to a conserved upstream enhancer element within histone H3-acetylated chromatin in the Runx3 locus. Together these data show that Brn3a acts upstream of the Runx factors, which then repress TrkB expression to allow establishment of the non-overlapping Trk receptor profiles and correct terminally differentiated phenotypes.
Collapse
Affiliation(s)
- Iain M Dykes
- Department of Psychiatry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA
| | | | | | | |
Collapse
|
20
|
Schmidt M, Dubin AE, Petrus MJ, Earley TJ, Patapoutian A. Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron 2009; 64:498-509. [PMID: 19945392 DOI: 10.1016/j.neuron.2009.09.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2009] [Indexed: 11/18/2022]
Abstract
Transient receptor potential A1 (TRPA1) ion channel senses a variety of noxious stimuli and is involved in nociception. Many TRPA1 agonists covalently modify the channel, which can lead to desensitization. The fate of modified TRPA1 and the mechanism of preserving its response to subsequent stimuli are not understood. Moreover, inflammatory signals sensitize TRPA1 by involving protein kinase A (PKA) and phospholipase C (PLC) through unknown means. We show that TRPA1-mediated nocifensive behavior can be sensitized in vivo via PKA/PLC signaling and by activating TRPA1 with the ligand mustard oil (MO). Interestingly, both stimuli increased TRPA1 membrane levels in vitro. Tetanus toxin attenuated the response to the second of two pulses of MO in neurons, suggesting that vesicle fusion increases functional surface TRPA1. Capacitance recordings suggest that MO can induce exocytosis. We propose that TRPA1 translocation to the membrane might represent one of the mechanisms controlling TRPA1 functionality upon acute activation or inflammatory signals.
Collapse
Affiliation(s)
- Manuela Schmidt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
21
|
Takebayashi H, Usui N, Ono K, Ikenaka K. Tamoxifen modulates apoptosis in multiple modes of action in CreER mice. Genesis 2009; 46:775-81. [PMID: 19105217 DOI: 10.1002/dvg.20461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tamoxifen-inducible Cre (CreER) has become a powerful tool for in vivo manipulation of the genome. Here, we investigated opposing effects of tamoxifen on apoptosis during embryogenesis using Olig2-CreER knock-in mice, namely, tamoxifen-induced apoptosis through CreER-mediated toxicity and cytoprotective activity of tamoxifen independent of CreER. First, we examined tamoxifen-induced apoptosis; in the homozygous mice, we observed region-specific apoptosis in the ventral neural tube, with no obvious increase in the heterozygotes. Next, we detected a cytoprotective effect on apoptosis in the homozygous dorsal root ganglia (DRG). This apoptosis is a secondary phenotype of Olig2-null mice, as Olig2/CreER is not expressed in the DRG. The cytoprotective effect is DRG-specific, because tamoxifen did not rescue apoptosis in the interdigital mesenchyme. These data indicate that tamoxifen has multiple effects on apoptosis during development and caution that careful examination is necessary when interpreting results obtained from tamoxifen-induced recombination: in Olig2-CreER mice, heterozygotes are usable for lineage-tracing experiment without obvious toxicity, while homozygotes show efficient recombination, despite enhanced apoptosis.
Collapse
|
22
|
A useful transgenic mouse line for studying the development of spinal nociceptive circuits. Neurosci Lett 2009; 450:211-6. [DOI: 10.1016/j.neulet.2008.11.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 11/24/2008] [Indexed: 11/21/2022]
|
23
|
Han Y, Song XS, Liu WT, Henkemeyer M, Song XJ. Targeted mutation of EphB1 receptor prevents development of neuropathic hyperalgesia and physical dependence on morphine in mice. Mol Pain 2008; 4:60. [PMID: 19025592 PMCID: PMC2605438 DOI: 10.1186/1744-8069-4-60] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 11/21/2008] [Indexed: 01/03/2023] Open
Abstract
EphB receptor tyrosine kinases, which play important roles in synaptic connection and plasticity during development and in matured nervous system, have recently been implicated in processing of pain after nerve injury and morphine dependence. Subtypes of the EphB receptors that may contribute to the neuropathic pain and morphine dependence have not been identified. Here we demonstrate that the subtype EphB1 receptor is necessary for development of neuropathic pain and physical dependence on morphine. The results showed that peripheral nerve injury produced thermal hyperalgesia in wild-type (EphB1+/+) control littermate mice, but not in EphB1 receptor homozygous knockout (EphB1-/-) and heterozygous knockdown (EphB1+/-) mice. Hyperalgesia in the wild-type mice was inhibited by intrathecal administration of an EphB receptor blocking reagent EphB2-Fc (2 microg). Intrathecal administration of an EphB receptor activator ephrinB1-Fc (1 microg) evoked thermal hyperalgesia in EphB1+/+, but not EphB1-/- and EphB1+/- mice. Cellularly, nerve injury-induced hyperexcitability of the medium-sized dorsal root ganglion neurons was prevented in EphB1-/- and EphB1+/- mice. In chronically morphine-treated mice, most of the behavioral signs and the overall score of naloxone-precipitated withdrawal were largely diminished in EphB1-/- mice compared to those in the wild-type. These findings indicate that the EphB1 receptor is necessary for development of neuropathic pain and physical dependence on morphine and suggest that the EphB1 receptor is a potential target for preventing, minimizing, or reversing the development of neuropathic pain and opiate dependence.
Collapse
Affiliation(s)
- Yuan Han
- Jiangsu Province Key Laboratory of Anesthesiology and Center for Pain Research and Treatment, Xuzhou Medical College, Xuzhou, Jiangsu, PR China.
| | | | | | | | | |
Collapse
|
24
|
EphrinB-EphB receptor signaling contributes to neuropathic pain by regulating neural excitability and spinal synaptic plasticity in rats. Pain 2008; 139:168-180. [DOI: 10.1016/j.pain.2008.03.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 11/20/2022]
|
25
|
Oi J, Terashima T, Kojima H, Fuimiya M, Maeda K, Arai R, Chan L, Yasuda H, Kashiwagi A, Kimura H. Isolation of specific peptides that home to dorsal root ganglion neurons in mice. Neurosci Lett 2008; 434:266-72. [PMID: 18329804 PMCID: PMC2348187 DOI: 10.1016/j.neulet.2008.01.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/17/2008] [Accepted: 01/25/2008] [Indexed: 11/26/2022]
Abstract
We isolated peptides that home to mouse dorsal root ganglion (DRG) from a phage library expressing random 7-mer peptides fused to a minor coat protein (pIII) of the M13 phage. An in vitro biopanning procedure yielded 113 phage plaques after five cycles of enrichment by incubation with isolated DRG neurons and two cycles of subtraction by exposure to irrelevant cell lines. Analyses of the sequences of this collection identified three peptide clones that occurred repeatedly during the biopanning procedure. Phage-antibody staining revealed that the three peptides bound to DRG neurons of different sizes. To determine if the peptides would recognize neuronal cells in vivo, we injected individual GST-peptide-fusion proteins into the subarachnoid space of mice and observed the appearance of immunoreactive GST in the cytosol of DRG neurons with a similar size distribution as that observed in vitro, indicating that the GST-peptide-fusion proteins were recognized and taken up by different DRG neurons in vivo. The identification of homing peptide sequences provides a powerful tool for future studies on DRG neuronal function in vitro and in vivo, and opens up the possibility of neuron-specific drug and gene delivery in the treatment of diseases affecting DRG neurons.
Collapse
Affiliation(s)
- Jiro Oi
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
- Molecular Genetics in Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Tomoya Terashima
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
- Molecular Genetics in Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
- Division of Diabetes, Endocrinology, and Metabolism, Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hideto Kojima
- Molecular Genetics in Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
- Division of Diabetes, Endocrinology, and Metabolism, Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mineko Fuimiya
- Anatomy, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Kengo Maeda
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Ryohachi Arai
- Anatomy, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Lawrence Chan
- Molecular Genetics in Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
- Division of Diabetes, Endocrinology, and Metabolism, Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hitoshi Yasuda
- Community Health Nursing, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Atsunori Kashiwagi
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroshi Kimura
- Molecular Genetics in Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
26
|
Song XJ, Cao JL, Li HC, Zheng JH, Song XS, Xiong LZ. Upregulation and redistribution of ephrinB and EphB receptor in dorsal root ganglion and spinal dorsal horn neurons after peripheral nerve injury and dorsal rhizotomy. Eur J Pain 2008; 12:1031-9. [PMID: 18321739 DOI: 10.1016/j.ejpain.2008.01.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/16/2008] [Accepted: 01/25/2008] [Indexed: 11/15/2022]
Abstract
EphrinB-EphB receptor signaling plays diverse roles during development, but recently has been implicated in synaptic plasticity in the matured nervous system and in pain processes. The present study investigated the correlation between expression of ephrinB and EphB receptor proteins and chronic constriction injury (CCI) of the sciatic nerve and dorsal rhizotomy (DR) in dorsal root ganglion (DRG) and spinal cord (SC); and interaction of CCI and DR on expression of these signals. Adult, male Sprague-Dawley rats were employed and thermal sensitivity was determined in the sham operated CCI and DR rats. Western blot and immunobiochemistry analysis and immunofluorescence staining techniques were used to detect the expression and location of the ephrinB-EphB receptor proteins in DRG and SC. The results showed that expression of ephrinB1 and EphB1 receptor proteins was significantly upregulated in DRG and SC in a time-dependent manner corresponding to the development of thermal hyperalgesia after CCI. The increased expression is predominately located in the medium- and small-sized DRG neurons, the superficial layers of spinal dorsal horn (DH) neurons, and the IB4 positive nociceptive terminals. DR increases ephrinB1 in DRG, not SC and EphB receptor in SC, not DRG. DR suppressed CCI-induced upregulation of ephrinB1 in SC and EphB1 receptor in DRG and SC. These findings indicate that ephrinB-EphB receptor activation and redistribution in DRG and DH neurons after nerve injury could contribute to neuropathic pain. This study may also provide a new mechanism underlying DR-induced analgesia in clinic.
Collapse
Affiliation(s)
- Xue-Jun Song
- Department of Neurobiology, Parker University Research Institute, Dallas, TX 75229, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Fan X, Kim HJ, Warner M, Gustafsson JÅ. Estrogen receptor beta is essential for sprouting of nociceptive primary afferents and for morphogenesis and maintenance of the dorsal horn interneurons. Proc Natl Acad Sci U S A 2007; 104:13696-701. [PMID: 17693550 PMCID: PMC1959444 DOI: 10.1073/pnas.0705936104] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estrogen is known to influence pain, but the specific roles of the two estrogen receptors (ERs) in the spinal cord are unknown. In the present study, we have examined the expression of ERalpha and ERbeta in the spinal cord and have looked for defects in pain pathways in ERbeta knockout (ERbeta(-/-)) mice. In the spinal cords of 10-month-old WT mice, ERbeta-positive cells were localized in lamina II, whereas ERalpha-positive cells were mainly localized in lamina I. In ERbeta(-/-) mice, there were higher levels of calcitonin gene-regulated peptide and substance P in spinal cord dorsal horn and isolectin B4 in the dorsal root ganglion. In the superficial layers of the spinal cord, there was a decrease in the number of calretinin (CR)-positive neurons, and in the outer layer II, there was a loss of calbindin-positive interneurons. During embryogenesis, ERbeta was first detectable in the spinal cord at embryonic day 13.5 (E13.5), and ERalpha was first detectable at E15.5. During middle and later embryonic stages, ERbeta was abundantly expressed in the superficial layers of the dorsal horn. ERalpha was also expressed in the dorsal horn but was limited to fewer neurons. Double staining for ERbeta and CR showed that, in the superficial dorsal horn of WT neonates [postnatal day 0 (P0)], most CR neurons also expressed ERbeta. At this stage, few CR-positive cells were detected in the dorsal horn of ERbeta(-/-) mice. Taken together, these findings suggest that, early in embryogenesis, ERbeta is involved in dorsal horn morphogenesis and in sensory afferent fiber projections to the dorsal horn and that ERbeta is essential for survival of dorsal horn interneurons throughout life.
Collapse
Affiliation(s)
- Xiaotang Fan
- *Division of Medical Nutrition, Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 86 Stockholm, Sweden; and
- Department of Neurobiology, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Hyun-Jin Kim
- *Division of Medical Nutrition, Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 86 Stockholm, Sweden; and
| | - Margaret Warner
- *Division of Medical Nutrition, Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 86 Stockholm, Sweden; and
| | - Jan-Åke Gustafsson
- *Division of Medical Nutrition, Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 86 Stockholm, Sweden; and
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|
28
|
Zhang Y, Li Y, Yang YR, Zhu HH, Han JS, Wang Y. Distribution of downstream regulatory element antagonist modulator (DREAM) in rat spinal cord and upregulation of its expression during inflammatory pain. Neurochem Res 2007; 32:1592-9. [PMID: 17562172 DOI: 10.1007/s11064-007-9364-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 04/25/2007] [Indexed: 11/27/2022]
Abstract
A previous knockout study revealed the critical role of downstream regulatory element antagonist modulator (DREAM) in pain processing in the spinal cord by transcriptional regulation of prodynorphin (PPD) gene. Here, we report that, in contrast to the nuclear localization of other transcription factors, DREAM showed a punctate staining pattern in rat spinal dorsal horn in immunofluorescent analysis, with a membrane localization profile in some neurons and its expression accumulated in the inner zone of lamina II. In an inflammatory pain model induced by complete Freund's adjuvant (CFA) injection, we used Western blot analysis and detected transient upregulation of DREAM in the nuclear fraction of ipsilateral spinal dorsal horn at 2 h and 6 h post-injection, and a slow upregulation in the membrane fraction for 7 days. These studies suggest that DREAM might have other roles in pain modulation in the spinal cord in addition to its well-known role as a transcriptional repressor.
Collapse
Affiliation(s)
- Ying Zhang
- Neuroscience Research Institute, Department of Neurobiology, The Key Laboratory for Neuroscience, The Ministry of Education, Peking University Health Science Center, Beijing, 100083, P.R. China
| | | | | | | | | | | |
Collapse
|
29
|
Wang LH, Lu YJ, Bao L, Zhang X. Peripheral nerve injury induces reorganization of galanin-containing afferents in the superficial dorsal horn of monkey spinal cord. Eur J Neurosci 2007; 25:1087-96. [PMID: 17331205 DOI: 10.1111/j.1460-9568.2007.05372.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peripheral nerve injury-induced structural and chemical modifications of the sensory circuits in the dorsal horn of the spinal cord contribute to the mechanism of neuropathic pain. In contrast to the topographic projection of primary afferents in laminae I-IV in the rat spinal cord, the primary afferents of Macaca mulatta monkeys almost exclusively project into laminae I-II of the spinal cord. After peripheral nerve injury, up-regulation of galanin has been found in sensory neurons in both monkey and rat dorsal root ganglia. However, the nerve injury-induced ultrastructural modification of galanin-containing afferents in the monkey spinal cord remains unknown. Using immunoelectron microscopy, we found that 3 weeks after unilateral sciatic nerve transection, the number of galanin-containing afferents was increased in ipsilateral lamina II of monkey spinal cord. Branching of these galanin-positive afferents was often observed. The afferent terminals contained a large number of synaptic vesicles, peptidergic vesicles and mitochondria, whereas the number of synapses was markedly reduced. Some of the afferents-enriched microtubules were often packed into bundles. Moreover, galanin-labeling could be associated with endosomal structures in many dendrites and axonal terminals of dorsal horn neurons. These results suggest that peripheral nerve injury induces an expansion of the central projection of galanin-containing afferents in lamina II of the monkey spinal cord, not only by increasing galanin levels in primary afferents but also by triggering afferent branching.
Collapse
Affiliation(s)
- Li-Hua Wang
- Institute of Neuroscience and Key Laboratory of Neurobiology, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|