1
|
Gracia F, Sanchez-Laorden B, Gomez-Sanchez JA. Schwann cells in regeneration and cancer: an epithelial-mesenchymal transition perspective. Open Biol 2025; 15:240337. [PMID: 40037534 DOI: 10.1098/rsob.240337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 03/06/2025] Open
Abstract
In the peripheral nervous system, glial cells, known as Schwann cells (SCs), are responsible for supporting and maintaining nerves. One of the most important characteristics of SCs is their remarkable plasticity. In various injury contexts, SCs undergo a reprogramming process that generates specialized cells to promote tissue regeneration and repair. However, in pathological conditions, this same plasticity and regenerative potential can be hijacked. Different studies highlight the activation of the epithelial-mesenchymal transition (EMT) as a driver of SC phenotypic plasticity. Although SCs are not epithelial, their neural crest origin makes EMT activation crucial for their ability to adopt repair phenotypes, mirroring the plasticity observed during development. These adaptive processes are essential for regeneration. However, EMT activation in SCs-derived tumours enhances cancer progression and aggressiveness. Furthermore, in the tumour microenvironment (TME), SCs also acquire activated phenotypes that contribute to tumour migration and invasion by activating EMT in cancer cells. In this review, we will discuss how EMT impacts SC plasticity and function from development and tissue regeneration to pathological conditions, such as cancer.
Collapse
Affiliation(s)
- Francisco Gracia
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, 03550, Spain
| | | | - Jose A Gomez-Sanchez
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, 03550, Spain
- Instituto de Investigacion Sanitaria y Biomedica de Alicante (ISABIAL), Alicante 03010, Spain
| |
Collapse
|
2
|
Birren SJ, Goodrich LV, Segal RA. Satellite Glial Cells: No Longer the Most Overlooked Glia. Cold Spring Harb Perspect Biol 2025; 17:a041367. [PMID: 38768970 PMCID: PMC11694750 DOI: 10.1101/cshperspect.a041367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Many glial biologists consider glia the neglected cells of the nervous system. Among all the glia of the central and peripheral nervous system, satellite glia may be the most often overlooked. Satellite glial cells (SGCs) are located in ganglia of the cranial nerves and the peripheral nervous system. These small cells surround the cell bodies of neurons in the trigeminal ganglia (TG), spiral ganglia, nodose and petrosal ganglia, sympathetic ganglia, and dorsal root ganglia (DRG). Essential SGC features include their intimate connections with the associated neurons, their small size, and their derivation from neural crest cells. Yet SGCs also exhibit tissue-specific properties and can change rapidly, particularly in response to injury. To illustrate the range of SGC functions, we will focus on three types: those of the spiral, sympathetic, and DRG, and consider both their shared features and those that differ based on location.
Collapse
Affiliation(s)
- Susan J Birren
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
3
|
Pavlicev M, DiFrisco J, Love AC, Wagner GP. Metabolic complementation between cells drives the evolution of tissues and organs. Biol Lett 2024; 20:20240490. [PMID: 39561800 PMCID: PMC11583983 DOI: 10.1098/rsbl.2024.0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024] Open
Abstract
Although evolutionary transitions of individuality have been extensively theorized, little attention has been paid to the origin of levels of organization within organisms. How and why do specialized cells become organized into specialized tissues or organs? What spurs a transition in organizational level in cases where the function is already present in constituent cell types? We propose a hypothesis for this kind of evolutionary transition based on two features of cellular metabolism: metabolic constraints on functional performance and the capacity for metabolic complementation between parenchymal and supporting cells. These features suggest a scenario whereby pre-existing specialized cell types are integrated into tissues when changes to the internal or external environment favour offloading metabolic burdens from a primary specialized cell type onto supporting cells. We illustrate this process of 'supra-functionalization' using the nervous system and pancreas.
Collapse
Affiliation(s)
- Mihaela Pavlicev
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Complexity Science Hub, Vienna, Austria
- Konrad Lorenz Institute of Evolution and Cognition Research, Klosterneuburg, Austria
| | - J DiFrisco
- Theoretical Biology Lab, The Francis Crick Institute, London, UK
| | - Alan C Love
- Department of Philosophy & Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
| | - Günter P Wagner
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Konrad Lorenz Institute of Evolution and Cognition Research, Klosterneuburg, Austria
- Yale University, New Haven, CT, USA
- Texas A&M, Hagler Institute for Advanced Study, College Station, TX, USA
| |
Collapse
|
4
|
Kletskaya I, Belousova I, Makarova O, Narbutov A, Oganesyan R, Donati M, Říčař J, Salgado CM, Reyes-Múgica M, Kazakov DV. Schwannian and Perineuriomatous Differentiation in a Series of Giant Congenital Melanocytic Nevi. Am J Dermatopathol 2024; 46:483-491. [PMID: 38842402 DOI: 10.1097/dad.0000000000002754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
ABSTRACT Close relationship between melanocytes and neural cells is accepted to reflect their common derivation from the neural crest and tumors combining both elements. We present a series of 10 patients with giant congenital melanocytic nevi (CMN) in which a secondary proliferation (11 lesions) with schwannian and/or perineuriomatous differentiation developed in the course of the disease. The age of the patients (4 male and 6 female) at the time of surgery and histological assessment varied from 3 months to 57 years. Histopathologically, the following subgroups were delineated: (1) nodular/tumoriform "neurotization" in CMN, (2) diffuse neurofibroma-like proliferation within CMN, (3) plexiform neurofibroma-like proliferation within CMN, and (4) diffuse perineuriomatous (hybrid schwannomatous-perineuriomatous) differentiation in CMN. We review the pertinent literature, including the role of recently identified Schwann cell precursors which are believed to represent the nerve-associated state of neural crest-like cells that persists into later developmental stages.
Collapse
Affiliation(s)
- Irina Kletskaya
- Russian Children's Clinical Hospital of Pirogov's Russian National Research Medical University of the Ministry of Healthcare, Russian Federation, Moscow, Russia
- Dmitry Rogachev's National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Irena Belousova
- Department of Dermatology, Medical Military Academy, Saint Petersburg, Russia
| | - Olga Makarova
- Russian Children's Clinical Hospital of Pirogov's Russian National Research Medical University of the Ministry of Healthcare, Russian Federation, Moscow, Russia
| | - Anton Narbutov
- Russian Children's Clinical Hospital of Pirogov's Russian National Research Medical University of the Ministry of Healthcare, Russian Federation, Moscow, Russia
| | - Raisa Oganesyan
- Dmitry Rogachev's National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michele Donati
- Department of Pathology, University Hospital Campus Bio-Medico, Rome, Italy
| | - Jan Říčař
- Department of Dermatology, Charles University Medical Faculty Hospital, Pilsen, Czech Republic
| | - Claudia M Salgado
- Division of Pathology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh; and
| | - Miguel Reyes-Múgica
- Division of Pathology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh; and
| | - Dmitry V Kazakov
- IDP Institut für Dermatohistopathologie, Pathologie Institut Enge, Zürich, Switzerland
| |
Collapse
|
5
|
Stefanakis N, Jiang J, Liang Y, Shaham S. LET-381/FoxF and its target UNC-30/Pitx2 specify and maintain the molecular identity of C. elegans mesodermal glia that regulate motor behavior. EMBO J 2024; 43:956-992. [PMID: 38360995 PMCID: PMC10943081 DOI: 10.1038/s44318-024-00049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
While most glial cell types in the central nervous system (CNS) arise from neuroectodermal progenitors, some, like microglia, are mesodermally derived. To understand mesodermal glia development and function, we investigated C. elegans GLR glia, which envelop the brain neuropil and separate it from the circulatory system cavity. Transcriptome analysis shows that GLR glia combine astrocytic and endothelial characteristics, which are relegated to separate cell types in vertebrates. Combined fate acquisition is orchestrated by LET-381/FoxF, a fate-specification/maintenance transcription factor also expressed in glia and endothelia of other animals. Among LET-381/FoxF targets, the UNC-30/Pitx2 transcription factor controls GLR glia morphology and represses alternative mesodermal fates. LET-381 and UNC-30 co-expression in naive cells is sufficient for GLR glia gene expression. GLR glia inactivation by ablation or let-381 mutation disrupts locomotory behavior and promotes salt-induced paralysis, suggesting brain-neuropil activity dysregulation. Our studies uncover mechanisms of mesodermal glia development and show that like neuronal differentiation, glia differentiation requires autoregulatory terminal selector genes that define and maintain the glial fate.
Collapse
Affiliation(s)
- Nikolaos Stefanakis
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Jessica Jiang
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yupu Liang
- Research Bioinformatics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Alexion Pharmaceuticals, Boston, MA, 02135, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Stadlmayr S, Peter K, Millesi F, Rad A, Wolf S, Mero S, Zehl M, Mentler A, Gusenbauer C, Konnerth J, Schniepp HC, Lichtenegger H, Naghilou A, Radtke C. Comparative Analysis of Various Spider Silks in Regard to Nerve Regeneration: Material Properties and Schwann Cell Response. Adv Healthc Mater 2024; 13:e2302968. [PMID: 38079208 PMCID: PMC11468126 DOI: 10.1002/adhm.202302968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Peripheral nerve reconstruction through the employment of nerve guidance conduits with Trichonephila dragline silk as a luminal filling has emerged as an outstanding preclinical alternative to avoid nerve autografts. Yet, it remains unknown whether the outcome is similar for silk fibers harvested from other spider species. This study compares the regenerative potential of dragline silk from two orb-weaving spiders, Trichonephila inaurata and Nuctenea umbratica, as well as the silk of the jumping spider Phidippus regius. Proliferation, migration, and transcriptomic state of Schwann cells seeded on these silks are investigated. In addition, fiber morphology, primary protein structure, and mechanical properties are studied. The results demonstrate that the increased velocity of Schwann cells on Phidippus regius fibers can be primarily attributed to the interplay between the silk's primary protein structure and its mechanical properties. Furthermore, the capacity of silk fibers to trigger cells toward a gene expression profile of a myelinating Schwann cell phenotype is shown. The findings for the first time allow an in-depth comparison of the specific cellular response to various native spider silks and a correlation with the fibers' material properties. This knowledge is essential to open up possibilities for targeted manufacturing of synthetic nervous tissue replacement.
Collapse
Affiliation(s)
- Sarah Stadlmayr
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Karolina Peter
- Institute for Physics and Materials ScienceUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Flavia Millesi
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Anda Rad
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
| | - Sonja Wolf
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
| | - Sascha Mero
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
| | - Martin Zehl
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Axel Mentler
- Institute of Soil ResearchUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Claudia Gusenbauer
- Institute of Wood Technology and Renewable MaterialsUniversity of Natural Resources and Life SciencesTulln an der Donau3430Austria
| | - Johannes Konnerth
- Institute of Wood Technology and Renewable MaterialsUniversity of Natural Resources and Life SciencesTulln an der Donau3430Austria
| | | | - Helga Lichtenegger
- Institute for Physics and Materials ScienceUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Aida Naghilou
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Medical Systems Biophysics and BioengineeringLeiden Academic Centre for Drug ResearchLeiden UniversityLeiden2333The Netherlands
| | - Christine Radtke
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
7
|
Stefanakis N, Jiang J, Liang Y, Shaham S. LET-381/FoxF and UNC-30/Pitx2 control the development of C. elegans mesodermal glia that regulate motor behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563501. [PMID: 37961181 PMCID: PMC10634723 DOI: 10.1101/2023.10.23.563501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
While most CNS glia arise from neuroectodermal progenitors, some, like microglia, are mesodermally derived. To understand mesodermal glia development and function, we investigated C. elegans GLR glia, which ensheath the brain neuropil and separate it from the circulatory-system cavity. Transcriptome analysis suggests GLR glia merge astrocytic and endothelial characteristics relegated to separate cell types in vertebrates. Combined fate acquisition is orchestrated by LET-381/FoxF, a fate-specification/maintenance transcription factor expressed in glia and endothelia of other animals. Among LET-381/FoxF targets, UNC-30/Pitx2 transcription factor controls GLR glia morphology and represses alternative mesodermal fates. LET-381 and UNC-30 co-expression in naïve cells is sufficient for GLR glia gene expression. GLR glia inactivation by ablation or let-381 mutation disrupts locomotory behavior and induces salt hypersensitivity, suggesting brain-neuropil activity dysregulation. Our studies uncover mechanisms of mesodermal glia development and show that like neurons, glia differentiation requires autoregulatory terminal selector genes that define and maintain the glial fate.
Collapse
|
8
|
Gunsch G, Paradie E, Townsend KL. Peripheral nervous system glia in support of metabolic tissue functions. Trends Endocrinol Metab 2023; 34:622-639. [PMID: 37591710 DOI: 10.1016/j.tem.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
The peripheral nervous system (PNS) relays information between organs and tissues and the brain and spine to maintain homeostasis, regulate tissue functions, and respond to interoceptive and exteroceptive signals. Glial cells perform support roles to maintain nerve function, plasticity, and survival. The glia of the central nervous system (CNS) are well characterized, but PNS glia (PNSG) populations, particularly tissue-specific subtypes, are underexplored. PNSG are found in large nerves (such as the sciatic), the ganglia, and the tissues themselves, and can crosstalk with a range of cell types in addition to neurons. PNSG are also subject to phenotypic changes in response to signals from their local tissue environment, including metabolic changes. These topics and the importance of PNSG in metabolically active tissues, such as adipose, muscle, heart, and lymphatic tissues, are outlined in this review.
Collapse
Affiliation(s)
- Gilian Gunsch
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Emma Paradie
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Zhao L, Huang W, Yi S. Cellular complexity of the peripheral nervous system: Insights from single-cell resolution. Front Neurosci 2023; 17:1098612. [PMID: 36998728 PMCID: PMC10043217 DOI: 10.3389/fnins.2023.1098612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
Single-cell RNA sequencing allows the division of cell populations, offers precise transcriptional profiling of individual cells, and fundamentally advances the comprehension of cellular diversity. In the peripheral nervous system (PNS), the application of single-cell RNA sequencing identifies multiple types of cells, including neurons, glial cells, ependymal cells, immune cells, and vascular cells. Sub-types of neurons and glial cells have further been recognized in nerve tissues, especially tissues in different physiological and pathological states. In the current article, we compile the heterogeneities of cells that have been reported in the PNS and describe cellular variability during development and regeneration. The discovery of the architecture of peripheral nerves benefits the understanding of the cellular complexity of the PNS and provides a considerable cellular basis for future genetic manipulation.
Collapse
Affiliation(s)
- Lili Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Weixiao Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
- *Correspondence: Sheng Yi,
| |
Collapse
|
10
|
Abstract
Satellite glial cells (SGCs) that surround sensory neurons in the peripheral nervous system ganglia originate from neural crest cells. Although several studies have focused on SGCs, the origin and characteristics of SGCs are unknown, and their lineage remains unidentified. Traditionally, it has been considered that SGCs regulate the environment around neurons under pathological conditions, and perform functions of supporting, nourishing, and protecting neurons. However, recent studies demonstrated that SGCs may have the characteristics of stem cells. After nerve injury, SGCs up-regulate the expression of stem cell markers and can differentiate into functional sensory neurons. Moreover, SGCs express several markers of Schwann cell precursors and Schwann cells, such as CDH19, MPZ, PLP1, SOX10, ERBB3, and FABP7. Schwann cell precursors have also been proposed as a potential source of neurons in the peripheral nervous system. The similarity in function and markers suggests that SGCs may represent a subgroup of Schwann cell precursors. Herein, we discuss the roles and functions of SGCs, and the lineage relationship between SGCs and Schwann cell precursors. We also describe a new perspective on the roles and functions of SGCs. In the DRG located on the posterior root of spinal nerves, satellite glial cells wrap around each sensory neuron to form an anatomically and functionally distinct unit with the sensory neurons. Following nerve injury, satellite glial cells up-regulate the expression of progenitor markers, and can differentiate into neurons.
Collapse
|
11
|
Ritter KE, Lynch SM, Gorris AM, Beyer LA, Kabara L, Dolan DF, Raphael Y, Martin DM. Loss of the chromatin remodeler CHD7 impacts glial cells and myelination in the mouse cochlear spiral ganglion. Hear Res 2022; 426:108633. [PMID: 36288662 PMCID: PMC10184650 DOI: 10.1016/j.heares.2022.108633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
Abstract
CHARGE syndrome is a multiple anomaly developmental disorder characterized by a variety of sensory deficits, including sensorineural hearing loss of unknown etiology. Most cases of CHARGE are caused by heterozygous pathogenic variants in CHD7, the gene encoding Chromodomain DNA-binding Protein 7 (CHD7), a chromatin remodeler important for the development of neurons and glial cells. Previous studies in the Chd7Gt/+ mouse model of CHARGE syndrome showed substantial neuron loss in the early stages of the developing inner ear that are compensated for by mid-gestation. In this study, we sought to determine if early developmental delays caused by Chd7 haploinsufficiency affect neurons, glial cells, and inner hair cell innervation in the mature cochlea. Analysis of auditory brainstem response recordings in Chd7Gt/+ adult animals showed elevated thresholds at 4 kHz and 16 kHz, but no differences in ABR Wave I peak latency or amplitude compared to wild type controls. Proportions of neurons in the Chd7Gt/+ adult spiral ganglion and densities of nerve projections from the spiral ganglion to the organ of Corti were not significantly different from wild type controls. Inner hair cell synapse formation also appeared unaffected in mature Chd7Gt/+ cochleae. However, histological analysis of adult Chd7Gt/+ cochleae revealed diminished satellite glial cells and hypermyelinated Type I spiral ganglion axons. We characterized the expression of CHD7 in developing inner ear glia and found CHD7 to be expressed during a tight window of inner ear development at the Schwann cell precursor stage at E9.5. While cochlear neurons appear to differentiate normally in the setting of Chd7 haploinsufficiency, our results suggest an important role for CHD7 in glial cells in the inner ear. This study highlights the dynamic nature of CHD7 activity during inner ear development in mice and contributes to understanding CHARGE syndrome pathology.
Collapse
Affiliation(s)
- K Elaine Ritter
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sloane M Lynch
- College of Literature, Science and Art, University of Michigan, Ann Arbor, MI, USA
| | - Ashley M Gorris
- College of Literature, Science and Art, University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Department of Otolaryngology - Head and Neck Surgery, University of Medical School, Ann Arbor, MI, USA
| | - Lisa Kabara
- Department of Otolaryngology - Head and Neck Surgery, University of Medical School, Ann Arbor, MI, USA
| | - David F Dolan
- Department of Otolaryngology - Head and Neck Surgery, University of Medical School, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Department of Otolaryngology - Head and Neck Surgery, University of Medical School, Ann Arbor, MI, USA
| | - Donna M Martin
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022; 11:3753. [PMID: 36497014 PMCID: PMC9739763 DOI: 10.3390/cells11233753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Schwann cells are glial cells of the peripheral nervous system. They exist in several subtypes and perform a variety of functions in nerves. Their derivation and culture in vitro are interesting for applications ranging from disease modeling to tissue engineering. Since primary human Schwann cells are challenging to obtain in large quantities, in vitro differentiation from other cell types presents an alternative. Here, we first review the current knowledge on the developmental signaling mechanisms that determine neural crest and Schwann cell differentiation in vivo. Next, an overview of studies on the in vitro differentiation of Schwann cells from multipotent stem cell sources is provided. The molecules frequently used in those protocols and their involvement in the relevant signaling pathways are put into context and discussed. Focusing on hiPSC- and hESC-based studies, different protocols are described and compared, regarding cell sources, differentiation methods, characterization of cells, and protocol efficiency. A brief insight into developments regarding the culture and differentiation of Schwann cells in 3D is given. In summary, this contribution provides an overview of the current resources and methods for the differentiation of Schwann cells, it supports the comparison and refinement of protocols and aids the choice of suitable methods for specific applications.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniele Caroline Gueiber
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Department of Electronics Engineering, Federal University of Technology Paraná, Ponta Grossa 84017-220, Brazil
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| |
Collapse
|
13
|
Intisar A, Shin HY, Kim W, Kang HG, Kim MY, Kim YS, Cho Y, Mo YJ, Lim H, Lee S, Lu QR, Lee Y, Kim MS. Implantable Electroceutical Approach Improves Myelination by Restoring Membrane Integrity in a Mouse Model of Peripheral Demyelinating Neuropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201358. [PMID: 35975427 PMCID: PMC9661852 DOI: 10.1002/advs.202201358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Although many efforts are undertaken to treat peripheral demyelinating neuropathies based on biochemical interventions, unfortunately, there is no approved treatment yet. Furthermore, previous studies have not shown improvement of the myelin membrane at the biomolecular level. Here, an electroceutical treatment is introduced as a biophysical intervention to treat Charcot-Marie-Tooth (CMT) disease-the most prevalent peripheral demyelinating neuropathy worldwide-using a mouse model. The specific electrical stimulation (ES) condition (50 mV mm-1 , 20 Hz, 1 h) for optimal myelination is found via an in vitro ES screening system, and its promyelinating effect is validated with ex vivo dorsal root ganglion model. Biomolecular investigation via time-of-flight secondary ion mass spectrometry shows that ES ameliorates distribution abnormalities of peripheral myelin protein 22 and cholesterol in the myelin membrane, revealing the restoration of myelin membrane integrity. ES intervention in vivo via flexible implantable electrodes shows not only gradual rehabilitation of mouse behavioral phenotypes (balance and endurance), but also restored myelin thickness, compactness, and membrane integrity. This study demonstrates, for the first time, that an electroceutical approach with the optimal ES condition has the potential to treat CMT disease and restore impaired myelin membrane integrity, shifting the paradigm toward practical interventions for peripheral demyelinating neuropathies.
Collapse
Affiliation(s)
- Aseer Intisar
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Hyun Young Shin
- CTCELLS Corp.Daegu42988Republic of Korea
- SBCure Corp.Daegu43017Republic of Korea
| | | | - Hyun Gyu Kang
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Min Young Kim
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Yu Seon Kim
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Youngjun Cho
- Department of Robotics and Mechatronics EngineeringDGISTDaegu42988Republic of Korea
| | - Yun Jeoung Mo
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Heejin Lim
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Sanghoon Lee
- Department of Robotics and Mechatronics EngineeringDGISTDaegu42988Republic of Korea
| | - Q. Richard Lu
- Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
| | - Yun‐Il Lee
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Minseok S. Kim
- Department of New BiologyDGISTDaegu42988Republic of Korea
- CTCELLS Corp.Daegu42988Republic of Korea
- Translational Responsive Medicine Center (TRMC)DGISTDaegu42988Republic of Korea
- New Biology Research Center (NBRC)DGISTDaegu42988Republic of Korea
| |
Collapse
|
14
|
Ahmad S, Srivastava RK, Singh P, Naik UP, Srivastava AK. Role of Extracellular Vesicles in Glia-Neuron Intercellular Communication. Front Mol Neurosci 2022; 15:844194. [PMID: 35493327 PMCID: PMC9043804 DOI: 10.3389/fnmol.2022.844194] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cross talk between glia and neurons is crucial for a variety of biological functions, ranging from nervous system development, axonal conduction, synaptic transmission, neural circuit maturation, to homeostasis maintenance. Extracellular vesicles (EVs), which were initially described as cellular debris and were devoid of biological function, are now recognized as key components in cell-cell communication and play a critical role in glia-neuron communication. EVs transport the proteins, lipids, and nucleic acid cargo in intercellular communication, which alters target cells structurally and functionally. A better understanding of the roles of EVs in glia-neuron communication, both in physiological and pathological conditions, can aid in the discovery of novel therapeutic targets and the development of new biomarkers. This review aims to demonstrate that different types of glia and neuronal cells secrete various types of EVs, resulting in specific functions in intercellular communications.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, New Delhi, India
| | - Rohit K. Srivastava
- Department of Pediatric Surgery, Texas Children’s Hospital, Houston, TX, United States
- M.E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Pratibha Singh
- Department of Biochemistry and Cell Biology, Biosciences Research Collaborative, Rice University, Houston, TX, United States
| | - Ulhas P. Naik
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Cardeza Foundation for Hematologic Research, Philadelphia, PA, United States
| | - Amit K. Srivastava
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Cardeza Foundation for Hematologic Research, Philadelphia, PA, United States
- *Correspondence: Amit K. Srivastava,
| |
Collapse
|
15
|
Suazo I, Vega JA, García-Mesa Y, García-Piqueras J, García-Suárez O, Cobo T. The Lamellar Cells of Vertebrate Meissner and Pacinian Corpuscles: Development, Characterization, and Functions. Front Neurosci 2022; 16:790130. [PMID: 35356056 PMCID: PMC8959428 DOI: 10.3389/fnins.2022.790130] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Sensory corpuscles, or cutaneous end-organ complexes, are complex structures localized at the periphery of Aβ-axon terminals from primary sensory neurons that primarily work as low-threshold mechanoreceptors. Structurally, they consist, in addition to the axons, of non-myelinating Schwann-like cells (terminal glial cells) and endoneurial- and perineurial-related cells. The terminal glial cells are the so-called lamellar cells in Meissner and Pacinian corpuscles. Lamellar cells are variably arranged in sensory corpuscles as a “coin stack” in the Meissner corpuscles or as an “onion bulb” in the Pacinian ones. Nevertheless, the origin and protein profile of the lamellar cells in both morphotypes of sensory corpuscles is quite similar, although it differs in the expression of mechano-gated ion channels as well as in the composition of the extracellular matrix between the cells. The lamellar cells have been regarded as supportive cells playing a passive role in the process of genesis of the action potential, i.e., the mechanotransduction process. However, they express ion channels related to the mechano–electric transduction and show a synapse-like mechanism that suggest neurotransmission at the genesis of the electrical action potential. This review updates the current knowledge about the embryonic origin, development modifications, spatial arrangement, ultrastructural characteristics, and protein profile of the lamellar cells of cutaneous end-organ complexes focusing on Meissner and Pacinian morphotypes.
Collapse
Affiliation(s)
- Iván Suazo
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
- Faculcultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - José A. Vega
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
- Faculcultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: José A. Vega,
| | - Yolanda García-Mesa
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Jorge García-Piqueras
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Olivia García-Suárez
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
16
|
Erickson AG, Kameneva P, Adameyko I. The transcriptional portraits of the neural crest at the individual cell level. Semin Cell Dev Biol 2022; 138:68-80. [PMID: 35260294 PMCID: PMC9441473 DOI: 10.1016/j.semcdb.2022.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 01/15/2023]
Abstract
Since the discovery of this cell population by His in 1850, the neural crest has been under intense study for its important role during vertebrate development. Much has been learned about the function and regulation of neural crest cell differentiation, and as a result, the neural crest has become a key model system for stem cell biology in general. The experiments performed in embryology, genetics, and cell biology in the last 150 years in the neural crest field has given rise to several big questions that have been debated intensely for many years: "How does positional information impact developmental potential? Are neural crest cells individually multipotent or a mixed population of committed progenitors? What are the key factors that regulate the acquisition of stem cell identity, and how does a stem cell decide to differentiate towards one cell fate versus another?" Recently, a marriage between single cell multi-omics, statistical modeling, and developmental biology has shed a substantial amount of light on these questions, and has paved a clear path for future researchers in the field.
Collapse
Affiliation(s)
- Alek G Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Polina Kameneva
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria.
| |
Collapse
|
17
|
Goluba K, Kunrade L, Riekstina U, Parfejevs V. Schwann Cells in Digestive System Disorders. Cells 2022; 11:832. [PMID: 35269454 PMCID: PMC8908985 DOI: 10.3390/cells11050832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS), while the extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS. Glial cells are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of ENS glia in health and disease. In this review, we shift the focus a bit and discuss the functions of Schwann cells (SCs), the glial cells of the extrinsic innervation of the digestive system. For more context, we also provide information on the basic findings regarding the function of innervation in disorders of the digestive organs. We find diverse SC roles described particularly in the mouth, the pancreas, and the intestine. We note that most of the scientific evidence concerns the involvement of SCs in cancer progression and pain, but some research identifies stem cell functions and potential for regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, LV-1004 Riga, Latvia; (K.G.); (L.K.); (U.R.)
| |
Collapse
|
18
|
Modeling iPSC-derived human neurofibroma-like tumors in mice uncovers the heterogeneity of Schwann cells within plexiform neurofibromas. Cell Rep 2022; 38:110385. [PMID: 35172160 DOI: 10.1016/j.celrep.2022.110385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/04/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Plexiform neurofibromas (pNFs) are developmental tumors that appear in neurofibromatosis type 1 individuals, constituting a major source of morbidity and potentially transforming into a highly metastatic sarcoma (MPNST). pNFs arise after NF1 inactivation in a cell of the neural crest (NC)-Schwann cell (SC) lineage. Here, we develop an iPSC-based NC-SC in vitro differentiation system and construct a lineage expression roadmap for the analysis of different 2D and 3D NF models. The best model consists of generating heterotypic spheroids (neurofibromaspheres) composed of iPSC-derived differentiating NF1(-/-) SCs and NF1(+/-) pNF-derived fibroblasts (Fbs). Neurofibromaspheres form by maintaining highly proliferative NF1(-/-) cells committed to the NC-SC axis due to SC-SC and SC-Fb interactions, resulting in SC linage cells at different maturation points. Upon engraftment on the mouse sciatic nerve, neurofibromaspheres consistently generate human NF-like tumors. Analysis of expression roadmap genes in human pNF single-cell RNA-seq data uncovers the presence of SC subpopulations at distinct differentiation states.
Collapse
|
19
|
Schwann Cells in the Tumor Microenvironment: Need More Attention. JOURNAL OF ONCOLOGY 2022; 2022:1058667. [PMID: 35186076 PMCID: PMC8853772 DOI: 10.1155/2022/1058667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment (TME), which is composed of various cell components and signaling molecules, plays an important role in the occurrence and progression of tumors and has become the central issue of current cancer research. In recent years, as a part of the TME, the peripheral nervous system (PNS) has attracted increasing attention. Moreover, emerging evidence shows that Schwann cells (SCs), which are the most important glial cells in the PNS, are not simply spectators in the TME. In this review article, we focused on the up-to-date research progress on SCs in the TME and introduced our point of view. In detail, we described that under two main tumor-nerve interaction patterns, perineural invasion (PNI) and tumor innervation, SCs were reprogrammed and acted as important participants. We also investigated the newest mechanisms between the interactions of SCs and tumor cells. In addition, SCs can have profound impacts on other cellular components in the TME, such as immune cells and cancer-associated fibroblasts (CAFs), involving immune regulation, tumor-related pain, and nerve remodeling. Overall, these innovative statements can expand the scope of the TME, help fully understand the significant role of SCs in the tumor-nerve-immune axis, and propose enlightenments to innovate antitumor therapeutic methods and future research.
Collapse
|
20
|
Hörner SJ, Couturier N, Bruch R, Koch P, Hafner M, Rudolf R. hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures. Cells 2021; 10:cells10123292. [PMID: 34943800 PMCID: PMC8699767 DOI: 10.3390/cells10123292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
Motoneurons, skeletal muscle fibers, and Schwann cells form synapses, termed neuromuscular junctions (NMJs). These control voluntary body movement and are affected in numerous neuromuscular diseases. Therefore, a variety of NMJ in vitro models have been explored to enable mechanistic and pharmacological studies. So far, selective integration of Schwann cells in these models has been hampered, due to technical limitations. Here we present robust protocols for derivation of Schwann cells from human induced pluripotent stem cells (hiPSC) and their coculture with hiPSC-derived motoneurons and C2C12 muscle cells. Upon differentiation with tuned BMP signaling, Schwann cells expressed marker proteins, S100b, Gap43, vimentin, and myelin protein zero. Furthermore, they displayed typical spindle-shaped morphologies with long processes, which often aligned with motoneuron axons. Inclusion of Schwann cells in coculture experiments with hiPSC-derived motoneurons and C2C12 myoblasts enhanced myotube growth and affected size and number of acetylcholine receptor plaques on myotubes. Altogether, these data argue for the availability of a consistent differentiation protocol for Schwann cells and their amenability for functional integration into neuromuscular in vitro models, fostering future studies of neuromuscular mechanisms and disease.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
| | - Roman Bruch
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
| | - Philipp Koch
- Central Institute of Mental Health, Medical Faculty Mannheim of Heidelberg University, 68159 Mannheim, Germany;
- Hector Institute for Translational Brain Research (HITBR gGmbH), 68159 Mannheim, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, 68163 Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, 68163 Mannheim, Germany
- Correspondence:
| |
Collapse
|
21
|
Kikel-Coury NL, Brandt JP, Correia IA, O’Dea MR, DeSantis DF, Sterling F, Vaughan K, Ozcebe G, Zorlutuna P, Smith CJ. Identification of astroglia-like cardiac nexus glia that are critical regulators of cardiac development and function. PLoS Biol 2021; 19:e3001444. [PMID: 34793438 PMCID: PMC8601506 DOI: 10.1371/journal.pbio.3001444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
Glial cells are essential for functionality of the nervous system. Growing evidence underscores the importance of astrocytes; however, analogous astroglia in peripheral organs are poorly understood. Using confocal time-lapse imaging, fate mapping, and mutant genesis in a zebrafish model, we identify a neural crest-derived glial cell, termed nexus glia, which utilizes Meteorin signaling via Jak/Stat3 to drive differentiation and regulate heart rate and rhythm. Nexus glia are labeled with gfap, glast, and glutamine synthetase, markers that typically denote astroglia cells. Further, analysis of single-cell sequencing datasets of human and murine hearts across ages reveals astrocyte-like cells, which we confirm through a multispecies approach. We show that cardiac nexus glia at the outflow tract are critical regulators of both the sympathetic and parasympathetic system. These data establish the crucial role of glia on cardiac homeostasis and provide a description of nexus glia in the PNS.
Collapse
Affiliation(s)
- Nina L. Kikel-Coury
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jacob P. Brandt
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Isabel A. Correia
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michael R. O’Dea
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Dana F. DeSantis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Felicity Sterling
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kevin Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gulberk Ozcebe
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cody J. Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
22
|
Previtali SC. Peripheral Nerve Development and the Pathogenesis of Peripheral Neuropathy: the Sorting Point. Neurotherapeutics 2021; 18:2156-2168. [PMID: 34244926 PMCID: PMC8804061 DOI: 10.1007/s13311-021-01080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nerve development requires a coordinated sequence of events and steps to be accomplished for the generation of functional peripheral nerves to convey sensory and motor signals. Any abnormality during development may result in pathological structure and function of the nerve, which evolves in peripheral neuropathy. In this review, we will briefly describe different steps of nerve development while we will mostly focus on the molecular mechanisms involved in radial sorting of axons, one of these nerve developmental steps. We will summarize current knowledge of molecular pathways so far reported in radial sorting and their possible interactions. Finally, we will describe how disruption of these pathways may result in human neuropathies.
Collapse
Affiliation(s)
- Stefano C Previtali
- Neuromuscular Repair Unit, InSpe (Institute of Experimental Neurology) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
23
|
Tasdemir-Yilmaz OE, Druckenbrod NR, Olukoya OO, Dong W, Yung AR, Bastille I, Pazyra-Murphy MF, Sitko AA, Hale EB, Vigneau S, Gimelbrant AA, Kharchenko PV, Goodrich LV, Segal RA. Diversity of developing peripheral glia revealed by single-cell RNA sequencing. Dev Cell 2021; 56:2516-2535.e8. [PMID: 34469751 DOI: 10.1016/j.devcel.2021.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
The peripheral nervous system responds to a wide variety of sensory stimuli, a process that requires great neuronal diversity. These diverse neurons are closely associated with glial cells originating from the neural crest. However, the molecular nature and diversity among peripheral glia are not understood. Here, we used single-cell RNA sequencing to profile developing and mature glia from somatosensory dorsal root ganglia and auditory spiral ganglia. We found that glial precursors (GPs) in these two systems differ in their transcriptional profiles. Despite their unique features, somatosensory and auditory GPs undergo convergent differentiation to generate molecularly uniform myelinating and non-myelinating Schwann cells. By contrast, somatosensory and auditory satellite glial cells retain system-specific features. Lastly, we identified a glial signature gene set, providing new insights into commonalities among glia across the nervous system. This survey of gene expression in peripheral glia constitutes a resource for understanding functions of glia across different sensory modalities.
Collapse
Affiliation(s)
- Ozge E Tasdemir-Yilmaz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Noah R Druckenbrod
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Weixiu Dong
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isle Bastille
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maria F Pazyra-Murphy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Austen A Sitko
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Evan B Hale
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sébastien Vigneau
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Zhang R, Chen Q, Huang L, Zhang Y, Wang X, Yi S. Single-cell analyses reveal the differentiation shifts of Schwann cells in neonatal rat sciatic nerves. J Cell Physiol 2021; 237:637-646. [PMID: 34287882 DOI: 10.1002/jcp.30533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 07/08/2021] [Indexed: 11/10/2022]
Abstract
Schwann cells provide essential physical and chemical support for neurons and play critical roles in the peripheral nervous system. To acquire an enhanced understanding of the genetic characteristics of Schwann cells, we analyzed single-cell transcriptional profiling of Schwann cells in neonatal rat sciatic nerves, ordered the pseudotemporal states of Schwann cells, and determined the magnitude of RNA velocity vectors as well as cell cycle stages of Schwann cell subtypes. We discovered the cellular heterogeneity of Schwann cells in neonatal rat sciatic nerves, revealed the dynamic changes of Schwann cell subtypes, and pointed out the differentiation trajectory from Timp3- and Col5a3-expressing Schwann cell subtype 3 to other Schwann cell subtypes. The functional interpretation further indicated that subtype 3 Schwann cells display genetic signatures of DNA replication and the acquisition of mesenchymal traits. Our study presents a transcriptional summarization of the differentiation states of Schwann cell subtypes in neonatal rat sciatic nerves at single-cell resolution and may serve as a foundation for a deeper comprehension of the involvement of Schwann cells in the development and regeneration of peripheral nerves.
Collapse
Affiliation(s)
- Ruirui Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Qi Chen
- School of Life Sciences Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Li Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Yunsong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
25
|
Kamenev D, Sunadome K, Shirokov M, Chagin AS, Singh A, Irion U, Adameyko I, Fried K, Dyachuk V. Schwann cell precursors generate sympathoadrenal system during zebrafish development. J Neurosci Res 2021; 99:2540-2557. [PMID: 34184294 DOI: 10.1002/jnr.24909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/07/2022]
Abstract
The autonomic portion of the peripheral nervous system orchestrates tissue homeostasis through direct innervation of internal organs, and via release of adrenalin and noradrenalin into the blood flow. The developmental mechanisms behind the formation of autonomic neurons and chromaffin cells are not fully understood. Using genetic tracing, we discovered that a significant proportion of sympathetic neurons in zebrafish originates from Schwann cell precursors (SCPs) during a defined period of embryonic development. Moreover, SCPs give rise to the main portion of the chromaffin cells, as well as to a significant proportion of enteric and other autonomic neurons associated with internal organs. The conversion of SCPs into neuronal and chromaffin cells is ErbB receptor dependent, as the pharmacological inhibition of the ErbB pathway effectively perturbed this transition. Finally, using genetic ablations, we revealed that SCPs producing neurons and chromaffin cells migrate along spinal motor axons to reach appropriate target locations. This study reveals the evolutionary conservation of SCP-to-neuron and SCP-to-chromaffin cell transitions over significant growth periods in fish and highlights relevant cellular-genetic mechanisms. Based on this, we anticipate that multipotent SCPs might be present in postnatal vertebrate tissues, retaining the capacity to regenerate autonomic neurons and chromaffin cells.
Collapse
Affiliation(s)
- Dmitrii Kamenev
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kazunori Sunadome
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maxim Shirokov
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Andrey S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Ajeet Singh
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Uwe Irion
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vyacheslav Dyachuk
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
26
|
Jablonka-Shariff A, Broberg C, Rios R, Snyder-Warwick AK. T-box transcription factor 21 is expressed in terminal Schwann cells at the neuromuscular junction. Muscle Nerve 2021; 64:109-115. [PMID: 33908666 DOI: 10.1002/mus.27257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION/AIMS Terminal Schwann cells (tSCs) are nonmyelinating Schwann cells present at the neuromuscular junction (NMJ) with multiple integral roles throughout their lifespan. There is no known gene differentiating tSCs from myelinating Schwann cells, making their isolation and investigation challenging. In this work we investigated genes expressed within tSCs. METHODS A novel dissection technique was utilized to isolate the tSC-containing NMJ band from the sternomastoid muscles of S100-GFP mice. RNA was isolated from samples containing: (a) NMJ bands (tSCs with nerve and muscle), (b) nerve, and (c) muscle, and microarray genetic expression analysis was conducted. Data were validated by quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescent staining. To identify genes specific to tSCs compared with other NMJ components, analysis of variance and rank-order analysis were performed using the Partek Genomic Suite. RESULTS Microarray analysis of the tSC-enriched NMJ band revealed upregulation (by 4- to 12-fold) of several genes unique to the NMJ compared with muscle or nerve parts alone (P < .05). Among these genes, Tbx21 (or T-bet) was identified, which showed a 12-fold higher expression at the NMJ compared with sciatic nerve (P < .002). qRT-PCR analysis showed Tbx21 mRNA expression was over ninefold higher (P < .05) in the NMJ relative to muscle and nerve. Tbx21 protein colocalized with tSCs and was not noted in myelinating SCs from sciatic nerve. DISCUSSION We found TBX21 to be expressed in tSCs. Additional studies will be performed to determine the functional significance of TBX21 in tSCs. These studies may enhance the investigative tools available to modulate tSCs to improve motor recovery after nerve injury.
Collapse
Affiliation(s)
- Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Curtis Broberg
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rachel Rios
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
27
|
Lv B, Zhang X, Yuan J, Chen Y, Ding H, Cao X, Huang A. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury. Stem Cell Res Ther 2021; 12:36. [PMID: 33413653 PMCID: PMC7791771 DOI: 10.1186/s13287-020-02090-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
The spinal cord is part of the central nervous system (CNS) and serves to connect the brain to the peripheral nervous system and peripheral tissues. The cell types that primarily comprise the spinal cord are neurons and several categories of glia, including astrocytes, oligodendrocytes, and microglia. Ependymal cells and small populations of endogenous stem cells, such as oligodendrocyte progenitor cells, also reside in the spinal cord. Neurons are interconnected in circuits; those that process cutaneous sensory input are mainly located in the dorsal spinal cord, while those involved in proprioception and motor control are predominately located in the ventral spinal cord. Due to the importance of the spinal cord, neurodegenerative disorders and traumatic injuries affecting the spinal cord will lead to motor deficits and loss of sensory inputs. Spinal cord injury (SCI), resulting in paraplegia and tetraplegia as a result of deleterious interconnected mechanisms encompassed by the primary and secondary injury, represents a heterogeneously behavioral and cognitive deficit that remains incurable. Following SCI, various barriers containing the neuroinflammation, neural tissue defect (neurons, microglia, astrocytes, and oligodendrocytes), cavity formation, loss of neuronal circuitry, and function must be overcame. Notably, the pro-inflammatory and anti-inflammatory effects of cell–cell communication networks play critical roles in homeostatic, driving the pathophysiologic and consequent cognitive outcomes. In the spinal cord, astrocytes, oligodendrocytes, and microglia are involved in not only development but also pathology. Glial cells play dual roles (negative vs. positive effects) in these processes. After SCI, detrimental effects usually dominate and significantly retard functional recovery, and curbing these effects is critical for promoting neurological improvement. Indeed, residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (macrophages and neutrophils), activated by SCI, give rise to full-blown inflammatory cascades. These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Given the various multifaceted obstacles in SCI treatment, a combinatorial therapy of cell transplantation and biomaterial implantation may be addressed in detail here. For the sake of preserving damaged tissue integrity and providing physical support and trophic supply for axon regeneration, MSC transplantation has come to the front stage in therapy for SCI with the constant progress of stem cell engineering. MSC transplantation promotes scaffold integration and regenerative growth potential. Integrating into the implanted scaffold, MSCs influence implant integration by improving the healing process. Conversely, biomaterial scaffolds offer MSCs with a sheltered microenvironment from the surrounding pathological changes, in addition to bridging connection spinal cord stump and offering physical and directional support for axonal regeneration. Besides, Biomaterial scaffolds mimic the extracellular matrix to suppress immune responses. Here, we review the advances in combinatorial biomaterial scaffolds and MSC transplantation approach that targets certain aspects of various intercellular communications in the pathologic process following SCI. Finally, the challenges of biomaterial-supported MSC transplantation and its future direction for neuronal regeneration will be presented.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu Province, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Jishan Yuan
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu Province, China
| | - Yongxin Chen
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu Province, China
| | - Hua Ding
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu Province, China
| | - Xinbing Cao
- Department of Orthopedics, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu Province, China.
| | - Anquan Huang
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
28
|
Chen CZ, Neumann B, Förster S, Franklin RJM. Schwann cell remyelination of the central nervous system: why does it happen and what are the benefits? Open Biol 2021; 11:200352. [PMID: 33497588 PMCID: PMC7881176 DOI: 10.1098/rsob.200352] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Myelin sheaths, by supporting axonal integrity and allowing rapid saltatory impulse conduction, are of fundamental importance for neuronal function. In response to demyelinating injuries in the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) migrate to the lesion area, proliferate and differentiate into new oligodendrocytes that make new myelin sheaths. This process is termed remyelination. Under specific conditions, demyelinated axons in the CNS can also be remyelinated by Schwann cells (SCs), the myelinating cell of the peripheral nervous system. OPCs can be a major source of these CNS-resident SCs-a surprising finding given the distinct embryonic origins, and physiological compartmentalization of the peripheral and central nervous system. Although the mechanisms and cues governing OPC-to-SC differentiation remain largely undiscovered, it might nevertheless be an attractive target for promoting endogenous remyelination. This article will (i) review current knowledge on the origins of SCs in the CNS, with a particular focus on OPC to SC differentiation, (ii) discuss the necessary criteria for SC myelination in the CNS and (iii) highlight the potential of using SCs for myelin regeneration in the CNS.
Collapse
Affiliation(s)
| | | | | | - Robin J. M. Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| |
Collapse
|
29
|
Modeling tumors of the peripheral nervous system associated with Neurofibromatosis type 1: Reprogramming plexiform neurofibroma cells. Stem Cell Res 2020; 49:102068. [PMID: 33160273 DOI: 10.1016/j.scr.2020.102068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
Plexiform neurofibromas (pNFs) are benign tumors of the peripheral nervous system (PNS) that can progress towards a deadly soft tissue sarcoma termed malignant peripheral nerve sheath tumor (MPNST). pNFs appear during development in the context of the genetic disease Neurofibromatosis type 1 (NF1) due to the complete loss of the NF1 tumor suppressor gene in a cell of the neural crest (NC) - Schwann cell (SC) axis of differentiation. NF1(-/-) cells from pNFs can be reprogrammed into induced pluripotent stem cells (iPSCs) that exhibit an increased proliferation rate and maintain full iPSC properties. Efficient protocols for iPSC differentiation towards NC and SC exist and thus NC cells can be efficiently obtained from NF1(-/-) iPSCs and further differentiated towards SCs. In this review, we will focus on the iPSC modeling of pNFs, including the reprogramming of primary pNF-derived cells, the properties of pNF-derived iPSCs, the capacity to differentiate towards the NC-SC lineage, and how well iPSC-derived NF1(-/-) SC spheroids recapitulate pNF-derived primary SCs. The potential uses of NF1(-/-) iPSCs in pNF modeling and a future outlook are discussed.
Collapse
|
30
|
Wei CJ, Gu YH, Wang W, Ren JY, Cui XW, Lian X, Liu J, Wang HJ, Gu B, Li QF, Wang ZC. A narrative review of the role of fibroblasts in the growth and development of neurogenic tumors. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1462. [PMID: 33313207 PMCID: PMC7723559 DOI: 10.21037/atm-20-3218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurogenic tumors, a group of tumors arising from neurogenic elements, could theoretically appear in every region of human bodies wherever nerves exist. Patients with these tumors suffer from both physical and psychological problems. However, as a relatively rare tumor type, therapies are relatively scarce for these tumors due to the limited understanding of the underlying mechanisms. Recently, a tailored tumor microenvironment containing multiple types of nonneoplastic cells has been considered to play an essential role in tumor survival, growth, and metastasis. Fibroblasts are a crucial constituent of the tumor microenvironment and have been found to promote tumor growth via multiple mechanisms. However, the understanding of the pivotal role of fibroblasts in the tumorigenesis and development of the neurogenic tumors is still incomplete, and studies in this area show differences in rates of progression among different neurogenic tumor subtypes. Nevertheless, all these neural crest-originated neoplasms show some similarities in the tumor microenvironment, indicating that studies of one subtype of neurogenic tumor might assist in clarifying the underlying mechanisms of other subtypes. This review aims to provide current studies showing the impacts of fibroblasts on major benign/malignant subtypes of neurogenic tumors, including neurofibromatosis type 1, neuroblastomas, pheochromocytomas, and malignant peripheral nerve sheath tumors. Multiple related mechanisms such as the fibroblasts regulating the tumor inflammation, angiogenesis, metabolism, and microenvironment establishment have been studied up to present. Consistently, we focus on how studies on various subtypes of these neurogenic tumors contribute to the establishment of potential future directions for further studies in this area. Clarifying the underlying mechanisms by which fibroblasts promote the growth and metastasis of neurogenic tumors will indicate new therapeutic targets for further clinical treatment.
Collapse
Affiliation(s)
- Cheng-Jiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Lian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Jing Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Cawthon CR, Kirkland RA, Pandya S, Brinson NA, de La Serre CB. Non-neuronal crosstalk promotes an inflammatory response in nodose ganglia cultures after exposure to byproducts from gram positive, high-fat-diet-associated gut bacteria. Physiol Behav 2020; 226:113124. [PMID: 32763334 PMCID: PMC7530053 DOI: 10.1016/j.physbeh.2020.113124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
Vagal afferent neurons (VAN) projecting to the lamina propria of the digestive tract are the primary source of gut-originating signals to the central nervous system (CNS). VAN cell bodies are found in the nodose ganglia (NG). Responsiveness of VAN to gut-originating signals is altered by feeding status with sensitivity to satiety signals such as cholecystokinin (CCK) increasing in the fed state. Chronic high-fat (HF) feeding results in inflammation at the level of the NG associated with a loss of VAN ability to switch phenotype from the fasted to the fed state. HF feeding also leads to compositional changes in the gut microbiota. HF diet consumption notably drives increased Firmicutes to Bacteroidetes phyla ratio and increased members of the Actinobacteria phylum. Firmicutes and Actinobacteria are largely gram positive (GP). In this study, we aimed to determine if byproducts from GP bacteria can induce an inflammatory response in cultured NG and to characterize the mechanism and cell types involved in the response. NG were collected from male Wistar rats and cultured for a total of 72 hours. At 48-68 hours after plating, cultures were treated with neuronal culture media in which Serinicoccus chungangensis had been grown and removed (SUP), lipoteichoic acid (LTA), or meso-diaminopimelic acid (meso-DAP). Some treatments included the glial inhibitors minocycline (MINO) and/or fluorocitrate (FC). The responses were evaluated using immunocytochemistry, qPCR, and electrochemiluminescence. We found that SUP induced an inflammatory response characterized by increased interleukin (IL)-6 staining and increased expression of genes for IL-6, interferon (IFN)γ, and tumor necrosis factor (TNF)α along with genes associated with cell-to-cell communication such as C-C motif chemokine ligand-2 (CCL2). Inclusion of inhibitors attenuated some responses but failed to completely normalize all indications of response, highlighting the role of immunocompetent cellular crosstalk in regulating the inflammatory response. LTA and meso-DAP produced responses that shared characteristics with SUP but were not identical. Our results support a role for HF associated GP bacterial byproducts' ability to contribute to vagal inflammation and to engage signaling from nonneuronal cells.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Rebecca A Kirkland
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Shreya Pandya
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Nigel A Brinson
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Claire B de La Serre
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States.
| |
Collapse
|
32
|
Milichko V, Dyachuk V. Novel Glial Cell Functions: Extensive Potency, Stem Cell-Like Properties, and Participation in Regeneration and Transdifferentiation. Front Cell Dev Biol 2020; 8:809. [PMID: 33015034 PMCID: PMC7461986 DOI: 10.3389/fcell.2020.00809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
Glial cells are the most abundant cells in both the peripheral and central nervous systems. During the past decade, a subpopulation of immature peripheral glial cells, namely, embryonic Schwann cell-precursors, have been found to perform important functions related to development. These cells have properties resembling those of the neural crest and, depending on their location in the body, can transform into several different cell types in peripheral tissues, including autonomic neurons. This review describes the multipotent properties of Schwann cell-precursors and their importance, together with innervation, during early development. The heterogeneity of Schwann cells, as revealed using single-cell transcriptomics, raises a question on whether some glial cells in the adult peripheral nervous system retain their stem cell-like properties. We also discuss how a deeper insight into the biology of both embryonic and adult Schwann cells might lead to an effective treatment of the damage of both neural and non-neural tissues, including the damage caused by neurodegenerative diseases. Furthermore, understanding the potential involvement of Schwann cells in the regulation of tumor development may reveal novel targets for cancer treatment.
Collapse
Affiliation(s)
- Valentin Milichko
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, Russia
| | - Vyacheslav Dyachuk
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, Russia.,National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
33
|
Avraham O, Deng PY, Jones S, Kuruvilla R, Semenkovich CF, Klyachko VA, Cavalli V. Satellite glial cells promote regenerative growth in sensory neurons. Nat Commun 2020; 11:4891. [PMID: 32994417 PMCID: PMC7524726 DOI: 10.1038/s41467-020-18642-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/04/2020] [Indexed: 01/11/2023] Open
Abstract
Peripheral sensory neurons regenerate their axon after nerve injury to enable functional recovery. Intrinsic mechanisms operating in sensory neurons are known to regulate nerve repair, but whether satellite glial cells (SGC), which completely envelop the neuronal soma, contribute to nerve regeneration remains unexplored. Using a single cell RNAseq approach, we reveal that SGC are distinct from Schwann cells and share similarities with astrocytes. Nerve injury elicits changes in the expression of genes related to fatty acid synthesis and peroxisome proliferator-activated receptor (PPARα) signaling. Conditional deletion of fatty acid synthase (Fasn) in SGC impairs axon regeneration. The PPARα agonist fenofibrate rescues the impaired axon regeneration in mice lacking Fasn in SGC. These results indicate that PPARα activity downstream of FASN in SGC contributes to promote axon regeneration in adult peripheral nerves and highlight that the sensory neuron and its surrounding glial coat form a functional unit that orchestrates nerve repair. The contribution of satellite glia to peripheral nerve regeneration is unclear. Here, the authors show that satellite glia are transcriptionally distinct from Schwann cells, share similarities with astrocytes, and, upon injury, they contribute to axon regeneration via Fasn-PPARα signalling pathway.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Pan-Yue Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Sara Jones
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Clay F Semenkovich
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA.,Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA. .,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
34
|
Bishop MR, Diaz Perez KK, Sun M, Ho S, Chopra P, Mukhopadhyay N, Hetmanski JB, Taub MA, Moreno-Uribe LM, Valencia-Ramirez LC, Restrepo Muñeton CP, Wehby G, Hecht JT, Deleyiannis F, Weinberg SM, Wu-Chou YH, Chen PK, Brand H, Epstein MP, Ruczinski I, Murray JC, Beaty TH, Feingold E, Lipinski RJ, Cutler DJ, Marazita ML, Leslie EJ. Genome-wide Enrichment of De Novo Coding Mutations in Orofacial Cleft Trios. Am J Hum Genet 2020; 107:124-136. [PMID: 32574564 PMCID: PMC7332647 DOI: 10.1016/j.ajhg.2020.05.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/26/2020] [Indexed: 01/05/2023] Open
Abstract
Although de novo mutations (DNMs) are known to increase an individual's risk of congenital defects, DNMs have not been fully explored regarding orofacial clefts (OFCs), one of the most common human birth defects. Therefore, whole-genome sequencing of 756 child-parent trios of European, Colombian, and Taiwanese ancestry was performed to determine the contributions of coding DNMs to an individual's OFC risk. Overall, we identified a significant excess of loss-of-function DNMs in genes highly expressed in craniofacial tissues, as well as genes associated with known autosomal dominant OFC syndromes. This analysis also revealed roles for zinc-finger homeobox domain and SOX2-interacting genes in OFC etiology.
Collapse
Affiliation(s)
- Madison R. Bishop
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kimberly K. Diaz Perez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Miranda Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Samantha Ho
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nandita Mukhopadhyay
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA 15219, USA
| | - Jacqueline B. Hetmanski
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Margaret A. Taub
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lina M. Moreno-Uribe
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - George Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School and School of Dentistry, UT Health at Houston, Houston, TX 77030, USA
| | | | - Seth M. Weinberg
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA 15219, USA,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA
| | - Yah Huei Wu-Chou
- Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Philip K. Chen
- Craniofacial Centre, Taipei Medical University Hospital and Taipei Medical University, Taipei, Taiwan
| | - Harrison Brand
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael P. Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeffrey C. Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Terri H. Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - David J. Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mary L. Marazita
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA 15219, USA,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA,Corresponding author
| |
Collapse
|
35
|
Cobo R, García-Mesa Y, García-Piqueras J, Feito J, Martín-Cruces J, García-Suárez O, A. Vega J. The Glial Cell of Human Cutaneous Sensory Corpuscles: Origin, Characterization, and Putative Roles. Somatosens Mot Res 2020. [DOI: 10.5772/intechopen.91815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Kim HS, Kim JY, Song CL, Jeong JE, Cho YS. Directly induced human Schwann cell precursors as a valuable source of Schwann cells. Stem Cell Res Ther 2020; 11:257. [PMID: 32586386 PMCID: PMC7318441 DOI: 10.1186/s13287-020-01772-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background Schwann cells (SCs) are primarily responsible for regeneration and repair of the peripheral nervous system (PNS). Renewable and lineage-restricted SC precursors (SCPs) are considered highly desirable and promising cell sources for the production of SCs and for studies of SC lineage development, but SCPs are extremely limited. Here, we present a novel direct conversion strategy for the generation of human SCPs, capable of differentiating into functional SCs. Methods Easily accessible human skin fibroblast cells were directly induced into integration-free SCPs using episomal vectors (Oct3/4, Klf4, Sox2, L-Myc, Lin28 and p53 shRNA) under SCP lineage-specific chemically defined medium conditions. Induced SCPs (iSCPs) were further examined for their ability to differentiate into SCs. The identification and functionality of iSCPs and iSCP-differentiated SCs (iSCs) were confirmed according to morphology, lineage-specific markers, neurotropic factor secretion, and/or standard functional assays. Results Highly pure, Sox 10-positive of iSCPs (more than 95% purity) were generated from human skin fibroblasts within 3 weeks. Established iSCPs could be propagated in vitro while maintaining their SCP identity. Within 1 week, iSCPs could efficiently differentiate into SCs (more than 95% purity). The iSCs were capable of secreting various neurotrophic factors such as GDNF, NGF, BDNF, and NT-3. The in vitro myelinogenic potential of iSCs was assessed by myelinating cocultures using mouse dorsal root ganglion (DRG) neurons or human induced pluripotent stem cell (iPSC)-derived sensory neurons (HSNs). Furthermore, iSC transplantation promoted sciatic nerve repair and improved behavioral recovery in a mouse model of sciatic nerve crush injury in vivo. Conclusions We report a robust method for the generation of human iSCPs/iSCs that might serve as a promising cellular source for various regenerative biomedical research and applications, such as cell therapy and drug discovery, especially for the treatment of PNS injury and disorders.
Collapse
Affiliation(s)
- Han-Seop Kim
- Stem Cell Research Laboratory (SCRL), Immunotherapy Research Center (IRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jae Yun Kim
- Stem Cell Research Laboratory (SCRL), Immunotherapy Research Center (IRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.,Department of Bioscience, KRIBB School, University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Cho Lok Song
- Stem Cell Research Laboratory (SCRL), Immunotherapy Research Center (IRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.,Department of Bioscience, KRIBB School, University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Ji Eun Jeong
- Stem Cell Research Laboratory (SCRL), Immunotherapy Research Center (IRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Yee Sook Cho
- Stem Cell Research Laboratory (SCRL), Immunotherapy Research Center (IRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea. .,Department of Bioscience, KRIBB School, University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon, 34113, South Korea.
| |
Collapse
|
37
|
Shao Y, Ding J, He QX, Ma QR, Liu Q, Zhang C, Lv HW, Liu J. Effect of Sox10 on remyelination of the hippocampus in cuprizone-induced demyelinated mice. Brain Behav 2020; 10:e01623. [PMID: 32363773 PMCID: PMC7303379 DOI: 10.1002/brb3.1623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The low number of oligodendrocytes (OLs) in the hippocampus of patients with schizophrenia suggests that hippocampal demyelination is changed in this condition. Sox10 is expressed throughout OL development. The effect of Sox10 on myelin regeneration is unknown. This study aimed to analyze changes in Sox10 expression in the hippocampus and its regulatory role in hippocampal myelin regeneration in a mouse model of demyelination. METHODS Mice were fed 0.2% cuprizone (CPZ) for six weeks to establish the acute demyelinating model (CPZ mice). Behavioral changes of these mice were assessed via open field and tail suspension tests. The ultrastructure of the myelin sheaths in the hippocampus was observed by transmission electron microscopy. The expression levels of myelin sheath-related proteins and the transcription factor Sox10 were detected via immunohistochemistry and Western blots. Furthermore, Sox10-overexpressing adeno-associated virus was injected into the hippocampus after establishing the demyelinating model to investigate effects of Sox10 on remyelination. RESULTS CPZ mice showed abnormal behavioral changes, a large number of pathological changes in the myelin sheaths, and significantly reduced protein expression of the myelin sheath markers myelin basic protein and proteolipid protein. This confirmed that the demyelinating model was successfully established. Meanwhile, the protein expression of the oligodendrocyte precursor cell marker neural/glial antigen 2 (NG2) increased, whereas Sox10 expression decreased. After Sox10 overexpression in the hippocampus, the abnormal behavior was improved, the ultrastructure of the myelin sheaths was restored, and the expression of myelin sheath protein was reversed. NG2 expression was upregulated. CONCLUSION Overexpression of Sox10 promotes hippocampal remyelination after CPZ-induced acute demyelination.
Collapse
Affiliation(s)
- Yu Shao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Juan Ding
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Qian-Xiong He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Quan-Rui Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qiang Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Hao-Wen Lv
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
38
|
|
39
|
Cerrizuela S, Vega-Lopez GA, Aybar MJ. The role of teratogens in neural crest development. Birth Defects Res 2020; 112:584-632. [PMID: 31926062 DOI: 10.1002/bdr2.1644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
The neural crest (NC), discovered by Wilhelm His 150 years ago, gives rise to a multipotent migratory embryonic cell population that generates a remarkably diverse and important array of cell types during the development of the vertebrate embryo. These cells originate in the neural plate border (NPB), which is the ectoderm between the neural plate and the epidermis. They give rise to the neurons and glia of the peripheral nervous system, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies are a class of congenital diseases resulting from the abnormal induction, specification, migration, differentiation or death of NC cells (NCCs) during embryonic development and have an important medical and societal impact. In general, congenital defects affect an appreciable percentage of newborns worldwide. Some of these defects are caused by teratogens, which are agents that negatively impact the formation of tissues and organs during development. In this review, we will discuss the teratogens linked to the development of many birth defects, with a strong focus on those that specifically affect the development of the NC, thereby producing neurocristopathies. Although increasing attention is being paid to the effect of teratogens on embryonic development in general, there is a strong need to critically evaluate the specific role of these agents in NC development. Therefore, increased understanding of the role of these factors in NC development will contribute to the planning of strategies aimed at the prevention and treatment of human neurocristopathies, whose etiology was previously not considered.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Manuel J Aybar
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
40
|
Fledrich R, Kungl T, Nave KA, Stassart RM. Axo-glial interdependence in peripheral nerve development. Development 2019; 146:146/21/dev151704. [PMID: 31719044 DOI: 10.1242/dev.151704] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During the development of the peripheral nervous system, axons and myelinating Schwann cells form a unique symbiotic unit, which is realized by a finely tuned network of molecular signals and reciprocal interactions. The importance of this complex interplay becomes evident after injury or in diseases in which aspects of axo-glial interaction are perturbed. This Review focuses on the specific interdependence of axons and Schwann cells in peripheral nerve development that enables axonal outgrowth, Schwann cell lineage progression, radial sorting and, finally, formation and maintenance of the myelin sheath.
Collapse
Affiliation(s)
- Robert Fledrich
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany .,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Theresa Kungl
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany.,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Ruth M Stassart
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany .,Department of Neuropathology, University Clinic Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
41
|
De Kleijn KMA, Zuure WA, Peijnenborg J, Heuvelmans JM, Martens GJM. Reappraisal of Human HOG and MO3.13 Cell Lines as a Model to Study Oligodendrocyte Functioning. Cells 2019; 8:cells8091096. [PMID: 31533280 PMCID: PMC6769895 DOI: 10.3390/cells8091096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Myelination of neuronal axons is essential for proper brain functioning and requires mature myelinating oligodendrocytes (myOLs). The human OL cell lines HOG and MO3.13 have been widely used as in vitro models to study OL (dys) functioning. Here we applied a number of protocols aimed at differentiating HOG and MO3.13 cells into myOLs. However, none of the differentiation protocols led to increased expression of terminal OL differentiation or myelin-sheath formation markers. Surprisingly, the applied protocols did cause changes in the expression of markers for early OLs, neurons, astrocytes and Schwann cells. Furthermore, we noticed that mRNA expression levels in HOG and MO3.13 cells may be affected by the density of the cultured cells. Finally, HOG and MO3.13 co-cultured with human neuronal SH-SY5Y cells did not show myelin formation under several pro-OL-differentiation and pro-myelinating conditions. Together, our results illustrate the difficulty of inducing maturation of HOG and MO3.13 cells into myOLs, implying that these oligodendrocytic cell lines may not represent an appropriate model to study the (dys)functioning of human (my)OLs and OL-linked disease mechanisms.
Collapse
Affiliation(s)
- Kim M A De Kleijn
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Faculty of Science, Radboud University, 6525AJ Nijmegen, The Netherlands.
- NeuroDrug Research, 6525 HP Nijmegen, The Netherlands.
| | - Wieteke A Zuure
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Faculty of Science, Radboud University, 6525AJ Nijmegen, The Netherlands.
| | - Jolien Peijnenborg
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Faculty of Science, Radboud University, 6525AJ Nijmegen, The Netherlands.
| | - Josje M Heuvelmans
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Faculty of Science, Radboud University, 6525AJ Nijmegen, The Netherlands.
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Faculty of Science, Radboud University, 6525AJ Nijmegen, The Netherlands.
- NeuroDrug Research, 6525 HP Nijmegen, The Netherlands.
| |
Collapse
|
42
|
Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish. Proc Natl Acad Sci U S A 2019; 116:15068-15073. [PMID: 31285319 PMCID: PMC6660740 DOI: 10.1073/pnas.1900038116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multipotent Schwann cell precursors (SCPs) generate numerous cell types. Here, in both mouse and zebrafish, SCPs contributed to the generation of mesenchymal, chondroprogenitor, and osteoprogenitor cells during embryonic development. These findings reveal a source of cartilage and bone cells and previously unanticipated interactions between the nervous system and skeleton during development. Immature multipotent embryonic peripheral glial cells, the Schwann cell precursors (SCPs), differentiate into melanocytes, parasympathetic neurons, chromaffin cells, and dental mesenchymal populations. Here, genetic lineage tracing revealed that, during murine embryonic development, some SCPs detach from nerve fibers to become mesenchymal cells, which differentiate further into chondrocytes and mature osteocytes. This occurred only during embryonic development, producing numerous craniofacial and trunk skeletal elements, without contributing to development of the appendicular skeleton. Formation of chondrocytes from SCPs also occurred in zebrafish, indicating evolutionary conservation. Our findings reveal multipotency of SCPs, providing a developmental link between the nervous system and skeleton.
Collapse
|
43
|
Barati S, Kashani IR, Tahmasebi F, Mehrabi S, Joghataei MT. Effect of mesenchymal stem cells on glial cells population in cuprizone induced demyelination model. Neuropeptides 2019; 75:75-84. [PMID: 31030907 DOI: 10.1016/j.npep.2019.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022]
Abstract
Mesenchymal stem cells (MSCs) have a notable potential to modulate immune responses and protect the central nervous system (CNS), mostly by secreting factors that affect inflammation. MSCs have the ability to improve several autoimmune diseases in animal models including multiple sclerosis (MS). MS is a disease of the CNS among adult humans and it is characterized by demyelination, neuroinflammation and gliosis. In this study, we first induced chronic demyelination by cuprizone, followed by intraventricular injection of MSC. Our results showed that MSC significantly decreased microgliosis and astrocytosis by secreting cytokines that have neuroprotective activity including TGF-β and CX3CL1. Also, downregulation of IL-1β and TNF-α as inflammatory chemokines was seen along with decreased astrocytes and microglia activation. Finally, these results showed that trophic factors secreted by MSC can increase oligodendrocyte population and remyelination rate by reducing pro-inflammatory factors. These findings demonstrate that MSC could decrease inflammation, gliosis and demyelination with neuroprotective and immunomodulating properties in chronic cuprizone demyelination model. Therefore MSC transplantation can be considered as a suitable approach for enhancing myelination and reducing inflammation in diseases such as MS.
Collapse
Affiliation(s)
- Shirin Barati
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Sobrino V, Annese V, Navarro-Guerrero E, Platero-Luengo A, Pardal R. The carotid body: a physiologically relevant germinal niche in the adult peripheral nervous system. Cell Mol Life Sci 2019; 76:1027-1039. [PMID: 30498994 PMCID: PMC11105339 DOI: 10.1007/s00018-018-2975-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022]
Abstract
Oxygen constitutes a vital element for the survival of every single cell in multicellular aerobic organisms like mammals. A complex homeostatic oxygen-sensing system has evolved in these organisms, including detectors and effectors, to guarantee a proper supply of the element to every cell. The carotid body represents the most important peripheral arterial chemoreceptor organ in mammals and informs about hypoxemic situations to the effectors at the brainstem cardiorespiratory centers. To optimize organismal adaptation to maintained hypoxemic situations, the carotid body has evolved containing a niche of adult tissue-specific stem cells with the capacity to differentiate into both neuronal and vascular cell types in response to hypoxia. These neurogenic and angiogenic processes are finely regulated by the niche and by hypoxia itself. Our recent data on the cellular and molecular mechanisms underlying the functioning of this niche might help to comprehend a variety of different diseases coursing with carotid body failure, and might also improve our capacity to use these stem cells for the treatment of neurological disease. Herein, we review those data about the recent characterization of the carotid body niche, focusing on the study of the phenotype and behavior of multipotent stem cells within the organ, comparing them with other well-documented neural stem cells within the adult nervous system.
Collapse
Affiliation(s)
- Verónica Sobrino
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Elena Navarro-Guerrero
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Aida Platero-Luengo
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain.
| |
Collapse
|
45
|
Jessen KR, Mirsky R. The Success and Failure of the Schwann Cell Response to Nerve Injury. Front Cell Neurosci 2019; 13:33. [PMID: 30804758 PMCID: PMC6378273 DOI: 10.3389/fncel.2019.00033] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023] Open
Abstract
The remarkable plasticity of Schwann cells allows them to adopt the Remak (non-myelin) and myelin phenotypes, which are specialized to meet the needs of small and large diameter axons, and differ markedly from each other. It also enables Schwann cells initially to mount a strikingly adaptive response to nerve injury and to promote regeneration by converting to a repair-promoting phenotype. These repair cells activate a sequence of supportive functions that engineer myelin clearance, prevent neuronal death, and help axon growth and guidance. Eventually, this response runs out of steam, however, because in the long run the phenotype of repair cells is unstable and their survival is compromised. The re-programming of Remak and myelin cells to repair cells, together with the injury-induced switch of peripheral neurons to a growth mode, gives peripheral nerves their strong regenerative potential. But it remains a challenge to harness this potential and devise effective treatments that maintain the initial repair capacity of peripheral nerves for the extended periods typically required for nerve repair in humans.
Collapse
Affiliation(s)
- Kristjan R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
46
|
Pshennikova ES, Voronina AS. Melanophores inside Frogs. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2018. [DOI: 10.56431/p-6k7upo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Melanocytes/melanophores were known for some decades as pigment cells in skin. The origin of these cells in embryogenesis from neural crest cells is actively investigated now. Some melanocytes/melanophores were described inside adult vertebrates. Historically, these internal melanocytes have been largely ignored, until recently. In frogs, the melanophores populate not only the skin, but all the inner connective tissues: epineurium, peritoneum, mesentery, outer vascular layer and skin underside. In adult avian, melanocytes were also found in visceral connective tissues, periostea, muscles, ovaries and the peritoneum. In mammals and humans, melanocytes are also revealed in eyes, ears, heart and brain. A black-brownish pigment, which can be found in brains of humans and some mammals, was called neuromelanin. Currently, attempts are being made to treat neurodegenerative diseases and various nerve injuries with medications containing melanin. In this micro-review, we wanted to remind again about the inner melanophores on visceral organs and lining blood vessels and nerves, their importance in organisms resistance to adverse environmental factors.
Collapse
|
47
|
Couve E, Schmachtenberg O. Schwann Cell Responses and Plasticity in Different Dental Pulp Scenarios. Front Cell Neurosci 2018; 12:299. [PMID: 30233330 PMCID: PMC6133954 DOI: 10.3389/fncel.2018.00299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/17/2018] [Indexed: 12/29/2022] Open
Abstract
Mammalian teeth have evolved as dentin units that enclose a complex system of sensory innervation to protect and preserve their structure and function. In human dental pulp (DP), mechanosensory and nociceptive fibers form a dense meshwork of nerve endings at the coronal dentin-pulp interface, which arise from myelinated and non-myelinated axons of the Raschkow plexus (RP). Schwann cells (SCs) play a crucial role in the support, maintenance and regeneration after injury of these fibers. We have recently characterized two SC phenotypes hierarchically organized within the coronal and radicular DP in human teeth. Myelinating and non-myelinating SCs (nmSCs) display a high degree of plasticity associated with nociceptive C-fiber sprouting and axonal degeneration in response to DP injuries from dentin caries or physiological root resorption (PRR). By comparative immunolabeling, confocal and electron microscopy, we have characterized short-term adaptive responses of SC phenotypes to nerve injuries, and long-term changes related to aging. An increase of SCs characterizes the early responses to caries progression in association with axonal sprouting in affected DP domains. Moreover, during PRR, the formation of bands of Büngner is observed as part of SC repair tracks functions. On the other hand, myelinated axon density is significantly reduced with tooth age, as part of a gradual decrease in DP defense and repair capacities. The remarkable plasticity and capacity of SCs to preserve DP innervation in different dental scenarios constitutes a fundamental aspect to improve clinical treatments. This review article discusses the central role of myelinating and non-mSCs in long-term tooth preservation and homeostasis.
Collapse
Affiliation(s)
- Eduardo Couve
- Laboratorio de Microscopía Electrónica, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
48
|
Abstract
Melanocytes/melanophores were known for some decades as pigment cells in skin. The origin of these cells in embryogenesis from neural crest cells is actively investigated now. Some melanocytes/melanophores were described inside adult vertebrates. Historically, these internal melanocytes have been largely ignored, until recently. In frogs, the melanophores populate not only the skin, but all the inner connective tissues: epineurium, peritoneum, mesentery, outer vascular layer and skin underside. In adult avian, melanocytes were also found in visceral connective tissues, periostea, muscles, ovaries and the peritoneum. In mammals and humans, melanocytes are also revealed in eyes, ears, heart and brain. A black-brownish pigment, which can be found in brains of humans and some mammals, was called neuromelanin. Currently, attempts are being made to treat neurodegenerative diseases and various nerve injuries with medications containing melanin. In this micro-review, we wanted to remind again about the inner melanophores on visceral organs and lining blood vessels and nerves, their importance in organisms resistance to adverse environmental factors.
Collapse
|
49
|
Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, Häring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S. Molecular Architecture of the Mouse Nervous System. Cell 2018; 174:999-1014.e22. [PMID: 30096314 PMCID: PMC6086934 DOI: 10.1016/j.cell.2018.06.021] [Citation(s) in RCA: 1706] [Impact Index Per Article: 243.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 12/14/2022]
Abstract
The mammalian nervous system executes complex behaviors controlled by specialized, precisely positioned, and interacting cell types. Here, we used RNA sequencing of half a million single cells to create a detailed census of cell types in the mouse nervous system. We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons were the most diverse and were grouped by developmental anatomical units and by the expression of neurotransmitters and neuropeptides. Neuronal diversity was driven by genes encoding cell identity, synaptic connectivity, neurotransmission, and membrane conductance. We discovered seven distinct, regionally restricted astrocyte types that obeyed developmental boundaries and correlated with the spatial distribution of key glutamate and glycine neurotransmitters. In contrast, oligodendrocytes showed a loss of regional identity followed by a secondary diversification. The resource presented here lays a solid foundation for understanding the molecular architecture of the mammalian nervous system and enables genetic manipulation of specific cell types.
Collapse
Affiliation(s)
- Amit Zeisel
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Hannah Hochgerner
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Peter Lönnerberg
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Anna Johnsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Fatima Memic
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Job van der Zwan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Martin Häring
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Lars E Borm
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Gioele La Manno
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Simone Codeluppi
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Alessandro Furlan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Kawai Lee
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Nathan Skene
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | | | - Jens Hjerling-Leffler
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Ernest Arenas
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Ulrika Marklund
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden.
| |
Collapse
|
50
|
Miller SR, Benito C, Mirsky R, Jessen KR, Baker CVH. Neural crest Notch/Rbpj signaling regulates olfactory gliogenesis and neuronal migration. Genesis 2018; 56:e23215. [PMID: 30134068 PMCID: PMC6099236 DOI: 10.1002/dvg.23215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
The neural crest-derived ensheathing glial cells of the olfactory nerve (OECs) are unique in spanning both the peripheral and central nervous systems: they ensheathe bundles of axons projecting from olfactory receptor neurons in the nasal epithelium to their targets in the olfactory bulb. OECs are clinically relevant as a promising autologous cell transplantation therapy for promoting central nervous system repair. They are also important for fertility, being required for the migration of embryonic gonadotropin-releasing hormone (GnRH) neurons from the olfactory placode along terminal nerve axons to the medial forebrain, which they enter caudal to the olfactory bulbs. Like Schwann cell precursors, OEC precursors associated with the developing olfactory nerve express the glial marker myelin protein zero and the key peripheral glial transcription factor Sox10. The transition from Schwann cell precursors to immature Schwann cells is accelerated by canonical Notch signaling via the Rbpj transcription factor. Here, we aimed to test the role of Notch/Rbpj signaling in developing OECs by blocking the pathway in both chicken and mouse. Our results suggest that Notch/Rbpj signaling prevents the cranial neural crest cells that colonize the olfactory nerve from differentiating as neurons, and at later stages contributes to the guidance of GnRH neurons.
Collapse
Affiliation(s)
- Sophie R. Miller
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeCB2 3DYUnited Kingdom
| | - Cristina Benito
- Department of Cell and Developmental BiologyUniversity College London, Gower StreetLondonWC1E 6BTUnited Kingdom
| | - Rhona Mirsky
- Department of Cell and Developmental BiologyUniversity College London, Gower StreetLondonWC1E 6BTUnited Kingdom
| | - Kristján R. Jessen
- Department of Cell and Developmental BiologyUniversity College London, Gower StreetLondonWC1E 6BTUnited Kingdom
| | - Clare V. H. Baker
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeCB2 3DYUnited Kingdom
| |
Collapse
|