1
|
Li J, Fang S, Zhang H, Iqbal Z, Shang C, Han W, Huang K, Meng X, Dai M, Lu Z, Guo B, Qu M. Integrative analysis of transcriptome and metabolism reveals functional roles of redox homeostasis in low light and salt combined stress in Leymus chinensis. BMC Genomics 2025; 26:312. [PMID: 40158098 PMCID: PMC11955115 DOI: 10.1186/s12864-025-11526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/25/2025] [Indexed: 04/01/2025] Open
Abstract
Salt stress is one of the major limiting factors of Leymus chinensis (named sheepgrass) growth, which accelerates inhibitive effects that are particularly concomitant with low light regimes (LL-Salt). However, little is known about physiological and molecular mechanisms under such LL-Salt in sheepgrass. This study aims to uncover the key reprogrammed metabolic pathways induced by LL-Salt through an integrated analysis of transcriptome and metabolism. Results suggested that the growth of sheepgrass seedlings was dramatically inhibited with a ranging of 8 to 20% reduction in Fv/Fm in LL-Salt combined treatments. Catalase activities were increased by 40% in LL but significantly decreased in salt stress, ranging from 15 to 46%. Both transcriptome and metabolism analysis reveal that carbon metabolism pathways were significantly enriched in the differentially expressed genes with downregulation by both LL and salt stress treatment. Metabolites involved in the photorespiration pathway, including serine and glycolate, were downregulated in LL while upregulated in salt stress treatment, with the same pattern of expression levels of a photorespiration regulatory gene, glycolate oxidase. Collectively, we found that serval antioxidant redox pathways, including photorespiration, GSG/GSSH redox, and ABA signaling, participated in response to LL and salt combined events and highlighted the roles of cellular redox homeostasis in LL-Salt response in sheepgrass.
Collapse
Affiliation(s)
- Jikai Li
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| | - Suyang Fang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Hailing Zhang
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zubair Iqbal
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Chen Shang
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Weibo Han
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Kai Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Xiangshen Meng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Muyuan Dai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zhiheng Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Bingnan Guo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Sun Y, Chen T, Ge X, Ni T, Dykes GF, Zhang P, Huang F, Liu LN. Engineering CO 2-fixing modules in Escherichia coli via efficient assembly of cyanobacterial Rubisco and carboxysomes. PLANT COMMUNICATIONS 2025; 6:101217. [PMID: 39645581 PMCID: PMC11956089 DOI: 10.1016/j.xplc.2024.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/22/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) is the central enzyme for conversion of atmospheric CO2 into organic molecules, playing a crucial role in the global carbon cycle. In cyanobacteria and some chemoautotrophs, Rubisco complexes, together with carbonic anhydrase, are enclosed within specific proteinaceous microcompartments known as carboxysomes. The polyhedral carboxysome shell ensures the dense packaging of Rubisco and creates a high-CO2 internal environment to facilitate CO2 fixation. Rubisco and carboxysomes have been popular targets for bioengineering, with the intent of enhancing plant photosynthesis, crop yields, and biofuel production. However, efficient generation of Form 1B Rubisco and cyanobacterial β-carboxysomes in heterologous systems remains a challenge. Here, we developed genetic systems to efficiently engineer functional cyanobacterial Form 1B Rubisco in Escherichia coli by incorporating Rubisco assembly factor Raf1 and modulating the RbcL/S stoichiometry. We then reconstituted catalytically active β-carboxysomes in E. coli with cognate Form 1B Rubisco by fine-tuning the expression levels of individual β-carboxysome components. In addition, we investigated the mechanism of Rubisco encapsulation into carboxysomes by constructing hybrid carboxysomes; this was achieved by creating a chimeric encapsulation peptide incorporating small sub-unit-like domains, which enabled the encapsulation of Form 1B Rubisco into α-carboxysome shells. Our study provides insights into the assembly mechanisms of plant-like Form 1B Rubisco and the principles of its encapsulation in both β-carboxysomes and hybrid carboxysomes, highlighting the inherent modularity of carboxysome structures. These findings lay the framework for rational design and repurposing of CO2-fixing modules in bioengineering applications, e.g., crop engineering, biocatalyst production, and molecule delivery.
Collapse
Affiliation(s)
- Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Taiyu Chen
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Xingwu Ge
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Gregory F Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Fang Huang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Zhu T, Ning P, Liu Y, Liu M, Yang J, Wang Z, Li M. Knowledge of microalgal Rubiscos helps to improve photosynthetic efficiency of crops. PLANTA 2025; 261:78. [PMID: 40042639 DOI: 10.1007/s00425-025-04645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/16/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION A comprehensive understanding of microalgal Rubiscos offers opportunities to enhance photosynthetic efficiency of crops. As food production fails to meet the needs of the expanding population, there is increasing concern about Ribulose-1, 5-diphosphate (RuBP) carboxylase/oxygenase (Rubisco), the enzyme that catalyzes CO2 fixation in photosynthesis. There have been many attempts to optimize Rubisco in crops, but the complex multicellular structure of higher plants makes optimization more difficult. Microalgae have the characteristics of rapid growth, simple structure and easy molecular modification, and the function and properties of their Rubiscos are basically the same as those of higher plants. Research on microalgal Rubiscos helps to broaden the understanding of Rubiscos of higher plants. Also, transferring all or part of better microalgal Rubiscos into crop cells or giving crop Rubiscos the advantages of microalgal Rubiscos can help improve the photosynthesis of crops. In this review, the distribution, origin, evolution, molecular structure, folding, assembly, activation and kinetic properties of microalgal Rubiscos are summarized. Moreover, the development of some effective methods to improve the properties and application of Rubiscos in microalgae are also described.
Collapse
Affiliation(s)
- Tongtong Zhu
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Peng Ning
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Yiguo Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 250100, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Zhaobao Wang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China.
| | - Meijie Li
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
4
|
Zhang Y, Sun T, Liu L, Cao X, Zhang W, Wang W, Li C. Engineering a solar formic acid/pentose (SFAP) pathway in Escherichia coli for lactic acid production. Metab Eng 2024; 83:150-159. [PMID: 38621518 DOI: 10.1016/j.ymben.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Microbial CO2 fixation into lactic acid (LA) is an important approach for low-carbon biomanufacturing. Engineering microbes to utilize CO2 and sugar as co-substrates can create efficient pathways through input of moderate reducing power to drive CO2 fixation into product. However, to achieve complete conservation of organic carbon, how to engineer the CO2-fixing modules compatible with native central metabolism and merge the processes for improving bioproduction of LA is a big challenge. In this study, we designed and constructed a solar formic acid/pentose (SFAP) pathway in Escherichia coli, which enabled CO2 fixation merging into sugar catabolism to produce LA. In the SFAP pathway, adequate reducing equivalents from formate oxidation drive glucose metabolism shifting from glycolysis to the pentose phosphate pathway. The Rubisco-based CO2 fixation and sequential reduction of C3 intermediates are conducted to produce LA stoichiometrically. CO2 fixation theoretically can bring a 20% increase of LA production compared with sole glucose feedstock. This SFAP pathway in the integration of photoelectrochemical cell and an engineered Escherichia coli opens an efficient way for fixing CO2 into value-added bioproducts.
Collapse
Affiliation(s)
- Yajing Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China
| | - Linqi Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xupeng Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China
| | - Wangyin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China.
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Chen PR, Xia PF. Carbon recycling with synthetic CO 2 fixation pathways. Curr Opin Biotechnol 2024; 85:103023. [PMID: 38007984 DOI: 10.1016/j.copbio.2023.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023]
Abstract
Carbon dioxide (CO2) is the node of alleviating global climate change and supporting living organisms on Earth. Currently, the warming climate and the growing population demand enhanced CO2 fixation for a sustainable future, which stimulates innovations in biotechnology to tackle these challenges. To this endeavor, synthetic biology and metabolic engineering are enabling a promising approach to engineer synthetic carbon fixation in heterotrophic organisms combining the advantages of both autotrophs and heterotrophs. Here, we review the current advances in constructing synthetic CO2 fixation pathways and discuss the underlying design principles with confronting challenges. Moreover, we highlight the application scenarios of these designs at different concentrations of CO2, and how sustainable bioproduction can be improved. We also foresee the future of engineering synthetic carbon fixation pathways for carbon recycling.
Collapse
Affiliation(s)
- Pei-Ru Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Sugii S, Hagino K, Mizuuchi R, Ichihashi N. Cell-free expression of RuBisCO for ATP production in the synthetic cells. Synth Biol (Oxf) 2023; 8:ysad016. [PMID: 38149045 PMCID: PMC10750972 DOI: 10.1093/synbio/ysad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/28/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
Recent advances in bottom-up synthetic biology have made it possible to reconstitute cellular systems from non-living components, yielding artificial cells with potential applications in industry, medicine and basic research. Although a variety of cellular functions and components have been reconstituted in previous studies, sustained biological energy production remains a challenge. ATP synthesis via ribulose-1,5-diphosphate carboxylase/oxygenase (RuBisCO), a central enzyme in biological CO2 fixation, holds potential as an energy production system, but its feasibility in a cell-free expression system has not yet been tested. In this study, we test RuBisCO expression and its activity-mediated ATP synthesis in a reconstituted Escherichia coli-based cell-free translation system. We then construct a system in which ATP is synthesized by RuBisCO activity in giant vesicles and used as energy for translation reactions. These results represent an advance toward independent energy production in artificial cells. Graphical Abstract.
Collapse
Affiliation(s)
| | - Katsumi Hagino
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Ryo Mizuuchi
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 162-8480, Japan
- JST FOREST, Kawaguchi, Saitama 332-0012, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- College of Arts and Science, the University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Department of Medicine, the University of Tokyo, Bunkyo, Tokyo 113-8654, Japan
| |
Collapse
|
7
|
Zhong W, Li H, Wang Y. Design and Construction of Artificial Biological Systems for One-Carbon Utilization. BIODESIGN RESEARCH 2023; 5:0021. [PMID: 37915992 PMCID: PMC10616972 DOI: 10.34133/bdr.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
The third-generation (3G) biorefinery aims to use microbial cell factories or enzymatic systems to synthesize value-added chemicals from one-carbon (C1) sources, such as CO2, formate, and methanol, fueled by renewable energies like light and electricity. This promising technology represents an important step toward sustainable development, which can help address some of the most pressing environmental challenges faced by modern society. However, to establish processes competitive with the petroleum industry, it is crucial to determine the most viable pathways for C1 utilization and productivity and yield of the target products. In this review, we discuss the progresses that have been made in constructing artificial biological systems for 3G biorefineries in the last 10 years. Specifically, we highlight the representative works on the engineering of artificial autotrophic microorganisms, tandem enzymatic systems, and chemo-bio hybrid systems for C1 utilization. We also prospect the revolutionary impact of these developments on biotechnology. By harnessing the power of 3G biorefinery, scientists are establishing a new frontier that could potentially revolutionize our approach to industrial production and pave the way for a more sustainable future.
Collapse
Affiliation(s)
- Wei Zhong
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| | - Hailong Li
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
- School of Materials Science and Engineering,
Zhejiang University, Zhejiang Province, Hangzhou 310000, PR China
| | - Yajie Wang
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| |
Collapse
|
8
|
Yu X, Catanescu CO, Bird RE, Satagopan S, Baum ZJ, Lotti Diaz LM, Zhou QA. Trends in Research and Development for CO 2 Capture and Sequestration. ACS OMEGA 2023; 8:11643-11664. [PMID: 37033841 PMCID: PMC10077574 DOI: 10.1021/acsomega.2c05070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Technological and medical advances over the past few decades epitomize human capabilities. However, the increased life expectancies and concomitant land-use changes have significantly contributed to the release of ∼830 gigatons of CO2 into the atmosphere over the last three decades, an amount comparable to the prior two and a half centuries of CO2 emissions. The United Nations has adopted a pledge to achieve "net zero", i.e., yearly removing as much CO2 from the atmosphere as the amount emitted due to human activities, by the year 2050. Attaining this goal will require a concerted effort by scientists, policy makers, and industries all around the globe. The development of novel materials on industrial scales to selectively remove CO2 from mixtures of gases makes it possible to mitigate CO2 emissions using a multipronged approach. Broadly, the CO2 present in the atmosphere can be captured using materials and processes for biological, chemical, and geological technologies that can sequester CO2 while also reducing our dependence on fossil-fuel reserves. In this review, we used the curated literature available in the CAS Content Collection to present a systematic analysis of the various approaches taken by scientists and industrialists to restore carbon balance in the environment. Our analysis highlights the latest trends alongside the associated challenges.
Collapse
|
9
|
Ting WW, Yu JY, Lin YC, Ng IS. Enhanced recombinant carbonic anhydrase in T7RNAP-equipped Escherichia coli W3110 for carbon capture storage and utilization (CCSU). BIORESOURCE TECHNOLOGY 2022; 363:128010. [PMID: 36167176 DOI: 10.1016/j.biortech.2022.128010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Sulfurihydrogenibium yellowstonense carbonic anhydrase (SyCA) is a well-known thermophilic CA for carbon mineralization. To broaden the applications of SyCA, the activity of SyCA was improved through stepwise engineering and in different cultural conditions, as well as extended to co-expression with other enzymes. The engineered W3110 strains with 4 different T7 RNA polymerase levels were employed for SyCA production. As a result, the best strain WT7L cultured in modified M9 medium with temperature shifted from 37 to 30 °C after induction increased SyCA activity to 9122 U/mL. The SyCA whole-cell biocatalyst was successfully applied for carbon capture and storage (CCS) of CaCO3. Furthermore, SyCA was applied for low-carbon footprint synthesis of 5-aminolevulinic acid (5-ALA) and cadaverine (DAP) by coupling with ALA synthetase (ALAS) and lysine decarboxylase (CadA), suppressing CO2 release to -6.1 g-CO2/g-ALA and -2.53 g-CO2/g-DAP, respectively. Harnessing a highly active SyCA offers a complete strategy for CCSU in a green process.
Collapse
Affiliation(s)
- Wan-Wen Ting
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jie-Yao Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
10
|
Onyeaka H, Ekwebelem OC. A review of recent advances in engineering bacteria for enhanced CO 2 capture and utilization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:4635-4648. [PMID: 35755182 PMCID: PMC9207427 DOI: 10.1007/s13762-022-04303-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Carbon dioxide (CO2) is emitted into the atmosphere due to some anthropogenic activities, such as the combustion of fossil fuels and industrial output. As a result, fears about catastrophic global warming and climate change have intensified. In the face of these challenges, conventional CO2 capture technologies are typically ineffective, dangerous, and contribute to secondary pollution in the environment. Biological systems for CO2 conversion, on the other hand, provide a potential path forward owing to its high application selectivity and adaptability. Moreover, many bacteria can use CO2 as their only source of carbon and turn it into value-added products. The purpose of this review is to discuss recent significant breakthroughs in engineering bacteria to utilize CO2 and other one-carbon compounds as substrate. In the same token, the paper also summarizes and presents aspects such as microbial CO2 fixation pathways, engineered bacteria involved in CO2 fixation, up-to-date genetic and metabolic engineering approaches for CO2 fixation, and promising research directions for the production of value-added products from CO2. This review's findings imply that using biological systems like modified bacteria to manage CO2 has the added benefit of generating useful industrial byproducts like biofuels, pharmaceutical compounds, and bioplastics. The major downside, from an economic standpoint, thus far has been related to methods of cultivation. However, thanks to genetic engineering approaches, this can be addressed by large production yields. As a result, this review aids in the knowledge of various biological systems that can be used to construct a long-term CO2 mitigation technology at an industrial scale, in this instance bacteria-based CO2capture/utilization technology.
Collapse
Affiliation(s)
- H. Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - O. C. Ekwebelem
- Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Nigeria
| |
Collapse
|
11
|
Rin Kim S, Kim SJ, Kim SK, Seo SO, Park S, Shin J, Kim JS, Park BR, Jin YS, Chang PS, Park YC. Yeast metabolic engineering for carbon dioxide fixation and its application. BIORESOURCE TECHNOLOGY 2022; 346:126349. [PMID: 34800639 DOI: 10.1016/j.biortech.2021.126349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
As numerous industrial bioprocesses rely on yeast fermentation, developing CO2-fixing yeast strains can be an attractive option toward sustainable industrial processes and carbon neutrality. Recent studies have shown that the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) in yeasts, such as Saccharomyces cerevisiae and Kluyveromyces marxianus, enables mixotrophic CO2 fixation and production of biofuels. Also, the expression of a synthetic Calvin-Benson-Bassham (CBB) cycle including RuBisCO in Pichia pastoris enables autotrophic growth on CO2. This review highlights recent advances in metabolic engineering strategies to enable CO2 fixation in yeasts. Also, we discuss the potentials of other natural and synthetic metabolic pathways independent of RuBisCO for developing CO2-fixing yeast strains capable of producing value-added biochemicals.
Collapse
Affiliation(s)
- Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Sujeong Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jamin Shin
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bo-Ram Park
- Department of Agro-food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
12
|
Pavan M, Reinmets K, Garg S, Mueller AP, Marcellin E, Köpke M, Valgepea K. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metab Eng 2022; 71:117-141. [DOI: 10.1016/j.ymben.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
|
13
|
García JL, Galán B. Integrating greenhouse gas capture and C1 biotechnology: a key challenge for circular economy. Microb Biotechnol 2021; 15:228-239. [PMID: 34905295 PMCID: PMC8719819 DOI: 10.1111/1751-7915.13991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- José L García
- Environmental Biotechnology Laboratory, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Madrid, Spain
| | - Beatriz Galán
- Environmental Biotechnology Laboratory, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Madrid, Spain
| |
Collapse
|
14
|
Wijewardene I, Shen G, Zhang H. Enhancing crop yield by using Rubisco activase to improve photosynthesis under elevated temperatures. STRESS BIOLOGY 2021; 1:2. [PMID: 37676541 PMCID: PMC10429496 DOI: 10.1007/s44154-021-00002-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 09/08/2023]
Abstract
With the rapid growth of world population, it is essential to increase agricultural productivity to feed the growing population. Over the past decades, many methods have been used to increase crop yields. Despite the success in boosting the crop yield through these methods, global food production still needs to be increased to be on par with the increasing population and its dynamic consumption patterns. Additionally, given the prevailing environmental conditions pertaining to the global temperature increase, heat stress will likely be a critical factor that negatively affects plant biomass and crop yield. One of the key elements hindering photosynthesis and plant productivity under heat stress is the thermo-sensitivity of the Rubisco activase (RCA), a molecular chaperone that converts Rubisco back to active form after it becomes inactive. It would be an attractive and practical strategy to maintain photosynthetic activity under elevated temperatures by enhancing the thermo-stability of RCA. In this context, this review discusses the need to improve the thermo-tolerance of RCA under current climatic conditions and to further study RCA structure and regulation, and its limitations at elevated temperatures. This review summarizes successful results and provides a perspective on RCA research and its implication in improving crop yield under elevated temperature conditions in the future.
Collapse
Affiliation(s)
- Inosha Wijewardene
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
15
|
Bio-conversion of CO 2 into biofuels and other value-added chemicals via metabolic engineering. Microbiol Res 2021; 251:126813. [PMID: 34274880 DOI: 10.1016/j.micres.2021.126813] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/24/2022]
Abstract
Carbon dioxide (CO2) occurs naturally in the atmosphere as a trace gas, which is produced naturally as well as by anthropogenic activities. CO2 is a readily available source of carbon that in principle can be used as a raw material for the synthesis of valuable products. The autotrophic organisms are naturally equipped to convert CO2 into biomass by obtaining energy from sunlight or inorganic electron donors. This autotrophic CO2 fixation has been exploited in biotechnology, and microbial cell factories have been metabolically engineered to convert CO2 into biofuels and other value-added bio-based chemicals. A variety of metabolic engineering efforts for CO2 fixation ranging from basic copy, paste, and fine-tuning approaches to engineering and testing of novel synthetic CO2 fixing pathways have been demonstrated. In this paper, we review the current advances and innovations in metabolic engineering for bio-conversion of CO2 into bio biofuels and other value-added bio-based chemicals.
Collapse
|
16
|
Ji Y, Ding Q, Li T, Tang R, Zhang J. The Correlation and Influencing Factors of Crisis Response Ability and Psychological Factors in Patients with Liver Cirrhosis. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:2384-2391. [PMID: 34178745 PMCID: PMC8215054 DOI: 10.18502/ijph.v49i12.4823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Illness can provoke a crisis response that affects condition acceptance, treatment and recovery. Patients’ sense of coherence can influence this explored across patient cohorts internationally. However, few studies examine these effects in patients with hepatic cirrhosis. This study investigated sense of coherence and social support of patients with hepatic cirrhosis. Methods: The psychological status of 146 patients admitted to the Digestive System Department, First Affiliated Hospital of Harbin Medical University, Harbin, China from Mar 2016 to Mar 2019 with hepatic cirrhosis was assessed using the Sense of Coherence (SOC-13), Social Support Rating Scale (SSRS) and crisis assessment scales. Results: There was a low level of crisis response in patients with hepatic cirrhosis that was influenced by age, disease course, education level and Child-Pugh grade and negatively correlated with sense of coherence and social support. Conclusion: Liver cirrhosis patients had a low level of crisis response. As the level of crisis response in is correlated with patients' sense of coherence, social support and educational level, careful assessment, tailored educational interventions and mobilizing of family support are important to maximize responses to illness and thus improve quality of life.
Collapse
Affiliation(s)
- Yanping Ji
- Department of Nursing, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Qingbin Ding
- Operating Room, The First Affiliated Hospital of Harbin Medical University, Harbin 150070, P.R. China
| | - Tingting Li
- Ward II, Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Renhong Tang
- Operating Room, The First Affiliated Hospital of Harbin Medical University, Harbin 150070, P.R. China
| | - Jing Zhang
- Department of Nursing, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| |
Collapse
|
17
|
Screening, gene cloning, and characterization of orsellinic acid decarboxylase from Arthrobacter sp. K8 for regio-selective carboxylation of resorcinol derivatives. J Biotechnol 2020; 323:128-135. [PMID: 32828832 DOI: 10.1016/j.jbiotec.2020.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/19/2020] [Indexed: 11/20/2022]
Abstract
Toward a sustainable synthesis of value-added chemicals, the method of CO2 utilization attracts great interest in chemical process engineering. Biotechnological CO2 fixation is a promising technology; however, efficient methods that can fix carbon dioxide are still limited. Instead, some parts of microbial decarboxylases allow the introduction of carboxy group into phenolic compounds using bicarbonate ion as a C1 building block. Here, we identified a unique decarboxylase from Arthrobacter sp. K8 that acts on resorcinol derivatives. A high-throughput colorimetric decarboxylase assay facilitated gene cloning of orsellinic acid decarboxylase from genomic DNA library of strain K8. Sequence analysis revealed that the orsellinic acid decarboxylase belonged to amidohydrolase 2 family, but shared low amino acid sequence identity with those of related decarboxylases. Enzymatic characterization unveiled that the decarboxylase introduces a carboxy group in a highly regio-selective manner. We applied the decarboxylase to enzymatic carboxylation of resorcinol derivatives. Using Escherichia coli expressing the decarboxylase gene as a whole cell biocatalyst, orsellinic acid, 2,4-dihydroxybenzoic acid, and 4-methoxysalicylic acid were produced in the presence of saturated bicarbonate. These findings could provide new insights into the production of useful phenolic acids from resorcinol derivatives.
Collapse
|
18
|
Liang B, Zhao Y, Yang J. Recent Advances in Developing Artificial Autotrophic Microorganism for Reinforcing CO 2 Fixation. Front Microbiol 2020; 11:592631. [PMID: 33240247 PMCID: PMC7680860 DOI: 10.3389/fmicb.2020.592631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
With the goal of achieving carbon sequestration, emission reduction and cleaner production, biological methods have been employed to convert carbon dioxide (CO2) into fuels and chemicals. However, natural autotrophic organisms are not suitable cell factories due to their poor carbon fixation efficiency and poor growth rate. Heterotrophic microorganisms are promising candidates, since they have been proven to be efficient biofuel and chemical production chassis. This review first briefly summarizes six naturally occurring CO2 fixation pathways, and then focuses on recent advances in artificially designing efficient CO2 fixation pathways. Moreover, this review discusses the transformation of heterotrophic microorganisms into hemiautotrophic microorganisms and delves further into fully autotrophic microorganisms (artificial autotrophy) by use of synthetic biological tools and strategies. Rapid developments in artificial autotrophy have laid a solid foundation for the development of efficient carbon fixation cell factories. Finally, this review highlights future directions toward large-scale applications. Artificial autotrophic microbial cell factories need further improvements in terms of CO2 fixation pathways, reducing power supply, compartmentalization and host selection.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
19
|
Borghi GL, Moraes TA, Günther M, Feil R, Mengin V, Lunn JE, Stitt M, Arrivault S. Relationship between irradiance and levels of Calvin-Benson cycle and other intermediates in the model eudicot Arabidopsis and the model monocot rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5809-5825. [PMID: 31353406 PMCID: PMC6812724 DOI: 10.1093/jxb/erz346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/22/2019] [Indexed: 05/02/2023]
Abstract
Metabolite profiles provide a top-down overview of the balance between the reactions in a pathway. We compared Calvin-Benson cycle (CBC) intermediate profiles in different conditions in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) to learn which features of CBC regulation differ and which are shared between these model eudicot and monocot C3 species. Principal component analysis revealed that CBC intermediate profiles follow different trajectories in Arabidopsis and rice as irradiance increases. The balance between subprocesses or reactions differed, with 3-phosphoglycerate reduction being favoured in Arabidopsis and ribulose 1,5-bisphosphate regeneration in rice, and sedoheptulose-1,7-bisphosphatase being favoured in Arabidopsis compared with fructose-1,6-bisphosphatase in rice. Photosynthesis rates rose in parallel with ribulose 1,5-bisphosphate levels in Arabidopsis, but not in rice. Nevertheless, some responses were shared between Arabidopsis and rice. Fructose 1,6-bisphosphate and sedoheptulose-1,7-bisphosphate were high or peaked at very low irradiance in both species. Incomplete activation of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase may prevent wasteful futile cycles in low irradiance. End-product synthesis is inhibited and high levels of CBC intermediates are maintained in low light or in low CO2 in both species. This may improve photosynthetic efficiency in fluctuating irradiance, and facilitate rapid CBC flux to support photorespiration and energy dissipation in low CO2.
Collapse
Affiliation(s)
- Gian Luca Borghi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Manuela Günther
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Correspondence:
| |
Collapse
|
20
|
Cheng HTY, Lo SC, Huang CC, Ho TY, Yang YT. Detailed profiling of carbon fixation of in silico synthetic autotrophy with reductive tricarboxylic acid cycle and Calvin-Benson-Bassham cycle in Esherichia coli using hydrogen as an energy source. Synth Syst Biotechnol 2019; 4:165-172. [PMID: 31528741 PMCID: PMC6739492 DOI: 10.1016/j.synbio.2019.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/06/2019] [Accepted: 08/19/2019] [Indexed: 12/04/2022] Open
Abstract
Carbon fixation is the main route of inorganic carbon in the form of CO2 into the biosphere. In nature, RuBisCO is the most abundant protein that photosynthetic organisms use to fix CO2 from the atmosphere through the Calvin-Benson-Bassham (CBB) cycle. However, the CBB cycle is limited by its low catalytic rate and low energy efficiency. In this work, we attempt to integrate the reductive tricarboxylic acid and CBB cycles in silico to further improve carbon fixation capacity. Key heterologous enzymes, mostly carboxylating enzymes, are inserted into the Esherichia coli core metabolic network to assimilate CO2 into biomass using hydrogen as energy source. Overall, such a strain shows enhanced growth yield with simultaneous running of dual carbon fixation cycles. Our key results include the following. (i) We identified two main growth states: carbon-limited and hydrogen-limited; (ii) we identified a hierarchy of carbon fixation usage when hydrogen supply is limited; and (iii) we identified the alternative sub-optimal growth mode while performing genetic perturbation. The results and modeling approach can guide bioengineering projects toward optimal production using such a strain as a microbial cell factory.
Collapse
Affiliation(s)
- Hsieh-Ting-Yang Cheng
- Department of Computer Science, National Tsing Hua University, Hsinchu, 30013, Taiwan, R.O.C
| | - Shou-Chen Lo
- Department of Life Sciences, National Chung-Hsing Univeristy, Taichung, Taiwan, R.O.C
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung-Hsing Univeristy, Taichung, Taiwan, R.O.C
- Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Tsung-Yi Ho
- Department of Computer Science, National Tsing Hua University, Hsinchu, 30013, Taiwan, R.O.C
| | - Ya-Tang Yang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, R.O.C
- Corresponding author.
| |
Collapse
|
21
|
2-Hydroxyacyl-CoA lyase catalyzes acyloin condensation for one-carbon bioconversion. Nat Chem Biol 2019; 15:900-906. [PMID: 31383974 DOI: 10.1038/s41589-019-0328-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/24/2019] [Indexed: 11/09/2022]
Abstract
Despite the potential of biotechnological processes for one-carbon (C1) bioconversion, efficient biocatalysts required for their implementation are yet to be developed. To address intrinsic limitations of native C1 biocatalysts, here we report that 2-hydroxyacyl CoA lyase (HACL), an enzyme involved in mammalian α-oxidation, catalyzes the ligation of carbonyl-containing molecules of different chain lengths with formyl-coenzyme A (CoA) to produce C1-elongated 2-hydroxyacyl-CoAs. We discovered and characterized a prokaryotic variant of HACL and identified critical residues for this newfound activity, including those supporting the hypothesized thiamine pyrophosphate-dependent acyloin condensation mechanism. The use of formyl-CoA as a C1 donor provides kinetic advantages and enables C1 bioconversion to multi-carbon products, demonstrated here by engineering an Escherichia coli whole-cell biotransformation system for the synthesis of glycolate and 2-hydroxyisobutyrate from formaldehyde and formaldehyde plus acetone, respectively. Our work establishes a new approach for C1 bioconversion and the potential for HACL-based pathways to support synthetic methylotrophy.
Collapse
|
22
|
Selection of Cyanobacterial ( Synechococcus sp. Strain PCC 6301) RubisCO Variants with Improved Functional Properties That Confer Enhanced CO 2-Dependent Growth of Rhodobacter capsulatus, a Photosynthetic Bacterium. mBio 2019; 10:mBio.01537-19. [PMID: 31337726 PMCID: PMC6650557 DOI: 10.1128/mbio.01537-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RubisCO catalysis has a significant impact on mitigating greenhouse gas accumulation and CO2 conversion to food, fuel, and other organic compounds required to sustain life. Because RubisCO-dependent CO2 fixation is severely compromised by oxygen inhibition and other physiological constraints, improving RubisCO’s kinetic properties to enhance growth in the presence of atmospheric O2 levels has been a longstanding goal. In this study, RubisCO variants with superior structure-functional properties were selected which resulted in enhanced growth of an autotrophic host organism (R. capsulatus), indicating that RubisCO function was indeed growth limiting. It is evident from these results that genetically engineered RubisCO with kinetically enhanced properties can positively impact growth rates in primary producers. Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a ubiquitous enzyme that catalyzes the conversion of atmospheric CO2 into organic carbon in primary producers. All naturally occurring RubisCOs have low catalytic turnover rates and are inhibited by oxygen. Evolutionary adaptations of the enzyme and its host organisms to changing atmospheric oxygen concentrations provide an impetus to artificially evolve RubisCO variants under unnatural selective conditions. A RubisCO deletion strain of the nonsulfur purple photosynthetic bacterium Rhodobacter capsulatus was previously used as a heterologous host for directed evolution and suppressor selection studies that led to the identification of a conserved hydrophobic region near the active site where amino acid substitutions selectively impacted the enzyme’s sensitivity to O2. In this study, structural alignments, mutagenesis, suppressor selection, and growth complementation with R. capsulatus under anoxic or oxygenic conditions were used to analyze the importance of semiconserved residues in this region of Synechococcus RubisCO. RubisCO mutant substitutions were identified that provided superior CO2-dependent growth capabilities relative to the wild-type enzyme. Kinetic analyses of the mutant enzymes indicated that enhanced growth performance was traceable to differential interactions of the enzymes with CO2 and O2. Effective residue substitutions also appeared to be localized to two other conserved hydrophobic regions of the holoenzyme. Structural comparisons and similarities indicated that regions identified in this study may be targeted for improvement in RubisCOs from other sources, including crop plants.
Collapse
|
23
|
Wang B, Jiang Z, Yu JC, Wang J, Wong PK. Enhanced CO 2 reduction and valuable C 2+ chemical production by a CdS-photosynthetic hybrid system. NANOSCALE 2019; 11:9296-9301. [PMID: 31049528 DOI: 10.1039/c9nr02896j] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semi-artificial photosynthesis is an emerging technique in recent years. Here, we presented an inorganic-biological hybrid system composed of photosynthetic Rhodopseudomonas palustris and CdS nanoparticles coated on the bacterial surface. Under visible light irradiation, the CO2 reduction and valuable C2+ chemical production of R. palustris could be promoted by the photo-induced electrons from the CdS NPs. The increased energy-rich NADPH cofactor promoted the generation of the Calvin cycle intermediate, glyceraldehyde-3-phosphate. As a result, the production of solid biomass, carotenoids and poly-β-hydroxybutyrate (PHB) was increased to 148%, 122% and 147%, respectively. The photosynthetic efficiency (PE) of CdS-R. palustris was elevated from the original 4.31% to 5.98%. The surface loaded NP amount and the material-cell interface both played important roles in the efficient electron generation and transduction. The CdS-R. palustris hybrid system also exhibited a survival advantage over its natural counterparts under the autotrophic conditions. Under a practical solar/dark cycle, the produced biomass, carotenoid and PHB from the hybrid system also reach 139%, 117% and 135%, respectively. The CdS-photosynthetic hybrid system represents a powerful and expandable platform for advanced CO2 reduction and solar-to-chemical (S2C) conversion.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China.
| | | | | | | | | |
Collapse
|
24
|
Thauer RK. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes. Biochemistry 2019; 58:5198-5220. [PMID: 30951290 PMCID: PMC6941323 DOI: 10.1021/acs.biochem.9b00164] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Methyl-coenzyme
M reductase (MCR) catalyzes the methane-forming
step in methanogenic archaea. The active enzyme harbors the nickel(I)
hydrocorphin coenzyme F-430 as a prosthetic group and catalyzes the
reversible reduction of methyl-coenzyme M (CH3–S-CoM)
with coenzyme B (HS-CoM) to methane and CoM-S–S-CoB. MCR is
also involved in anaerobic methane oxidation in reverse of methanogenesis
and most probably in the anaerobic oxidation of ethane, propane, and
butane. The challenging question is how the unreactive CH3–S thioether bond in methyl-coenzyme M and the even more unreactive
C–H bond in methane and the other hydrocarbons are anaerobically
cleaved. A key to the answer is the negative redox potential (Eo′) of the Ni(II)F-430/Ni(I)F-430 couple
below −600 mV and the radical nature of Ni(I)F-430. However,
the negative one-electron redox potential is also the Achilles heel
of MCR; it makes the nickel enzyme one of the most O2-sensitive
enzymes known to date. Even under physiological conditions, the Ni(I)
in MCR is oxidized to the Ni(II) or Ni(III) states, e.g., when in
the cells the redox potential (E′) of the
CoM-S–S-CoB/HS-CoM and HS-CoB couple (Eo′ = −140 mV) gets too high. Methanogens therefore
harbor an enzyme system for the reactivation of inactivated MCR in
an ATP-dependent reduction reaction. Purification of active MCR in
the Ni(I) oxidation state is very challenging and has been achieved
in only a few laboratories. This perspective reviews the function,
structure, and properties of MCR, what is known and not known about
the catalytic mechanism, how the inactive enzyme is reactivated, and
what remains to be discovered.
Collapse
Affiliation(s)
- Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Strasse 10 , Marburg 35043 , Germany
| |
Collapse
|
25
|
Abstract
Photosynthesis and nitrogen fixation became evolutionarily immutable as “frozen metabolic accidents” because multiple interactions between the proteins and protein complexes involved led to their co-evolution in modules. This has impeded their adaptation to an oxidizing atmosphere, and reconfiguration now requires modification or replacement of whole modules, using either natural modules from exotic species or non-natural proteins with similar interaction potential. Ultimately, the relevant complexes might be reconstructed (almost) from scratch, starting either from appropriate precursor processes or by designing alternative pathways. These approaches will require advances in synthetic biology, laboratory evolution, and a better understanding of module functions.
Collapse
Affiliation(s)
- Dario Leister
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
26
|
Liebal UW, Blank LM, Ebert BE. CO 2 to succinic acid - Estimating the potential of biocatalytic routes. Metab Eng Commun 2018; 7:e00075. [PMID: 30197864 PMCID: PMC6127376 DOI: 10.1016/j.mec.2018.e00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 11/26/2022] Open
Abstract
Microbial carbon dioxide assimilation and conversion to chemical platform molecules has the potential to be developed as economic, sustainable processes. The carbon dioxide assimilation can proceed by a variety of natural pathways and recently even synthetic CO2 fixation routes have been designed. Early assessment of the performance of the different carbon fixation alternatives within biotechnological processes is desirable to evaluate their potential. Here we applied stoichiometric metabolic modeling based on physiological and process data to evaluate different process variants for the conversion of C1 carbon compounds to the industrial relevant platform chemical succinic acid. We computationally analyzed the performance of cyanobacteria, acetogens, methylotrophs, and synthetic CO2 fixation pathways in Saccharomyces cerevisiae in terms of production rates, product yields, and the optimization potential. This analysis provided insight into the economic feasibility and allowed to estimate the future industrial applicability by estimating overall production costs. With reported, or estimated data of engineered or wild type strains, none of the simulated microbial succinate production processes showed a performance allowing competitive production. The main limiting factors were identified as gas and photon transfer and metabolic activities whereas metabolic network structure was not restricting. In simulations with optimized parameters most process alternatives reached economically interesting values, hence, represent promising alternatives to sugar-based fermentations.
Collapse
Affiliation(s)
| | - Lars M. Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | | |
Collapse
|
27
|
Chen X, Cao Y, Li F, Tian Y, Song H. Enzyme-Assisted Microbial Electrosynthesis of Poly(3-hydroxybutyrate) via CO2 Bioreduction by Engineered Ralstonia eutropha. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00226] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoli Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yingxiu Cao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Feng Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yao Tian
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
28
|
Gomez-Fernandez BJ, Garcia-Ruiz E, Martin-Diaz J, Gomez de Santos P, Santos-Moriano P, Plou FJ, Ballesteros A, Garcia M, Rodriguez M, Risso VA, Sanchez-Ruiz JM, Whitney SM, Alcalde M. Directed -in vitro- evolution of Precambrian and extant Rubiscos. Sci Rep 2018; 8:5532. [PMID: 29615759 PMCID: PMC5883036 DOI: 10.1038/s41598-018-23869-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 11/09/2022] Open
Abstract
Rubisco is an ancient, catalytically conserved yet slow enzyme, which plays a central role in the biosphere's carbon cycle. The design of Rubiscos to increase agricultural productivity has hitherto relied on the use of in vivo selection systems, precluding the exploration of biochemical traits that are not wired to cell survival. We present a directed -in vitro- evolution platform that extracts the enzyme from its biological context to provide a new avenue for Rubisco engineering. Precambrian and extant form II Rubiscos were subjected to an ensemble of directed evolution strategies aimed at improving thermostability. The most recent ancestor of proteobacteria -dating back 2.4 billion years- was uniquely tolerant to mutagenic loading. Adaptive evolution, focused evolution and genetic drift revealed a panel of thermostable mutants, some deviating from the characteristic trade-offs in CO2-fixing speed and specificity. Our findings provide a novel approach for identifying Rubisco variants with improved catalytic evolution potential.
Collapse
Affiliation(s)
| | - Eva Garcia-Ruiz
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Javier Martin-Diaz
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049, Madrid, Spain
| | | | - Paloma Santos-Moriano
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Francisco J Plou
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Antonio Ballesteros
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Monica Garcia
- División de Tecnología Química y Nuevas Energías, Centro del Tecnología Química, Repsol S.A, 28935, Móstoles, Spain
| | - Marisa Rodriguez
- División de Tecnología Química y Nuevas Energías, Centro del Tecnología Química, Repsol S.A, 28935, Móstoles, Spain
| | - Valeria A Risso
- Facultad de Ciencias, Departamento de Química Física, Universidad de Granada, 18071, Granada, Spain
| | - Jose M Sanchez-Ruiz
- Facultad de Ciencias, Departamento de Química Física, Universidad de Granada, 18071, Granada, Spain
| | - Spencer M Whitney
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 2601, Australia
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
29
|
Liang F, Englund E, Lindberg P, Lindblad P. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Metab Eng 2018; 46:51-59. [DOI: 10.1016/j.ymben.2018.02.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/14/2017] [Accepted: 02/18/2018] [Indexed: 01/02/2023]
|
30
|
Wilson RH, Martin-Avila E, Conlan C, Whitney SM. An improved Escherichia coli screen for Rubisco identifies a protein-protein interface that can enhance CO 2-fixation kinetics. J Biol Chem 2018; 293:18-27. [PMID: 28986448 PMCID: PMC5766918 DOI: 10.1074/jbc.m117.810861] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/28/2017] [Indexed: 01/03/2023] Open
Abstract
An overarching goal of photosynthesis research is to identify how components of the process can be improved to benefit crop productivity, global food security, and renewable energy storage. Improving carbon fixation has mostly focused on enhancing the CO2 fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This grand challenge has mostly proved ineffective because of catalytic mechanism constraints and required chaperone complementarity that hinder Rubisco biogenesis in alternative hosts. Here we refashion Escherichia coli metabolism by expressing a phosphoribulokinase-neomycin phosphotransferase fusion protein to produce a high-fidelity, high-throughput Rubisco-directed evolution (RDE2) screen that negates false-positive selection. Successive evolution rounds using the plant-like Te-Rubisco from the cyanobacterium Thermosynechococcus elongatus BP1 identified two large subunit and six small subunit mutations that improved carboxylation rate, efficiency, and specificity. Structural analysis revealed the amino acids clustered in an unexplored subunit interface of the holoenzyme. To study its effect on plant growth, the Te-Rubisco was transformed into tobacco by chloroplast transformation. As previously seen for Synechocccus PCC6301 Rubisco, the specialized folding and assembly requirements of Te-Rubisco hinder its heterologous expression in leaf chloroplasts. Our findings suggest that the ongoing efforts to improve crop photosynthesis by integrating components of a cyanobacteria CO2-concentrating mechanism will necessitate co-introduction of the ancillary molecular components required for Rubisco biogenesis.
Collapse
Affiliation(s)
- Robert H Wilson
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Elena Martin-Avila
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Carly Conlan
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Spencer M Whitney
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia.
| |
Collapse
|
31
|
Orr DJ, Pereira AM, da Fonseca Pereira P, Pereira-Lima ÍA, Zsögön A, Araújo WL. Engineering photosynthesis: progress and perspectives. F1000Res 2017; 6:1891. [PMID: 29263782 PMCID: PMC5658708 DOI: 10.12688/f1000research.12181.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2017] [Indexed: 12/11/2022] Open
Abstract
Photosynthesis is the basis of primary productivity on the planet. Crop breeding has sustained steady improvements in yield to keep pace with population growth increases. Yet these advances have not resulted from improving the photosynthetic process
per se but rather of altering the way carbon is partitioned within the plant. Mounting evidence suggests that the rate at which crop yields can be boosted by traditional plant breeding approaches is wavering, and they may reach a “yield ceiling” in the foreseeable future. Further increases in yield will likely depend on the targeted manipulation of plant metabolism. Improving photosynthesis poses one such route, with simulations indicating it could have a significant transformative influence on enhancing crop productivity. Here, we summarize recent advances of alternative approaches for the manipulation and enhancement of photosynthesis and their possible application for crop improvement.
Collapse
Affiliation(s)
- Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Auderlan M Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paula da Fonseca Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ítalo A Pereira-Lima
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|