1
|
Wang J, Jiang W, Yang Z, Wan Q, Li A, You X, Hou X, Zhang Q. Cold-related genes BcCOR15B and BcCOR15A have environment adapted expression pattern in non-heading Chinese cabbage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109567. [PMID: 39913983 DOI: 10.1016/j.plaphy.2025.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/02/2025] [Accepted: 01/24/2025] [Indexed: 03/11/2025]
Abstract
In this work, two cold-related (COR) genes, BcCOR15B and BcCOR15A, were isolated from non-heading Chinese cabbage (Brassica rapa ssp. chinensis cv. Suzhouqing). Their open reading frames (ORFs) are 429 and 390 base pairs (bp) in length, which encode 142 and 129 amino acids (aa), respectively. The predicted amino acid sequences of BcCOR15B and BcCOR15A share the respective 99.30% and 95.56% highest homology with the amino acid sequences of the corresponding BrCOR15B and BrCOR15A in Chinese cabbage (Brassica rapa). Sequence and phylogenetic analysis showed that the relationship between BcCOR15 B/A and BrCOR15 B/A was relatively close. Structural analysis showed that the structure of BcCOR15 B/A proteins was both relatively stable and conservative. Subcellular localization indicated that BcCOR15B and BcCOR15A proteins were both localized on the chloroplast. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that BcCOR15 B/A were both induced to express by cold and other abiotic stresses. Prokaryotic expression and Western blot analysis revealed that the two proteins were both hydrophilic. The identification and analysis of cold-related genes BcCOR15 B/A from non-heading Chinese cabbage might provide a reference for further study on agronomic traits of vegetable and crop plants in cold environments.
Collapse
Affiliation(s)
- Jin Wang
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Wenlong Jiang
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Zihan Yang
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Qianju Wan
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Annan Li
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture / Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinxue Zhang
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China.
| |
Collapse
|
2
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control. N Biotechnol 2024; 79:1-19. [PMID: 38040288 DOI: 10.1016/j.nbt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Mammalian cells have developed dedicated molecular mechanisms to tightly control expression levels of their genes where the specific transcriptomic signature across all genes eventually determines the cell's phenotype. Modulating cellular phenotypes is of major interest to study their role in disease or to reprogram cells for the manufacturing of recombinant products, such as biopharmaceuticals. Cells of mammalian origin, for example Chinese hamster ovary (CHO) and Human embryonic kidney 293 (HEK293) cells, are most commonly employed to produce therapeutic proteins. Early genetic engineering approaches to alter their phenotype have often been attempted by "uncontrolled" overexpression or knock-down/-out of specific genetic factors. Many studies in the past years, however, highlight that rationally regulating and fine-tuning the strength of overexpression or knock-down to an optimum level, can adjust phenotypic traits with much more precision than such "uncontrolled" approaches. To this end, synthetic biology tools have been generated that enable (fine-)tunable and/or inducible control of gene expression. In this review, we discuss various molecular tools used in mammalian cell lines and group them by their mode of action: transcriptional, post-transcriptional, translational and post-translational regulation. We discuss the advantages and disadvantages of using these tools for each cell regulatory layer and with respect to cell line engineering approaches. This review highlights the plethora of synthetic toolboxes that could be employed, alone or in combination, to optimize cellular systems and eventually gain enhanced control over the cellular phenotype to equip mammalian cell factories with the tools required for efficient production of emerging, more difficult-to-express biologics formats.
Collapse
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
3
|
Okay S. Fine-Tuning Gene Expression in Bacteria by Synthetic Promoters. Methods Mol Biol 2024; 2844:179-195. [PMID: 39068340 DOI: 10.1007/978-1-0716-4063-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Promoters are key genetic elements in the initiation and regulation of gene expression. A limited number of natural promoters has been described for the control of gene expression in synthetic biology applications. Therefore, synthetic promoters have been developed to fine-tune the transcription for the desired amount of gene product. Mostly, synthetic promoters are characterized using promoter libraries that are constructed via mutagenesis of promoter sequences. The strength of promoters in the library is determined according to the expression of a reporter gene such as gfp encoding green fluorescent protein. Gene expression can be controlled using inducers. The majority of the studies on gram-negative bacteria are conducted using the expression system of the model organism Escherichia coli while that of the model organism Bacillus subtilis is mostly used in the studies on gram-positive bacteria. Additionally, synthetic promoters for the cyanobacteria, which are phototrophic microorganisms, are evaluated, especially using the model cyanobacterium Synechocystis sp. PCC 6803. Moreover, a variety of algorithms based on machine learning methods were developed to characterize the features of promoter elements. Some of these in silico models were verified using in vitro or in vivo experiments. Identification of novel synthetic promoters with improved features compared to natural ones contributes much to the synthetic biology approaches in terms of fine-tuning gene expression.
Collapse
Affiliation(s)
- Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
4
|
Meyer AJ, Segall-Shapiro TH, Glassey E, Zhang J, Voigt CA. Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nat Chem Biol 2018; 15:196-204. [DOI: 10.1038/s41589-018-0168-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/05/2018] [Indexed: 11/09/2022]
|
5
|
Sauer C, Ver Loren van Themaat E, Boender LGM, Groothuis D, Cruz R, Hamoen LW, Harwood CR, van Rij T. Exploring the Nonconserved Sequence Space of Synthetic Expression Modules in Bacillus subtilis. ACS Synth Biol 2018; 7:1773-1784. [PMID: 29939720 DOI: 10.1021/acssynbio.8b00110] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing protein expression levels is a key step in the commercial production of enzymes. Predicting promoter activity and translation initiation efficiency based solely on consensus sequences have so far met with mixed results. Here, we addressed this challenge using a "brute-force" approach by designing and synthesizing a large combinatorial library comprising ∼12 000 unique synthetic expression modules (SEMs) for Bacillus subtilis. Using GFP fluorescence as a reporter of gene expression, we obtained a dynamic expression range that spanned 5 orders of magnitude, as well as a maximal 13-fold increase in expression compared with that of the already strong veg expression module. Analyses of the synthetic modules indicated that sequences at the 5'-end of the mRNA were the most important contributing factor to the differences in expression levels, presumably by preventing formation of strong secondary mRNA structures that affect translation initiation. When the gfp coding region was replaced by the coding region of the xynA gene, encoding the industrially relevant B. subtilis xylanase enzyme, only a 3-fold improvement in xylanase production was observed. Moreover, the correlation between GFP and xylanase expression levels was weak. This suggests that the differences in expression levels between the gfp and xynA constructs were due to differences in 5'-end mRNA folding and consequential differences in the rates of translation initiation. Our data show that the use of large libraries of SEMs, in combination with high-throughput technologies, is a powerful approach to improve the production of a specific protein, but that the outcome cannot necessarily be extrapolated to other proteins.
Collapse
Affiliation(s)
- Christopher Sauer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- DSM Biotechnology Center, P.O. Box 1, 2600 MA Delft, The Netherlands
| | | | | | - Daphne Groothuis
- DSM Biotechnology Center, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Rita Cruz
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- DSM Biotechnology Center, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Leendert W. Hamoen
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Colin R. Harwood
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Tjeerd van Rij
- DSM Biotechnology Center, P.O. Box 1, 2600 MA Delft, The Netherlands
| |
Collapse
|
6
|
Cooper KG, Chong A, Starr T, Finn CE, Steele-Mortimer O. Predictable, Tunable Protein Production in Salmonella for Studying Host-Pathogen Interactions. Front Cell Infect Microbiol 2017; 7:475. [PMID: 29201859 PMCID: PMC5696353 DOI: 10.3389/fcimb.2017.00475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022] Open
Abstract
Here we describe the use of synthetic genetic elements to improve the predictability and tunability of episomal protein production in Salmonella. We used a multi-pronged approach, in which a series of variable-strength synthetic promoters were combined with a synthetic transcriptional terminator, and plasmid copy number variation. This yielded a series of plasmids that drive uniform production of fluorescent and endogenous proteins, over a wide dynamic range. We describe several examples where this system is used to fine-tune constitutive expression in Salmonella, providing an efficient means to titrate out toxic effects of protein production.
Collapse
Affiliation(s)
- Kendal G Cooper
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Audrey Chong
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Tregei Starr
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Ciaran E Finn
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
7
|
Mohan C, Jayanarayanan AN, Narayanan S. Construction of a novel synthetic root-specific promoter and its characterization in transgenic tobacco plants. 3 Biotech 2017; 7:234. [PMID: 28691155 DOI: 10.1007/s13205-017-0872-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/06/2017] [Indexed: 12/01/2022] Open
Abstract
Synthetic promoter technology offers a framework for designing expression cassettes that could provide precise control of transgene expression. Such artificially designed promoters enable defined transgene regulation, reduce unwanted background expression, and can overcome homology-dependent gene silencing in transgenic plants. In the present study, a synthetic root-specific module was designed using characterized cis-acting elements, fused with minimal promoter (86 bp) from PortUbi882 promoter, and cloned in pCAMBIA1305.1 by replacing CaMV 35S promoter so as to drive GUS expression. Two constructs were made; one had the synthetic module at the 5' end of the minimal promoter (SynR1), whereas in the other construct, the module was present in both 5' and 3' ends (SynR2). Furthermore, the synthetic promoter constructs were transformed in tobacco wherein SynR1 promoter drove constitutive expression, whereas SynR2 conferred root-specific expression though slight leaky expression was present in stem. GUS assay in the roots of transgenic tobacco plants (T1) indicated that SynR2 promoter expressed significantly higher GUS activity than the CaMV 35S promoter. The real-time quantitative PCR (RT-qPCR) analysis of GUS gene further confirmed that SynR2 promoter conferred 2.1-fold higher root-specific expression when compared to CaMV 35S promoter.
Collapse
Affiliation(s)
- Chakravarthi Mohan
- Genetic Transformation Laboratory, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India.
- Molecular Biology Laboratory, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil.
| | - Ashwin Narayan Jayanarayanan
- Genetic Transformation Laboratory, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Subramonian Narayanan
- Genetic Transformation Laboratory, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| |
Collapse
|
8
|
Abstract
Cofactor engineering has been long identified as a valuable tool for metabolic engineering. Besides interventions targeting the pools of redox cofactors, many studies addressed the adenosine pools of microorganisms. In this mini-review, we discuss interventions that manipulate the availability of ATP with a special focus on ATP wasting strategies. We discuss the importance to fine-tune the ATP yield along a production pathway to balance process performance parameters like product yield and volumetric productivity.
Collapse
|
9
|
Liu J, Kandasamy V, Würtz A, Jensen PR, Solem C. Stimulation of acetoin production in metabolically engineered Lactococcus lactis by increasing ATP demand. Appl Microbiol Biotechnol 2016; 100:9509-9517. [PMID: 27344595 DOI: 10.1007/s00253-016-7687-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022]
Abstract
Having a sufficient supply of energy, usually in the form of ATP, is essential for all living organisms. In this study, however, we demonstrate that it can be beneficial to reduce ATP availability when the objective is microbial production. By introducing the ATP hydrolyzing F1-ATPase into a Lactococcus lactis strain engineered into producing acetoin, we show that production titer and yield both can be increased. At high F1-ATPase expression level, the acetoin production yield could be increased by 10 %; however, because of the negative effect that the F1-ATPase had on biomass yield and growth, this increase was at the cost of volumetric productivity. By lowering the expression level of the F1-ATPase, both the volumetric productivity and the final yield could be increased by 5 % compared to the reference strain not overexpressing the F1-ATPase, and in batch fermentation, it was possible to convert 176 mM (32 g/L) of glucose into 146.5 mM (12.9 g/L) acetoin with a yield of 83 % of the theoretical maximum. To further demonstrate the potential of the cell factory developed, we complemented it with the lactose plasmid pLP712, which allowed for growth and acetoin production from a dairy waste stream, deproteinized whey. Using this cheap and renewable feedstock, efficient acetoin production with a titer of 157 mM (14 g/L) acetoin was accomplished.
Collapse
Affiliation(s)
- Jianming Liu
- National Food Institute, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | | | - Anders Würtz
- Arla Foods Ingredients Group P/S, Sønderhøj 10-12, 8260, Viby J, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Srivastava SK, Iyer VR, Ghosh T, Lambadi PR, Pathania R, Navani NK. Isolation of a non-genomic origin fluoroquinolone responsive regulatory element using a combinatorial bioengineering approach. Nucleic Acids Res 2016; 44:2451-61. [PMID: 26837578 PMCID: PMC4797293 DOI: 10.1093/nar/gkw029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/06/2016] [Indexed: 11/12/2022] Open
Abstract
Advances in chemical biology have led to selection of synthetic functional nucleic acids for in vivo applications. Discovery of synthetic nucleic acid regulatory elements has been a long-standing goal of chemical biologists. Availability of vast genome level genetic resources has motivated efforts for discovery and understanding of inducible synthetic genetic regulatory elements. Such elements can lead to custom-design of switches and sensors, oscillators, digital logic evaluators and cell–cell communicators. Here, we describe a simple, robust and universally applicable module for discovery of inducible gene regulatory elements. The distinguishing feature is the use of a toxic peptide as a reporter to suppress the background of unwanted bacterial recombinants. Using this strategy, we show that it is possible to isolate genetic elements of non-genomic origin which specifically get activated in the presence of DNA gyrase A inhibitors belonging to fluoroquinolone (FQ) group of chemicals. Further, using a system level genetic resource, we prove that the genetic regulation is exerted through histone-like nucleoid structuring (H-NS) repressor protein. Till date, there are no reports of in vivo selection of non-genomic origin inducible regulatory promoter like elements. Our strategy opens an uncharted route to discover inducible synthetic regulatory elements from biologically-inspired nucleic acid sequences.
Collapse
Affiliation(s)
| | - V Rajesh Iyer
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247 667, India
| | - Tamoghna Ghosh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247 667, India
| | - Paramesh Ramulu Lambadi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247 667, India
| | - Ranjana Pathania
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247 667, India
| | - Naveen Kumar Navani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247 667, India
| |
Collapse
|
11
|
Development of a potential stationary-phase specific gene expression system by engineering of SigB-dependent cg3141 promoter in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2016; 100:4473-83. [PMID: 26782746 DOI: 10.1007/s00253-016-7297-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/27/2015] [Accepted: 12/28/2015] [Indexed: 02/03/2023]
Abstract
Corynebacterium glutamicum is a non-pathogenic, non-sporulating Gram-positive soil bacterium that has been used for the industrial production of various proteins and chemicals. To achieve enhanced and economical production of target molecules, the development of strong auto-inducible promoters is desired, which can be activated without expensive inducers and has significant advantages for industrial-scale use. Here, we developed a stationary-phase gene expression system by engineering a sigma factor B (SigB)-dependent promoter that can be activated during the transition phase between exponential and stationary growth phases in C. glutamicum. First, the inducibilities of three well-known SigB-dependent promoters were examined using super-folder green fluorescent protein as a reporter protein, and we found that promoter of cg3141 (P cg3141 ) exhibited the highest inducibility. Next, a synthetic promoter library was constructed by randomizing the flanking and space regions of P cg3141 , and the stationary-phase promoters exhibiting high strengths were isolated via FACS-based high-throughput screening. The isolated synthetic promoter (P4-N14) showed a 3.5-fold inducibility and up to 20-fold higher strength compared to those of the original cg3141 promoter. Finally, the use of the isolated P4-N14 for fed-batch cultivation was verified with the production of glutathione S-transferase as a model protein in a lab-scale (5-L) bioreactor.
Collapse
|
12
|
Hädicke O, Bettenbrock K, Klamt S. Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli. Biotechnol Bioeng 2015; 112:2195-9. [PMID: 25899755 DOI: 10.1002/bit.25623] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/11/2015] [Accepted: 04/13/2015] [Indexed: 11/05/2022]
Abstract
The manipulation of cofactor pools such as ATP or NAD(P)H has for long been recognized as key targets for metabolic engineering of microorganisms to improve yields and productivities of biotechnological processes. Several works in the past have shown that enforcing ATP futile cycling may enhance the synthesis of certain products under aerobic conditions. However, case studies demonstrating that ATP wasting may also have beneficial effects for anaerobic production processes are scarce. Taking lactic acid as an economically relevant product, we demonstrate that induction of ATP futile cycling in Escherichia coli leads to increased yields and specific production rates under anaerobic conditions, even in the case where lactate is already produced with high yields. Specifically, we constructed a high lactate producer strain KBM10111 (= MG1655 ΔadhE::Cam ΔackA-pta) and implemented an IPTG-inducible overexpression of ppsA encoding for PEP synthase which, together with pyruvate kinase, gives rise to an ATP consuming cycle. Under induction of ppsA, KBM10111 exhibits a 25% higher specific lactate productivity as well as an 8% higher lactate yield. Furthermore, the specific substrate uptake rate was increased by 14%. However, trade-offs between specific and volumetric productivities must be considered when ATP wasting strategies are used to shift substrate conversion from biomass to product synthesis and we discuss potential solutions to design optimal processes. In summary, enforced ATP futile cycling has great potential to optimize a variety of production processes and our study demonstrates that this holds true also for anaerobic processes.
Collapse
Affiliation(s)
- Oliver Hädicke
- Max Planck Institute for Dynamics of Complex Technical Systems1Sandtorstrasse 1, Magdeburg 39106, Germany
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems1Sandtorstrasse 1, Magdeburg 39106, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems1Sandtorstrasse 1, Magdeburg 39106, Germany.
| |
Collapse
|
13
|
ePathOptimize: A Combinatorial Approach for Transcriptional Balancing of Metabolic Pathways. Sci Rep 2015; 5:11301. [PMID: 26062452 PMCID: PMC4650668 DOI: 10.1038/srep11301] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/21/2015] [Indexed: 12/26/2022] Open
Abstract
The ability to fine tune gene expression has created the field of metabolic pathway optimization and balancing where a variety of factors affecting flux balance are carefully modulated to improve product titers, yields, and productivity. Using a library of isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible mutant T7 promoters of varied strength a combinatorial method was developed for transcriptional balancing of the violacein pathway. Violacein biosynthesis involves a complex five-gene pathway that is an excellent model for exploratory metabolic engineering efforts into pathway regulation and control due to many colorful intermediates and side products allowing for easy analysis and strain comparison. Upon screening approximately 4% of the total initial library, several high-titer mutants were discovered that resulted in up to a 63-fold improvement over the control strain. With further fermentation optimization, titers were improved to 1829 ± 46 mg/L; a 2.6-fold improvement in titer and a 30-fold improvement in productivity from previous literature reports.
Collapse
|
14
|
Abstract
Synthetic cell therapy is a field that has broad potential for future applications in human disease treatment. Next generation therapies will consist of engineered bacterial strains capable of diagnosing disease, producing and delivering therapeutics, and controlling their numbers to meet containment and safety concerns. A thorough understanding of the microbial ecology of the human body and the interaction of the microbes with the immune system will benefit the choice of an appropriate chassis that engrafts stably and interacts productively with the resident community in specific body niches.
Collapse
Affiliation(s)
- Jan Claesen
- Department of Bioengineering
and Therapeutic Sciences and the California Institute for Quantitative
Biosciences, University of California, San
Francisco, San Francisco, California 94158, United States
| | - Michael A. Fischbach
- Department of Bioengineering
and Therapeutic Sciences and the California Institute for Quantitative
Biosciences, University of California, San
Francisco, San Francisco, California 94158, United States
| |
Collapse
|
15
|
Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 235:14-24. [PMID: 26157450 DOI: 10.1016/j.plantsci.2015.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/21/2015] [Accepted: 02/21/2015] [Indexed: 05/13/2023]
Abstract
NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.
Collapse
Affiliation(s)
- Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Limei Tian
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| |
Collapse
|
16
|
Jajesniak P, Seng Wong T. From genetic circuits to industrial-scale biomanufacturing: bacterial promoters as a cornerstone of biotechnology. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.3.277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Li J, Zhang Y. Relationship between promoter sequence and its strength in gene expression. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:44. [PMID: 25260329 DOI: 10.1140/epje/i2014-14086-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
Promoter strength, or activity, is important in genetic engineering and synthetic biology. A constitutive promoter with a certain strength for one given RNA can often be reused for other RNAs. Therefore, the strength of one promoter is mainly determined by its nucleotide sequence. One of the main difficulties in genetic engineering and synthetic biology is how to control the expression of a certain protein at a given level. One usually used way to achieve this goal is to choose one promoter with a suitable strength which can be employed to regulate the rate of transcription, which then leads to the required level of protein expression. For this purpose, so far, many promoter libraries have been established experimentally. However, theoretical methods to predict the strength of one promoter from its nucleotide sequence are desirable. Such methods are not only valuable in the design of promoter with specified strength, but also meaningful to understand the mechanism of promoter in gene transcription. In this study, through various tests, a theoretical model is presented to describe the relationship between promoter strength and nucleotide sequence. Our analysis shows that promoter strength is greatly influenced by nucleotide groups with three adjacent nucleotides in their sequences. Meanwhile, nucleotides in different regions of promoter sequence have different effects on promoter strength. Based on experimental data for E. coli promoters, our calculations indicate that nucleotides in the -10 region, the -35 region, and the discriminator region of a promoter sequence are more important for determining promoter strength than those in the spacing region. With model parameter values obtained by fitting to experimental data, four promoter libraries are theoretically built for the corresponding experimental environments under which data for promoter strength in gene expression has been measured previously.
Collapse
Affiliation(s)
- Jingwei Li
- Shanghai Key Laboratory for Contemporary Applied Mathematics, Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, 200433, Shanghai, China
| | | |
Collapse
|
18
|
Sohoni SV, Fazio A, Workman CT, Mijakovic I, Lantz AE. Synthetic promoter library for modulation of actinorhodin production in Streptomyces coelicolor A3(2). PLoS One 2014; 9:e99701. [PMID: 24963940 DOI: 10.1371/journal.pone.0099701] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/16/2014] [Indexed: 01/28/2023] Open
Abstract
The objective of this study was the application of the synthetic promoter library (SPL) technology for modulation of actinorhodin production in Streptomyces coelicolor A3(2). The SPL technology was used to optimize the expression of a pathway specific positive transcriptional regulator ActII orf4, which activates the transcription of the S. coelicolor actinorhodin biosynthetic gene cluster. The native actII orf4 promoter was replaced with synthetic promoters, generating a S. coelicolor library with a broad range of expression levels of actII orf4. The resulting library was screened based on the yield of actinorhodin. Selected strains were further physiologically characterized. One of the strains from the library, ScoSPL20, showed considerably higher yield of actinorhodin and final actinorhodin titer, compared to S. coelicolor wild type and S. coelicolor with actII orf4 expressed from a strong constitutive promoter. ScoSPL20 demonstrated exceptional productivity despite having a comparatively weak expression from the promoter. Interestingly, the ScoSPL20 promoter was activated at a much earlier stage of growth compared to the wild type, demonstrating the advantage of fine-tuning and temporal tuning of gene expression in metabolic engineering. Transcriptome studies were performed in exponential and actinorhodin-producing phase of growth to compare gene expression between ScoSPL20 and the wild type. To our knowledge, this is the first successful application of the SPL technology for secondary metabolite production in filamentous bacteria.
Collapse
Affiliation(s)
- Sujata Vijay Sohoni
- Department of Systems Biology, Denmark Technical University, Kongens Lyngby, Denmark
| | - Alessandro Fazio
- Department of Systems Biology, Denmark Technical University, Kongens Lyngby, Denmark
| | - Christopher T Workman
- Department of Systems Biology, Denmark Technical University, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Eliasson Lantz
- Department of Systems Biology, Denmark Technical University, Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Roquet N, Lu TK. Digital and analog gene circuits for biotechnology. Biotechnol J 2014; 9:597-608. [PMID: 24677719 DOI: 10.1002/biot.201300258] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/05/2013] [Accepted: 01/08/2014] [Indexed: 11/08/2022]
Abstract
Biotechnology offers the promise of valuable chemical production via microbial processing of renewable and inexpensive substrates. Thus far, static metabolic engineering strategies have enabled this field to advance industrial applications. However, the industrial scaling of statically engineered microbes inevitably creates inefficiencies due to variable conditions present in large-scale microbial cultures. Synthetic gene circuits that dynamically sense and regulate different molecules can resolve this issue by enabling cells to continuously adapt to variable conditions. These circuits also have the potential to enable next-generation production programs capable of autonomous transitioning between steps in a bioprocess. Here, we review the design and application of two main classes of dynamic gene circuits, digital and analog, for biotechnology. Within the context of these classes, we also discuss the potential benefits of digital-analog interconversion, memory, and multi-signal integration. Though synthetic gene circuits have largely been applied for cellular computation to date, we envision that utilizing them in biotechnology will enhance the efficiency and scope of biochemical production with living cells.
Collapse
Affiliation(s)
- Nathaniel Roquet
- Synthetic Biology Group, Research Lab of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard Biophysics Program, Boston, MA, USA
| | | |
Collapse
|
20
|
Schrewe M, Julsing MK, Bühler B, Schmid A. Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification. Chem Soc Rev 2014; 42:6346-77. [PMID: 23475180 DOI: 10.1039/c3cs60011d] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the last decades, biocatalysis became of increasing importance for chemical and pharmaceutical industries. Regarding regio- and stereospecificity, enzymes have shown to be superior compared to traditional chemical synthesis approaches, especially in C-O functional group chemistry. Catalysts established on a process level are diverse and can be classified along a functional continuum starting with single-step biotransformations using isolated enzymes or microbial strains towards fermentative processes with recombinant microorganisms containing artificial synthetic pathways. The complex organization of respective enzymes combined with aspects such as cofactor dependency and low stability in isolated form often favors the use of whole cells over that of isolated enzymes. Based on an inventory of the large spectrum of biocatalytic C-O functional group chemistry, this review focuses on highlighting the potentials, limitations, and solutions offered by the application of self-regenerating microbial cells as biocatalysts. Different cellular functionalities are discussed in the light of their (possible) contribution to catalyst efficiency. The combined achievements in the areas of protein, genetic, metabolic, and reaction engineering enable the development of whole-cell biocatalysts as powerful tools in organic synthesis.
Collapse
Affiliation(s)
- Manfred Schrewe
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
21
|
Love DR, Lan CC, Dodd A, Shelling AN, McNabb WC, Ferguson LR. Modeling inflammatory bowel disease: the zebrafish as a way forward. Expert Rev Mol Diagn 2014; 7:177-93. [PMID: 17331065 DOI: 10.1586/14737159.7.2.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The zebrafish has proved to be an informative model of vertebrate development and, more recently, an emerging model of human disease. The realization of the full potential of the zebrafish as a disease model lies in two interdependent areas. The first is an appreciation that the often overlooked strength of this species lies in allowing the design of experiments that address the interplay of genetics and the environment in a manipulable manner. The second is in the application and further development of gene targeting approaches. These twin features will be addressed in this review in the context of modeling inflammatory bowel disease.
Collapse
Affiliation(s)
- Donald R Love
- University of Auckland, School of Biological Sciences, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| | | | | | | | | | | |
Collapse
|
22
|
Li M, Wang X, Cao Y, Liu X, Lin Y, Ou Y, Zhang H, Liu J. Strength comparison between cold-inducible promoters of Arabidopsis cor15a and cor15b genes in potato and tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:77-86. [PMID: 23886924 DOI: 10.1016/j.plaphy.2013.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/25/2013] [Indexed: 06/02/2023]
Abstract
The cold-inducible promoter is ideal for regulating ectopic gene expression in plants to cope with the cold stress. The promoters of two cold-regulated genes, cor15a and cor15b, were cloned from Arabidopsis thaliana and their strengths were assayed in potato and tobacco. Although the cis-element composition and cold-inducible property were similar between the two promoters, the cor15b promoter showed significantly higher activity than the cor15a promoter in both potato and tobacco. In order to elucidate the factors determining this discrepancy, cor15a and cor15b promoters were separately truncated from 5'-end to construct short promoters with similar size containing a single C-repeat/dehydration-responsive element (CRT/DRE). Subsequently, two synthetic promoters were constructed by swapping the flanking sequences of CRT/DRE in the truncated promoters. The promoter strength comparison demonstrated that the flanking sequence could affect the promoter strength. These findings provide a potential regulatory mechanism to control the promoter strength without impact on other properties.
Collapse
Affiliation(s)
- Meng Li
- National Center for Vegetable Improvement (Central China), Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Li M, Song B, Zhang Q, Liu X, Lin Y, Ou Y, Zhang H, Liu J. A synthetic tuber-specific and cold-induced promoter is applicable in controlling potato cold-induced sweetening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:41-7. [PMID: 23542182 DOI: 10.1016/j.plaphy.2013.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/19/2013] [Indexed: 05/03/2023]
Abstract
Cold-induced sweetening (CIS) in potato seriously hinders the potato processing industry. It could be of great value for genetic improvement of potato CIS to have a target gene specifically expressed in cold stored tubers. In this study, we used a synthetic promoter, pCL, in potato transformation to drive an antisense expression of StvacINV1, the acid vacuolar invertase gene from Solanum tuberosum. The measurements of expression and enzyme activity of target gene showed that pCL promoter could efficiently govern target gene to express specifically and remarkably regulate the activity of acid vacuolar invertase in potato tubers at low temperature, furthermore, it had almost no effect in other tissues or the tubers under room temperature. The transgenic tubers showed decrease in reducing sugar content during storage at low temperature and acceptable chip color without significant changes observed in plant morphology and tuberization between the nontransgenic and transgenic lines. This tuber-specific and cold-induced feature could maximally reduce the background expression of the target gene which might bring about potential negative or detrimental effects to plant development. The synthetic promoter confirmed here would be optimal for gene function research in potato tubers in response to low temperature.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China.
| | - Botao Song
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China.
| | - Qiong Zhang
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Xun Liu
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Yuan Lin
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Yongbin Ou
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Huiling Zhang
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Jun Liu
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China.
| |
Collapse
|
24
|
Siuti P, Yazbek J, Lu TK. Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol 2013; 31:448-52. [PMID: 23396014 DOI: 10.1038/nbt.2510] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/17/2013] [Indexed: 01/13/2023]
Abstract
Logic and memory are essential functions of circuits that generate complex, state-dependent responses. Here we describe a strategy for efficiently assembling synthetic genetic circuits that use recombinases to implement Boolean logic functions with stable DNA-encoded memory of events. Application of this strategy allowed us to create all 16 two-input Boolean logic functions in living Escherichia coli cells without requiring cascades comprising multiple logic gates. We demonstrate long-term maintenance of memory for at least 90 cell generations and the ability to interrogate the states of these synthetic devices with fluorescent reporters and PCR. Using this approach we created two-bit digital-to-analog converters, which should be useful in biotechnology applications for encoding multiple stable gene expression outputs using transient inputs of inducers. We envision that this integrated logic and memory system will enable the implementation of complex cellular state machines, behaviors and pathways for therapeutic, diagnostic and basic science applications.
Collapse
Affiliation(s)
- Piro Siuti
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
25
|
Buyel JF, Kaever T, Buyel JJ, Fischer R. Predictive models for the accumulation of a fluorescent marker protein in tobacco leaves according to the promoter/5'UTR combination. Biotechnol Bioeng 2013; 110:471-82. [PMID: 22948957 DOI: 10.1002/bit.24715] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 12/23/2022]
Abstract
The promoter and 5'-untranslated region (5'UTR) play a key role in determining the efficiency of recombinant protein expression in plants. Comparative experiments are used to identify suitable elements but these are usually tested in transgenic plants or in transformed protoplasts/suspension cells, so their relevance in whole-plant transient expression systems is unclear given the greater heterogeneity in expression levels among different leaves. Furthermore, little is known about the impact of promoter/5'UTR interactions on protein accumulation. We therefore established a predictive model using a design of experiments (DoE) approach to compare the strong double-enhanced Cauliflower mosaic virus 35S promoter (CaMV 35SS) and the weaker Agrobacterium tumefaciens Ti-plasmid nos promoter in whole tobacco plants transiently expressing the fluorescent marker protein DsRed. The promoters were combined with one of three 5'UTRs (one of which was tested with and without an additional protein targeting motif) and the accumulation of DsRed was measured following different post-agroinfiltration incubation periods in all leaves and at different leaf positions. The model predictions were quantitative, allowing the rapid identification of promoter/5'UTR combinations stimulating the highest and quickest accumulation of the marker protein in all leaves. The model also suggested that increasing the incubation time from 5 to 8 days would reduce batch-to-batch variability in protein yields. We used the model to identify promoter/5'UTR pairs that resulted in the least spatiotemporal variation in expression levels. These ideal pairs are suitable for the simultaneous, balanced production of several proteins in whole plants by transient expression.
Collapse
Affiliation(s)
- J F Buyel
- Institute for Molecular Biotechnology, Worringer Weg 1, RWTH Aachen University, Aachen 52074, Germany.
| | | | | | | |
Collapse
|
26
|
Bokinsky G, Groff D, Keasling J. Synthetic Biology of Microbial Biofuel Production. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
27
|
Seo SW, Yang JS, Kim I, Yang J, Min BE, Kim S, Jung GY. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng 2013; 15:67-74. [DOI: 10.1016/j.ymben.2012.10.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/23/2012] [Accepted: 10/12/2012] [Indexed: 12/22/2022]
|
28
|
Guo T, Kong J, Zhang L, Zhang C, Hu S. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis. PLoS One 2012; 7:e36296. [PMID: 22558426 PMCID: PMC3338672 DOI: 10.1371/journal.pone.0036296] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/30/2012] [Indexed: 01/08/2023] Open
Abstract
Lactococcus lactis is a well-studied bacterium widely used in dairy fermentation and capable of producing metabolites with organoleptic and nutritional characteristics. For fine tuning of the distribution of glycolytic flux at the pyruvate branch from lactate to diacetyl and balancing the production of the two metabolites under aerobic conditions, a constitutive promoter library was constructed by randomizing the promoter sequence of the H2O-forming NADH oxidase gene in L. lactis. The library consisted of 30 promoters covering a wide range of activities from 7,000 to 380,000 relative fluorescence units using a green fluorescent protein as reporter. Eleven typical promoters of the library were selected for the constitutive expression of the H2O-forming NADH oxidase gene in L. lactis, and the NADH oxidase activity increased from 9.43 to 58.17-fold of the wild-type strain in small steps of activity change under aerobic conditions. Meanwhile, the lactate yield decreased from 21.15±0.08 mM to 9.94±0.07 mM, and the corresponding diacetyl production increased from 1.07±0.03 mM to 4.16±0.06 mM with the intracellular NADH/NAD+ ratios varying from 0.711±0.005 to 0.383±0.003. The results indicated that the reduced pyruvate to lactate flux was rerouted to the diacetyl with an almost linear flux variation via altered NADH/NAD+ ratios. Therefore, we provided a novel strategy to precisely control the pyruvate distribution for fine tuning of the lactate and diacetyl production through promoter engineering in L. lactis. Interestingly, the increased H2O-forming NADH oxidase activity led to 76.95% lower H2O2 concentration in the recombinant strain than that of the wild-type strain after 24 h of aerated cultivation. The viable cells were significantly elevated by four orders of magnitude within 28 days of storage at 4°C, suggesting that the increased enzyme activity could eliminate H2O2 accumulation and prolong cell survival.
Collapse
Affiliation(s)
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- * E-mail:
| | | | | | | |
Collapse
|
29
|
Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode. Metab Eng 2012; 14:91-103. [DOI: 10.1016/j.ymben.2012.01.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/11/2012] [Accepted: 01/26/2012] [Indexed: 11/21/2022]
|
30
|
Abstract
Techniques to manipulate cellular gene expression such that amino acid analogs not encoded by the genetic code are incorporated into a polypeptide chain have recently gained increasing interest. The so-called noncanonical amino acids often have unusual properties that can be translated into target proteins by reprogrammed ribosomal protein synthesis. Residue-specific substitution of a specific canonical amino acid by its analogs provokes global effects in the resulting protein congeners that include improved stability or catalytic activity, reduced redox sensitivity, as well as altered spectral properties. Thus, the approach holds great promise for the engineering of synthetic proteins.This contribution describes a protocol for the incorporation of a noncanonical amino acid into a target protein expressed in an appropriate amino acid auxotrophic E. coli strain.
Collapse
|
31
|
Qin X, Qian J, Xiao C, Zhuang Y, Zhang S, Chu J. Reliable high-throughput approach for screening of engineered constitutive promoters in the yeast Pichia pastoris. Lett Appl Microbiol 2011; 52:634-41. [PMID: 21449926 DOI: 10.1111/j.1472-765x.2011.03051.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To develop a reliable and sensitive high-throughput approach for the screening of engineered constitutive promoters in the yeast Pichia pastoris. METHODS AND RESULTS The yeast-enhanced green fluorescent protein (yEGFP) was used as the reporter to monitor the promoter strength. After eliminating the interfering components (yeast extract and tryptone) with fluorescence signal from the medium, a high-throughput screening approach was established and optimized to obtain a low standard deviation of cell density (6.9%) and fluorescence (7.4%) in 48-deep-well microplates. Then, 300 clones containing GAP promoter (P(GAP)) variants were screened, exhibiting a wide range in fluorescent intensity from about 8% to 218% of that obtained with P(GAP). Six representative clones with unique promoter sequence were picked for further characterization. A good correlation between yEGFP fluorescence in microplates and shake flasks was observed. Furthermore, the high correlation between fluorescence and transcript levels confirmed that expression was transcriptionally controlled. CONCLUSIONS We developed a reliable high-throughput screening approach that can be used to select engineered constitutive promoters of varying strengths. SIGNIFICANCE AND IMPACT OF THE STUDY This approach is expected to accelerate the selection of constitutive promoters in P. pastoris and can also be applied for the screening of other constitutive expression clones.
Collapse
Affiliation(s)
- X Qin
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, China
| | | | | | | | | | | |
Collapse
|
32
|
Mehrotra R, Gupta G, Sethi R, Bhalothia P, Kumar N, Mehrotra S. Designer promoter: an artwork of cis engineering. PLANT MOLECULAR BIOLOGY 2011; 75:527-36. [PMID: 21327513 DOI: 10.1007/s11103-011-9755-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 02/02/2011] [Indexed: 05/20/2023]
Abstract
Advances in systematic computational biology and rapid elucidation of synergistic interplay between cis and trans factors governing transcriptional control have facilitated functional annotation of gene networks. The generation of data through deconstructive, reconstructive and database assisted promoter studies, and its integration to principles of synthetic engineering has started an era of designer promoters. Exploration of natural promoter architecture and the concept of cis engineering have not only enabled fine tuning of single or multiple transgene expression in response to perturbations in the chemical, physiological and environmental stimuli but also provided researchers with a unique answer to various problems in crop improvement in the form of bidirectional promoters.
Collapse
Affiliation(s)
- Rajesh Mehrotra
- Department of Biological Sciences, BITS, Pilani, Rajasthan, India.
| | | | | | | | | | | |
Collapse
|
33
|
Continuous control of the flow in biochemical pathways through 5' untranslated region sequence modifications in mRNA expressed from the broad-host-range promoter Pm. Appl Environ Microbiol 2011; 77:2648-55. [PMID: 21335387 DOI: 10.1128/aem.02091-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inducible Pm promoter integrated into broad-host-range plasmid RK2 replicons can be fine-tuned continuously between the uninduced and maximally induced levels by varying the inducer concentrations. To lower the uninduced background level while still maintaining the inducibility for applications in, for example, metabolic engineering and synthetic (systems) biology, we report here the use of mutations in the Pm DNA region corresponding to the 5' untranslated region of mRNA (UTR). Five UTR variants obtained by doped oligonucleotide mutagenesis and selection, apparently reducing the efficiency of translation, were all found to display strongly reduced uninduced expression of three different reporter genes (encoding β-lactamase, luciferase, and phosphoglucomutase) in Escherichia coli. The ratio between induced and uninduced expression remained the same or higher compared to cells containing a corresponding plasmid with the wild-type UTR. Interestingly, the UTR variants also displayed similar effects on expression when substituted for the native UTR in another and constitutive promoter, P1 (P(antitet)), indicating a broad application potential of these UTR variants. Two of the selected variants were used to control the production of the C(50) carotenoid sarcinaxanthin in an engineered strain of E. coli that produces the precursor lycopene. Sarcinaxanthin is produced in this particular strain by expressing three Micrococcus luteus derived genes from the promoter Pm. The results indicated that UTR variants can be used to eliminate sarcinaxanthin production under uninduced conditions, whereas cells containing the corresponding plasmid with a wild-type UTR produced ca. 25% of the level observed under induced conditions.
Collapse
|
34
|
Villatoro-Hernandez J, Montes-de-Oca-Luna R, Kuipers OP. Targeting diseases with genetically engineeredLactococcus lactisand its course towards medical translation. Expert Opin Biol Ther 2011; 11:261-7. [DOI: 10.1517/14712598.2011.542138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S, Gallardo-Pérez JC, Quezada H, Westerhoff HV. Metabolic control analysis indicates a change of strategy in the treatment of cancer. Mitochondrion 2010; 10:626-39. [PMID: 20599628 DOI: 10.1016/j.mito.2010.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/06/2010] [Accepted: 06/01/2010] [Indexed: 01/01/2023]
Abstract
Much of the search for the "magic cancer bullet" or "block buster" has followed the expectation of a single gene or protein as "the rate-limiting step" for tumor persistence. Examples continue to abound: EGFR, VEGFR, Akt/PI3K, HIF-1α, PHD, PDK, or FAS continue to be targeted individually. However, many such attempts to block a metabolic or signal transduction pathway by targeting, specifically, a single rate-limiting molecule have proven to be unsuccessful. Metabolic control analysis (MCA) of cancer cells has generated a generic explanation for this phenomenon: several steps share the control of energy metabolism (for glycolysis: glucose transporter, hexokinase, glycogen synthesis and ATP demand; for oxidative phosphorylation: respiratory complex I and ATP demand), i.e., there is no single "rate-limiting step". Targeting a type of step that does not exist is unlikely to be a successful paradigm for continued research into drug targeting of cancer. MCA establishes how to determine, quantitatively, the degrees of control that the various enzymes in the intracellular network exert on vital flux (or function) and on the concentration of important metabolites, substituting for the intuitive, qualitative and most often erroneous concept of single rate-limiting step. Moreover, MCA helps to understand (i) the underlying mechanisms by which a given enzyme exerts high or low control, (ii) why the control of the pathway is shared by several pathway enzymes and transporters and (iii) what are the better sets of drug targets. Indeed, by applying MCA it should now be possible to identify the group of proteins (and genes) that should be modified to achieve a successful modulation of the intracellular networks of biotechnological or clinical relevance. The challenge is to move away from the design of drugs that specifically inhibit a single controlling step, towards unspecific drugs or towards drug mixtures, which may have multiple target sites in the most exacerbated, unique and controlling pathways in cancer cells. Successful nonspecific drugs should still be specific for the networks of cancer cells over those of normal cells and to establish such cell-type specificity within molecular non-specificity will continue to require sophisticated analyses. Clinical practice has anticipated the latter strategy of mixtures of drugs: combinations of anti-neoplastic drugs are already administered with encouraging results. Therefore, the most promising strategy for cancer treatment seems to be that of a multi-targeted, MCA-advised, therapy.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología de México, Tlalpan, México DF, Mexico.
| | | | | | | | | | | |
Collapse
|
36
|
De Las Heras A, Carreño CA, Martínez-García E, De Lorenzo V. Engineering input/output nodes in prokaryotic regulatory circuits. FEMS Microbiol Rev 2010; 34:842-65. [DOI: 10.1111/j.1574-6976.2010.00238.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Ruth C, Glieder A. Perspectives on synthetic promoters for biocatalysis and biotransformation. Chembiochem 2010; 11:761-5. [PMID: 20191652 DOI: 10.1002/cbic.200900761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acting on the transcriptional level, synthetic promoters have been useful tools for controlling gene expression and have applications in many fields. Here, we discuss synthetic promoters and libraries in regard to current and future applications in the field of biocatalysis or biotransformation. We also focus on synthetic promoter design principles and distinguish between prokaryotic and eukaryotic destinations. The natural toolboxes available for tuneable gene expression and the regulation of enzyme function are limited and primarily host specific. Synthetic biology offers generally applicable concepts and quick implementation. Smart alternatives to transcriptional regulation enrich the engineer's tool box for optimizing industrial enzyme production and host-cell physiology for whole-cell processes. Industrially applicable, tuneable enzyme cascades and artificial circuits for iterative up- and down-regulation will soon be achieved.
Collapse
Affiliation(s)
- Claudia Ruth
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | | |
Collapse
|
38
|
Yang Y, Ho SCL, Yap MGS. Mutated polyadenylation signals for controlling expression levels of multiple genes in mammalian cells. Biotechnol Bioeng 2009; 102:1152-60. [PMID: 18973284 DOI: 10.1002/bit.22152] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A set of mutated SV40 early polyadenylation signals (SV40pA) with varying strengths is generated by mutating the AATAAA sequence in the wild-type SV40pA. They are shown to control the expression level of a gene over a 10-fold range using luciferase reporter genes in transient transfection assays. The relative strength of these SV40pA variants remains similar under three commonly used mammalian promoters and in five mammalian cell lines. Application of SV40pA variants for controlling expression level of multiple genes is demonstrated in a study of monoclonal antibody (mAb) synthesis in mammalian cells. By using SV40pA variants of different strengths, the expression of light chain (LC) and heavy chain (HC) genes encoded in a single vector is independently altered which results in different ratios of LC to HC expression spanning a range from 0.24 to 16.42. The changes in gene expression are determined by measuring mRNA levels and intracellular LC and HC polypeptides. It is found that a substantial decrease of HC expression, which increases the LC/HC mRNA ratio, only slightly reduces mAb production. However, reducing the LC expression by a similar magnitude, which decreases the LC/HC mRNA ratio results in a sharp decline of mAb production to trace amounts. This set of SV40pA variants offers a new tool for accurate control of the relative expression levels of multiple genes. It will have wide-ranging applications in fields related to the study of biosynthesis of multi-subunit proteins, proteomic research on protein interactions, and multi-gene metabolic engineering.
Collapse
Affiliation(s)
- Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| | | | | |
Collapse
|
39
|
Balleza E, López-Bojorquez LN, Martínez-Antonio A, Resendis-Antonio O, Lozada-Chávez I, Balderas-Martínez YI, Encarnación S, Collado-Vides J. Regulation by transcription factors in bacteria: beyond description. FEMS Microbiol Rev 2009; 33:133-51. [PMID: 19076632 PMCID: PMC2704942 DOI: 10.1111/j.1574-6976.2008.00145.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transcription is an essential step in gene expression and its understanding has been one of the major interests in molecular and cellular biology. By precisely tuning gene expression, transcriptional regulation determines the molecular machinery for developmental plasticity, homeostasis and adaptation. In this review, we transmit the main ideas or concepts behind regulation by transcription factors and give just enough examples to sustain these main ideas, thus avoiding a classical ennumeration of facts. We review recent concepts and developments: cis elements and trans regulatory factors, chromosome organization and structure, transcriptional regulatory networks (TRNs) and transcriptomics. We also summarize new important discoveries that will probably affect the direction of research in gene regulation: epigenetics and stochasticity in transcriptional regulation, synthetic circuits and plasticity and evolution of TRNs. Many of the new discoveries in gene regulation are not extensively tested with wetlab approaches. Consequently, we review this broad area in Inference of TRNs and Dynamical Models of TRNs. Finally, we have stepped backwards to trace the origins of these modern concepts, synthesizing their history in a timeline schema.
Collapse
Affiliation(s)
- Enrique Balleza
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar K, Cregg JM, Glieder A. Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res 2008; 36:e76. [PMID: 18539608 PMCID: PMC2475614 DOI: 10.1093/nar/gkn369] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Although frequently used as protein production host, there is only a limited set of promoters available to drive the expression of recombinant proteins in Pichia pastoris. Fine-tuning of gene expression is often needed to maximize product yield and quality. However, for efficient knowledge-based engineering, a better understanding of promoter function is indispensable. Consequently, we created a promoter library by deletion and duplication of putative transcription factor-binding sites within the AOX1 promoter (PAOX1) sequence. This first library initially spanned an activity range between ∼6% and >160% of the wild-type promoter activity. After characterization of the promoter library employing a green fluorescent protein (GFP) variant, the new regulatory toolbox was successfully utilized in a ‘real case’, i.e. the expression of industrial enzymes. Characterization of the library under repressing, derepressing and inducing conditions displayed at least 12 cis-acting elements involved in PAOX1-driven high-level expression. Based on this deletion analysis, novel short artificial promoter variants were constructed by combining cis-acting elements with basal promoter. In addition to improving yields and quality of heterologous protein production, the new PAOX1 synthetic promoter library constitutes a basic toolbox to fine-tune gene expression in metabolic engineering and sequential induction of protein expression in synthetic biology.
Collapse
Affiliation(s)
- Franz S Hartner
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Silva-Rocha R, de Lorenzo V. Mining logic gates in prokaryotic transcriptional regulation networks. FEBS Lett 2008; 582:1237-44. [PMID: 18275855 DOI: 10.1016/j.febslet.2008.01.060] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
Prokaryotic transcriptional networks possess a large number of regulatory modules that formally implement many of the logic gates that are typical of digital, Boolean circuits. Yet, natural regulatory elements appear most often compressed and exaggeratedly context-dependent for any reliable circuit engineering barely comparable to electronic counterparts. To overcome this impasse, we argue that designing new functions with biological parts requires (i) the recognition of logic gates not yet assigned but surely present in the meta-genome, (ii) the orthogonalization and disambiguation of natural regulatory modules and (iii) the development of ways to tackle the connectivity and the definition of boundaries between minimal biological components.
Collapse
Affiliation(s)
- Rafael Silva-Rocha
- Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| | | |
Collapse
|
42
|
Zhu Q, Song B, Zhang C, Ou Y, Xie C, Liu J. Construction and functional characteristics of tuber-specific and cold-inducible chimeric promoters in potato. PLANT CELL REPORTS 2008; 27:47-55. [PMID: 17712561 DOI: 10.1007/s00299-007-0399-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/04/2007] [Accepted: 06/09/2007] [Indexed: 05/16/2023]
Abstract
The improvement of processing quality of potato products (fries and chips) demands less accumulation of reducing sugars (glucose and fructose) in cold-stored potato (Solanum tuberosum) tubers. Control of gene expression to achieve this requires promoters with specificity to tubers as well as inducible activity under low temperatures. Here we use overlapping extension PCR to construct two chimeric promoters, pCL and pLC, to control gene expression in a tuber-specific and cold-inducible pattern. This combined different combinations of the LTRE (low-temperature responsive element) from Arabidopsis thaliana cor15a promoter and the TSSR (tuber-specific and sucrose-responsive sequence) from potato class I patatin promoter. The cold-inducible and tuber-specific activities of the chimeric promoters were investigated by quantitative analysis of GUS activity in transgenic potato cultivar E3 plants. The results showed that the cis-elements, LTRE and TSSR, played responsive roles individually or in combination. pCL with the TSSR closer to the TATA-box showed substantially higher promoter activity than pLC with the LTRE closer to the TATA-box at either normal (20 degrees C) or low temperature (2 degrees C), suggesting that the promoter activity was closely associated with the position of the two elements. The chimeric promoter pCL with tuber-specific and cold-inducible features may provide valuable tool for controlling the expression of gene constructs designed to lower the formation of reducing sugars in tubers stored at low temperature and to improve the processing quality of potato products.
Collapse
Affiliation(s)
- Qing Zhu
- National Center for Vegetable Improvement (Central China), Key Laboratory of Horticulture Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
De Mey M, De Maeseneire S, Soetaert W, Vandamme E. Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol 2007; 34:689-700. [PMID: 17668256 DOI: 10.1007/s10295-007-0244-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 07/08/2007] [Indexed: 10/23/2022]
Abstract
Escherichia coli remains the best-established production organism in industrial biotechnology. However, when aerobic fermentation runs at high growth rates, considerable amounts of acetate are accumulated as by-product. This by-product has negative effects on growth and protein production. Over the last 20 years, substantial research efforts have been expended on reducing acetate accumulation during aerobic growth of E. coli on glucose. From the onset it was clear that this quest would not be a simple or uncomplicated one. Simple deletion of the acetate pathway reduced the acetate accumulation, but other by-products were formed. This mini review gives a clear outline of these research efforts and their outcome, including bioprocess level approaches and genetic approaches. Recently, the latter seems to have some promising results.
Collapse
Affiliation(s)
- Marjan De Mey
- Laboratory of Industrial Microbiology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
44
|
De Mey M, Maertens J, Lequeux GJ, Soetaert WK, Vandamme EJ. Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering. BMC Biotechnol 2007; 7:34. [PMID: 17572914 PMCID: PMC1913913 DOI: 10.1186/1472-6750-7-34] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 06/18/2007] [Indexed: 11/29/2022] Open
Abstract
Background Nowadays, the focus in metabolic engineering research is shifting from massive overexpression and inactivation of genes towards the model-based fine tuning of gene expression. In this context, the construction of a library of synthetic promoters of Escherichia coli as a useful tool for fine tuning gene expression is discussed here. Results A degenerated oligonucleotide sequence that encodes consensus sequences for E. coli promoters separated by spacers of random sequences has been designed and synthesized. This 57 bp long sequence contains 24 conserved, 13 semi-conserved (W, R and D) and 20 random nucleotides. This mixture of DNA fragments was cloned into a promoter probing vector (pVIK165). The ligation mixtures were transformed into competent E. coli MA8 and the resulting clones were screened for GFP activity by measuring the relative fluorescence units; some clones produced high fluorescence intensity, others weak fluorescence intensity. The clones cover a range of promoter activities from 21.79 RFU/OD600 ml to 7606.83 RFU/OD600 ml. 57 promoters were sequenced and used for promoter analysis. The present results conclusively show that the postulates, which link promoter strength to anomalies in the -10 box and/or -35 box, and to the length of the spacer, are not generally valid. However, by applying Partial Least Squares regression, a model describing the promoter strength was built and validated. Conclusion For Escherichia coli, the promoter strength can not been linked to anomalies in the -10 box and/or -35 box, and to the length of the spacer. Also a probabilistic approach to relate the promoter sequence to its strength has some drawbacks. However, by applying Partial Least Squares regression, a good correlation was found between promoter sequence and promoter strength. This PLS model can be a useful tool to rationally design a suitable promoter in order to fine tune gene expression.
Collapse
Affiliation(s)
- Marjan De Mey
- Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jo Maertens
- BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Gaspard J Lequeux
- BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim K Soetaert
- Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Erick J Vandamme
- Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
45
|
Park YS, Seo SW, Hwang S, Chu HS, Ahn JH, Kim TW, Kim DM, Jung GY. Design of 5'-untranslated region variants for tunable expression in Escherichia coli. Biochem Biophys Res Commun 2007; 356:136-41. [PMID: 17349977 DOI: 10.1016/j.bbrc.2007.02.127] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
Abstract
Redesign or modification of the cellular physiology requires a quantitatively well-controlled expression system known as the "tunable expression." Although the modification of promoters demonstrates the great impact on the translation efficiency, it is difficult to detect the proper variants required for tunable expression. The 5'-untranslated region (UTR), however, can be an important target for tunable expressions because the ribosome binding affinity is directly modulated by the sequence variants of the Shine-Dalgarno (SD) sequence and the AU-rich sequence, which are the ribosome binding sites and a SD-sequence-independent translation enhancer, respectively. This study developed a simple method to obtain numerous 5'-UTR variants and analyze their translation efficiency based on the PCR-based site-directed mutagenesis and the expressional PCR using coupled in vitro transcription/translation system derived from Escherichia coli and eGFP gene as a template. SD sequence variants (18) and AU-rich sequence variants (36), which have a wide range of relative expression levels ranging from 0.1 to 2.0, were obtained. The translation efficiency was affected by the ribosome binding affinity and its accessibility that is dependent on the secondary structure around the 5'-UTR.
Collapse
Affiliation(s)
- Young Seoub Park
- Department of Chemical Engineering, POSTECH, Hyoja-dong, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kern A, Tilley E, Hunter IS, Legisa M, Glieder A. Engineering primary metabolic pathways of industrial micro-organisms. J Biotechnol 2007; 129:6-29. [PMID: 17196287 DOI: 10.1016/j.jbiotec.2006.11.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/04/2006] [Accepted: 08/18/2006] [Indexed: 01/01/2023]
Abstract
Metabolic engineering is a powerful tool for the optimisation and the introduction of new cellular processes. This is mostly done by genetic engineering. Since the introduction of this multidisciplinary approach, the success stories keep accumulating. The primary metabolism of industrial micro-organisms has been studied for long time and most biochemical pathways and reaction networks have been elucidated. This large pool of biochemical information, together with data from proteomics, metabolomics and genomics underpins the strategies for design of experiments and choice of targets for manipulation by metabolic engineers. These targets are often located in the primary metabolic pathways, such as glycolysis, pentose phosphate pathway, the TCA cycle and amino acid biosynthesis and mostly at major branch points within these pathways. This paper describes approaches taken for metabolic engineering of these pathways in bacteria, yeast and filamentous fungi.
Collapse
Affiliation(s)
- Alexander Kern
- Institute for Molecular Biotechnology, TU Graz, Petersgasse 14, 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
47
|
Venter M. Synthetic promoters: genetic control through cis engineering. TRENDS IN PLANT SCIENCE 2007; 12:118-24. [PMID: 17292658 DOI: 10.1016/j.tplants.2007.01.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/12/2006] [Accepted: 01/29/2007] [Indexed: 05/03/2023]
Abstract
Technological advances in plant genetics integrated with systems biology and bioinformatics has yielded a myriad of novel biological data and insights into plant metabolism. This unprecedented advance has provided a platform for targeted manipulation of transcriptional activity through synthetic promoter engineering, and holds great promise as a way to further our understanding of regulatory complexity. The challenge and strategy for predictive experimental gene expression is the accurate design and use of molecular 'switches' and modules that will regulate single or multiple plant transgenes in direct response to specific environmental, physiological and chemical cues. In particular, focusing on cis-motif rearrangement, future plant biotechnology applications and the elucidation of cis- and trans-regulatory mechanisms could greatly benefit from using plant synthetic promoters.
Collapse
Affiliation(s)
- Mauritz Venter
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
48
|
Hammer K, Mijakovic I, Jensen PR. Synthetic promoter libraries--tuning of gene expression. Trends Biotechnol 2006; 24:53-5. [PMID: 16406119 DOI: 10.1016/j.tibtech.2005.12.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/10/2005] [Accepted: 12/08/2005] [Indexed: 10/25/2022]
Abstract
The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene knockout and strong overexpression. However, applications such as metabolic optimization and control analysis necessitate a continuous set of expression levels with only slight increments in strength to cover a specific window around the wild-type expression level of the studied gene; this requirement can be met by using promoter libraries. This approach generally consists of inserting a library of promoters in front of the gene to be studied, whereby the individual promoters might deviate either in their spacer sequences or bear slight deviations from the consensus sequence of a vegetative promoter. Here, we describe the two different methods for obtaining promoter libraries and compare their applicability.
Collapse
Affiliation(s)
- Karin Hammer
- Microbial Physiology and Genetics, BioCentrum, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|