1
|
Wu K, Gollo LL. Mapping and modeling age-related changes in intrinsic neural timescales. Commun Biol 2025; 8:167. [PMID: 39901043 PMCID: PMC11791184 DOI: 10.1038/s42003-025-07517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/10/2025] [Indexed: 02/05/2025] Open
Abstract
Intrinsic timescales of brain regions exhibit heterogeneity, escalating with hierarchical levels, and are crucial for the temporal integration of external stimuli. Aging, often associated with cognitive decline, involves progressive neuronal and synaptic loss, reshaping brain structure and dynamics. However, the impact of these structural changes on temporal coding in the aging brain remains unclear. We mapped intrinsic timescales and gray matter volume (GMV) using magnetic resonance imaging (MRI) in young and elderly adults. We found shorter intrinsic timescales across multiple large-scale functional networks in the elderly cohort, and a significant positive association between intrinsic timescales and GMV. Additionally, age-related decline in performance on visual discrimination tasks was linked to a reduction in intrinsic timescales in the cuneus. To explain these age-related shifts, we developed an age-dependent spiking neuron network model. In younger subjects, brain regions were near a critical branching regime, while regions in elderly subjects had fewer neurons and synapses, pushing the dynamics toward a subcritical regime. The model accurately reproduced the empirical results, showing longer intrinsic timescales in young adults due to critical slowing down. Our findings reveal how age-related structural brain changes may drive alterations in brain dynamics, offering testable predictions and informing possible interventions targeting cognitive decline.
Collapse
Affiliation(s)
- Kaichao Wu
- Brain Networks and Modelling Laboratory and The Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Leonardo L Gollo
- Brain Networks and Modelling Laboratory and The Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia.
- Instituto de Física Interdisciplinary Sistemas Complejos, IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain.
| |
Collapse
|
2
|
Liang J, Yang Z, Zhou C. Excitation-Inhibition Balance, Neural Criticality, and Activities in Neuronal Circuits. Neuroscientist 2025; 31:31-46. [PMID: 38291889 DOI: 10.1177/10738584231221766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the excitation-inhibition balance. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.
Collapse
Affiliation(s)
- Junhao Liang
- Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Zhuda Yang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Life Science Imaging Centre, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Research Centre, Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen, China
| |
Collapse
|
3
|
Stasinski J, Taher H, Meier JM, Schirner M, Perdikis D, Ritter P. Homeodynamic feedback inhibition control in whole-brain simulations. PLoS Comput Biol 2024; 20:e1012595. [PMID: 39621754 PMCID: PMC11637364 DOI: 10.1371/journal.pcbi.1012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 12/12/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Simulations of large-scale brain dynamics are often impacted by overexcitation resulting from heavy-tailed structural network distributions, leading to biologically implausible simulation results. We implement a homeodynamic plasticity mechanism, known from other modeling work, in the widely used Jansen-Rit neural mass model for The Virtual Brain (TVB) simulation framework. We aim at heterogeneously adjusting the inhibitory coupling weights to reach desired dynamic regimes in each brain region. We show that, by using this dynamic approach, we can control the target activity level to obtain biologically plausible brain simulations, including post-synaptic potentials and blood-oxygen-level-dependent functional magnetic resonance imaging (fMRI) activity. We demonstrate that the derived dynamic Feedback Inhibitory Control (dFIC) can be used to enable increased variability of model dynamics. We derive the conditions under which the simulated brain activity converges to a predefined target level analytically and via simulations. We highlight the benefits of dFIC in the context of fitting the TVB model to static and dynamic measures of fMRI empirical data, accounting for global synchronization across the whole brain. The proposed novel method helps computational neuroscientists, especially TVB users, to easily "tune" brain models to desired dynamical regimes depending on the specific requirements of each study. The presented method is a steppingstone towards increased biological realism in brain network models and a valuable tool to better understand their underlying behavior.
Collapse
Affiliation(s)
- Jan Stasinski
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Brain Simulation Section, Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
| | - Halgurd Taher
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Brain Simulation Section, Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jil Mona Meier
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Brain Simulation Section, Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Michael Schirner
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Brain Simulation Section, Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| | - Dionysios Perdikis
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Brain Simulation Section, Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Petra Ritter
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Brain Simulation Section, Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
4
|
Hayashi K. Chaotic nature of the electroencephalogram during shallow and deep anesthesia: From analysis of the Lyapunov exponent. Neuroscience 2024; 557:116-123. [PMID: 39142623 DOI: 10.1016/j.neuroscience.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
In conscious states, the electrodynamics of the cortex are reported to work near a critical point or phase transition of chaotic dynamics, known as the edge-of-chaos, representing a boundary between stability and chaos. Transitions away from this boundary disrupt cortical information processing and induce a loss of consciousness. The entropy of the electroencephalogram (EEG) is known to decrease as the level of anesthesia deepens. However, whether the chaotic dynamics of electroencephalographic activity shift from this boundary to the side of stability or the side of chaotic enhancement during anesthesia-induced loss of consciousness remains poorly understood. We investigated the chaotic properties of EEGs at two different depths of clinical anesthesia using the maximum Lyapunov exponent, which is mathematically regarded as a formal measure of chaotic nature, using the Rosenstein algorithm. In 14 adult patients, 12 s of electroencephalographic signals were selected during two depths of clinical anesthesia (sevoflurane concentration 2% as relatively deep anesthesia, sevoflurane concentration 0.6% as relatively shallow anesthesia). Lyapunov exponents, correlation dimensions and approximate entropy were calculated from these electroencephalographic signals. As a result, maximum Lyapunov exponent was generally positive during sevoflurane anesthesia, and both maximum Lyapunov exponents and correlation dimensions were significantly greater during deep anesthesia than during shallow anesthesia despite reductions in approximate entropy. The chaotic nature of the EEG might be increased at clinically deeper inhalational anesthesia, despite the decrease in randomness as reflected in the decreased entropy, suggesting a shift to the side of chaotic enhancement under anesthesia.
Collapse
Affiliation(s)
- Kazuko Hayashi
- Kyoto Chubu Medical Center, Department of Anesthesiology, Yagi-cho Yagi Ueno 25, Nantan City, Kyoto 629-0197, Japan; Kyoto Prefectural University of Medicine, Department of Anesthesiology, Meiji University of Integrative Medicine, Department of Clinical Medicine, Japan.
| |
Collapse
|
5
|
Tokuyama Y, Ohzawa Y, Gunji YP. Quantum Logic Automata Generate Class IV-like patterns and 1/f noise. Biosystems 2024; 246:105339. [PMID: 39303849 DOI: 10.1016/j.biosystems.2024.105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Owing to recent advancements in brain science and AI, researchers tend to focus on the concept of self-organized criticality or the edge of chaos. On the other hand, quantum cognition, which is rooted in quantum mechanics, is promising for resolving various cognitive illusions. However, until recently, no connection between criticality and quantum mechanics was proposed. Gunji et al. (2024) recently introduced a linkage termed quantum logic automata, which encompasses not only quantum logic but also criticality characterized by power-law distributions. While quantum logic automata can be derived from various structures, only one of them has been proposed and discussed. Here, we define another type of quantum logic automata involving quantum logic and demonstrate that symmetric quantum logic automata lead to complex Class IV-like patterns and power-law distributions. Our findings support the association between criticality and quantum theory.
Collapse
Affiliation(s)
- Yuki Tokuyama
- Department of Design, School of Design, Kyushu University, 4-9-1 Shiobaru, Minamiku, Fukuoka, 815-8540, Japan
| | - Yoshihiko Ohzawa
- Department of Intermedia Art and Science, School of Fundamental Science and Technology, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yukio-Pegio Gunji
- Department of Intermedia Art and Science, School of Fundamental Science and Technology, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
6
|
Zhang YH, Sipling C, Qiu E, Schuller IK, Di Ventra M. Collective dynamics and long-range order in thermal neuristor networks. Nat Commun 2024; 15:6986. [PMID: 39143044 PMCID: PMC11324871 DOI: 10.1038/s41467-024-51254-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
In the pursuit of scalable and energy-efficient neuromorphic devices, recent research has unveiled a novel category of spiking oscillators, termed "thermal neuristors." These devices function via thermal interactions among neighboring vanadium dioxide resistive memories, emulating biological neuronal behavior. Here, we show that the collective dynamical behavior of networks of these neurons showcases a rich phase structure, tunable by adjusting the thermal coupling and input voltage. Notably, we identify phases exhibiting long-range order that, however, does not arise from criticality, but rather from the time non-local response of the system. In addition, we show that these thermal neuristor arrays achieve high accuracy in image recognition and time series prediction through reservoir computing, without leveraging long-range order. Our findings highlight a crucial aspect of neuromorphic computing with possible implications on the functioning of the brain: criticality may not be necessary for the efficient performance of neuromorphic systems in certain computational tasks.
Collapse
Affiliation(s)
- Yuan-Hang Zhang
- Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Chesson Sipling
- Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Erbin Qiu
- Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ivan K Schuller
- Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | | |
Collapse
|
7
|
Maschke C, O'Byrne J, Colombo MA, Boly M, Gosseries O, Laureys S, Rosanova M, Jerbi K, Blain-Moraes S. Critical dynamics in spontaneous EEG predict anesthetic-induced loss of consciousness and perturbational complexity. Commun Biol 2024; 7:946. [PMID: 39103539 PMCID: PMC11300875 DOI: 10.1038/s42003-024-06613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Consciousness has been proposed to be supported by electrophysiological patterns poised at criticality, a dynamical regime which exhibits adaptive computational properties, maximally complex patterns and divergent sensitivity to perturbation. Here, we investigate dynamical properties of the resting-state electroencephalogram (EEG) of healthy subjects undergoing general anesthesia with propofol, xenon or ketamine. Importantly, all participants were unresponsive under anesthesia, while consciousness was retained only during ketamine anesthesia (in the form of vivid dreams), enabling an experimental dissociation between unresponsiveness and unconsciousness. For each condition, we measure (i) avalanche criticality, (ii) chaoticity, and (iii) criticality-related metrics, revealing that states of unconsciousness are characterized by a distancing from both avalanche criticality and the edge of chaos. We then ask whether these same dynamical properties are predictive of the perturbational complexity index (PCI), a TMS-based measure that has shown remarkably high sensitivity in detecting consciousness independently of behavior. We successfully predict individual subjects' PCI values with considerably high accuracy from resting-state EEG dynamical properties alone. Our results establish a firm link between perturbational complexity and criticality, and provide further evidence that criticality is a necessary condition for the emergence of consciousness.
Collapse
Affiliation(s)
- Charlotte Maschke
- Montreal General Hospital, McGill University Health Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, QC, Canada
| | - Jordan O'Byrne
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, QC, Canada
- MILA (Québec Artificial Intelligence Institute), Montréal, QC, Canada
| | | | - Melanie Boly
- Department of Neurology and Department of Psychiatry, University of Wisconsin, Madison, WI, USA
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du cerveau, CHU of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- CERVO Brain Research Centre, Laval University, Laval, QC, Canada
- Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Karim Jerbi
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, QC, Canada
- MILA (Québec Artificial Intelligence Institute), Montréal, QC, Canada
- Centre UNIQUE (Union Neurosciences & Intelligence Artificielle), Montréal, QC, Canada
| | - Stefanie Blain-Moraes
- Montreal General Hospital, McGill University Health Centre, Montreal, QC, Canada.
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Rudelt L, González Marx D, Spitzner FP, Cramer B, Zierenberg J, Priesemann V. Signatures of hierarchical temporal processing in the mouse visual system. PLoS Comput Biol 2024; 20:e1012355. [PMID: 39173067 PMCID: PMC11373856 DOI: 10.1371/journal.pcbi.1012355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/04/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
A core challenge for the brain is to process information across various timescales. This could be achieved by a hierarchical organization of temporal processing through intrinsic mechanisms (e.g., recurrent coupling or adaptation), but recent evidence from spike recordings of the rodent visual system seems to conflict with this hypothesis. Here, we used an optimized information-theoretic and classical autocorrelation analysis to show that information- and correlation timescales of spiking activity increase along the anatomical hierarchy of the mouse visual system under visual stimulation, while information-theoretic predictability decreases. Moreover, intrinsic timescales for spontaneous activity displayed a similar hierarchy, whereas the hierarchy of predictability was stimulus-dependent. We could reproduce these observations in a basic recurrent network model with correlated sensory input. Our findings suggest that the rodent visual system employs intrinsic mechanisms to achieve longer integration for higher cortical areas, while simultaneously reducing predictability for an efficient neural code.
Collapse
Affiliation(s)
- Lucas Rudelt
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Daniel González Marx
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - F Paul Spitzner
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Benjamin Cramer
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Johannes Zierenberg
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN), Göttingen, Germany
| |
Collapse
|
9
|
Almeira J, Grigera TS, Martin DA, Chialvo DR, Cannas SA. Mean-field solution of the neural dynamics in a Greenberg-Hastings model with excitatory and inhibitory units. Phys Rev E 2024; 110:014130. [PMID: 39160970 DOI: 10.1103/physreve.110.014130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/26/2024] [Indexed: 08/21/2024]
Abstract
We present a mean-field solution of the dynamics of a Greenberg-Hastings neural network with both excitatory and inhibitory units. We analyze the dynamical phase transitions that appear in the stationary state as the model parameters are varied. Analytical solutions are compared with numerical simulations of the microscopic model defined on a fully connected network. We found that the stationary state of this system exhibits a first-order dynamical phase transition (with the associated hysteresis) when the fraction of inhibitory units f is smaller than some critical value f_{t}≲1/2, even for a finite system. Moreover, any solution for f<1/2 can be mapped to a solution for purely excitatory systems (f=0). In finite systems, when the system is dominated by inhibition (f>f_{t}), the first-order transition is replaced by a pseudocritical one, namely a continuous crossover between regions of low and high activity that resembles the finite size behavior of a continuous phase transition order parameter. However, in the thermodynamic limit (i.e., infinite-system-size limit), we found that f_{t}→1/2 and the activity for the inhibition dominated case (f≥f_{t}) becomes negligible for any value of the parameters, while the first-order transition between low- and high-activity phases for f
Collapse
Affiliation(s)
| | - Tomas S Grigera
- Consejo Nacional de Investigaciones Científcas y Tecnológicas (CONICET), 1425 Buenos Aires, Argentina
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET and Universidad Nacional de La Plata, 1900 La Plata, Argentina
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | | | | | | |
Collapse
|
10
|
Chini M, Hnida M, Kostka JK, Chen YN, Hanganu-Opatz IL. Preconfigured architecture of the developing mouse brain. Cell Rep 2024; 43:114267. [PMID: 38795344 DOI: 10.1016/j.celrep.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024] Open
Abstract
In the adult brain, structural and functional parameters, such as synaptic sizes and neuronal firing rates, follow right-skewed and heavy-tailed distributions. While this organization is thought to have significant implications, its development is still largely unknown. Here, we address this knowledge gap by investigating a large-scale dataset recorded from the prefrontal cortex and the olfactory bulb of mice aged 4-60 postnatal days. We show that firing rates and spike train interactions have a largely stable distribution shape throughout the first 60 postnatal days and that the prefrontal cortex displays a functional small-world architecture. Moreover, early brain activity exhibits an oligarchical organization, where high-firing neurons have hub-like properties. In a neural network model, we show that analogously right-skewed and heavy-tailed synaptic parameters are instrumental to consistently recapitulate the experimental data. Thus, functional and structural parameters in the developing brain are already extremely distributed, suggesting that this organization is preconfigured and not experience dependent.
Collapse
Affiliation(s)
- Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Marilena Hnida
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna K Kostka
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu-Nan Chen
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Lewis EC, Jaeger A, Girn M, Omene E, Brendle M, Argento E. Exploring psychedelic-assisted therapy in the treatment of functional seizures: A review of underlying mechanisms and associated brain networks. J Psychopharmacol 2024; 38:407-416. [PMID: 38654554 PMCID: PMC11102649 DOI: 10.1177/02698811241248395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Functional seizures (FS), the most common subtype of functional neurological disorder (FND), cause serious neurological disability and significantly impact quality of life. Characterized by episodic disturbances of functioning that resemble epileptic seizures, FS coincide with multiple comorbidities and are treated poorly by existing approaches. Novel treatment approaches are sorely needed. Notably, mounting evidence supports the safety and efficacy of psychedelic-assisted therapy (PAT) for several psychiatric conditions, motivating investigations into whether this efficacy also extends to neurological disorders. Here, we synthesize past empirical findings and frameworks to construct a biopsychosocial mechanistic argument for the potential of PAT as a treatment for FS. In doing so, we highlight FS as a well-defined cohort to further understand the large-scale neural mechanisms underpinning PAT. Our synthesis is guided by a complexity science perspective which we contend can afford unique mechanistic insight into both FS and PAT, as well as help bridge these two domains. We also leverage this perspective to propose a novel analytic roadmap to identify markers of FS diagnostic specificity and treatment success. This endeavor continues the effort to bridge clinical neurology with psychedelic medicine and helps pave the way for a new field of psychedelic neurology.
Collapse
Affiliation(s)
- Evan Cole Lewis
- Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | - Manesh Girn
- Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Madeline Brendle
- Numinus Wellness Inc., Vancouver, BC, Canada
- Health Outcomes Division, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Elena Argento
- Numinus Wellness Inc., Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
12
|
Dubinin I, Effenberger F. Fading memory as inductive bias in residual recurrent networks. Neural Netw 2024; 173:106179. [PMID: 38387205 DOI: 10.1016/j.neunet.2024.106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Residual connections have been proposed as an architecture-based inductive bias to mitigate the problem of exploding and vanishing gradients and increased task performance in both feed-forward and recurrent networks (RNNs) when trained with the backpropagation algorithm. Yet, little is known about how residual connections in RNNs influence their dynamics and fading memory properties. Here, we introduce weakly coupled residual recurrent networks (WCRNNs) in which residual connections result in well-defined Lyapunov exponents and allow for studying properties of fading memory. We investigate how the residual connections of WCRNNs influence their performance, network dynamics, and memory properties on a set of benchmark tasks. We show that several distinct forms of residual connections yield effective inductive biases that result in increased network expressivity. In particular, those are residual connections that (i) result in network dynamics at the proximity of the edge of chaos, (ii) allow networks to capitalize on characteristic spectral properties of the data, and (iii) result in heterogeneous memory properties. In addition, we demonstrate how our results can be extended to non-linear residuals and introduce a weakly coupled residual initialization scheme that can be used for Elman RNNs.
Collapse
Affiliation(s)
- Igor Dubinin
- Ernst Strüngmann Institute, Deutschordenstraße 46, Frankfurt am Main, 60528, Germany; Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, Frankfurt am Main, 60438, Germany.
| | - Felix Effenberger
- Ernst Strüngmann Institute, Deutschordenstraße 46, Frankfurt am Main, 60528, Germany.
| |
Collapse
|
13
|
Fontenele AJ, Sooter JS, Norman VK, Gautam SH, Shew WL. Low-dimensional criticality embedded in high-dimensional awake brain dynamics. SCIENCE ADVANCES 2024; 10:eadj9303. [PMID: 38669340 PMCID: PMC11051676 DOI: 10.1126/sciadv.adj9303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Whether cortical neurons operate in a strongly or weakly correlated dynamical regime determines fundamental information processing capabilities and has fueled decades of debate. We offer a resolution of this debate; we show that two important dynamical regimes, typically considered incompatible, can coexist in the same local cortical circuit by separating them into two different subspaces. In awake mouse motor cortex, we find a low-dimensional subspace with large fluctuations consistent with criticality-a dynamical regime with moderate correlations and multi-scale information capacity and transmission. Orthogonal to this critical subspace, we find a high-dimensional subspace containing a desynchronized dynamical regime, which may optimize input discrimination. The critical subspace is apparent only at long timescales, which explains discrepancies among some previous studies. Using a computational model, we show that the emergence of a low-dimensional critical subspace at large timescales agrees with established theory of critical dynamics. Our results suggest that the cortex leverages its high dimensionality to multiplex dynamical regimes across different subspaces.
Collapse
|
14
|
Peng Y, Bjelde A, Aceituno PV, Mittermaier FX, Planert H, Grosser S, Onken J, Faust K, Kalbhenn T, Simon M, Radbruch H, Fidzinski P, Schmitz D, Alle H, Holtkamp M, Vida I, Grewe BF, Geiger JRP. Directed and acyclic synaptic connectivity in the human layer 2-3 cortical microcircuit. Science 2024; 384:338-343. [PMID: 38635709 DOI: 10.1126/science.adg8828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024]
Abstract
The computational capabilities of neuronal networks are fundamentally constrained by their specific connectivity. Previous studies of cortical connectivity have mostly been carried out in rodents; whether the principles established therein also apply to the evolutionarily expanded human cortex is unclear. We studied network properties within the human temporal cortex using samples obtained from brain surgery. We analyzed multineuron patch-clamp recordings in layer 2-3 pyramidal neurons and identified substantial differences compared with rodents. Reciprocity showed random distribution, synaptic strength was independent from connection probability, and connectivity of the supragranular temporal cortex followed a directed and mostly acyclic graph topology. Application of these principles in neuronal models increased dimensionality of network dynamics, suggesting a critical role for cortical computation.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Antje Bjelde
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Pau Vilimelis Aceituno
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zürich, Switzerland
| | - Franz X Mittermaier
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Henrike Planert
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, 33617 Bielefeld, Germany
| | - Matthias Simon
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, 33617 Bielefeld, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Pawel Fidzinski
- Clinical Study Center, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Henrik Alle
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Martin Holtkamp
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Benjamin F Grewe
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zürich, Switzerland
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
15
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. Front Comput Neurosci 2023; 17:1295395. [PMID: 38188355 PMCID: PMC10770256 DOI: 10.3389/fncom.2023.1295395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activities between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, which was first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC aligns well with the observed FC when compared with that simulated traditional structural connectome.
Collapse
Affiliation(s)
- Thanos Manos
- ETIS, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Cergy-Pontoise, CY Cergy Paris Université, Cergy, France
| | - Sandra Diaz-Pier
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
16
|
Rubinov M. Circular and unified analysis in network neuroscience. eLife 2023; 12:e79559. [PMID: 38014843 PMCID: PMC10684154 DOI: 10.7554/elife.79559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/18/2023] [Indexed: 11/29/2023] Open
Abstract
Genuinely new discovery transcends existing knowledge. Despite this, many analyses in systems neuroscience neglect to test new speculative hypotheses against benchmark empirical facts. Some of these analyses inadvertently use circular reasoning to present existing knowledge as new discovery. Here, I discuss that this problem can confound key results and estimate that it has affected more than three thousand studies in network neuroscience over the last decade. I suggest that future studies can reduce this problem by limiting the use of speculative evidence, integrating existing knowledge into benchmark models, and rigorously testing proposed discoveries against these models. I conclude with a summary of practical challenges and recommendations.
Collapse
Affiliation(s)
- Mika Rubinov
- Departments of Biomedical Engineering, Computer Science, and Psychology, Vanderbilt UniversityNashvilleUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
17
|
Wang SH, Siebenhühner F, Arnulfo G, Myrov V, Nobili L, Breakspear M, Palva S, Palva JM. Critical-like Brain Dynamics in a Continuum from Second- to First-Order Phase Transition. J Neurosci 2023; 43:7642-7656. [PMID: 37816599 PMCID: PMC10634584 DOI: 10.1523/jneurosci.1889-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/07/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
The classic brain criticality hypothesis postulates that the brain benefits from operating near a continuous second-order phase transition. Slow feedback regulation of neuronal activity could, however, lead to a discontinuous first-order transition and thereby bistable activity. Observations of bistability in awake brain activity have nonetheless remained scarce and its functional significance unclear. Moreover, there is no empirical evidence to support the hypothesis that the human brain could flexibly operate near either a first- or second-order phase transition despite such a continuum being common in models. Here, using computational modeling, we found bistable synchronization dynamics to emerge through elevated positive feedback and occur exclusively in a regimen of critical-like dynamics. We then assessed bistability in vivo with resting-state MEG in healthy adults (7 females, 11 males) and stereo-electroencephalography in epilepsy patients (28 females, 36 males). This analysis revealed that a large fraction of the neocortices exhibited varying degrees of bistability in neuronal oscillations from 3 to 200 Hz. In line with our modeling results, the neuronal bistability was positively correlated with classic assessment of brain criticality across narrow-band frequencies. Excessive bistability was predictive of epileptic pathophysiology in the patients, whereas moderate bistability was positively correlated with task performance in the healthy subjects. These empirical findings thus reveal the human brain as a one-of-a-kind complex system that exhibits critical-like dynamics in a continuum between continuous and discontinuous phase transitions.SIGNIFICANCE STATEMENT In the model, while synchrony per se was controlled by connectivity, increasing positive local feedback led to gradually emerging bistable synchrony with scale-free dynamics, suggesting a continuum between second- and first-order phase transitions in synchrony dynamics inside a critical-like regimen. In resting-state MEG and SEEG, bistability of ongoing neuronal oscillations was pervasive across brain areas and frequency bands and was observed only with concurring critical-like dynamics as the modeling predicted. As evidence for functional relevance, moderate bistability was positively correlated with executive functioning in the healthy subjects, and excessive bistability was associated with epileptic pathophysiology. These findings show that critical-like neuronal dynamics in vivo involves both continuous and discontinuous phase transitions in a frequency-, neuroanatomy-, and state-dependent manner.
Collapse
Affiliation(s)
- Sheng H Wang
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Doctoral Programme Brain & Mind, University of Helsinki, 00014 Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Center, 00290 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Espoo, Finland
| | - Felix Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Center, 00290 Helsinki, Finland
| | - Gabriele Arnulfo
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, 16136 Genoa, Italy
| | - Vladislav Myrov
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Espoo, Finland
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, University of Genoa, 16136 Genoa, Italy
- Child Neuropsychiatry Unit, Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, 16147 Genoa, Italy
- Centre of Epilepsy Surgery "C. Munari," Department of Neuroscience, Niguarda Hospital, 20162 Milan, Italy
| | - Michael Breakspear
- College of Engineering, Science and Environment, College of Health and Medicine, University of Newcastle, Callaghan, 2308 Australia
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Centre for Cognitive Neuroimaging, Institute of Neuroscience & Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - J Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Espoo, Finland
- Centre for Cognitive Neuroimaging, Institute of Neuroscience & Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom
| |
Collapse
|
18
|
Maschke C, O'Byrne J, Colombo MA, Boly M, Gosseries O, Laureys S, Rosanova M, Jerbi K, Blain-Moraes S. Criticality of resting-state EEG predicts perturbational complexity and level of consciousness during anesthesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564247. [PMID: 37994368 PMCID: PMC10664178 DOI: 10.1101/2023.10.26.564247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Consciousness has been proposed to be supported by electrophysiological patterns poised at criticality, a dynamical regime which exhibits adaptive computational properties, maximally complex patterns and divergent sensitivity to perturbation. Here, we investigated dynamical properties of the resting-state electroencephalogram of healthy subjects undergoing general anesthesia with propofol, xenon or ketamine. We then studied the relation of these dynamic properties with the perturbational complexity index (PCI), which has shown remarkably high sensitivity in detecting consciousness independent of behavior. All participants were unresponsive under anesthesia, while consciousness was retained only during ketamine anesthesia (in the form of vivid dreams)., enabling an experimental dissociation between unresponsiveness and unconsciousness. We estimated (i) avalanche criticality, (ii) chaoticity, and (iii) criticality-related measures, and found that states of unconsciousness were characterized by a distancing from both the edge of activity propagation and the edge of chaos. We were then able to predict individual subjects' PCI (i.e., PCImax) with a mean absolute error below 7%. Our results establish a firm link between the PCI and criticality and provide further evidence for the role of criticality in the emergence of consciousness.
Collapse
Affiliation(s)
- Charlotte Maschke
- Montreal General Hospital, McGill University Health Centre, Montreal, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Québec, Canada
| | - Jordan O'Byrne
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Québec, Canada
- MILA (Québec Artificial Intelligence Institute), Montréal, Québec, Canada
| | | | - Melanie Boly
- Department of Neurology and Department of Psychiatry, University of Wisconsin, Madison, USA
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du cerveau, CHU of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- CERVO Brain Research Centre, Laval University, Canada
- Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Karim Jerbi
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Québec, Canada
- MILA (Québec Artificial Intelligence Institute), Montréal, Québec, Canada
- Centre UNIQUE (Union Neurosciences & Intelligence Artificielle), Montréal, Québec, Canada
| | - Stefanie Blain-Moraes
- Montreal General Hospital, McGill University Health Centre, Montreal, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| |
Collapse
|
19
|
Torres F, Basaran AC, Schuller IK. Thermal Management in Neuromorphic Materials, Devices, and Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205098. [PMID: 36067752 DOI: 10.1002/adma.202205098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Machine learning has experienced unprecedented growth in recent years, often referred to as an "artificial intelligence revolution." Biological systems inspire the fundamental approach for this new computing paradigm: using neural networks to classify large amounts of data into sorting categories. Current machine-learning schemes implement simulated neurons and synapses on standard computers based on a von Neumann architecture. This approach is inefficient in energy consumption, and thermal management, motivating the search for hardware-based systems that imitate the brain. Here, the present state of thermal management of neuromorphic computing technology and the challenges and opportunities of the energy-efficient implementation of neuromorphic devices are considered. The main features of brain-inspired computing and quantum materials for implementing neuromorphic devices are briefly described, the brain criticality and resistive switching-based neuromorphic devices are discussed, the energy and electrical considerations for spiking-based computation are presented, the fundamental features of the brain's thermal regulation are addressed, the physical mechanisms for thermal management and thermoelectric control of materials and neuromorphic devices are analyzed, and challenges and new avenues for implementing energy-efficient computing are described.
Collapse
Affiliation(s)
- Felipe Torres
- Physics Department, Faculty of Science, University of Chile, 653, Santiago, 7800024, Chile
- Center of Nanoscience and Nanotechnology (CEDENNA), Av. Ecuador 3493, Santiago, 9170124, Chile
| | - Ali C Basaran
- Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ivan K Schuller
- Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
20
|
Habibollahi F, Kagan BJ, Burkitt AN, French C. Critical dynamics arise during structured information presentation within embodied in vitro neuronal networks. Nat Commun 2023; 14:5287. [PMID: 37648737 PMCID: PMC10469171 DOI: 10.1038/s41467-023-41020-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Understanding how brains process information is an incredibly difficult task. Amongst the metrics characterising information processing in the brain, observations of dynamic near-critical states have generated significant interest. However, theoretical and experimental limitations associated with human and animal models have precluded a definite answer about when and why neural criticality arises with links from attention, to cognition, and even to consciousness. To explore this topic, we used an in vitro neural network of cortical neurons that was trained to play a simplified game of 'Pong' to demonstrate Synthetic Biological Intelligence (SBI). We demonstrate that critical dynamics emerge when neural networks receive task-related structured sensory input, reorganizing the system to a near-critical state. Additionally, better task performance correlated with proximity to critical dynamics. However, criticality alone is insufficient for a neuronal network to demonstrate learning in the absence of additional information regarding the consequences of previous actions. These findings offer compelling support that neural criticality arises as a base feature of incoming structured information processing without the need for higher order cognition.
Collapse
Affiliation(s)
- Forough Habibollahi
- Cortical Labs Pty Ltd, Melbourne, 3056, VIC, Australia
- Biomedical Engineering Department, University of Melbourne, Parkville, 3010, VIC, Australia
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Parkville, 3010, VIC, Australia
| | - Brett J Kagan
- Cortical Labs Pty Ltd, Melbourne, 3056, VIC, Australia.
| | - Anthony N Burkitt
- Biomedical Engineering Department, University of Melbourne, Parkville, 3010, VIC, Australia
| | - Chris French
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Parkville, 3010, VIC, Australia
- Neurology Department, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
21
|
Irani M, Alderson TH. Tuning Criticality through Modularity in Biological Neural Networks. J Neurosci 2023; 43:5881-5882. [PMID: 37586856 PMCID: PMC10436681 DOI: 10.1523/jneurosci.0865-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/18/2023] Open
Affiliation(s)
- Martín Irani
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Thomas H Alderson
- Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
22
|
Janarek J, Drogosz Z, Grela J, Ochab JK, Oświęcimka P. Investigating structural and functional aspects of the brain's criticality in stroke. Sci Rep 2023; 13:12341. [PMID: 37524891 PMCID: PMC10390586 DOI: 10.1038/s41598-023-39467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
This paper addresses the question of the brain's critical dynamics after an injury such as a stroke. It is hypothesized that the healthy brain operates near a phase transition (critical point), which provides optimal conditions for information transmission and responses to inputs. If structural damage could cause the critical point to disappear and thus make self-organized criticality unachievable, it would offer the theoretical explanation for the post-stroke impairment of brain function. In our contribution, however, we demonstrate using network models of the brain, that the dynamics remain critical even after a stroke. In cases where the average size of the second-largest cluster of active nodes, which is one of the commonly used indicators of criticality, shows an anomalous behavior, it results from the loss of integrity of the network, quantifiable within graph theory, and not from genuine non-critical dynamics. We propose a new simple model of an artificial stroke that explains this anomaly. The proposed interpretation of the results is confirmed by an analysis of real connectomes acquired from post-stroke patients and a control group. The results presented refer to neurobiological data; however, the conclusions reached apply to a broad class of complex systems that admit a critical state.
Collapse
Affiliation(s)
- Jakub Janarek
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland
| | - Zbigniew Drogosz
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland
| | - Jacek Grela
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348, Kraków, Poland
| | - Jeremi K Ochab
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland.
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348, Kraków, Poland.
| | - Paweł Oświęcimka
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348, Kraków, Poland
- Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Kraków, Poland
| |
Collapse
|
23
|
Fontenele AJ, Sooter JS, Norman VK, Gautam SH, Shew WL. Low dimensional criticality embedded in high dimensional awake brain dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522896. [PMID: 37546833 PMCID: PMC10401950 DOI: 10.1101/2023.01.05.522896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Whether cortical neurons operate in a strongly or weakly correlated dynamical regime determines fundamental information processing capabilities and has fueled decades of debate. Here we offer a resolution of this debate; we show that two important dynamical regimes, typically considered incompatible, can coexist in the same local cortical circuit by separating them into two different subspaces. In awake mouse motor cortex, we find a low-dimensional subspace with large fluctuations consistent with criticality - a dynamical regime with moderate correlations and multi-scale information capacity and transmission. Orthogonal to this critical subspace, we find a high-dimensional subspace containing a desynchronized dynamical regime, which may optimize input discrimination. The critical subspace is apparent only at long timescales, which explains discrepancies among some previous studies. Using a computational model, we show that the emergence of a low-dimensional critical subspace at large timescale agrees with established theory of critical dynamics. Our results suggest that cortex leverages its high dimensionality to multiplex dynamical regimes across different subspaces.
Collapse
Affiliation(s)
- Antonio J. Fontenele
- UA Integrative Systems Neuroscience Group, Department of Physics, University of Arkansas, Fayetteville, AR, USA, 72701
| | - J. Samuel Sooter
- UA Integrative Systems Neuroscience Group, Department of Physics, University of Arkansas, Fayetteville, AR, USA, 72701
| | - V. Kindler Norman
- UA Integrative Systems Neuroscience Group, Department of Physics, University of Arkansas, Fayetteville, AR, USA, 72701
| | - Shree Hari Gautam
- UA Integrative Systems Neuroscience Group, Department of Physics, University of Arkansas, Fayetteville, AR, USA, 72701
| | - Woodrow L. Shew
- UA Integrative Systems Neuroscience Group, Department of Physics, University of Arkansas, Fayetteville, AR, USA, 72701
| |
Collapse
|
24
|
Kloucek MB, Machon T, Kajimura S, Royall CP, Masuda N, Turci F. Biases in inverse Ising estimates of near-critical behavior. Phys Rev E 2023; 108:014109. [PMID: 37583208 DOI: 10.1103/physreve.108.014109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 08/17/2023]
Abstract
Inverse Ising inference allows pairwise interactions of complex binary systems to be reconstructed from empirical correlations. Typical estimators used for this inference, such as pseudo-likelihood maximization (PLM), are biased. Using the Sherrington-Kirkpatrick model as a benchmark, we show that these biases are large in critical regimes close to phase boundaries, and they may alter the qualitative interpretation of the inferred model. In particular, we show that the small-sample bias causes models inferred through PLM to appear closer to criticality than one would expect from the data. Data-driven methods to correct this bias are explored and applied to a functional magnetic resonance imaging data set from neuroscience. Our results indicate that additional care should be taken when attributing criticality to real-world data sets.
Collapse
Affiliation(s)
- Maximilian B Kloucek
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Thomas Machon
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Shogo Kajimura
- Faculty of Information and Human Sciences, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - C Patrick Royall
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14260-2900, USA
- Computational and Data-Enabled Science and Engineering Program, State University of New York at Buffalo, Buffalo, New York 14260-5030, USA
| | - Francesco Turci
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
25
|
Hu M, Zhang H, Ang KK. Brain Criticality EEG analysis for tracking neurodevelopment from Childhood to Adolescence. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082967 DOI: 10.1109/embc40787.2023.10340775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The brain criticality hypothesis suggests that neural networks and multiple aspects of brain activity self-organize into a critical state, and criticality marks the transition between ordered and disordered states. This hypothesis is appealing from computer science perspective because neural networks at criticality exhibit optimal processing and computing properties while having implications in clinical applications to neurological disorders. In this paper, we introduced brain criticality analysis to track neurodevelopment from childhood to adolescence using the electroencephalogram (EEG) data of 662 subjects aged 5 to 16 years from the Child Mind Institute. We computed brain criticality from long-range temporal correlation (LRTC) using detrended fluctuation analysis (DFA). We also compared the brain criticality analysis with standard EEG power analysis. The results showed a statistically significant increase in brain criticality from childhood to adolescence in the alpha band. A decreasing trend was observed in theta band from EEG power analysis, but a much higher variance was observed compared to the brain criticality analysis. However, the significant results were only observed in some EEG channels, and not observed if the analysis were performed separately with eyes-open and eyes-close condition. Nonetheless, the results suggest that brain criticality may serve as a biomarker of brain development and maturation, but further research is needed to improve brain criticality algorithms and EEG analysis methods.Clinical Relevance- The brain criticality analysis may be used to characterize and predict neurodevelopment in early childhood.
Collapse
|
26
|
Walter N, Meinersen-Schmidt N, Kulla P, Loew T, Kruse J, Hinterberger T. Sensory-Processing Sensitivity Is Associated with Increased Neural Entropy. ENTROPY (BASEL, SWITZERLAND) 2023; 25:890. [PMID: 37372234 DOI: 10.3390/e25060890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND This study aimed at answering the following research questions: (1) Does the self-reported level of sensory-processing sensitivity (SPS) correlate with complexity, or criticality features of the electroencephalogram (EEG)? (2) Are there significant EEG differences comparing individuals with high and low levels of SPS? METHODS One hundred fifteen participants were measured with 64-channel EEG during a task-free resting state. The data were analyzed using criticality theory tools (detrended fluctuation analysis, neuronal avalanche analysis) and complexity measures (sample entropy, Higuchi's fractal dimension). Correlations with the 'Highly Sensitive Person Scale' (HSPS-G) scores were determined. Then, the cohort's lowest and the highest 30% were contrasted as opposites. EEG features were compared between the two groups by applying a Wilcoxon signed-rank test. RESULTS During resting with eyes open, HSPS-G scores correlated significantly positively with the sample entropy and Higuchi's fractal dimension (Spearman's ρ = 0.22, p < 0.05). The highly sensitive group revealed higher sample entropy values (1.83 ± 0.10 vs. 1.77 ± 0.13, p = 0.031). The increased sample entropy in the highly sensitive group was most pronounced in the central, temporal, and parietal regions. CONCLUSION For the first time, neurophysiological complexity features associated with SPS during a task-free resting state were demonstrated. Evidence is provided that neural processes differ between low- and highly-sensitive persons, whereby the latter displayed increased neural entropy. The findings support the central theoretical assumption of enhanced information processing and could be important for developing biomarkers for clinical diagnostics.
Collapse
Affiliation(s)
- Nike Walter
- Department of Psychosomatic Medicine, University Hospital Regensburg, 93059 Regensburg, Germany
| | - Nicole Meinersen-Schmidt
- Department for Clinical Psychology and Trauma Therapy, University of the Bundeswehr Munich, 85579 Neubiberg, Germany
| | - Patricia Kulla
- Department for Clinical Psychology and Trauma Therapy, University of the Bundeswehr Munich, 85579 Neubiberg, Germany
| | - Thomas Loew
- Department of Psychosomatic Medicine, University Hospital Regensburg, 93059 Regensburg, Germany
| | - Joachim Kruse
- Department for Clinical Psychology and Trauma Therapy, University of the Bundeswehr Munich, 85579 Neubiberg, Germany
| | - Thilo Hinterberger
- Department of Psychosomatic Medicine, University Hospital Regensburg, 93059 Regensburg, Germany
| |
Collapse
|
27
|
Srinivasan A, Srinivasan A, Goodman MR, Riceberg JS, Guise KG, Shapiro ML. Hippocampal and Medial Prefrontal Cortex Fractal Spiking Patterns Encode Episodes and Rules. CHAOS, SOLITONS, AND FRACTALS 2023; 171:113508. [PMID: 37251275 PMCID: PMC10217776 DOI: 10.1016/j.chaos.2023.113508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A central question in neuroscience is how the brain represents and processes information to guide behavior. The principles that organize brain computations are not fully known, and could include scale-free, or fractal patterns of neuronal activity. Scale-free brain activity may be a natural consequence of the relatively small subsets of neuronal populations that respond to task features, i.e., sparse coding. The size of the active subsets constrains the possible sequences of inter-spike intervals (ISI), and selecting from this limited set may produce firing patterns across wide-ranging timescales that form fractal spiking patterns. To investigate the extent to which fractal spiking patterns corresponded with task features, we analyzed ISIs in simultaneously recorded populations of CA1 and medial prefrontal cortical (mPFC) neurons in rats performing a spatial memory task that required both structures. CA1 and mPFC ISI sequences formed fractal patterns that predicted memory performance. CA1 pattern duration, but not length or content, varied with learning speed and memory performance whereas mPFC patterns did not. The most common CA1 and mPFC patterns corresponded with each region's cognitive function: CA1 patterns encoded behavioral episodes which linked the start, choice, and goal of paths through the maze whereas mPFC patterns encoded behavioral "rules" which guided goal selection. mPFC patterns predicted changing CA1 spike patterns only as animals learned new rules. Together, the results suggest that CA1 and mPFC population activity may predict choice outcomes by using fractal ISI patterns to compute task features.
Collapse
Affiliation(s)
- Aditya Srinivasan
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Mail Code 126, Albany, NY 12208
| | - Arvind Srinivasan
- College of Health Sciences, California Northstate University, 2910 Prospect Park Drive, Rancho Cordova, CA 95670
| | - Michael R. Goodman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Mail Code 126, Albany, NY 12208
| | - Justin S. Riceberg
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Mail Code 126, Albany, NY 12208
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, 1470 Madison Avenue New York, NY 10029
| | - Kevin G. Guise
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, 1470 Madison Avenue New York, NY 10029
| | - Matthew L. Shapiro
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Mail Code 126, Albany, NY 12208
| |
Collapse
|
28
|
Gervais C, Boucher LP, Villar GM, Lee U, Duclos C. A scoping review for building a criticality-based conceptual framework of altered states of consciousness. Front Syst Neurosci 2023; 17:1085902. [PMID: 37304151 PMCID: PMC10248073 DOI: 10.3389/fnsys.2023.1085902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
The healthy conscious brain is thought to operate near a critical state, reflecting optimal information processing and high susceptibility to external stimuli. Conversely, deviations from the critical state are hypothesized to give rise to altered states of consciousness (ASC). Measures of criticality could therefore be an effective way of establishing the conscious state of an individual. Furthermore, characterizing the direction of a deviation from criticality may enable the development of treatment strategies for pathological ASC. The aim of this scoping review is to assess the current evidence supporting the criticality hypothesis, and the use of criticality as a conceptual framework for ASC. Using the PRISMA guidelines, Web of Science and PubMed were searched from inception to February 7th 2022 to find articles relating to measures of criticality across ASC. N = 427 independent papers were initially found on the subject. N = 378 were excluded because they were either: not related to criticality; not related to consciousness; not presenting results from a primary study; presenting model data. N = 49 independent papers were included in the present research, separated in 7 sub-categories of ASC: disorders of consciousness (DOC) (n = 5); sleep (n = 13); anesthesia (n = 18); epilepsy (n = 12); psychedelics and shamanic state of consciousness (n = 4); delirium (n = 1); meditative state (n = 2). Each category included articles suggesting a deviation of the critical state. While most studies were only able to identify a deviation from criticality without being certain of its direction, the preliminary consensus arising from the literature is that non-rapid eye movement (NREM) sleep reflects a subcritical state, epileptic seizures reflect a supercritical state, and psychedelics are closer to the critical state than normal consciousness. This scoping review suggests that, though the literature is limited and methodologically inhomogeneous, ASC are characterized by a deviation from criticality, though its direction is not clearly reported in a majority of studies. Criticality could become, with more extensive research, an effective and objective way to characterize ASC, and help identify therapeutic avenues to improve criticality in pathological brain states. Furthermore, we suggest how anesthesia and psychedelics could potentially be used as neuromodulation techniques to restore criticality in DOC.
Collapse
Affiliation(s)
- Charles Gervais
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
| | - Louis-Philippe Boucher
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Guillermo Martinez Villar
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, QC, Canada
| | - UnCheol Lee
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Catherine Duclos
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, QC, Canada
- CIFAR Azrieli Global Scholars Program, Toronto, ON, Canada
| |
Collapse
|
29
|
Vo A, Nguyen N, Fujita K, Schindlbeck KA, Rommal A, Bressman SB, Niethammer M, Eidelberg D. Disordered network structure and function in dystonia: pathological connectivity vs. adaptive responses. Cereb Cortex 2023; 33:6943-6958. [PMID: 36749014 PMCID: PMC10233302 DOI: 10.1093/cercor/bhad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Primary dystonia is thought to emerge through abnormal functional relationships between basal ganglia and cerebellar motor circuits. These interactions may differ across disease subtypes and provide a novel biomarker for diagnosis and treatment. Using a network mapping algorithm based on resting-state functional MRI (rs-fMRI), a method that is readily implemented on conventional MRI scanners, we identified similar disease topographies in hereditary dystonia associated with the DYT1 or DYT6 mutations and in sporadic patients lacking these mutations. Both networks were characterized by contributions from the basal ganglia, cerebellum, thalamus, sensorimotor areas, as well as cortical association regions. Expression levels for the two networks were elevated in hereditary and sporadic dystonia, and in non-manifesting carriers of dystonia mutations. Nonetheless, the distribution of abnormal functional connections differed across groups, as did metrics of network organization and efficiency in key modules. Despite these differences, network expression correlated with dystonia motor ratings, significantly improving the accuracy of predictions based on thalamocortical tract integrity obtained with diffusion tensor MRI (DTI). Thus, in addition to providing unique information regarding the anatomy of abnormal brain circuits, rs-fMRI functional networks may provide a widely accessible method to help in the objective evaluation of new treatments for this disorder.
Collapse
Affiliation(s)
- An Vo
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Koji Fujita
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Katharina A Schindlbeck
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Andrea Rommal
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Susan B Bressman
- Department of Neurology, Mount Sinai Beth Israel, New York, NY 10003, USA
| | - Martin Niethammer
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| |
Collapse
|
30
|
Sormunen S, Gross T, Saramäki J. Critical Drift in a Neuro-Inspired Adaptive Network. PHYSICAL REVIEW LETTERS 2023; 130:188401. [PMID: 37204886 DOI: 10.1103/physrevlett.130.188401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/04/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
It has been postulated that the brain operates in a self-organized critical state that brings multiple benefits, such as optimal sensitivity to input. Thus far, self-organized criticality has typically been depicted as a one-dimensional process, where one parameter is tuned to a critical value. However, the number of adjustable parameters in the brain is vast, and hence critical states can be expected to occupy a high-dimensional manifold inside a high-dimensional parameter space. Here, we show that adaptation rules inspired by homeostatic plasticity drive a neuro-inspired network to drift on a critical manifold, where the system is poised between inactivity and persistent activity. During the drift, global network parameters continue to change while the system remains at criticality.
Collapse
Affiliation(s)
- Silja Sormunen
- Department of Computer Science, Aalto University, 00076 Espoo, Finland
| | - Thilo Gross
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg 26129, Germany
- Alfred-Wegener Institute, Helmholtz Centre for Marine and Polar Research, Bremerhaven 27570, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University, Oldenburg 26129, Germany
| | - Jari Saramäki
- Department of Computer Science, Aalto University, 00076 Espoo, Finland
| |
Collapse
|
31
|
Grosu GF, Hopp AV, Moca VV, Bârzan H, Ciuparu A, Ercsey-Ravasz M, Winkel M, Linde H, Mureșan RC. The fractal brain: scale-invariance in structure and dynamics. Cereb Cortex 2023; 33:4574-4605. [PMID: 36156074 PMCID: PMC10110456 DOI: 10.1093/cercor/bhac363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
The past 40 years have witnessed extensive research on fractal structure and scale-free dynamics in the brain. Although considerable progress has been made, a comprehensive picture has yet to emerge, and needs further linking to a mechanistic account of brain function. Here, we review these concepts, connecting observations across different levels of organization, from both a structural and functional perspective. We argue that, paradoxically, the level of cortical circuits is the least understood from a structural point of view and perhaps the best studied from a dynamical one. We further link observations about scale-freeness and fractality with evidence that the environment provides constraints that may explain the usefulness of fractal structure and scale-free dynamics in the brain. Moreover, we discuss evidence that behavior exhibits scale-free properties, likely emerging from similarly organized brain dynamics, enabling an organism to thrive in an environment that shares the same organizational principles. Finally, we review the sparse evidence for and try to speculate on the functional consequences of fractality and scale-freeness for brain computation. These properties may endow the brain with computational capabilities that transcend current models of neural computation and could hold the key to unraveling how the brain constructs percepts and generates behavior.
Collapse
Affiliation(s)
- George F Grosu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | | | - Vasile V Moca
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| | - Harald Bârzan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Maria Ercsey-Ravasz
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, Str. Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Mathias Winkel
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Helmut Linde
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Raul C Mureșan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| |
Collapse
|
32
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528836. [PMID: 36824821 PMCID: PMC9948985 DOI: 10.1101/2023.02.16.528836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activity between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC well aligns with the observed FC when compared to that simulated with traditional structural connectome. Simulations were performed using the open source framework The Virtual Brain on High Performance Computing infrastructure.
Collapse
|
33
|
A complex systems perspective on psychedelic brain action. Trends Cogn Sci 2023; 27:433-445. [PMID: 36740518 DOI: 10.1016/j.tics.2023.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Recent findings suggesting the potential transdiagnostic efficacy of psychedelic-assisted therapy have fostered the need to deepen our understanding of psychedelic brain action. Functional neuroimaging investigations have found that psychedelics reduce the functional segregation of large-scale brain networks. However, beyond this general trend, findings have been largely inconsistent. We argue here that a perspective based on complexity science that foregrounds the distributed, interactional, and dynamic nature of brain function may render these inconsistencies intelligible. We propose that psychedelics induce a mode of brain function that is more dynamically flexible, diverse, integrated, and tuned for information sharing, consistent with greater criticality. This 'meta' perspective has the potential to unify past findings and guide intuitions toward compelling mechanistic models.
Collapse
|
34
|
Jones SA, Barfield JH, Norman VK, Shew WL. Scale-free behavioral dynamics directly linked with scale-free cortical dynamics. eLife 2023; 12:e79950. [PMID: 36705565 PMCID: PMC9931391 DOI: 10.7554/elife.79950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure. Scale-free dynamics of both brain and behavior are important because each is associated with functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation. Here, we show that scale-free dynamics of mouse behavior and neurons in the visual cortex are strongly related. Surprisingly, the scale-free neural activity is limited to specific subsets of neurons, and these scale-free subsets exhibit stochastic winner-take-all competition with other neural subsets. This observation is inconsistent with prevailing theories of scale-free dynamics in neural systems, which stem from the criticality hypothesis. We develop a computational model which incorporates known cell-type-specific circuit structure, explaining our findings with a new type of critical dynamics. Our results establish neural underpinnings of scale-free behavior and clear behavioral relevance of scale-free neural activity.
Collapse
Affiliation(s)
- Sabrina A Jones
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - Jacob H Barfield
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - V Kindler Norman
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - Woodrow L Shew
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| |
Collapse
|
35
|
Davenport F, Gallacher J, Kourtzi Z, Koychev I, Matthews PM, Oxtoby NP, Parkes LM, Priesemann V, Rowe JB, Smye SW, Zetterberg H. Neurodegenerative disease of the brain: a survey of interdisciplinary approaches. J R Soc Interface 2023; 20:20220406. [PMID: 36651180 PMCID: PMC9846433 DOI: 10.1098/rsif.2022.0406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases of the brain pose a major and increasing global health challenge, with only limited progress made in developing effective therapies over the last decade. Interdisciplinary research is improving understanding of these diseases and this article reviews such approaches, with particular emphasis on tools and techniques drawn from physics, chemistry, artificial intelligence and psychology.
Collapse
Affiliation(s)
| | - John Gallacher
- Director of Dementias Platform, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Zoe Kourtzi
- Professor of Cognitive Computational Neuroscience, Department of Psychology, University of Cambridge, UK
| | - Ivan Koychev
- Senior Clinical Researcher, Department of Psychiatry, University of Oxford, Oxford, UK
- Consultant Neuropsychiatrist, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul M. Matthews
- Department of Brain Sciences and UK Dementia Research Institute Centre, Imperial College London, Oxford, UK
| | - Neil P. Oxtoby
- UCL Centre for Medical Image Computing and Department of Computer Science, University College London, Gower Street, London, UK
| | - Laura M. Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Viola Priesemann
- Max Planck Group Leader and Fellow of the Schiemann Kolleg, Max Planck Institute for Dynamics and Self-Organization and Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - James B. Rowe
- Department of Clinical Neurosciences, MRC Cognition and Brain Sciences Unit and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | | | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, People's Republic of China
| |
Collapse
|
36
|
Kotler S, Mannino M, Kelso S, Huskey R. First few seconds for flow: A comprehensive proposal of the neurobiology and neurodynamics of state onset. Neurosci Biobehav Rev 2022; 143:104956. [PMID: 36368525 DOI: 10.1016/j.neubiorev.2022.104956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Flow is a cognitive state that manifests when there is complete attentional absorption while performing a task. Flow occurs when certain internal as well as external conditions are present, including intense concentration, a sense of control, feedback, and a balance between the challenge of the task and the relevant skillset. Phenomenologically, flow is accompanied by a loss of self-consciousness, seamless integration of action and awareness, and acute changes in time perception. Research has begun to uncover some of the neurophysiological correlates of flow, as well as some of the state's neuromodulatory processes. We comprehensively review this work and consider the neurodynamics of the onset of the state, considering large-scale brain networks, as well as dopaminergic, noradrenergic, and endocannabinoid systems. To accomplish this, we outline an evidence-based hypothetical situation, and consider the flow state in a broader context including other profound alterations in consciousness, such as the psychedelic state and the state of traumatic stress that can induce PTSD. We present a broad theoretical framework which may motivate future testable hypotheses.
Collapse
Affiliation(s)
| | | | - Scott Kelso
- Human Brain & Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, United States; Intelligent Systems Research Centre, Ulster University, Derry∼Londonderry, North Ireland
| | - Richard Huskey
- Cognitive Communication Science Lab, Department of Communication, University of California Davis, United States; Cognitive Science Program, University of California Davis, United States; Center for Mind and Brain, University of California Davis, United States.
| |
Collapse
|
37
|
Chen G, Scherr F, Maass W. A data-based large-scale model for primary visual cortex enables brain-like robust and versatile visual processing. SCIENCE ADVANCES 2022; 8:eabq7592. [PMID: 36322646 PMCID: PMC9629744 DOI: 10.1126/sciadv.abq7592] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
We analyze visual processing capabilities of a large-scale model for area V1 that arguably provides the most comprehensive accumulation of anatomical and neurophysiological data to date. We find that this brain-like neural network model can reproduce a number of characteristic visual processing capabilities of the brain, in particular the capability to solve diverse visual processing tasks, also on temporally dispersed visual information, with remarkable robustness to noise. This V1 model, whose architecture and neurons markedly differ from those of deep neural networks used in current artificial intelligence (AI), such as convolutional neural networks (CNNs), also reproduces a number of characteristic neural coding properties of the brain, which provides explanations for its superior noise robustness. Because visual processing is substantially more energy efficient in the brain compared with CNNs in AI, such brain-like neural networks are likely to have an impact on future technology: as blueprints for visual processing in more energy-efficient neuromorphic hardware.
Collapse
|
38
|
Pedrosa R, Nazari M, Mohajerani MH, Knöpfel T, Stella F, Battaglia FP. Hippocampal gamma and sharp wave/ripples mediate bidirectional interactions with cortical networks during sleep. Proc Natl Acad Sci U S A 2022; 119:e2204959119. [PMID: 36279469 PMCID: PMC9636925 DOI: 10.1073/pnas.2204959119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Hippocampus-neocortex interactions during sleep are critical for memory processes: Hippocampally initiated replay contributes to memory consolidation in the neocortex and hippocampal sharp wave/ripples modulate cortical activity. Yet, the spatial and temporal patterns of this interaction are unknown. With voltage imaging, electrocorticography, and laminarly resolved hippocampal potentials, we characterized cortico-hippocampal signaling during anesthesia and nonrapid eye movement sleep. We observed neocortical activation transients, with statistics suggesting a quasi-critical regime, may be helpful for communication across remote brain areas. From activity transients, we identified, in a data-driven fashion, three functional networks. A network overlapping with the default mode network and centered on retrosplenial cortex was the most associated with hippocampal activity. Hippocampal slow gamma rhythms were strongly associated to neocortical transients, even more than ripples. In fact, neocortical activity predicted hippocampal slow gamma and followed ripples, suggesting that consolidation processes rely on bidirectional signaling between hippocampus and neocortex.
Collapse
Affiliation(s)
- Rafael Pedrosa
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 6 3M4, Canada
| | - Majid H. Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 6 3M4, Canada
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Federico Stella
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
| | - Francesco P. Battaglia
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
| |
Collapse
|
39
|
O'Byrne J, Jerbi K. How critical is brain criticality? Trends Neurosci 2022; 45:820-837. [PMID: 36096888 DOI: 10.1016/j.tins.2022.08.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
Criticality is the singular state of complex systems poised at the brink of a phase transition between order and randomness. Such systems display remarkable information-processing capabilities, evoking the compelling hypothesis that the brain may itself be critical. This foundational idea is now drawing renewed interest thanks to high-density data and converging cross-disciplinary knowledge. Together, these lines of inquiry have shed light on the intimate link between criticality, computation, and cognition. Here, we review these emerging trends in criticality neuroscience, highlighting new data pertaining to the edge of chaos and near-criticality, and making a case for the distance to criticality as a useful metric for probing cognitive states and mental illness. This unfolding progress in the field contributes to establishing criticality theory as a powerful mechanistic framework for studying emergent function and its efficiency in both biological and artificial neural networks.
Collapse
Affiliation(s)
- Jordan O'Byrne
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada
| | - Karim Jerbi
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada; MILA (Quebec Artificial Intelligence Institute), Montreal, Quebec, Canada; UNIQUE Center (Quebec Neuro-AI Research Center), Montreal, Quebec, Canada.
| |
Collapse
|
40
|
Suryadi, Cheng RK, Birkett E, Jesuthasan S, Chew LY. Dynamics and potential significance of spontaneous activity in the habenula. eNeuro 2022; 9:ENEURO.0287-21.2022. [PMID: 35981869 PMCID: PMC9450562 DOI: 10.1523/eneuro.0287-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
The habenula is an evolutionarily conserved structure of the vertebrate brain that is essential for behavioural flexibility and mood control. It is spontaneously active and is able to access diverse states when the animal is exposed to sensory stimuli. Here we investigate the dynamics of habenula spontaneous activity, to gain insight into how sensitivity is optimized. Two-photon calcium imaging was performed in resting zebrafish larvae at single cell resolution. An analysis of avalanches of inferred spikes suggests that the habenula is subcritical. Activity had low covariance and a small mean, arguing against dynamic criticality. A multiple regression estimator of autocorrelation time suggests that the habenula is neither fully asynchronous nor perfectly critical, but is reverberating. This pattern of dynamics may enable integration of information and high flexibility in the tuning of network properties, thus providing a potential mechanism for the optimal responses to a changing environment.Significance StatementSpontaneous activity in neurons shapes the response to stimuli. One structure with a high level of spontaneous neuronal activity is the habenula, a regulator of broadly acting neuromodulators involved in mood and learning. How does this activity influence habenula function? We show here that the habenula of a resting animal is near criticality, in a state termed reverberation. This pattern of dynamics is consistent with high sensitivity and flexibility, and may enable the habenula to respond optimally to a wide range of stimuli.
Collapse
Affiliation(s)
- Suryadi
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| | - Elliot Birkett
- Institute of Molecular and Cell Biology, Singapore 138673
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- Institute of Molecular and Cell Biology, Singapore 138673
| | - Lock Yue Chew
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
- Complexity Institute, Nanyang Technological University, Singapore 637335
| |
Collapse
|
41
|
Walter N, Hinterberger T. Self-organized criticality as a framework for consciousness: A review study. Front Psychol 2022; 13:911620. [PMID: 35911009 PMCID: PMC9336647 DOI: 10.3389/fpsyg.2022.911620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
Objective No current model of consciousness is univocally accepted on either theoretical or empirical grounds, and the need for a solid unifying framework is evident. Special attention has been given to the premise that self-organized criticality (SOC) is a fundamental property of neural system. SOC provides a competitive model to describe the physical mechanisms underlying spontaneous brain activity, and thus, critical dynamics were proposed as general gauges of information processing representing a strong candidate for a surrogate measure of consciousness. As SOC could be a neurodynamical framework, which may be able to bring together existing theories and experimental evidence, the purpose of this work was to provide a comprehensive overview of progress of research on SOC in association with consciousness. Methods A comprehensive search of publications on consciousness and SOC published between 1998 and 2021 was conducted. The Web of Science database was searched, and annual number of publications and citations, type of articles, and applied methods were determined. Results A total of 71 publications were identified. The annual number of citations steadily increased over the years. Original articles comprised 50.7% and reviews/theoretical articles 43.6%. Sixteen studies reported on human data and in seven studies data were recorded in animals. Computational models were utilized in n = 12 studies. EcoG data were assessed in n = 4 articles, fMRI in n = 4 studies, and EEG/MEG in n = 10 studies. Notably, different analytical tools were applied in the EEG/MEG studies to assess a surrogate measure of criticality such as the detrended fluctuation analysis, the pair correlation function, parameters from the neuronal avalanche analysis and the spectral exponent. Conclusion Recent studies pointed out agreements of critical dynamics with the current most influencing theories in the field of consciousness research, the global workspace theory and the integrated information theory. Thus, the framework of SOC as a neurodynamical parameter for consciousness seems promising. However, identified experimental work was small in numbers, and a heterogeneity of applied analytical tools as a surrogate measure of criticality was observable, which limits the generalizability of findings.
Collapse
|
42
|
Arata Y, Shiga I, Ikeda Y, Jurica P, Kimura H, Kiyono K, Sako Y. Insulin signaling shapes fractal scaling of C. elegans behavior. Sci Rep 2022; 12:10481. [PMID: 35729173 PMCID: PMC9213454 DOI: 10.1038/s41598-022-13022-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
Fractal scaling in animal behavioral activity, where similar temporal patterns appear repeatedly over a series of magnifications among time scales, governs the complex behavior of various animal species and, in humans, can be altered by neurodegenerative diseases and aging. However, the mechanism underlying fractal scaling remains unknown. Here, we cultured C. elegans in a microfluidic device for 3 days and analyzed temporal patterns of C. elegans activity by fractal analyses. The residence-time distribution of C. elegans behaviors shared a common feature with those of human and mice. Specifically, the residence-time power-law distribution of the active state changed to an exponential-like decline at a longer time scale, whereas the inactive state followed a power-law distribution. An exponential-like decline appeared with nutrient supply in wild-type animals, whereas this decline disappeared in insulin-signaling-defective daf-2 and daf-16 mutants. The absolute value of the power-law exponent of the inactive state distribution increased with nutrient supply in wild-type animals, whereas the value decreased in daf-2 and daf-16 mutants. We conclude that insulin signaling differentially affects mechanisms that determine the residence time in active and inactive states in C. elegans behavior. In humans, diabetes mellitus, which is caused by defects in insulin signaling, is associated with mood disorders that affect daily behavioral activities. We hypothesize that comorbid behavioral defects in patients with diabetes may be attributed to altered fractal scaling of human behavior.
Collapse
Affiliation(s)
- Yukinobu Arata
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Itsuki Shiga
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Yusaku Ikeda
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Peter Jurica
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
43
|
Walter N, Hinterberger T. Determining states of consciousness in the electroencephalogram based on spectral, complexity, and criticality features. Neurosci Conscious 2022; 2022:niac008. [PMID: 35903410 PMCID: PMC9319002 DOI: 10.1093/nc/niac008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
This study was based on the contemporary proposal that distinct states of consciousness are quantifiable by neural complexity and critical dynamics. To test this hypothesis, it was aimed at comparing the electrophysiological correlates of three meditation conditions using nonlinear techniques from the complexity and criticality framework as well as power spectral density. Thirty participants highly proficient in meditation were measured with 64-channel electroencephalography (EEG) during one session consisting of a task-free baseline resting (eyes closed and eyes open), a reading condition, and three meditation conditions (thoughtless emptiness, presence monitoring, and focused attention). The data were analyzed applying analytical tools from criticality theory (detrended fluctuation analysis, neuronal avalanche analysis), complexity measures (multiscale entropy, Higuchi's fractal dimension), and power spectral density. Task conditions were contrasted, and effect sizes were compared. Partial least square regression and receiver operating characteristics analysis were applied to determine the discrimination accuracy of each measure. Compared to resting with eyes closed, the meditation categories emptiness and focused attention showed higher values of entropy and fractal dimension. Long-range temporal correlations were declined in all meditation conditions. The critical exponent yielded the lowest values for focused attention and reading. The highest discrimination accuracy was found for the gamma band (0.83-0.98), the global power spectral density (0.78-0.96), and the sample entropy (0.86-0.90). Electrophysiological correlates of distinct meditation states were identified and the relationship between nonlinear complexity, critical brain dynamics, and spectral features was determined. The meditation states could be discriminated with nonlinear measures and quantified by the degree of neuronal complexity, long-range temporal correlations, and power law distributions in neuronal avalanches.
Collapse
Affiliation(s)
- Nike Walter
- Department of Psychosomatic Medicine, Section of
Applied Consciousness Sciences, University Hospital of Regensburg,
Franz-Josef-Strauß Allee 11, Regensburg 93059, Germany
| | - Thilo Hinterberger
- Department of Psychosomatic Medicine, Section of
Applied Consciousness Sciences, University Hospital of Regensburg,
Franz-Josef-Strauß Allee 11, Regensburg 93059, Germany
| |
Collapse
|
44
|
Fortel I, Butler M, Korthauer LE, Zhan L, Ajilore O, Sidiropoulos A, Wu Y, Driscoll I, Schonfeld D, Leow A. Inferring excitation-inhibition dynamics using a maximum entropy model unifying brain structure and function. Netw Neurosci 2022; 6:420-444. [PMID: 35733430 PMCID: PMC9205431 DOI: 10.1162/netn_a_00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022] Open
Abstract
Neural activity coordinated across different scales from neuronal circuits to large-scale brain networks gives rise to complex cognitive functions. Bridging the gap between micro- and macroscale processes, we present a novel framework based on the maximum entropy model to infer a hybrid resting-state structural connectome, representing functional interactions constrained by structural connectivity. We demonstrate that the structurally informed network outperforms the unconstrained model in simulating brain dynamics, wherein by constraining the inference model with the network structure we may improve the estimation of pairwise BOLD signal interactions. Further, we simulate brain network dynamics using Monte Carlo simulations with the new hybrid connectome to probe connectome-level differences in excitation-inhibition balance between apolipoprotein E (APOE)-ε4 carriers and noncarriers. Our results reveal sex differences among APOE-ε4 carriers in functional dynamics at criticality; specifically, female carriers appear to exhibit a lower tolerance to network disruptions resulting from increased excitatory interactions. In sum, the new multimodal network explored here enables analysis of brain dynamics through the integration of structure and function, providing insight into the complex interactions underlying neural activity such as the balance of excitation and inhibition.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mitchell Butler
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura E. Korthauer
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Yichao Wu
- Department of Math, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Dan Schonfeld
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Alex Leow
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Yu C. Toward a Unified Analysis of the Brain Criticality Hypothesis: Reviewing Several Available Tools. Front Neural Circuits 2022; 16:911245. [PMID: 35669452 PMCID: PMC9164306 DOI: 10.3389/fncir.2022.911245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The study of the brain criticality hypothesis has been going on for about 20 years, various models and methods have been developed for probing this field, together with large amounts of controversial experimental findings. However, no standardized protocol of analysis has been established so far. Therefore, hoping to make some contributions to standardization of such analysis, we review several available tools used for estimating the criticality of the brain in this paper.
Collapse
|
46
|
Leite K, Garg P, Spitzner FP, Guerin Darvas S, Bähr M, Priesemann V, Kügler S. α-Synuclein Impacts on Intrinsic Neuronal Network Activity Through Reduced Levels of Cyclic AMP and Diminished Numbers of Active Presynaptic Terminals. Front Mol Neurosci 2022; 15:868790. [PMID: 35721317 PMCID: PMC9199018 DOI: 10.3389/fnmol.2022.868790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
α-synuclein (α-Syn) is intimately linked to synucleinopathies like Parkinson’s disease and dementia with Lewy bodies. However, the pathophysiological mechanisms that are triggered by this protein are still largely enigmatic. α-Syn overabundance may cause neurodegeneration through protein accumulation and mitochondrial deterioration but may also result in pathomechanisms independent from neuronal cell death. One such proposed pathological mechanism is the influence of α-Syn on non-stimulated, intrinsic brain activity. This activity is responsible for more than 90% of the brain’s energyconsumption, and is thus thought to play an eminent role in basic brain functionality. Here we report that α-Syn substantially disrupts intrinsic neuronal network burst activity in a long-term neuronal cell culture model. Mechanistically, the impairment of network activity originates from reduced levels of cyclic AMP and cyclic AMP-mediated signaling as well as from diminished numbers of active presynaptic terminals. The profound reduction of network activity due to α-Syn was mediated only by intracellularly expressed α-Syn, but not by α-Syn that is naturally released by neurons. Conversely, extracellular pre-formed fibrils of α-Syn mimicked the effect of intracellular α-Syn, suggesting that they trigger an off-target mechanism that is not activated by naturally released α-Syn. A simulation-based model of the network activity in our cultures demonstrated that even subtle effect sizes in reducing outbound connectivity, i.e., loss of active synapses, can cause substantial global reductions in non-stimulated network activity. These results suggest that even low-level loss of synaptic output capabilities caused by α-Syn may result in significant functional impairments in terms of intrinsic neuronal network activity. Provided that our model holds true for the human brain, then α-Syn may cause significant functional lesions independent from neurodegeneration.
Collapse
Affiliation(s)
- Kristian Leite
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Pretty Garg
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - F. Paul Spitzner
- Neural Systems Theory group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Sofia Guerin Darvas
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Neural Systems Theory group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Sebastian Kügler
| |
Collapse
|
47
|
Franović I, Eydam S, Yanchuk S, Berner R. Collective Activity Bursting in a Population of Excitable Units Adaptively Coupled to a Pool of Resources. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:841829. [PMID: 36926089 PMCID: PMC10013072 DOI: 10.3389/fnetp.2022.841829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 06/18/2023]
Abstract
We study the collective dynamics in a population of excitable units (neurons) adaptively interacting with a pool of resources. The resource pool is influenced by the average activity of the population, whereas the feedback from the resources to the population is comprised of components acting homogeneously or inhomogeneously on individual units of the population. Moreover, the resource pool dynamics is assumed to be slow and has an oscillatory degree of freedom. We show that the feedback loop between the population and the resources can give rise to collective activity bursting in the population. To explain the mechanisms behind this emergent phenomenon, we combine the Ott-Antonsen reduction for the collective dynamics of the population and singular perturbation theory to obtain a reduced system describing the interaction between the population mean field and the resources.
Collapse
Affiliation(s)
- Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
| | - Sebastian Eydam
- Neural Circuits and Computations Unit, RIKEN Center for Brain Science, Wako, Japan
| | - Serhiy Yanchuk
- Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rico Berner
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
48
|
Toker D, Pappas I, Lendner JD, Frohlich J, Mateos DM, Muthukumaraswamy S, Carhart-Harris R, Paff M, Vespa PM, Monti MM, Sommer FT, Knight RT, D'Esposito M. Consciousness is supported by near-critical slow cortical electrodynamics. Proc Natl Acad Sci U S A 2022; 119:e2024455119. [PMID: 35145021 PMCID: PMC8851554 DOI: 10.1073/pnas.2024455119] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence suggests that during conscious states, the electrodynamics of the cortex are poised near a critical point or phase transition and that this near-critical behavior supports the vast flow of information through cortical networks during conscious states. Here, we empirically identify a mathematically specific critical point near which waking cortical oscillatory dynamics operate, which is known as the edge-of-chaos critical point, or the boundary between stability and chaos. We do so by applying the recently developed modified 0-1 chaos test to electrocorticography (ECoG) and magnetoencephalography (MEG) recordings from the cortices of humans and macaques across normal waking, generalized seizure, anesthesia, and psychedelic states. Our evidence suggests that cortical information processing is disrupted during unconscious states because of a transition of low-frequency cortical electric oscillations away from this critical point; conversely, we show that psychedelics may increase the information richness of cortical activity by tuning low-frequency cortical oscillations closer to this critical point. Finally, we analyze clinical electroencephalography (EEG) recordings from patients with disorders of consciousness (DOC) and show that assessing the proximity of slow cortical oscillatory electrodynamics to the edge-of-chaos critical point may be useful as an index of consciousness in the clinical setting.
Collapse
Affiliation(s)
- Daniel Toker
- Department of Psychology, University of California, Los Angeles, CA 90095;
| | - Ioannis Pappas
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Department of Psychology, University of California, Berkeley, CA 94704
- Laboratory of Neuro Imaging, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Janna D Lendner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Department of Anesthesiology and Intensive Care, University Medical Center, 72076 Tübingen, Germany
| | - Joel Frohlich
- Department of Psychology, University of California, Los Angeles, CA 90095
| | - Diego M Mateos
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1425 Buenos Aires, Argentina
- Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, E3202 Paraná, Entre Ríos, Argentina
- Grupo de Análisis de Neuroimágenes, Instituo de Matemática Aplicada del Litoral, S3000 Santa Fe, Argentina
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, 1010 Auckland, New Zealand
| | - Robin Carhart-Harris
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London SW7 2AZ, United Kingdom
- Centre for Psychedelic Research, Department of Psychiatry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michelle Paff
- Department of Neurological Surgery, University of California, Irvine, CA 92697
| | - Paul M Vespa
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, CA 90095
| | - Martin M Monti
- Department of Psychology, University of California, Los Angeles, CA 90095
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, CA 90095
| | - Friedrich T Sommer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA 94704
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Department of Psychology, University of California, Berkeley, CA 94704
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Department of Psychology, University of California, Berkeley, CA 94704
| |
Collapse
|
49
|
Juanico DEO. Neuronal Population Transitions Across a Quiescent-to-Active Frontier and Bifurcation. Front Physiol 2022; 13:840546. [PMID: 35222095 PMCID: PMC8867020 DOI: 10.3389/fphys.2022.840546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanistic understanding of why neuronal population activity hovers on criticality remains unresolved despite the availability of experimental results. Without a coherent mathematical framework, the presence of power-law scaling is not straightforward to reconcile with findings implying epileptiform activity. Although multiple pictures have been proposed to relate the power-law scaling of avalanche statistics to phase transitions, the existence of a phase boundary in parameter space is until now an assumption. Herein, a framework based on differential inclusions, which departs from approaches constructed from differential equations, is shown to offer an adequate consolidation of evidences apparently connected to criticality and those linked to hyperexcitability. Through this framework, the phase boundary is elucidated in a parameter space spanned by variables representing levels of excitation and inhibition in a neuronal network. The interpretation of neuronal populations based on this approach offers insights on the role of pharmacological and endocrinal signaling in the homeostatic regulation of neuronal population activity.
Collapse
Affiliation(s)
- Drandreb Earl O. Juanico
- DataSc/ense TechnoCoRe, Technological Institute of the Philippines, Quezon City, Philippines
- NICER Program, Center for Advanced Batteries, Quezon City, Philippines
| |
Collapse
|
50
|
Shin TJ, Kim PJ, Choi B. How general anesthetics work: from the perspective of reorganized connections within the brain. Korean J Anesthesiol 2022; 75:124-138. [PMID: 35130674 PMCID: PMC8980288 DOI: 10.4097/kja.22078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022] Open
Abstract
General anesthesia is critical for various procedures and surgeries. Despite the widespread use of anesthetics, their precise mechanisms remain poorly understood. Anesthetics inevitably act on the brain, primarily through the modulation of target receptors. Even if the action is specific to an individual neuron, however, long-range effects can occur due to the tremendous interconnectedness of neuronal activity. The strength of this connectivity can be understood using mathematical models that allow for the study of neuronal connectivity dynamics. These models also allow researchers to develop hypotheses on the candidate mechanisms of action of different types of anesthesia. This review highlights the theoretical background associated with the study of the mechanisms of action of anesthetics. We propose a candidate framework that describes how anesthetics act on the brain and consciousness in general.
Collapse
|